
 アプリケーションノート

R01AN7757JJ0110 Rev.1.10 Page 1 of 63

Dec.24.25

RXファミリ

ファームウェアアップデート通信モジュール Firmware Integration Technology

要旨

本アプリケーションノートは Firmware Integration Technology(FIT)を使用したファームウェアアップデー

ト通信モジュールについて説明します。

本モジュールを使用して、プライマリ MCU―セカンダリ MCU構成のシステムで、セカンダリ MCUの

ファームウェア更新を実現できます。本アプリケーションノートでは、本モジュールの使用方法、ユーザア

プリケーションへの組込み方法、および拡張方法について説明します。

 また、本アプリケーションノートのリリースパッケージにはデモプロジェクトが含まれています。「5

デモプロジェクト」に記載する手順に沿ってデモの実行環境を構築することで、本モジュールを使用したセ

カンダリ MCUのファームウェア更新の基本的な動作を確認することができます。

動作確認デバイス

RX140グループ

RX23E-Bグループ

RX261グループ

RX65Nグループ

RX66Tグループ

RX660グループ

本アプリケーションノートを他のマイコンへ適用する場合、そのマイコンの仕様にあわせて変更し、十分

評価してください。

関連アプリケーションノート

• Firmware Integration Technology ユーザーズマニュアル(R01AN1833)

• RXファミリ e2 studio に組み込む方法 Firmware Integration Technology(R01AN1723)

• RXファミリ ボードサポートパッケージモジュール Firmware Integration Technology(R01AN1685)

• RXファミリ SCIモジュール Firmware Integration Technology(R01AN1815)

• RXファミリ RSPIモジュール Firmware Integration Technology(R01AN1827)

• RXファミリ ファームウェアアップデートモジュール Firmware Integration Technology(R01AN6850)

• RXファミリ MCUboot Firmware Integration Technology(R01AN7374)

ターゲットコンパイラ

• Renesas Electronics C/C++ Compiler Package for RX Family

• GCC for Renesas RX

各コンパイラの動作確認環境については 「6.1 動作確認環境」を参照してください。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 2 of 63

Dec.24.25

目次

1. 概要 ... 5

1.1 ファームウェアアップデート通信モジュールとは ... 5

1.2 サポートする通信 IPとハードウェア構成 .. 5

1.2.1 UART通信 ... 5

1.2.2 SPI通信 ... 5

1.3 ソフトウェア構成 .. 6

1.3.1 UART通信設定 ... 6

1.4 パケット通信 ... 7

1.5 データフォーマット .. 8

1.5.1 パケットのデータフォーマット .. 8

1.6 コマンド仕様 ... 9

1.6.1 Commonコマンド ... 9

1.6.2 FWUPコマンド ... 10

1.6.2.2 FWUPコマンドの通信フロー ... 12

1.7 エラーハンドリング .. 13

1.8 APIの概要 ... 13

2. API情報 ... 14

2.1 ハードウェアの要求 .. 14

2.2 ソフトウェアの要求 .. 14

2.3 サポートされているツールチェーン ... 14

2.4 ヘッダファイル ... 14

2.5 整数型 .. 14

2.6 コンパイル時の設定 .. 15

2.7 サンプルプロジェクトのコードサイズ ... 19

2.8 引数 ... 21

2.9 戻り値 .. 23

2.10 FITモジュールの追加方法 .. 23

2.11 for文、while文、do while文について .. 23

3. API関数 ... 25

3.1 R_FWUPCOMM_Open関数 ... 25

3.2 R_FWUPCOMM_Close関数 .. 25

3.3 R_FWUPCOMM_CmdSend関数 .. 26

3.4 R_FWUPCOMM_ProcessCmdLoop関数 ... 27

4. 本モジュールの拡張方法 ... 28

4.1 コマンドの追加 ... 28

4.2 通信方式の変更 ... 32

4.2.1 通信インターフェース .. 32

4.2.1.1 fwupcomm_err_t (*open)(void) .. 32

4.2.1.2 void (*close)(void) .. 32

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size) .. 33

4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size) ... 33

4.2.1.5 void (*rx_reset)(void) ... 33

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 3 of 63

Dec.24.25

4.2.2 通信方式の変更方法 .. 34

5. デモプロジェクト .. 35

5.1 デモプロジェクトの構成 ... 35

5.1.1 プライマリ MCU ... 36

5.1.2 セカンダリ MCU ... 36

5.2 動作環境準備 ... 37

5.2.1 TeraTermのインストール .. 37

5.2.2 Python実行環境のインストール ... 37

5.2.3 フラッシュライタのインストール .. 37

5.3 プロジェクトの実行手順 ... 38

5.3.1 実行環境 .. 38

5.3.2 デモプロジェクトの構築 ... 38

5.3.2.1 プライマリ MCU用の初期イメージと更新イメージを作成 ... 38

5.3.2.2 セカンダリ MCU用の初期イメージと更新イメージを作成 ... 39

5.3.3 初期イメージの書き込み ... 40

5.3.4 ファームウェアアップデートの実行 ... 41

5.4 MCUbootプロジェクトの実行手順 ... 43

5.4.1 実行環境 .. 43

5.4.2 デモプロジェクトの構築 ... 43

5.4.2.1 プライマリ MCU用の初期イメージと更新イメージを作成 ... 43

5.4.2.2 セカンダリ MCU用の初期イメージと更新イメージを作成 ... 45

5.4.3 ファームウェアアップデートの実行 ... 46

5.5 PC-プライマリ MCU間の通信方式が XMODEMの場合のデモプロジェクトの実行手順 47

5.6 マイコン間の通信方式が SPIの場合のデモプロジェクトの設定方法 .. 49

6. 付録 ... 50

6.1 動作確認環境 ... 50

6.2 UART通信設定 ... 50

6.3 デモプロジェクトの動作環境 .. 51

6.3.1 RX140の動作確認環境 ... 51

6.3.1.1 マイコン間通信が UARTの場合の接続構成 ... 51

6.3.1.2 マイコン間通信が SPIの場合の接続構成 ... 52

6.3.2 RX23E-Bの動作確認環境 ... 53

6.3.2.1 マイコン間通信が UARTの場合の接続構成 ... 53

6.3.2.2 マイコン間通信が SPIの場合の接続構成 ... 54

6.3.3 RX261の動作確認環境 ... 55

6.3.3.1 マイコン間通信が UARTの場合の接続構成 ... 55

6.3.3.2 マイコン間通信が SPIの場合の接続構成 ... 56

6.3.4 RX66Tの動作確認環境 ... 57

6.3.4.1 マイコン間通信が UARTの場合の接続構成 ... 57

6.3.4.2 マイコン間通信が SPIの場合の接続構成 ... 58

6.3.5 RX660の動作確認環境 ... 59

6.3.5.1 マイコン間通信が UARTの場合の接続構成 ... 59

6.3.5.2 マイコン間通信が SPIの場合の接続構成 ... 60

6.3.6 RX65Nの動作確認環境 ... 61

6.3.6.1 PC-プライマリ MCU間の通信方式が XMODEMの場合の接続構成 .. 61

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 4 of 63

Dec.24.25

6.3.6.2 RSK-RX65N-2MB(TSIP)で RSPIを用いた SPI通信を行う場合の接続構成 62

改訂記録 .. 63

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 5 of 63

Dec.24.25

1. 概要

1.1 ファームウェアアップデート通信モジュールとは

ファームウェアアップデート通信モジュールとは、図 1-1に示すようなプライマリ MCU―セカンダリ

MCU構成のシステムで、セカンダリ MCUがプライマリ MCUから更新ファームウェアを受け取ってファー

ムウェア更新する際に、MCU間の通信を制御するミドルウェアです。プライマリ MCUとセカンダリ MCU

の両方に本モジュールを組み込むことで、容易にセカンダリMCUのファームウェア更新を実現できます。

1.2 サポートする通信 IPとハードウェア構成

本モジュールは、通信インターフェースにシリアルコミュニケーションインターフェース(SCI)を用いた

UART通信と、SCIまたはシリアルペリフェラルインターフェース(RSPI)を用いた同期式シリアル通信に対

応しています。

1.2.1 UART通信

本モジュールが想定する UART通信の場合のハードウェア構成を図 1-1に示します。プライマリMCUと

セカンダリ MCUは 2線 UART(TXD, RXD)で同一バス上に接続します。

図 1-1 ハードウェア構成図(UART)

1.2.2 SPI通信

本モジュールが想定する同期式シリアル通信のハードウェア構成を図 1-2に示します。プライマリMCU

とセカンダリ MCUは 3線式(MOSI, MISO, SCLK)で同一バス上に接続します。

なお、SCIを用いた同期式シリアル通信はプライマリ MCU側のみ対応しています。

本モジュールの SPI通信では、Secondary MCU側が通信不可のビジー状態であることを Primary MCU側

に伝達する方法として、MISO線を使用します。Secondary MCUがビジー状態の場合、Secondary MCUは

MISOを Low出力します。その後、ビジー状態から通信可能状態に復帰したら、Secondary MCUは MISO

を Open Drainに変更します。そのため、本モジュールを使用して SPI通信を行う場合は、MISO線をプル

アップしてください。

図 1-2 ハードウェア構成(SPI)

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 6 of 63

Dec.24.25

1.3 ソフトウェア構成

ソフトウェアモジュール構成を図 1-3(プライマリ MCU)、図 1-4(セカンダリ MCU)に示します。本モ

ジュールは、ベアメタル、FreeRTOSのプロジェクトで利用可能です。

図 1-3 プライマリMCUのソフトウェアモジュール構成

図 1-4 セカンダリMCUのソフトウェアモジュール構成

1.3.1 UART通信設定

本モジュールは「6.2 UART通信設定」に示す通信設定で動作確認しています。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 7 of 63

Dec.24.25

1.4 パケット通信

プライマリ MCUとセカンダリ MCU間は通信インターフェース上でパケット通信を行います。プライマ

リ MCUは、セカンダリ MCUに対してリクエストパケットを送信します。セカンダリMCUはリクエスト

パケットを受信すると、そのコマンドに応じた処理を実施し、結果をレスポンスパケットとしてプライマリ

MCUに対して送信します。パケット通信のフローを図 1-5に示します。

プライマリ MCU セカンダリ MCU

リクエストパケット送信

 ----->

 リクエストパケット受信

 コマンドに応じた処理を実行

 レスポンスパケット送信

 <-----

レスポンスパケット受信

図 1-5 パケット通信のフロー図

全てのコマンドは、そのコマンドの目的ごとに分類されており、Command classと呼んでいます。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 8 of 63

Dec.24.25

1.5 データフォーマット

プライマリ MCUとセカンダリ MCU間で行うパケット通信の仕様を説明します。MCU間の物理的な通信

方式に依存しない形でデータフォーマットを規定しています。

1.5.1 パケットのデータフォーマット

リクエストパケットのデータフォーマットを図 1-6に示します。Command headerと Command dataで

構成されています。

図 1-6 リクエストパケットのデータフォーマット

レスポンスパケットのデータフォーマットを図 1-7に示します。

図 1-7 レスポンスパケットのデータフォーマット

パケットの Header仕様を表 1-1に示します。

表 1-1 パケットの Header仕様

項目 内容

Device address コマンド送信先のセカンダリ MCUのデバイスアドレスです。

セカンダリ MCUは自身宛の場合のみ、コマンドに対する処理を行います。

• 0x00 – 0xFD: セカンダリMCUのデバイスアドレス

• 0xFE: ブロードキャストアドレス

• 0xFF: Reserved

Command

version

コマンドのバージョン。セカンダリ MCUは自身のコマンドのバージョンと等しい場

合のみ、コマンドに対する処理を行います。

0x00 – 0xFF

Command info • b7: 0: Command / 1: Response

• b4 – b6: Command class。「1.6コマンド仕様」参照。

• b0 – b3: Command ID。対応するコマンドとレスポンスパケットで同一の ID値。

Command option • b7: 0: レスポンスを送信する / 1: レスポンスを送信しない

• b0 – b6: Reserved

Command コマンドを表す値です。「1.6コマンド仕様」参照。

Command

argument / result

コマンド送信時は、コマンドの引数です。

レスポンス送信時は、コマンドの実行結果です。

「1.6コマンド仕様」参照。

Command /

Response data

size

Command dataもしくは Response dataのサイズです。

単位はバイトで、4の倍数である必要があります。

Header Command data

Device

Address

Command

version

Command

info

Command

option
Command

Command

argument

Command

data size

[LSByte]

Command

data size

[MSByte]

<------- Command data size ------->

Header Response data

Device

Address

Command

version

Command

info

Command

option
Command

Command

result

Response

data size

[LSByte]

Response

data size

[MSByte]

<------- Response data size ------->

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 9 of 63

Dec.24.25

1.6 コマンド仕様

本モジュールでは Command classとして、セカンダリ MCUのファームウェア更新を制御する FWUPコ

マンドと、汎用的なデータ通信に利用可能な Commonコマンドを定義しています。

表 1-2 Command classリスト

Command class 内容 値

Commonコマンド 汎用コマンド群 0x00

FWUPコマンド セカンダリ MCUのファームウェア更新制御用コマンド群 0x01

1.6.1 Commonコマンド

汎用的な目的で使用可能なコマンド群です。表 1-3にコマンド一覧を示します。

表 1-3 Commonコマンドリスト

Command 内容 コマンド値

DATA_SEND：データ送信コマンド 任意サイズのデータをセカンダリ

MCUに送信

0x01

DATA_RECV：データ受信コマンド 任意サイズのデータの送信をセカ

ンダリMCUに要求

0x02

(1) DATA_SEND：データ送信コマンド

セカンダリ MCUにデータを送信します。

表 1-4 COMMON DATA_SENDコマンド仕様

項目 値

Command 0x01

Command argument 0x00

Command result 0x00: 処理に成功 / 0x01: 処理に失敗

Command data size 任意のデータ長（「2.6 コンパイル時の設定」で設定可能）

Response data size 0

Command data 任意のデータ

Response data なし

(2) DATA_RECV：データ受信コマンド

セカンダリ MCUにデータ送信を要求します。

表 1-5 COMMON DATA_RECVコマンド仕様

項目 値

Command 0x02

Command argument 0x00

Command result 0x00: 処理に成功 / 0x01: 処理に失敗

Command data size 0

Response data size 任意のデータ長（「2.6 コンパイル時の設定」で設定可能）

Command data なし

Response data 任意のデータ

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 10 of 63

Dec.24.25

1.6.2 FWUPコマンド

ファームウェア更新時に使用するコマンド群です。表 1-6にコマンド一覧を示します。

表 1-6 FWUPコマンドリスト

Command 内容 コマンド値

START：FW更新開始コマンド FW更新開始 0x01

WRITE：更新 FW書き込みコマンド 更新 FWの書き込み 0x02

INSTALL：更新 FWインストールコマンド 更新 FWのインストールと

実行

0x03

CANCEL：FW更新キャンセルコマンド FW更新の中止 0x04

VERSION : FWバージョン確認コマンド 現在動作している FWバー

ジョンの確認

0xF0

(1) START：FW更新開始コマンド

セカンダリ MCUにファームウェア更新開始を要求します。

Command dataには任意のデータ長を設定できます。ファームウェア更新開始時のユーザ側での初期化処

理に必要なデータの送信に利用可能です。

本コマンドを受信したセカンダリMCUは、更新ファームウェアデータを受信可能な状態にします。

ファームウェア更新開始時は、最初にこのコマンドを送信します。

表 1-7 FWUP STARTコマンド仕様

項目 値

Command 0x01

Command argument 0x00

Command result 0x00: 処理に成功 / 0x02: 処理に失敗

Command data size 任意のデータ長（「2.6 コンパイル時の設定」で設定可能）

Response data size 0

Command data 任意のデータ

Response data なし

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 11 of 63

Dec.24.25

(2) WRITE：更新 FW書き込みコマンド

セカンダリ MCUに更新 FWデータを送信し、FW書き込みを要求します。

セカンダリ MCUは書き込み処理を実行します。更新 FWデータが最終ブロックの場合、さらに署名検証

処理を実行します。

表 1-8 FWUP WRITEコマンド仕様

項目 値

Command 0x02

Command argument 0x00

Command result 0x00: 処理に成功 / 0x01: 署名検証に成功 / 0x02: 処理に失敗

Command data size セカンダリ MCUの ROM書き込み単位の整数倍であること

（「2.6 コンパイル時の設定」で設定可能）

Response data size 0x04

Command data 更新 FWデータ

Response data 残りの更新 FWサイズ

(3) INSTALL：更新 FWインストールコマンド

セカンダリ MCUに書き込まれた更新 FWのインストールと実行を要求します。

表 1-9 FWUP INSTALLコマンド仕様

項目 値

Command 0x03

Command argument 0x00

Command result 0x00: 処理に成功 / 0x02: 処理に失敗

Command data size 0

Response data size 0

Command data なし

Response data なし

(4) CANCEL：FW更新キャンセルコマンド

セカンダリ MCUに FW更新中止を要求します。

セカンダリ MCUは更新を中断し、書き込んだ更新 FWの消去処理を実行します。

表 1-10 FWUP CANCELコマンド仕様

項目 値

Command 0x04

Command argument 0x00

Command result 0x00: 処理に成功 / 0x02: 処理に失敗

Command data size 0

Response data size 0

Command data なし

Response data なし

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 12 of 63

Dec.24.25

(5) VERSION : FWバージョン確認コマンド

セカンダリ MCUで現在動作している FWバージョンの取得を要求します。

表 1-11 FWUP VERSIONコマンド仕様

項目 値

Command 0xF0

Command argument 0x00

Command result 0x00: 処理に成功 / 0x02: 処理に失敗

Command data size 0

Response data size 0

Command data なし

Response data 現在動作している FWバージョン

1.6.2.2 FWUPコマンドの通信フロー

FWUPコマンドを用いたセカンダリ MCUのファームウェア更新時のコマンド通信フローを図 1-8に示し

ます。

プライマリ MCU セカンダリ MCU

FWUP STARTコマンド送信

 ----->

 FWUP STARTコマンド受信

 更新ファームウェアを受信でき

る状態に遷移

 FWUP STARTレスポンス送信

 <-----

FWUP STARTレスポンス受信

FWUP WRITEコマンド送信

 ----->

 FWUP WRITEコマンド受信

 FWUP FITの APIを利用し、

受信した更新ファームウェア

データを ROMに書き込む

 FWUP WRITEレスポンス送信

 <-----

FWUP WRITEレスポンス受信

全ての更新ファームウェアデータを受信するまで FWUP WRITEコマンドの通信を繰り返す

FWUP INSTALLコマンド送信

 ----->

 FWUP INSTALLコマンド受信

 更新ファームウェアをインス

トールし、レスポンスを送信後

に更新ファームウェアを実行す

る準備を行う

 FWUP INSTALLレスポンス送信

 <-----

FWUP INSTALLレスポンス受信

 更新ファームウェアを実行

図 1-8 FWUPコマンドの通信フロー図

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 13 of 63

Dec.24.25

1.7 エラーハンドリング

セカンダリ MCUは、受信したリクエストパケットの Header解析に失敗した場合、受信した Command

headerをプライマリ MCUに送信します。但し、Command versionはセカンダリ MCUで設定された

Command version に上書きされます。また、Command data sizeは 0に上書きされます。この時、コマン

ドに対応する処理は実行されません。リクエストパケットの Header解析に失敗するのは次のようなケース

です。

• 受信したリクエストパケットの Headerが定義されている仕様と異なる

• 受信したリクエストパケットの Command versionがセカンダリ MCUで設定された Command version

と異なる

• Command classまたは Commandが未定義値である

• Command data sizeで指定されたデータサイズ分の Command dataを受信できなかった

プライマリ MCU側は、受信したパケットの Command infoの最上位ビットが 0: Commandであることを

確認することで、セカンダリ MCU側での Header解析失敗を検出できます。

1.8 APIの概要

本モジュールに含まれる API関数を表 1-12に示します。

表 1-12 API関数一覧

関数 関数説明

R_FWUPCOMM_Open() 本モジュール及び本モジュール内で使用する通信

チャネルをオープンします。

R_FWUPCOMM_Close() 本モジュール及び本モジュール内で使用する通信

チャネルをクローズします。

R_FWUPCOMM_CmdSend() セカンダリ MCUに対してコマンドを送信し、それ

に対する応答を受信します。

R_FWUPCOMM_ProcessCmdLoop() プライマリ MCUからのコマンドを受信し、対応す

るハンドラを実行します。その後、コマンドの実

行結果を送信します。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 14 of 63

Dec.24.25

2. API情報

本モジュールは下記の条件で動作を確認しています。

2.1 ハードウェアの要求

ご使用になる MCUが以下の機能をサポートしている必要があります。

• SCI

• RSPI

2.2 ソフトウェアの要求

本モジュールは以下のドライバに依存しています。

• ボードサポートパッケージ(r_bsp)

• シリアルコミュニケーションインターフェース(r_sci)

• シリアルペリフェラルインターフェース(r_rspi)

2.3 サポートされているツールチェーン

本モジュールは「6.1 動作確認環境」に示すツールチェーンで動作確認しています。

2.4 ヘッダファイル

すべての API呼び出しとそれをサポートするインターフェース定義は r_fwupcomm_if.hファイルに記載さ

れています。

r_fwupcomm_config.hファイルに、ビルド時に設定可能なコンフィギュレーションオプションを定義しま

す。

2.5 整数型

このモジュールは ANSI C99を使用しています。これらの型は stdint.hで定義されています。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 15 of 63

Dec.24.25

2.6 コンパイル時の設定

本モジュールのコンフィグレーションオプションの設定は、r_fwupcomm_config.hで行います。

オプション名および設定値に関する説明を表 2-1 コンフィグレーション設定に示します。

表 2-1 コンフィグレーション設定(r_fwupcomm_config.h)

コンフィグレーションオプション(r_fwupcomm_config.h)

FWUPCOMM_CFG_PARAM_CHECKING_ENABLE

※デフォルトは “0”

0：ビルド時にパラメータチェックの処理をコード

から省略します。

1：ビルド時にパラメータチェックの処理をコード

に含めます。

このオプションに

BSP_CFG_PARAM_CHECKING_ENABLE を設定

すると、システムのデフォルト設定が使用されま

す。

FWUPCOMM_CFG_DEVICE_PRIMARY

※デフォルトは “0”

0：セカンダリ MCU

1：プライマリ MCU

FWUPCOMM_CFG_CH_INTERFACE

※デフォルトは “0”

使用する通信 IPおよび通信方式を設定します。

0: SCI UART

10: SCI SPI(プライマリMCUとして使用する場合

のみ)

11: RSPI SPI

FWUPCOMM_CFG_SCI_UART_CHANNEL

※デフォルトは “1”

UART通信で使用する SCIチャネル番号を設定しま

す。

FWUPCOMM_CFG_SCI_UART_BITRATE

※デフォルトは “115200”

UART通信のビットレートを設定します。

FWUPCOMM_CFG_SCI_UART_INT_PRIORITY

※デフォルトは “15”

UART通信で使用する SCIチャネルの割込み優先度

を設定します。

FWUPCOMM_CFG_SPI_CHANNEL

※デフォルトは “0”

SPI通信で使用する SCIチャネルもしくは RSPI

チャネル番号を設定します。

FWUPCOMM_CFG_SPI_BITRATE

※デフォルトは “1000000”

SPI通信のビットレートを設定します。

FWUPCOMM_CFG_SPI_MISO_PORTNO

※デフォルトは “A”

SPI通信のMISOのポート番号を設定します。

FWUPCOMM_CFG_SPI_MISO_BITNO

※デフォルトは “0”

SPI通信のMISOのポートの端子番号を設定しま

す。

FWUPCOMM_CFG_SPI_INT_PRIORITY

※デフォルトは “15”

SPI通信で使用する SCIチャネルの割込み優先度を

設定します。

FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZE

※デフォルトは “1048U”

コマンドの送信バッファサイズを設定します。サイ

ズは 8以上かつ 4の倍数を指定する必要がありま

す。

FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZE

※デフォルトは “1048U”

コマンドの受信バッファサイズを設定します。サイ

ズは 8以上かつ 4の倍数を指定する必要がありま

す。

FWUPCOMM_CFG_DEVICE_ADDRESS

※デフォルトは “0xA0”

このデバイスの固有アドレスを設定します。

FWUPCOMM_CFG_CMD_SEND_TIMEOUT

※デフォルトは “500U”

通信の送信タイムアウト時間を設定します。単位は

ミリ秒です。

FWUPCOMM_CFG_CMD_RECV_TIMEOUT

※デフォルトは “500U”

通信の受信タイムアウト時間を設定します。単位は

ミリ秒です。

FWUPCOMM_CFG_CMD_COMMON_ENABLE

※デフォルトは “1”

Commonコマンドを有効にするか選択します。

FWUPCOMM_CFG_CMD_HANDLER_COMMON

※デフォルトは “R_FWUPCOMM_CmdHandler_Common”

Commonコマンドを受信したときに呼び出されるハ

ンドラ関数名を設定します。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 16 of 63

Dec.24.25

FWUPCOMM_CFG_CMD_FWUP_ENABLE

※デフォルトは “1”

FWUPコマンドを有効にするか選択します。

FWUPCOMM_CFG_CMD_HANDLER_FWUP

※デフォルトは “R_FWUPCOMM_CmdHandler_FWUP”

FWUPコマンドを受信したときに呼び出されるハン

ドラ関数名を設定します。

FWUPCOMM_CFG_CMD_VER

※デフォルトは “1”

コマンドのバージョンを設定します。

FWUPCOMM_CFG_CMD_FWUP_START_DATA_SIZE

※デフォルトは “0U”

FWUP_STARTコマンドに付加するデータサイズを

設定します。

FWUPCOMM_CFG_CMD_FWUP_WRITE_FW_BLOCK_SIZE

※デフォルトは “1024U”

FWUP_WRITEコマンドに付加する FWブロックサ

イズを設定します。

FWUPCOMM_CFG_CMD_COMMON_MAX_DATA_SIZE

※デフォルトは “12U”

COMMONコマンドに付加するデータサイズの最大

値を設定します。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 17 of 63

Dec.24.25

本モジュールが使用する SCI FITモジュールのコンフィグレーションオプションの設定は、

r_sci_rx_config.hで行います。

SCI FITモジュールに対する設定オプション名および設定値に関する説明を表 2-2に示します。オプショ

ンの詳細は、「RXファミリ SCIモジュール Firmware Integration Technology (R01AN1815)」を参照して

ください。

表 2-2 コンフィグレーション設定(r_sci_rx_config.h)

コンフィグレーションオプション(r_sci_rx_config.h)

SCI_CFG_ASYNC_INCLUDED

※デフォルト値は"1"

モードに特定のコードを含むかどうかを定義します。

FWUPCOMM_CFG_CH_INTERFACEが 0(SCI UART)の

場合、"1"を設定してください。

SCI_CFG_SSPI_INCLUDED

※デフォルト値は"0"

モードに特定のコードを含むかどうかを定義します。

FWUPCOMM_CFG_CH_INTERFACEが 10(SCI SPI)の

場合、"1"を設定してください。

SCI_CFG_CHx_INCLUDED

※1. CHx = CH0～CH12

※2. 各デフォルト値は以下のとおり:

CH0=1、CH1～CH12: 0

チャネルごとに送受信バッファ、カウンタ、割り込み、

その他のプログラム、RAMなどのリソースを持ちます。

このオプションを“1”に設定すると、そのチャネルに関連

したリソースが割り当てられます。

FWUPCOMM_CFG_CH_INTERFACEが 0(SCI UART)の

場合、 FWUPCOMM_CFG_SCI_UART_CHANNELで指

定した SCIチャネル番号を指定してください。

FWUPCOMM_CFG_CH_INTERFACEが 10(SCI SPI)の

場合、 FWUPCOMM_CFG_SPI_CHANNELで指定した

SCIチャネル番号を指定してください。

SCI_CFG_CHx_TX_BUFSIZ

※1. CHx = CH0～CH12

※2. 各デフォルト値は 80

調歩同期式モードで、各チャネルの送信キューに使用さ

れるバッファサイズを指定します。

FWUPCOMM_CFG_CH_INTERFACEが 0(SCI UART)の

場合、

FWUPCOMM_CFG_SEND_PACKET_BUFFER_SIZEで

指定したバッファサイズを設定してください。

SCI_CFG_CHx_RX_BUFSIZ

※1. CHx = CH0～CH12

※2. 各デフォルト値は 80

調歩同期式モードで、各チャネルの受信キューに使用さ

れるバッファサイズを指定します。

FWUPCOMM_CFG_CH_INTERFACEが 0(SCI UART)の

場合、

FWUPCOMM_CFG_RECV_PACKET_BUFFER_SIZEで

指定したバッファサイズを設定してください。

SCI_CFG_TEI_INCLUDED

※デフォルト値は"0"

シリアル送信の送信完了割り込みを有効にします。

FWUPCOMM_CFG_CH_INTERFACEが 0(SCI UART)の

場合、本 FITモジュールではシリアル送信完了割り込み

を使用するため、”1”を設定してください。

本モジュールが使用する RSPI FITモジュールのコンフィグレーションオプションの設定は、

r_rspi_rx_config.hで行います。

RSPI FITモジュールに対する設定オプション名および設定値に関する説明を表 2-3に示します。オプ

ションの詳細は、「RXファミリ RSPIモジュール Firmware Integration Technology (R01AN1827)」を参

照してください。

表 2-3 コンフィグレーション設定(r_rspi_rx_config.h)

コンフィグレーションオプション(r_rspi_rx_config.h)

RSPI_CFG_HIGH_SPEED_READ マスタ送信／マスタ送受信のモードを選択できます。

無効にした場合、受信および送受信は通常モードで動作

します。

有効にした場合、受信および送受信は高速モードで動作

します。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 18 of 63

Dec.24.25

本モジュールは通常モードで動作確認しているため 0を

設定してください。

RSPI_CFG_USE_CHANx

※1. CHANx = CHAN0～CHAN2

使用される RSPI チャネルをビルド時に有効にします。

FWUPCOMM_CFG_SPI_CHANNELで指定したチャネル

番号を設定してください。

RSPI_CFG_IR_PRIORITY_CHANx

※1. CHANx = CHAN0～CHAN2

チャネル内で共有される割り込み優先レベルの設定。

本モジュールは 15で動作確認しています。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 19 of 63

Dec.24.25

2.7 サンプルプロジェクトのコードサイズ

本アプリケーションノートのパッケージに含まれるサンプルプロジェクトの ROM、RAMサイズを表 2-4

に示します。この表の値は以下の条件で確認しています。

モジュールリビジョン : r_fwupcomm rev.1.00

コンパイラバージョン : Renesas Electronics C/C++ Compiler for RX Family V3.07.00

GCC for Renesas RX 14.2.0.202505

CC-RX

• 最適化レベル(-optimize) : Level 2: Performs whole module optimization

• 最適化タイプ(-speed/-size): Optimizes with emphasis on code size

• 一度も参照のない変数／関数を削除する(-optimize=symbol_delete)

GCC

• 最適化レベル : サイズ(-Os)

表 2-4 サンプルプロジェクト（半面更新）の ROM、RAMサイズ

ROM、RAMのコードサイズ

デバイス 分類
使用メモリ(単位: byte)

プロジェクト名
CC-RX GCC

RX140 ROM 28448 25460 app_rx140_fpb_w_buffer

30018 22212 bootloader_rx140_fpb_w_buffer

RAM 9088 10492 app_rx140_fpb_w_buffer

6975 11132 bootloader_rx140_fpb_w_buffer

RX23E-B ROM 35526 26712 app_rx23eb_rssk_w_buffer

29838 22096 bootloader_rx23eb_rssk_w_buffer

RAM 10471 14716 app_rx23eb_rssk_w_buffer

7096 11388 bootloader_rx23eb_rssk_w_buffer

RX261 ROM 36290 25940 app_rx261_fpb_w_buffer

30401 22624 bootloader_rx261_fpb_w_buffer

RAM 10423 14588 app_rx261_fpb_w_buffer

7356 11516 bootloader_rx261_fpb_w_buffer

RX66T ROM 37843 28168 app_rx66t_rsk_w_buffer

31587 24820 bootloader_rx66t_rsk_w_buffer

RAM 10844 14972 app_rx66t_rsk_w_buffer

7581 11644 bootloader_rx66t_rsk_w_buffer

RX660 ROM 39021 29220 app_rx660_tb_w_buffer

31987 25056 bootloader_rx660_tb_w_buffer

RAM 10700 14716 app_rx660_tb_w_buffer

7036 11516 bootloader_rx660_tb_w_buffer

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 20 of 63

Dec.24.25

表 2-5 サンプルプロジェクト（全面更新）の ROM、RAMサイズ

ROM、RAMのコードサイズ

デバイス 分類
使用メモリ(単位: byte)

プロジェクト名
CC-RX GCC

RX140 ROM 26081 19040 app_rx140_fpb_wo_buffer

28115 25524 bootloader_rx140_fpb_wo_buffer

RAM 13439 13564 app_rx140_fpb_wo_buffer

8917 14460 bootloader_rx140_fpb_wo_buffer

RX23E-B ROM 26195 19112 app_rx23eb_rssk_wo_buffer

27917 25380 bootloader_rx23eb_rssk_wo_buffer

RAM 13882 14076 app_rx23eb_rssk_wo_buffer

9034 14588 bootloader_rx23eb_rssk_wo_buffer

RX261 ROM 26966 19852 app_rx261_fpb_wo_buffer

28617 26328 bootloader_rx261_fpb_wo_buffer

RAM 13836 13948 app_rx261_fpb_wo_buffer

9155 14844 bootloader_rx261_fpb_wo_buffer

RX66T ROM 28741 22256 app_rx66t_rsk_wo_buffer

38155 28600 bootloader_rx66t_rsk_wo_buffer

RAM 14409 14332 app_rx66t_rsk_wo_buffer

10700 14844 bootloader_rx66t_rsk_wo_buffer

RX660 ROM 28741 22300 app_rx660_tb_wo_buffer

38571 28868 bootloader_rx660_tb_wo_buffer

RAM 13789 13820 app_rx660_tb_wo_buffer

10556 14588 bootloader_rx660_tb_wo_buffer

表 2-6 サンプルプロジェクト（MCUboot）の ROM、RAMサイズ

ROM、RAMのコードサイズ

デバイス 分類
使用メモリ(単位: byte)

プロジェクト名
CC-RX GCC

RX261 ROM 22699 19108 app_rx261_fpb_mcuboot

59196 52797 bootloader_rx261_fpb_mcuboot

RAM 12295 13692 app_rx261_fpb_mcuboot

12240 13564 bootloader_rx261_fpb_mcuboot

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 21 of 63

Dec.24.25

2.8 引数

API関数の引数で使用する構造体、列挙体の定義を示します。これらは API関数のプロトタイプ宣言とと

もに r_fwupcomm_if.hで記載されています。

/* タイマーインターフェースを登録する際に使用する構造体 */

typedef struct r_fwupcomm_timer

{

 r_fwupcomm_start_timer_t start; // タイマーのカウント開始関数へのポインタ

 r_fwupcomm_stop_timer_t stop; // タイマーのカウント停止関数へのポインタ

} r_fwupcomm_timer_t;

/* 初期化時に Open関数の引数として使用する構造体 */

typedef struct r_fwupcomm_cfg

{

 r_fwupcomm_timer_t timer; // タイマーインターフェース

} r_fwupcomm_cfg_t;

/* コマンド情報を指定する構造体 */

struct r_fwupcomm_cmd_info

{

 uint8_t device_address; // コマンド送信先のデバイスアドレス

 uint8_t class; // Command class

 uint8_t type; // Command

 uint8_t arg; // Command argument

 uint16_t data_size; // Command dataサイズ

 const void *data; // Command dataへのポインタ

 uint8_t id; // Command ID

};

/* レスポンス情報を格納する構造体 */

struct r_fwupcomm_resp_info

{

 int8_t result; // Command result

 void *data; // Response dataの格納先へのポインタ

 uint16_t data_size; // Response dataの格納先のサイズ

};

/* コマンド送信時に CmdSend関数の引数として使用する構造体 */

struct r_fwupcomm_cmd_instr

{

 uint16_t timeout_ms; // コマンド送信からレスポンス受信までのタイムアウト時間

 r_fwupcomm_cmd_info_t cmd; // コマンド情報

 r_fwupcomm_resp_info_t resp; // レスポンス情報格納先

};

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 22 of 63

Dec.24.25

/* Command classを定義する列挙型 */

typedef enum

{

 FWUPCOMM_CMD_CLS_COMMON = (0), // Commonコマンド

 FWUPCOMM_CMD_CLS_FWUP = (1) // FWUPコマンド

} r_fwupcomm_cmd_class_t;

/* Common command classのコマンドを定義する列挙型 */

typedef enum

{

 FWUPCOMM_CMD_COMMON_DATA_SEND = (0), // DATA_SENDコマンド

 FWUPCOMM_CMD_COMMON_DATA_RECV, // DATA_RECVコマンド

 FWUPCOMM_CMD_COMMON_NUM_COMMANDS // 定義されている Commonコマンドの数

} r_fwupcomm_cmd_type_common_t;

/* FWUP command classのコマンドを定義する列挙型 */

typedef enum

{

 FWUPCOMM_CMD_FWUP_START = (0), // STARTコマンド

 FWUPCOMM_CMD_FWUP_WRITE, // WRITEコマンド

 FWUPCOMM_CMD_FWUP_INSTALL, // INSTALLコマンド

 FWUPCOMM_CMD_FWUP_CANCEL, // CANCELコマンド

 FWUPCOMM_CMD_FWUP_VERSION, // VERSIONコマンド

 FWUPCOMM_CMD_FWUP_NUM_COMMANDS // 定義されている FWUPコマンドの数

} r_fwupcomm_cmd_type_fwup_t;

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 23 of 63

Dec.24.25

2.9 戻り値

API関数の戻り値を示します。この列挙型は API関数のプロトタイプ宣言とともに r_fwupcomm_if.hで記

載されています。

typedef enum

{

 FWUPCOMM_SUCCESS = 0,

 FWUPCOMM_ERR_INVALID_PTR, // 引数で渡されたポインタ変数が不正です。

 FWUPCOMM_ERR_INVALID_ARG, // 引数で渡されたパラメータが不正です。

 FWUPCOMM_ERR_NOT_OPEN, // モジュールが初期化されていません。

 FWUPCOMM_ERR_ALREADY_OPEN, // モジュールは既に初期化されています。

 FWUPCOMM_ERR_INVALID_CMD, // 引数で渡されたコマンドが不正です。

 FWUPCOMM_ERR_INVALID_RESP, // 受信した応答が不正です。

 FWUPCOMM_ERR_RECV_RESP_TIMEOUT, // 応答を受信する前にタイムアウトしました。

 FWUPCOMM_ERR_NO_CMD, // コマンドを受信していません。

 FWUPCOMM_ERR_CH_ALREADY_OPEN, // 通信チャネルが別のモジュールによって使用されています。

 FWUPCOMM_ERR_CH_SEND, // 通信チャネルがデータ送信に失敗しました。

 FWUPCOMM_ERR_CH_SEND_BUSY, // 通信チャネルがビジー状態のためデータ送信に失敗しました。

 FWUPCOMM_ERR_CH_RECV, // 通信チャネルが受信に失敗しました。

 FWUPCOMM_ERR_CH_RECV_NO_DATA, // 通信チャネルに十分な受信データがありません。

} fwupcomm_err_t;

2.10 FITモジュールの追加方法

本モジュールは、使用するプロジェクトごとに追加する必要があります。

ルネサスでは、e2 studioの環境では、スマート・コンフィグレータを使用した(1)の追加方法を推奨して

います。ただし、スマート・コンフィグレータは、一部の RXデバイスのみサポートしています。サポート

されていない RXデバイスについては(2)の方法を使用してください。

(1) e2 studio上でスマート・コンフィグレータを使用して FITモジュールを追加する場合

e2 studioのスマート・コンフィグレータを使用して、自動的にユーザプロジェクトに FITモジュールを追

加します。詳細は、アプリケーションノート「RX スマート・コンフィグレータ ユーザーガイド: e2 studio

編 (R20AN0451)」を参照してください。

(2) e2 studio上で FITコンフィグレータを使用して FITモジュールを追加する場合

e2 studioの FITコンフィグレータを使用して、自動的にユーザプロジェクトに FITモジュールを追加する

ことができます。詳細は、アプリケーションノート「RX ファミリ e2 studioに組み込む方法 Firmware

Integration Technology (R01AN1723)」を参照してください。

2.11 for文、while文、do while文について

本モジュールでは、レジスタの反映待ち処理等で for文、while文、do while文（ループ処理）を使用して

います。これらループ処理には、「WAIT_LOOP」をキーワードとしたコメントを記述しています。そのた

め、ループ処理にユーザがフェイルセーフの処理を組み込む場合は、「WAIT_LOOP」で該当の処理を検索

できます。

以下に記述例を示します。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 24 of 63

Dec.24.25

while文の例：

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{

/* The delay period needed is to make sure that the PLL has stabilized. */

}

for文の例：

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{

g_protect_counters[i] = 0;

}

do while文の例：

/* Reset completion waiting */

do

{

reg = phy_read(ether_channel, PHY_REG_CONTROL);

count++;

} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET));

/* WAIT_LOOP */

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 25 of 63

Dec.24.25

3. API関数

3.1 R_FWUPCOMM_Open関数

表 3-1 R_FWUPCOMM_Open関数仕様

Format fwupcomm_err_t R_FWUPCOMM_Open(r_fwupcomm_hdl_t *hdl, void *cfg)

Description 本モジュール及び本モジュール内で使用する通信チャネルをオープンします。この関数は

他の API関数を使用する前に実行される必要があります。

Parameters hdl：モジュールのハンドラ

cfg：モジュールの初期化に必要な情報を持った構造体変数

Return

Values

FWUPCOMM_SUCCESS 正常に初期化されました。

FWUPCOMM_ERR_INVALID_PTR 引数で入力されたポインタが NULLです。

FWUPCOMM_ERR_ALREADY_OPEN 既にオープン済です。

FWUPCOMM_ERR_CH_ALREADY_OPEN 通信チャネルが既にオープン済です。

FWUPCOMM_ERR_NOT_OPEN 通信チャネルの初期化に失敗しました。

Special

Notes

―

例:

fwupcomm_err_t fwupcomm_err;

r_fwupcomm_hdl_t fwupcomm_hdl = {0};

r_fwupcomm_cfg_t fwupcomm_cfg;

fwupcomm_cfg.timer.start = demo_start_timer;

fwupcomm_cfg.timer.stop = demo_stop_timer;

fwupcomm_err = R_FWUPCOMM_Open(&fwupcomm_hdl, &fwupcomm_cfg);

3.2 R_FWUPCOMM_Close関数

表 3-2 R_FWUPCOMM_Close関数仕様

Format fwupcomm_err_t R_FWUPCOMM_Close(r_fwupcomm_hdl_t *hdl)

Description 本モジュール及び本モジュール内で使用する通信チャネルをクローズします。

Parameters hdl：モジュールのハンドラ

Return

Values

FWUPCOMM_SUCCESS 正常にクローズされました。

FWUPCOMM_ERR_NOT_OPEN モジュールはオープンされていません。

FWUPCOMM_ERR_INVALID_PTR 引数で入力されたポインタが NULLです。

Special

Notes

―

例:

fwupcomm_err = R_FWUPCOMM_Close(&fwupcomm_hdl);

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 26 of 63

Dec.24.25

3.3 R_FWUPCOMM_CmdSend関数

表 3-3 R_FWUPCOMM_CmdSend関数仕様

Format fwupcomm_err_t R_FWUPCOMM_CmdSend(r_fwupcomm_hdl_t *hdl,

r_fwupcomm_cmd_instr_t *cmd_instr)

Description セカンダリ MCUに対してコマンドを送信し、それに対する応答を受信します。

Parameters hdl：モジュールのハンドラ

cmd_instr：送信するコマンド情報、レスポンスの格納先情報を持った構造体変数

Return

Values

FWUPCOMM_SUCCESS 正常終了しました。

FWUPCOMM_ERR_NOT_OPEN モジュールはオープンされていません。

FWUPCOMM_ERR_INVALID_PTR 引数で入力されたポインタが NULLです。

FWUPCOMM_ERR_INVALID_ARG 引数で入力されたパラメータが不正です。

FWUPCOMM_ERR_CH_SEND 通信チャネルが送信処理に失敗しました。

FWUPCOMM_ERR_CH_RECV 通信チャネルが受信処理に失敗しました。

FWUPCOMM_ERR_RECV_RESP_TIMEOUT コマンドの応答待ちがタイムアウトしまし

た。

Special

Notes

―

例:

r_fwupcomm_cmd_info_t cmd = {0};

r_fwupcomm_resp_info_t resp = {0};

uint8_t resp_data[4] = {0};

cmd.device_address = 0xA0;

cmd.class = FWUPCOMM_CMD_CLS_FWUP;

cmd.type = FWUPCOMM_CMD_FWUP_START;

cmd.arg = 0;

cmd.data = NULL;

cmd.data_size = 0;

resp.data = resp_data;

r_fwupcomm_cmd_instr_t cmd_instruction =

{

.timeout_ms = 500U,

 .cmd = cmd,

 .resp = resp

};

fwupcomm_err = R_FWUPCOMM_CmdSend(&fwupcomm_hdl, &cmd_instruction);

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 27 of 63

Dec.24.25

3.4 R_FWUPCOMM_ProcessCmdLoop関数

表 3-4 R_FWUPCOMM_ProcessCmdLoop関数仕様

Format fwupcomm_err_t R_FWUPCOMM_ProcessCmdLoop(r_fwupcomm_hdl_t *hdl)

Description プライマリ MCUからのコマンドを受信し、対応するハンドラを実行します。その後、コ

マンドの実行結果を送信します。コマンドを待ち受けしているセカンダリMCUは、この

関数を定期的に実行してください。

Parameters hdl：モジュールのハンドラ

Return

Values

FWUPCOMM_SUCCESS 正常終了しました。

FWUPCOMM_ERR_NOT_OPEN モジュールはオープンされていません。

FWUPCOMM_ERR_INVALID_PTR 引数で入力されたポインタが NULLです。

FWUPCOMM_ERR_INVALID_ARG 引数で入力されたパラメータが不正です。

FWUPCOMM_ERR_NO_CMD コマンドを受信しませんでした。

FWUPCOMM_ERR_INVALID_CMD 不正なコマンドを受信しました。

FWUPCOMM_ERR_CH_SEND 通信チャネルが送信処理に失敗しました。

FWUPCOMM_ERR_CH_RECV 通信チャネルが受信処理に失敗しました。

Special

Notes

―

例:

do

{

fwupcomm_err = R_FWUPCOMM_ProcessCmdLoop(&fwupcomm_hdl);

}while((FWUPCOMM_SUCCESS == fwupcomm_err)||(FWUPCOMM_ERR_NO_CMD == fwupcomm_err));

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 28 of 63

Dec.24.25

4. 本モジュールの拡張方法

本モジュールのコマンドの追加方法と、通信方式の変更方法について説明します。

4.1 コマンドの追加

本モジュールに予め定義されている FWUPコマンド、Commonコマンドに追加して任意のコマンドを定

義する方法を説明します。ここでは、「UserDefined」という Command class名の「ADDITIONAL1」、

「ADDITIONAL2」の 2つのコマンドを追加します。

(1) UserDefinedコマンドを定義するソースファイル(例: r_fwupcomm_cmd_user_defined.c)とヘッダファ

イル(例: r_fwupcomm_cmd_user_defined.h)を作成します。

ヘッダファイルには r_fwupcomm_if.hをインクルードし、ソースファイルには作成した UserDefinedコマ

ンドのヘッダファイルをインクルードしてください。

(2) ヘッダファイルに、UserDefinedコマンドを定義する列挙型(例:

r_fwupcomm_cmd_class_user_defined_t)を作成し、ADDITIONAL1, ADDITIONAL2コマンドを表す列

挙子を定義します。列挙型の最後に、要素数を表す列挙子を定義します。

typedef enum

{

 FWUPCOMM_CMD_USERDEFINED_ADDITIONAL1,

 FWUPCOMM_CMD_USERDEFINED_ADDITIONAL2,

 FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS

} r_fwupcomm_cmd_class_user_defined_t;

(3) ソースファイルに、r_fwupcomm_cmd_table_t型の配列を定義し、配列の各要素に ADDITIONAL1,

ADDITIONAL2コマンドの情報を定義します。

const r_fwupcomm_cmd_table_t
r_fwupcomm_user_defined_cmd_table[FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS] =

{

{ FWUPCOMM_CMD_USERDEFINED_ADDITIONAL1, 0x01, 0U, 0U },

 { FWUPCOMM_CMD_USERDEFINED_ADDITIONAL2, 0x02, 0U, 0U }

};

r_fwupcomm_cmd_table_t型は r_fwupcomm_if.hに定義されており、各メンバの定義は以下の通りです。

typedef struct r_fwupcomm_cmd_table

{

 uint8_t type; // このコマンドを表す値(列挙子)

 uint8_t value; // このコマンドの通信で使われる実際の値

 uint16_t cmd_data_max_size; // このコマンドの Command dataの最大サイズ

 uint16_t resp_data_max_size; // このコマンドの Response dataの最大サイズ

} r_fwupcomm_cmd_table_t;

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 29 of 63

Dec.24.25

(4) ソースファイルに、セカンダリ MCUが UserDefinedコマンドを受信した時に実行する処理を記述した

ハンドラ関数を定義します。

引数の r_fwupcomm_cmd_info_t型のポインタ変数には、受信したコマンドの情報(Command

argumentや Command dataへのポインタ等)が入っており、このコマンド情報を参照してこのハンド

ラ関数内で処理を実施し、同じく引数の r_fwupcomm_resp_info_t型のポインタ変数に、プライマリ

MCUに送信するレスポンスの情報(Command result、Response dataへのポインタ、Response data

サイズ)を格納します。

void R_FWUPCOMM_CmdHandler_UserDefined(r_fwupcomm_cmd_info_t *cmd,
 r_fwupcomm_resp_info_t *resp)

{

 if((NULL == cmd)||(NULL == resp))

 {

 return;

 }

 if(cmd->type >= FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS)

 {

 return;

 }

switch(cmd->type)

 {

 case FWUPCOMM_CMD_USERDEFINED_ADDITIONAL1:

 /* ADDITIONAL1コマンド受信時に実行する処理を記述 */

 break;

 case FWUPCOMM_CMD_USERDEFINED_ADDITIONAL2:

 /* ADDITIONAL2コマンド受信時に実行する処理を記述 */

 break;

}

(5) 先ほどソースファイルで定義した UserDefinedコマンドの r_fwupcomm_cmd_table_t型の配列を、

ヘッダファイルに extern宣言します。また、同様に UserDefinedコマンドのハンドラ関数をプロトタ

イプ宣言します。

extern const r_fwupcomm_cmd_table_t r_fwupcomm_user_defined_cmd_table
[FWUPCOMM_CMD_COMMON_NUM_COMMANDS];

#if FWUPCOMM_CFG_DEVICE_PRIMARY == (0) // セカンダリ MCUのみ有効にするマクロ

void R_FWUPCOMM_CmdHandler_UserDefined (r_fwupcomm_cmd_info_t *cmd,
r_fwupcomm_resp_info_t *resp);

#endif

(6) r_fwupcomm¥src¥commands¥r_fwupcomm_cmd.hファイルに、UserDefinedコマンドのヘッダファイ

ルをインクルードします。

#include "r_fwupcomm_cmd_base.h"

#include "r_fwupcomm_cmd_common.h"

#include "r_fwupcomm_cmd_fwup.h"

#include " r_fwupcomm_cmd_user_defined.h"

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 30 of 63

Dec.24.25

(7) r_fwupcomm_cmd.hファイルに定義されている FWUPCOMM_CMD_NUM_CLASSマクロに、

UserDefinedコマンド追加後のコマンドクラスの総数を入力します。

#define FWUPCOMM_CMD_NUM_CLASS (FWUPCOMM_CFG_CMD_COMMON_ENABLE +
FWUPCOMM_CFG_CMD_FWUP_ENABLE + 1)

(8) r_fwupcomm_cmd.hファイルに定義されている r_fwupcomm_cmd_class_t列挙型に、UserDefinedコ

マンドを表す列挙子を追加します。

typedef enum

{

 FWUPCOMM_CMD_CLS_COMMON = (0),

 FWUPCOMM_CMD_CLS_FWUP = (1),

 FWUPCOMM_CMD_CLS_USERDEFINED = (2)

} r_fwupcomm_cmd_class_t;

(9) r_fwupcomm_cmd.cファイルに定義されている r_fwupcomm_cmd_def_table_t型の配列に、

UserDefinedコマンドを追加します。

const r_fwupcomm_cmd_def_table_t r_fwupcomm_cmd_def_table_list[] =

{

[FWUPCOMM_CMD_CLS_COMMON] = {r_fwupcomm_common_cmd_table, FWUPCOMM_CMD_COMMON_NUM_COMMANDS},

[FWUPCOMM_CMD_CLS_FWUP] = {r_fwupcomm_fwup_cmd_table, FWUPCOMM_CMD_FWUP_NUM_COMMANDS},

 [FWUPCOMM_CMD_CLS_USERDEFINED] = {r_fwupcomm_user_defined_cmd_table,

FWUPCOMM_CMD_USERDEFINED_NUM_COMMANDS}

};

r_fwupcomm_cmd_def_table_t型は r_fwupcomm_cmd.hに定義されており、tableメンバには、ソース

ファイルで定義した r_fwupcomm_cmd_table_t型の配列を、num_cmdメンバにはその Command classの

コマンド数を指定します。

typedef struct

{

 const r_fwupcomm_cmd_table_t *table;

 uint8_t num_cmd;

} r_fwupcomm_cmd_def_table_t;

(10) r_fwupcomm_cmd.cファイルに定義されている R_FWUPCOMM_CmdHandler_t型の配列に、ソース

ファイルで定義した UserDefinedコマンドのハンドラ関数を追加します。

#if FWUPCOMM_CFG_DEVICE_PRIMARY == (0) // セカンダリ MCUのみ有効にするマクロ

const R_FWUPCOMM_CmdHandler_t r_fwupcomm_cmd_handler_list[FWUPCOMM_CMD_NUM_CLS]
=

{

 [FWUPCOMM_CMD_CLS_COMMON] = FWUPCOMM_CFG_CMD_HANDLER_COMMON,

 [FWUPCOMM_CMD_CLS_FWUP] = FWUPCOMM_CFG_CMD_HANDLER_FWUP,

 [FWUPCOMM_CMD_CLS_USERDEFINED] = R_FWUPCOMM_CmdHandler_UserDefined

};

#endif

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 31 of 63

Dec.24.25

コマンド追加手順は以上です。r_fwupcomm¥src¥commandsフォルダ内に FWUPコマンド用定義ファイ

ル(r_fwupcomm_cmd_fwup.c, r_fwupcomm_cmd_fwup.h)と Commonコマンド用定義ファイル

(r_fwupcomm_cmd_common.c, r_fwupcomm_cmd_common.h)がありますので、参考にしてください。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 32 of 63

Dec.24.25

4.2 通信方式の変更

本モジュールは、SCIを用いた UART通信にのみ対応しています。ここでは、他の通信方式に変更する方

法を説明します。

4.2.1 通信インターフェース

本モジュールではパケット通信を行う際の通信インターフェースを規定しており、

r_fwupcomm¥src¥connectivity¥r_fwupcomm_ch.hで以下のように定義されています。

typedef struct r_fwupcomm_ch_api

{

 fwupcomm_err_t (*open)(void);

 void (*close)(void);

 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size);

 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size);

 void (*rx_reset)(void);

} r_fwupcomm_ch_api_t;

4.2.1.1 fwupcomm_err_t (*open)(void)

表 4-1 open関数仕様

Format fwupcomm_err_t (*open)(void)

Description 通信チャネルをオープンします。

Parameters ―

Return

Values

FWUPCOMM_SUCCESS 正常に初期化されました。

FWUPCOMM_ERR_CH_ALREADY_OPEN 通信チャネルが既にオープン済です。

FWUPCOMM_ERR_NOT_OPEN 通信チャネルの初期化に失敗しました。

Special

Notes

―

4.2.1.2 void (*close)(void)

表 4-2 close関数仕様

Format void (*close)(void)

Description 通信チャネルをクローズします。

Parameters ―

Return

Values

―

Special

Notes

―

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 33 of 63

Dec.24.25

4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)

表 4-3 send関数仕様

Format fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)

Description 通信チャネルを使用してデータを送信します。

Parameters src：送信データの格納先へのポインタ

size：送信データサイズ

Return

Values

FWUPCOMM_SUCCESS 正常に初期化されました。

FWUPCOMM_ERR_INVALID_PTR srcポインタが NULLです。

FWUPCOMM_ERR_INVALID_ARG sizeが 0です。

FWUPCOMM_ERR_NOT_OPEN 通信チャネルがオープンされていません。

FWUPCOMM_ERR_CH_SEND_BUSY 通信チャネルがビジー状態のためデータ送信

に失敗しました。

FWUPCOMM_ERR_CH_SEND 通信チャネルがデータ送信に失敗しました。

Special

Notes

―

4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)

表 4-4 recv関数仕様

Format fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)

Description 通信チャネルを使用してデータを受信します。

Parameters dest：受信データを格納するバッファへのポインタ

size：必要受信データサイズ

Return

Values

FWUPCOMM_SUCCESS 正常に初期化されました。

FWUPCOMM_ERR_INVALID_PTR destポインタが NULLです。

FWUPCOMM_ERR_INVALID_ARG sizeが 0です。

FWUPCOMM_ERR_NOT_OPEN 通信チャネルがオープンされていません。

FWUPCOMM_ERR_CH_RECV_NO_DATA 通信チャネルに十分な受信データがありませ

ん。

Special

Notes

―

4.2.1.5 void (*rx_reset)(void)

表 4-5 rx_flush関数仕様

Format void (*rx_reset)(void)

Description 通信チャネルを受信可能な状態にします。

Parameters ―

Return

Values

―

Special

Notes

―

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 34 of 63

Dec.24.25

4.2.2 通信方式の変更方法

(1) 変更したい通信方式を使って、4.2.1の通信インターフェースの関数を実装します。

(2) 「const r_fwupcomm_ch_api_t」型の r_fwupcomm_ch_api変数を定義し、作成した通信インター

フェースの関数で以下のように初期化します。

const r_fwupcomm_ch_api_t r_fwupcomm_ch_api =

{ .open = r_fwupcomm_rx_sci_uart_open, // open

 .close = r_fwupcomm_rx_sci_uart_close, // close

 .send = r_fwupcomm_rx_sci_uart_send, // send

 .recv = r_fwupcomm_rx_sci_uart_recv, // recv

 .rx_reset = r_fwupcomm_rx_sci_uart_rx_reset // rx_reset

};

(3) ヘッダファイル(例: r_fwupcomm_ch_user_defined.h)を作成し、r_fwupcomm_ch_api変数を extern宣

言します。

extern r_fwupcomm_ch_api_t const r_fwupcomm_ch_api;

(4) r_fwupcomm¥src¥r_fwupcomm_private.hファイルに通信インターフェースの定義を追加し、作成した

ヘッダファイルが代わりにインクルードされるようにします。

#define FWUPCOMM_CFG_CH_INTERFACE (2)

#if (FWUPCOMM_CFG_CH_INTERFACE == 1) /* RX SCI UART */

#define FWUPCOMM_CH_RX_SCI_UART (FWUPCOMM_CFG_CH_INTERFACE)

#define FWUPCOMM_COMM_IF (FWUPCOMM_COMM_IF_UART)

#elif (FWUPCOMM_CFG_CH_INTERFACE == 2) /* USERDEFINED */

#define FWUPCOMM_CH_USERDEFINED (FWUPCOMM_CFG_CH_INTERFACE)

...

#endif

#define FWUPCOMM_USE_CH (FWUPCOMM_CFG_CH_INTERFACE)

#if (FWUPCOMM_USE_CH == FWUPCOMM_CH_RX_SCI_UART)

 #include "r_fwupcomm_rx_sci_uart.h"

#elif (FWUPCOMM_USE_CH == FWUPCOMM_CH_USERDEFINED)

 #include "r_fwupcomm_ch_user_defined.h"

#endif

通信方式の変更方法は以上です。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 35 of 63

Dec.24.25

5. デモプロジェクト

本デモプロジェクトは、以下の構成図のように、PCと接続されたプライマリ MCUがシリアル通信に

よってセカンダリ MCU用の更新ファームウェアを受け取り、FWUP Comm.モジュールを用いてセカンダ

リ MCUに更新ファームウェアを転送し、セカンダリ MCUのファームウェアアップデートを実施するため

のサンプルプログラムです。

図 5-1 デモの構成図

5.1 デモプロジェクトの構成

デモプロジェクトのフォルダ構成を以下に示します。FPB-RX261用のデモプロジェクトを例にフォルダ

構成を記載しています。

r01an7757xx0110-rx-fwupcomm

├─FITDemos

│ ├─keys

│ ├─rx261-fpb

│ │ ├─w_buffer

│ │ │ ├─ccrx

│ │ │ │ ├─app_rx261_fpb_w_buffer

│ │ │ │ └─bootloader_rx261_fpb_w_buffer

│ │ │ └─gcc

│ │ │ ├─app_rx261_fpb_w_buffer

│ │ │ └─bootloader_rx261_fpb_w_buffer

│ │ ├─wo_buffer

│ │ │ ├─ccrx

│ │ │ │ ├─app_rx261_fpb_wo_buffer

│ │ │ │ └─bootloader_rx261_fpb_wo_buffer

│ │ │ └─gcc

│ │ │ ├─app_rx261_fpb_wo_buffer

│ │ │ └─bootloader_rx261_fpb_wo_buffer

│ │ └─mcuboot

│ │ ├─ccrx

│ │ │ ├─app_rx261_fpb_mcuboot

│ │ │ └─bootloader_rx261_fpb_mcuboot

│ │ └─gcc

│ │ ├─app_rx261_fpb_mcuboot

│ │ └─bootloader_rx261_fpb_mcuboot

│ ├─rx140-fpb

│ ├─rx23eb-rssk

│ ├─rx65n-ck

│ ├─rx65n-rsk

│ ├─rx66t-rsk

│ └─rx660-tb

├─FITModules

│ ├─r_fwupcomm_v1.10.xml

│ ├─r_fwupcomm_v1.10.zip

│ └─r_fwupcomm_v1.10_extend.mdf

├─r01an7757ej0110-rx-fwupcomm.pdf

└─r01an7757jj0110-rx-fwupcomm.pdf

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 36 of 63

Dec.24.25

5.1.1 プライマリ MCU

プライマリ MCU側のデモプロジェクトは RX65Nのみで、以下のようにフォルダ分けされています。

• FITDemos¥(ボード名)¥(コンパイラ名)¥(プロジェクト名)

ブートローダプロジェクト:

• リニアモードの半面更新方式: bootloader_(ボード名)_w_buffer

• MCUboot方式: bootloader_(ボード名)_mcuboot

アプリケーションプロジェクト:

• リニアモードの半面更新方式(FreeRTOS): app_(ボード名)_primary_frtos

• リニアモードの半面更新方式(ベアメタル): app_(ボード名)_primary

• MCUboot方式: app_(ボード名)_mcuboot_primary

対応ボードは CK-RX65Nv2と RSK-RX65N-2MB(TSIP)です。CK-RX65Nv2用のデモプロジェクトは

FWUPCOMM FITモジュールを用いた SCI UART, SCI SPIでのマイコン間通信に対応、RSK-RX65N-

2MB(TSIP)用のデモプロジェクトは RSPIでのマイコン間通信のみに対応しています。

5.1.2 セカンダリ MCU

セカンダリ MCU側のデモプロジェクトは以下のようにデバイス毎にフォルダ分けされています。

• リニアモードの半面更新方式: FITDemos¥(ボード名)¥w_buffer¥(コンパイラ名)¥(プロジェクト名)

• リニアモードの全面更新方式: FITDemos¥(ボード名)¥wo_buffer¥(コンパイラ名)¥(プロジェクト名)

• MCUboot方式: FITDemos¥(ボード名)¥mcuboot¥(コンパイラ名)¥(プロジェクト名)

ブートローダプロジェクト:

• リニアモードの半面更新方式: bootloader_(ボード名)_w_buffer

• リニアモードの全面更新方式: bootloader_(ボード名)_wo_buffer

• MCUboot方式: bootloader_(ボード名)_mcuboot

アプリケーションプロジェクト:

• リニアモードの半面更新方式: app_(ボード名)_w_buffer

• リニアモードの全面更新方式: app_(ボード名)_wo_buffer

• MCUboot方式: app_(ボード名)_mcuboot

MCUboot方式のデモプロジェクトは RX261のみです。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 37 of 63

Dec.24.25

5.2 動作環境準備

セカンダリ MCUのファームウェアアップデートにはファームウェアアップデートモジュールを使用しま

す。デモプロジェクトの実行にはWindows PCにツールをインストールする必要があります。

5.2.1 TeraTermのインストール

Windows PCからプライマリ MCUへのシリアル通信により、更新ファームウェアのイメージを転送する

ために使用します。デモプロジェクトでは、TeraTerm 5.5.0で動作確認を実施しています。

インストール後は、シリアルポートの通信設定を表 5-1の様に設定してください。

表 5-1 通信仕様

項目 内容

通信方式 調歩同期式通信

ビットレート 115200bps

データ長 8ビット

パリティ なし

ストップビット 1ビット

フロー制御 RTS/CTS

5.2.2 Python 実行環境のインストール

Renesas Image Generator (image-gen.py)で初期イメージと更新イメージを作成するために使用します

Renesas Image Generatorは ECDSAにより署名データを生成します。デモプロジェクトでは、Python

3.10.4で動作確認を実施しています。

また、Pythonの暗号化ライブラリ(pycryptodome)を使用しますので、Pythonをインストール後、コマン

ドプロンプトから以下の pipコマンドを実行し、ライブラリのインストールを行ってください。

pip install pycryptodome

5.2.3 フラッシュライタのインストール

初期イメージを書き込むためのフラッシュライタが必要です。

デモプロジェクトでは、Renesas Flash Programmer V3.21.00を使用しています。

Renesas Flash Programmer (Programming GUI) | Renesas ルネサス

https://www.renesas.com/ja/software-tool/renesas-flash-programmer-programming-gui

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 38 of 63

Dec.24.25

5.3 プロジェクトの実行手順

本章では、RX140を例にデモプロジェクトの実行手順を記載しています。他の MCU製品においてもデモ

プロジェクトの実行手順は共通ですが、動作確認環境のみ MCU毎に異なりますので、該当する MCU製品

の「6.1 動作確認環境」を確認してください。また、CC-RXコンパイラと GCCコンパイラにおいてもデモ

プロジェクトの実行手順は共通です。

以降は FWUPCOMM FITモジュールが UART通信を行う場合の実行手順になります。SPI通信の場合の

設定方法は「5.6 マイコン間の通信方式が SPIの場合のデモプロジェクトの設定方法」を参照してくださ

い。

5.3.1 実行環境

RX140の動作確認環境(6.3.1)を準備します。RX140以外の MCU製品の場合は、該当する MCU製品の動

作確認環境を参照してください。

5.3.2 デモプロジェクトの構築

プライマリ MCU用のプロジェクト、セカンダリ MCU用のプロジェクトを構築します。

5.3.2.1 プライマリ MCU用の初期イメージと更新イメージを作成

初期イメージ名を initial_firm_rx65n.mot、更新イメージ名を update_firm_rx65n.rsuとして、初期イメージ

と更新イメージの作成手順を説明します。

(1) e2 studioに bootloader_rx65n_ck_w_buffer, app_rx65n_ck_primaryプロジェクトをインポートし、ビ

ルドします。全面更新方式の場合、ビルド前に app_rx65n_ck_primary¥src¥fwup¥app_fwup_config.h

の「APP_COMM_CONFIG_FWUP_FULL_UPDATE」マクロ定義を(1)に変更してください。

(2) 各プロジェクトの HardwareDebugフォルダ内に、以下の MOTファイルが生成されていることを確認

します。

• bootloader_rx65n_ck_w_buffer.mot

• app_rx65n_ck_primary.mot

(3) bootloader_rx65n_ck_w_buffer¥src¥smc_gen¥r_fwup¥toolフォルダにビルドしたデモプロジェクトの

MOTファイルを格納します。また、同様に FITDemos¥keys¥fwup¥secp256r1.privatekeyファイルを格

納します。

image-gen.py

RX65N_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx65n_ck_w_buffer.mot

app_rx65n_ck_primary.mot

(4) bootloader_rx65n_ck_w_buffer¥src¥smc_gen¥r_fwup¥toolフォルダで以下のコマンドを実行し、初期

イメージを作成します。

python .¥image-gen.py -iup ".¥app_rx65n_ck_primary.mot" -

ip .¥RX65N_Linear_Half_ImageGenerator_PRM.csv -o initial_firm_rx65n -ibp

".¥bootloader_rx65n_ck_w_buffer.mot" -vt ecdsa -key ".¥secp256r1.privatekey"

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 39 of 63

Dec.24.25

(5) app_rx65n_ck_primary¥src¥app_rx65n_ck_primary.hファイルを開き、DEMO_VER_MAJORの定義を(1)

から(2)に変更し、再度 app_rx65n_ck_primaryプロジェクトをビルドします。ビルドしたプロジェク

トの MOTファイルを同様に toolフォルダに格納します。

(6) 以下のコマンドを実行し、更新イメージを作成します。

python .¥image-gen.py -iup ".¥app_rx65n_ck_primary.mot" -

ip .¥RX65N_Linear_Half_ImageGenerator_PRM.csv -o update_firm_rx65n -vt ecdsa -key

".¥secp256r1.privatekey"

toolフォルダに初期イメージと更新イメージが生成されていることを確認してください。

Image-gen.py

RX65N_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx65n_ck_w_buffer.mot

app_rx65n_ck_w_primary.mot

initial_firm_rx65n.mot

update_firm_rx65n.rsu

5.3.2.2 セカンダリ MCU用の初期イメージと更新イメージを作成

初期イメージ名を initial_firm_rx140.mot、更新イメージ名を update_firm_rx140.rsuとして、初期イメージ

と更新イメージの作成手順を説明します。半面更新方式の手順を記載しますが、全面更新方式も手順は共通

ですので、使用するプロジェクトを全面更新方式のものに置き換えてください。

(1) e2 studioに bootloader_rx140_fpb_w_buffer, app_rx140_fpb_w_buffer プロジェクトをインポートし、

ビルドします。

(2) 各プロジェクトの HardwareDebugフォルダ内に、以下の MOTファイルが生成されていることを確認

します。

• bootloader_rx140_fpb_w_buffer.mot

• app_rx140_fpb_w_buffer.mot

(3) bootloader_rx140_fpb_w_buffer¥src¥smc_gen¥r_fwup¥toolフォルダにビルドしたデモプロジェクトの

MOTファイルを格納します。また、同様に FITDemos¥keys¥fwup¥secp256r1.privatekeyファイルを格

納します。

image-gen.py

RX140_Linear_Full_ImageGenerator_PRM.csv

RX140_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx140_fpb_w_buffer.mot

app_rx140_fpb_w_buffer.mot

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 40 of 63

Dec.24.25

(4) bootloader_rx140_fpb_w_buffer¥src¥smc_gen¥r_fwup¥toolフォルダで以下のコマンドを実行し、初期

イメージを作成します。全面更新方式の場合は、RX140_Linear_Half_ImageGenerator_PRM.csvでは

なく RX140_Linear_Full_ImageGenerator_PRM.csvを使用します。

python .¥image-gen.py -iup ".¥app_rx140_fpb_w_buffer.mot" -

ip .¥RX140_Linear_Half_ImageGenerator_PRM.csv -o initial_firm_rx140 -ibp

".¥bootloader_rx140_fpb_w_buffer.mot" -vt ecdsa -key ".¥secp256r1.privatekey"

(5) app_rx140_fpb_w_buffer¥src¥fwupcomm_demo_main.hファイルを開き、DEMO_VER_MAJORの定義を

(1)から(2)に変更し、再度 app_rx140_fpb_w_bufferプロジェクトをビルドします。ビルドしたプロ

ジェクトの MOTファイルを同様に toolフォルダに格納します。

(6) 以下のコマンドを実行し、更新イメージを作成します。全面更新方式の場合は、

RX140_Linear_Half_ImageGenerator_PRM.csvではなく

RX140_Linear_Full_ImageGenerator_PRM.csvを使用します。

python .¥image-gen.py -iup ".¥app_rx140_fpb_w_buffer.mot" -

ip .¥RX140_Linear_Half_ImageGenerator_PRM.csv -o update_firm_rx140 -vt ecdsa -key

".¥secp256r1.privatekey"

toolフォルダに初期イメージと更新イメージが生成されていることを確認してください。

Image-gen.py

RX140_Linear_Full_ImageGenerator_PRM.csv

RX140_Linear_Half_ImageGenerator_PRM.csv

secp256r1.privatekey

bootloader_rx140_fpb_w_buffer.mot

app_rx140_fpb_w_buffer.mot

initial_firm_rx140.mot

update_firm_rx140.rsu

5.3.3 初期イメージの書き込み

initial_firm_rx65n.motをフラッシュライタで CK-RX65Nv2ボードに書き込みます。

同様に、initial_firm_rx140.motをフラッシュライタで FPB-RX140ボードに書き込みます。書き込み後は

ボードへの電源供給を止めて、デバッガ(E2 Lite)の接続を外しておいてください。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 41 of 63

Dec.24.25

5.3.4 ファームウェアアップデートの実行

初期イメージが起動するとプライマリ MCU経由で更新イメージの転送を待ちます。受信した更新イメー

ジをフラッシュに書き込み、転送完了後に署名検証を経て更新イメージのファームウェアを起動します。

以下の手順により、ファームウェアアップデートを実施してください。

(1) PCで TeraTermを 2画面起動し、プライマリMCU(CK-RX65Nv2)とセカンダリ MCU(FPB-RX140)の

シリアル COMポートを選択し接続設定を行います。

(2) ボードの電源を投入します。TeraTermに以下のメッセージが出力されます。

プライマリ MCU側

==== RX65N : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====

Please select the target MCU to update firmware.

 0: Primary MCU

 1: Secondary MCU

>

セカンダリ MCU側

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 1.0.0 ====

(3) プライマリ MCU側の TeraTerm画面で、ファームウェア更新を実施する対象の MCUの番号を入力し

ます。

(4) TeraTermから更新イメージを送信します。

プライマリ MCU側の TeraTermの[ファイル]メニューから[ファイル送信]をクリックします。プライマリ

MCUのファームウェア更新の場合は update_firm_rx65n.rsu、セカンダリ MCUのファームウェア更新の場

合は update_firm_rx140.rsuを選択し、オプションの「バイナリ」にチェックを入れ、[OK]をクリックしま

す。

更新イメージの転送中は進捗が出力され、インストールと署名検証が終了するとソフトウェアリセット

し、更新イメージのファームウェアが実行されます。

ファームウェア更新対象とした MCU側のメッセージに出力されるバージョンがインクリメントされてい

れば成功です。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 42 of 63

Dec.24.25

以下はセカンダリ MCU(FPB-RX140)側をファームウェア更新対象とした場合のログ出力例です。

プライマリ MCU側

Send FWUP_START command... OK.

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 38912 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 37888 bytes.)

...

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 2048 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 1024 bytes.)

Send FWUP_INSTALL command... OK.

Firmware update for the device(0xA0) is successful.

セカンダリ MCU側

Received FWUPCOMM_CMD_FWUP_START command.

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78000, 512 ... OK

W 0xFFF78200, 256 ... OK

W 0xFFF78300, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78400, 1024 ... OK

...

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81400, 1024 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81800, 768 ... OK

W 0xFFFEFF00, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK

Received FWUPCOMM_CMD_FWUP_INSTALL command.

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area buffer [sig-sha256-ecdsa]...OK

activating image ... OK

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ...

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 2.0.0 ====

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 43 of 63

Dec.24.25

5.4 MCUboot プロジェクトの実行手順

MCUboot FITモジュールを使用したファームウェア更新を実行するデモプロジェクトの実行手順を記載し

ます。本デモプロジェクトは RX65Nと RX261に対応しています。また、CC-RXコンパイラと GCCコン

パイラにおいてもデモプロジェクトの実行手順は共通です。

なお、本デモプロジェクトではフラッシュメモリをリニアモードで利用し、MCUbootのアップデート方

式は Overwrite Only 方式を使用します。

以降は FWUPCOMM FITモジュールが UART通信を行う場合の実行手順になります。SPI通信の場合の

設定方法は「5.6マイコン間の通信方式が SPIの場合のデモプロジェクトの設定方法」を参照してくださ

い。

5.4.1 実行環境

RX261の動作確認環境(6.3.3)を準備します。

5.4.2 デモプロジェクトの構築

プライマリ MCU用のプロジェクト、セカンダリ MCU用のプロジェクトを構築します。

5.4.2.1 プライマリ MCU用の初期イメージと更新イメージを作成

初期イメージ名を initial_firm_rx65n.bin.sign、更新イメージ名を update_firm_rx65n.bin.signとして、初期

イメージと更新イメージの作成手順を説明します。

(1) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.2動作確認準備」を

実施します。

(2) e2 studioに key_injection_rx65n_ck_mcuboot, bootloader_rx65n_ck_mcuboot,

app_rx65n_ck_mcuboot_primaryプロジェクトをインポートします。

全面更新方式の場合、ビルド前に app_rx65n_ck_mcuboot_primary¥src¥fwup¥app_fwup_config.hの

「APP_COMM_CONFIG_FWUP_FULL_UPDATE」マクロ定義を(1)に変更してください。

(3) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.1鍵のインジェクション」を実施します。

鍵インジェクションプログラムは上記の(1)でインポートした key_injection_rx65n_ck_mcubootプロジェ

クトを使用します。プログラム書き込み用の Renesas Flash Programmer(RFP)プロジェクトファイルを

key_injection_rx65n_ck_mcuboot¥rfpフォルダ内に同梱しています。プログラムファイル

(key_injection_rx65n_ck_mcuboot.mot)のパスのみ変更して使用してください。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 44 of 63

Dec.24.25

また、手順内で使用する鍵データに関して、FITDemos¥keys¥mcubootフォルダ内にサンプルの鍵を同梱

しています。こちらの鍵データは「RXファミリ MCUboot Firmware Integration Technology

(R01AN7374)」のデモプロジェクトで提供されているサンプル鍵と同じです。

(4) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.2署名検証用公開鍵の埋め込み」を実施します。

なお、デモプロジェクトの bootloader_rx65n_ck_mcuboot/src/keys.c には、同梱しているサンプル鍵を使

用して出力した公開鍵データが既に埋め込まれています。

(5) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.3デモプロジェクトのイメージの準備」を実施します。

「4.3.3.1ブートローダのイメージを生成」では、ブートローダプロジェクトとして

bootloader_rx65n_ck_mcubootを使用します。

「4.3.3.2初期イメージを生成」の Step1では、初期イメージのプロジェクトとして

app_rx65n_ck_mcuboot_primaryを使用します。

Step2では、以下のように imgtoolを実行して初期イメージを作成します。

python imgtool.py sign --version 1.0.0 --header-size 0x200 --align 128 --max-align 128

--slot-size 0xF0000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem"

"path¥to¥app_rx65n_ck_mcuboot_primary¥HardwareDebug¥app_rx65n_ck_mcuboot_primary.bin"

"path¥to¥output_dir¥initial_firm_rx65n.bin.sign"

「4.3.3.3更新イメージを生成」の Step2では、以下のように imgtoolを実行して更新イメージを作成しま

す。

python imgtool.py sign --version 2.0.0 --header-size 0x200 --align 128 --max-align 128

--slot-size 0xF0000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem" -kw--enckey "path¥to¥AES-CTR.bin" -kw--kek "path¥to¥AES-

KeyWrap.bin"

"path¥to¥app_rx65n_ck_mcuboot_primary¥HardwareDebug¥app_rx65n_ck_mcuboot_primary.bin"

"path¥to¥output_dir¥update_firm_rx65n.bin.sign"

(6) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.4デモプロジェクトの書き込み」を実施します。

プログラム書き込み用の RFPプロジェクトファイルを app_rx65n_ck_mcuboot_primary¥rfpフォルダ内に

同梱しています。プログラムファイル(bootloader_rx65n_ck_mcuboot.bin, initial_firm_rx65n.bin.sign)のパス

のみ変更して使用してください。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 45 of 63

Dec.24.25

5.4.2.2 セカンダリ MCU用の初期イメージと更新イメージを作成

初期イメージ名を initial_firm_rx261.bin.sign、更新イメージ名を update_firm_rx261.bin.signとして、上記

と同様にセカンダリMCU用の初期イメージと更新イメージの作成手順を説明します。

(1) key_injection_rx261_fpb_mcuboot, bootloader_rx261_fpb_mcuboot, app_rx261_fpb_mcubootプロジェ

クトをインポートします。

(2) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.1鍵のインジェクション」を実施します。

鍵インジェクションプログラムは上記の 5.4.2.1(1)でビインポートした key_injection_rx261_fpb_mcuboot

プロジェクトを使用します。プログラム書き込み用の RFPプロジェクトファイルを

key_injection_rx261_fpn_mcuboot¥rfpフォルダ内に同梱しています。プログラムファイル

(key_injection_rx261_fpb_mcuboot.mot)のパスのみ変更して使用してください。

また、手順内で使用する鍵データに関して、FITDemos¥keys¥mcubootフォルダ内にサンプルの鍵を同梱

しています。こちらの鍵データは「RXファミリ MCUboot Firmware Integration Technology

(R01AN7374)」のデモプロジェクトで提供されているサンプル鍵と同じです。

(3) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.2署名検証用公開鍵の埋め込み」を実施します。

なお、デモプロジェクトの bootloader_rx261_fpb_mcuboot/src/keys.c には、同梱しているサンプル鍵を

使用して出力した公開鍵データが既に埋め込まれています。

(4) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.3デモプロジェクトのイメージの準備」を実施します。

「4.3.3.1ブートローダのイメージを生成」では、ブートローダプロジェクトとして

bootloader_rx261_fpb_mcubootを使用します。

「4.3.3.2初期イメージを生成」の Step1では、初期イメージのプロジェクトとして

app_rx261_fpb_mcubootを使用します。

Step2では、以下のように imgtoolを実行して初期イメージを作成します。

python imgtool.py sign --version 1.0.0 --header-size 0x200 --align 8 --max-align 8 --

slot-size 0x30000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem"

"path¥to¥app_rx261_fpb_mcuboot¥HardwareDebug¥app_rx261_fpb_mcuboot.bin"

"path¥to¥output_dir¥initial_firm_rx261.bin.sign"

「4.3.3.3更新イメージを生成」の Step2では

python imgtool.py sign --version 2.0.0 --header-size 0x200 --align 8 --max-align 8 --

slot-size 0x30000 --max-sectors 16 --confirm --pad-header --key

"path¥to¥sign_key_pair.pem" -kw--enckey "path¥to¥AES-CTR.bin" -kw--kek "path¥to¥AES-

KeyWrap.bin" "path¥to¥app_rx261_fpb_mcuboot¥HardwareDebug¥app_rx261_fpb_mcuboot.bin"

"path¥to¥output_dir¥update_firm_rx261.bin.sign"

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 46 of 63

Dec.24.25

(5) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクト

の実行手順」の「4.3.4デモプロジェクトの書き込み」を実施します。

プログラム書き込み用の RFPプロジェクトファイルを app_rx261_fpb_mcuboot¥rfpフォルダ内に同梱して

います。プログラムファイル(bootloader_rx261_fpb_mcuboot.bin, initial_firm_rx261.bin.sign)のパスのみ変

更して使用してください。

5.4.3 ファームウェアアップデートの実行

ファームウェアアップデートの実行手順は「5.3.4ファームウェアアップデートの実行」と同様です。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 47 of 63

Dec.24.25

5.5 PC-プライマリ MCU 間の通信方式が XMODEM の場合のデモプロジェクトの実行手

順

本デモプロジェクトはデフォルト設定では PC-プライマリ MCU間の通信方式に UARTでのバイナリデー

タ通信を使用します。

以下に、XMODEMを使用する場合の手順を記載します。

(1) プライマリ MCUの CK-RX65Nv2または RSK-RX65N-2MB(TSIP)を「6.3.6.1 PC-プライマリ MCU間

の通信方式が XMODEMの場合の接続構成」のように接続してください。

(2) プライマリ MCUのアプリケーションプロジェクトの src/comm/app_comm_config.hで定義されている

APP_COMM_CONFIG_PROTOCOLを(2)に設定してください。

(3) 「5.3.2デモプロジェクトの構築」、「5.3.3初期イメージの書き込み」の手順を実施します。

(4) 「5.3.4ファームウェアアップデートの実行」で、TeraTermを 3画面起動し、プライマリ MCU(CK-

RX65Nv2)とセカンダリ MCU(FPB-RX140)のシリアル COMポートに加えて、追加で接続した USB端

子のシリアル COMポートを選択し接続設定を行います。

(5) ボードの電源を投入します。TeraTermに以下のメッセージが出力されます。

プライマリ MCU側

==== RX65N : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====

Please select the target MCU to update firmware.

 0: Primary MCU

 1: Secondary MCU

>

セカンダリ MCU側

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 1.0.0 ====

(6) プライマリ MCU側の TeraTerm画面で、ファームウェア更新を実施する対象の MCUの番号を入力し

ます。

(7) TeraTermから更新イメージを送信します。

プライマリ MCU側の TeraTermの[ファイル]メニューから[転送] → [XMODEM] → [送信]をクリックし

ます。プライマリ MCUのファームウェア更新の場合は update_firm_rx65n.rsu、セカンダリ MCUのファー

ムウェア更新の場合は update_firm_rx140.rsuを選択し、[Open]をクリックします。更新 FWの送信が開始

されるまで数秒かかる場合があります。なお、本デモプロジェクトは 1K bytesのブロックサイズでの転送

には対応していません。

更新イメージの転送中は追加で接続したシリアル COMポートの TeraTermに進捗が出力され、インス

トールと署名検証が終了するとソフトウェアリセットし、更新イメージのファームウェアが実行されます。

ファームウェア更新対象とした MCU側のメッセージに出力されるバージョンがインクリメントされてい

れば成功です。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 48 of 63

Dec.24.25

以下はセカンダリ MCU(FPB-RX140)側をファームウェア更新対象とした場合の XMODEM転送でのログ

出力例です。

プライマリ MCU側①

==== RX65N : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ..�

==== RX65N : FWUPCOMM DEMO [Primary][with buffer] ver 1.0.0 ====

Please select the target MCU to update firmware.

 0: Primary MCU

 1: Secondary MCU

> 1

Please send the firmware for secondary MCU

プライマリ MCU側② (XMODEM用に追加で接続)

[S]Received 128 bytes. total 128 bytes.

Send FWUP_START command... OK.

Send FWUP_WRITE command... OK. (128 bytes sent, remaining 4294967168 bytes.)

[S]Received 128 bytes. total 256 bytes.

Send FWUP_WRITE command... OK. (128 bytes sent, remaining 4294967040 bytes.)

...

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 2048 bytes.)

Send FWUP_WRITE command... OK. (1024 bytes sent, remaining 1024 bytes.)

Send FWUP_INSTALL command... OK.

Firmware update for the device(0xA0) is successful.

セカンダリ MCU側

Received FWUPCOMM_CMD_FWUP_START command.

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78000, 512 ... OK

W 0xFFF78200, 256 ... OK

W 0xFFF78300, 256 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF78400, 1024 ... OK

...

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81400, 1024 ... OK

Received FWUPCOMM_CMD_FWUP_WRITE command. size=1024

W 0xFFF81800, 768 ... OK

W 0xFFFEFF00, 256 ... OK

verify install area buffer [sig-sha256-ecdsa]...OK

Received FWUPCOMM_CMD_FWUP_INSTALL command.

software reset...

==== RX140 : BootLoader [with buffer] ====

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 49 of 63

Dec.24.25

verify install area buffer [sig-sha256-ecdsa]...OK

activating image ... OK

software reset...

==== RX140 : BootLoader [with buffer] ====

verify install area main [sig-sha256-ecdsa]...OK

execute image ...

==== RX140 : FWUPCOMM DEMO [Secondary][with buffer] ver. 2.0.0 ====

5.6 マイコン間の通信方式が SPIの場合のデモプロジェクトの設定方法

本デモプロジェクトはデフォルト設定ではマイコン間の通信方式に UART通信を使用します。

SPI通信を使用する場合、スマート・コンフィグレータで r_fwupcommの設定を以下のように変更してく

ださい。

プライマリ MCU(CK-RX65Nv2)側:

表 5-2 プライマリMCU側の r_fwupcommの設定変更箇所

プロパティ マクロ定義 値

Communication Interface FWUPCOMM_CFG_CH_INTERFACE SCI SPI (Primary MCU Only)

セカンダリ MCU側:

表 5-3 セカンダリMCU側の r_fwupcommの設定変更箇所

プロパティ マクロ定義 値

Communication Interface FWUPCOMM_CFG_CH_INTERFACE RSPI SPI

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 50 of 63

Dec.24.25

6. 付録

6.1 動作確認環境

本モジュールの動作確認環境を以下に示します。

表 6-1 動作確認環境(CC-RX)

項目 内容

統合開発環境 ルネサスエレクトロニクス製 e2 studio 2025-10

Cコンパイラ ルネサスエレクトロニクス製 C/C++ Compiler for RX Family V3.07.00

コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを追加

-lang = c99

エンディアン リトルエンディアン

モジュールリビジョン Rev.1.10

使用ボード Fast Prototyping Board for RX140 MCU Group（製品型名：RTK5FP1400S00001BE）

Renesas Solution Starter Kit for RX23E-B（製品型名：RTK0ES1001C00001BJ）

Fast Prototyping Board for RX261 MCU Group（製品型名：RTK5FP2610S00001BE）

Target Board for RX660（製品型名：(RTK5RX6600C00000BJ）

Renesas Starter Kit for RX66T（製品型名：RTK50566T0S00000BE）

CK-RX65N v2 cloud kit（製品型名：RTK5CK65N0S08001BE）

Renesas Starter Kit+ for RX65N-2MB（製品型名：RTK50565N2S10010BE）

USBシリアル変換ボード Pmod USBUART（DIGILENT製）

https://digilent.com/reference/pmod/pmodusbuart/start

表 6-2 動作確認環境(GCC)

項目 内容

統合開発環境 ルネサスエレクトロニクス製 e2 studio 2025-10

Cコンパイラ GCC for Renesas RX 14.2.0.202505

コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを追加

-std=gnu99

エンディアン リトルエンディアン

モジュールリビジョン Rev.1.10

使用ボード Fast Prototyping Board for RX140 MCU Group（製品型名：RTK5FP1400S00001BE）

Renesas Solution Starter Kit for RX23E-B（製品型名：RTK0ES1001C00001BJ）

Fast Prototyping Board for RX261 MCU Group（製品型名：RTK5FP2610S00001BE）

Target Board for RX660（製品型名：(RTK5RX6600C00000BJ）

Renesas Starter Kit for RX66T（製品型名：RTK50566T0S00000BE）

CK-RX65N v2 cloud kit（製品型名：RTK5CK65N0S08001BE）

Renesas Starter Kit+ for RX65N-2MB（製品型名：RTK50565N2S10010BE）

USBシリアル変換ボード Pmod USBUART（DIGILENT製）

https://digilent.com/reference/pmod/pmodusbuart/start

6.2 UART通信設定

本モジュールの UART通信設定を以下に示します。

表 6-3 UART通信設定

項目 内容

Data Length 8-bit

Parity None

Stop Bits 1-bit

Flow Control None

Bitrate 1Mbps

https://digilent.com/reference/pmod/pmodusbuart/start
https://digilent.com/reference/pmod/pmodusbuart/start

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 51 of 63

Dec.24.25

6.3 デモプロジェクトの動作環境

本デモプロジェクトのデバイス毎の接続構成を以下に示します。

なお、図中の評価ボードの PMOD端子と USBシリアル変換ボードは、PMOD端子の Pin1~6と USBシ

リアル変換ボード(Pmod USBUART)の Pin1~6を接続します。

また、マイコン間通信が SPIの場合の接続構成図は、CK-RX65Nv2側は SCI SPIを使用しています。

6.3.1 RX140の動作確認環境

接続構成を以下に示します。

6.3.1.1 マイコン間通信が UARTの場合の接続構成

図 6-1 FPB-RX140接続構成図(UART)

表 6-4 CK-RX65Nv2 - FPB-RX140間 UART通信の接続端子対応

CK-RX65Nv2 FPB-RX140

J24 Pin7: GND ⇔ J10 Pin7

J23 Pin2: D1/TX ⇔ J12 Pin1 D0/RX

J23 Pin1: D0/RX ⇔ J12 Pin2 D1/TX

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 52 of 63

Dec.24.25

6.3.1.2 マイコン間通信が SPI の場合の接続構成

本デモプロジェクトでは、MISO線をプルアップしてください。

図 6-2 FPB-RX140接続構成図(SPI)

表 6-5 CK-RX65Nv2 - FPB-RX140間 SPI通信の接続端子対応

CK-RX65Nv2 FPB-RX140

J24 Pin7: GND ⇔ J10 Pin7: GND

J24 Pin6: SPI_SCK ⇔ J10 Pin6: SPI_SCK

J24 Pin5: SPI_MISO ⇔ J10 Pin5: SPI_MISO

J24 Pin4: SPI_MOSI ⇔ J10 Pin4: SPI_MOSI

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 53 of 63

Dec.24.25

6.3.2 RX23E-Bの動作確認環境

接続構成を以下に示します。

RSSK-RX23E-Bには USBシリアル変換ボードから電源を供給するため、以下の設定をしてください。

• RSSK-RX23E-Bのジャンパ JP1の「1-2番ピン」を接続

• RSSK-RX23E-Bのジャンパ JP3の「1-2番ピン」を接続

• USBシリアル変換ボード(Pmod USBUART)のジャンパ JP1の「VCC-SYSピン」を接続

6.3.2.1 マイコン間通信が UARTの場合の接続構成

図 6-3 RSSK-RX23E-B接続構成図(UART)

表 6-6 CK-RX65Nv2 – RSSK-RX23E-B間 UART通信の接続端子対応

CK-RX65Nv2 RSSK-RX23E-B

J24 Pin7: GND ⇔ PMOD2 Pin5

J23 Pin2: D1/TX ⇔ PMOD2 Pin3

J23 Pin1: D0/RX ⇔ PMOD2 Pin4

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 54 of 63

Dec.24.25

6.3.2.2 マイコン間通信が SPI の場合の接続構成

本デモプロジェクトでは、MISO線をプルアップしてください。

図 6-4 RSSK-RX23E-B接続構成図(SPI)

表 6-7 CK-RX65Nv2 – RSSK-RX23E-B間 SPI通信の接続端子対応

CK-RX65Nv2 RSSK-RX23E-B

J24 Pin7: GND ⇔ JA3 Pin1

J24 Pin6: SPI_SCK ⇔ JA3 Pin13

J24 Pin5: SPI_MISO ⇔ JA3 Pin7

J24 Pin4: SPI_MOSI ⇔ JA3 Pin8

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 55 of 63

Dec.24.25

6.3.3 RX261の動作確認環境

接続構成を以下に示します。

6.3.3.1 マイコン間通信が UARTの場合の接続構成

図 6-5 FPB-RX261接続構成図(UART)

表 6-8 CK-RX65Nv2 - FPB-RX261間 UART通信の接続端子対応

CK-RX65Nv2 FPB-RX261

J24 Pin7: GND ⇔ J10 Pin7

J23 Pin2: D1/TX ⇔ J12 Pin1 D0/RX

J23 Pin1: D0/RX ⇔ J12 Pin2 D1/TX

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 56 of 63

Dec.24.25

6.3.3.2 マイコン間通信が SPI の場合の接続構成

本デモプロジェクトでは、MISO線をプルアップしてください。

図 6-6 FPB-RX261接続構成図(SPI)

表 6-9 CK-RX65Nv2 – FPB-RX261間 SPI通信の接続端子対応

CK-RX65Nv2 FPB-RX261

J24 Pin7: GND ⇔ J10 Pin7 : GND

J24 Pin6: SPI_SCK ⇔ J10 Pin6 : SPI_SCK

J24 Pin5: SPI_MISO ⇔ J10 Pin5 : SPI_MISO

J24 Pin4: SPI_MOSI ⇔ J10 Pin4 : SPI_MOSI

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 57 of 63

Dec.24.25

6.3.4 RX66Tの動作確認環境

接続構成を以下に示します。

RSK-RX66Tには DC電源コネクタ(5V)から電源を供給するため、以下の設定をしてください。

• RSK-RX66Tのジャンパ J7を短絡

6.3.4.1 マイコン間通信が UARTの場合の接続構成

図 6-7 RSK-RX66T接続構成図(UART)

表 6-10 CK-RX65Nv2 – RSK-RX66T間 UART通信の接続端子対応

CK-RX65Nv2 RSK-RX66T

J24 Pin7: GND ⇔ PMOD1 Pin5

J23 Pin2: D1/TX ⇔ PMOD1 Pin3

J23 Pin1: D0/RX ⇔ PMOD1 Pin2

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 58 of 63

Dec.24.25

6.3.4.2 マイコン間通信が SPI の場合の接続構成

本デモプロジェクトでは、MISO線をプルアップしてください。

図 6-8 RSK-RX66T接続構成図(SPI)

表 6-11 CK-RX65Nv2 – RSK-RX66T間 SPI通信の接続端子対応

CK-RX65Nv2 RSK-RX66T

J24 Pin7: GND ⇔ J3 Pin12

J24 Pin6: SPI_SCK ⇔ J3 Pin19

J24 Pin5: SPI_MISO ⇔ J3 Pin17

J24 Pin4: SPI_MOSI ⇔ J3 Pin18

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 59 of 63

Dec.24.25

6.3.5 RX660の動作確認環境

接続構成を以下に示します。

6.3.5.1 マイコン間通信が UARTの場合の接続構成

図 6-9 TB-RX660接続構成図(UART)

表 6-12 CK-RX65Nv2 – TB-RX660間 UART通信の接続端子対応

CK-RX65Nv2 TB-RX660

J24 Pin7: GND ⇔ PMOD1 Pin11

J23 Pin2: D1/TX ⇔ PMOD1 Pin10

J23 Pin1: D0/RX ⇔ PMOD1 Pin9

表 6-13 TB-RX660 – USBシリアル変換ボード(Pmod USBUART)間 UART通信の接続端子対応

TB-RX660 PmodUSBUART

MCU Header CN2 Pin22 ⇔ Pin2

MCU Header CN2 Pin20 ⇔ Pin3

MCU Header CN2 Pin12 ⇔ Pin5

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 60 of 63

Dec.24.25

6.3.5.2 マイコン間通信が SPI の場合の接続構成

本デモプロジェクトでは、MISO線をプルアップしてください。

図 6-10 TB-RX660接続構成図(SPI)

表 6-14 CK-RX65Nv2 – TB-RX660間 SPI通信の接続端子対応

CK-RX65Nv2 RSK-RX66T

J24 Pin7: GND ⇔ CN3 Pin62

J24 Pin6: SPI_SCK ⇔ CN3 Pin65

J24 Pin5: SPI_MISO ⇔ CN3 Pin63

J24 Pin4: SPI_MOSI ⇔ CN3 Pin64

USBシリアル変換ボードの接続は前ページ表 6-13を参照してください。

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 61 of 63

Dec.24.25

6.3.6 RX65Nの動作確認環境

接続構成を以下に示します。

6.3.6.1 PC-プライマリ MCU間の通信方式が XMODEMの場合の接続構成

PC-プライマリ MCU間の通信方式が XMODEMの場合、CK-RX65Nv2と PC間の接続は UART RAWの

場合の接続に加えて、CK-RX65Nv2の USB Type-C端子と PCを接続します。

図 6-11 XMODEM通信時の CK-RX65Nv2接続構成図

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 62 of 63

Dec.24.25

6.3.6.2 RSK-RX65N-2MB(TSIP)で RSPI を用いた SPI通信を行う場合の接続構成

本デモプロジェクトでは、MISO線をプルアップしてください。

 図 6-12 RSK-RX65N-2MB接続構成図(SPI)

表 6-15 RSK-RX65N-2MB – セカンダリ MCU間の SPI通信の接続端子対応

RSK-RX65N-2MB セカンダリ MCU

TFT Pin28 ⇔ GND

TFT Pin29 ⇔ SCK

TFT Pin30 ⇔ MISO

TFT Pin31 ⇔ MOSI

RXファミリ ファームウェアアップデート通信モジュール Firmware Integration Technology

R01AN7757JJ0110 Rev.1.10 Page 63 of 63

Dec.24.25

改訂記録

Rev. 発行日

改訂内容

ページ ポイント

1.00 2025.5.20 - 初版発行

1.10 2025.12.24 - • モジュール

⎯ SPI通信機能の追加

⎯ ブロードキャストアドレスの追加

⎯ FWUP_VERSIONコマンドの追加

⎯ 通信 I/Fの rx_flush関数を rx_resetに名称変更

• デモプロジェクト

⎯ MCUbootプロジェクトを追加

⎯ PCからの更新 FWデータ転送方式に XMODEMを追加

⎯ プライマリ MCUの FW更新に対応

製品ご使用上の注意事項
ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテク

ニカルアップデートを参照してください。

1. 静電気対策

CMOS製品の取り扱いの際は静電気防止を心がけてください。CMOS製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保

存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアー

スを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS製品を実装したボードについても同様の扱

いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部

リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン

リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入に

より、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」について

の記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっ

ています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識

されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した

後に切り替えてください。リセット時、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが十分安定

した後、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り

替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS製品の入力がノイズなどに起因して、VIL（Max.）か

ら VIH（Min.）までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL（Max.）から VIH

（Min.）までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス（予約領域）のアクセス禁止

リザーブアドレス（予約領域）のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス（予約領

域）があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッ

シュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合が

あります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

© 2025 Renesas Electronics Corporation. All rights reserved.

ご注意書き

1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアお

よびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害

（お客様または第三者いずれに生じた損害も含みます。以下同じです。）に関し、当社は、一切その責任を負いません。

2. 当社製品または本資料に記載された製品デ－タ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許

権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので

はありません。

3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。

4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要と

なる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。

5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改

変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。

6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図

しております。

 標準水準： コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等

 高品質水準： 輸送機器（自動車、電車、船舶等）、交通制御（信号）、大規模通信機器、金融端末基幹システム、各種安全制御装置等

当社製品は、データシート等により高信頼性、Harsh environment向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のあ

る機器・システム（生命維持装置、人体に埋め込み使用するもの等）、もしくは多大な物的損害を発生させるおそれのある機器・システム（宇宙機

器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等）に使用されることを意図しておらず、これら

の用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その

責任を負いません。

7. あらゆる半導体製品は、外部攻撃からの安全性を 100％保証されているわけではありません。当社ハードウェア／ソフトウェア製品にはセキュリ

ティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害（当社製品または当社製品が使用されてい

るシステムに対する不正アクセス・不正使用を含みますが、これに限りません。）から生じる責任を負うものではありません。当社は、当社製品ま

たは当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行

為（「脆弱性問題」といいます。）によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害に

ついて、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア／ソフトウェア製品について、商品

性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。

8. 当社製品をご使用の際は、最新の製品情報（データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導

体デバイスの使用上の一般的な注意事項」等）をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の

範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切

その責任を負いません。

9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする

場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を

行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客

様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を

行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行って

ください。

10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用

を規制する RoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことに

より生じた損害に関して、当社は、一切その責任を負いません。

11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品お

よび技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、そ

れらの定めるところに従い必要な手続きを行ってください。

12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたしま

す。

13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。

14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。

注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的

に支配する会社をいいます。

注 2. 本資料において使用されている「当社製品」とは、注１において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地 お問合せ窓口
〒135-0061 東京都江東区豊洲 3-2-24（豊洲フォレシア）

www.renesas.com

 弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓

口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の

商標です。すべての商標および登録商標は、それぞれの所有者に帰属

します。

https://www.renesas.com/
http://www.renesas.com/contact/

	1. 概要
	1.1 ファームウェアアップデート通信モジュールとは
	1.2 サポートする通信IPとハードウェア構成
	1.2.1 UART通信
	1.2.2 SPI通信

	1.3 ソフトウェア構成
	1.3.1 UART通信設定

	1.4 パケット通信
	1.5 データフォーマット
	1.5.1 パケットのデータフォーマット

	1.6 コマンド仕様
	1.6.1 Commonコマンド
	(1) DATA_SEND：データ送信コマンド
	(2) DATA_RECV：データ受信コマンド

	1.6.2 FWUPコマンド
	(1) START：FW更新開始コマンド
	(2) WRITE：更新FW書き込みコマンド
	(3) INSTALL：更新FWインストールコマンド
	(4) CANCEL：FW更新キャンセルコマンド
	(5) VERSION : FWバージョン確認コマンド
	1.6.2.2 FWUPコマンドの通信フロー

	1.7 エラーハンドリング
	1.8 APIの概要

	2. API情報
	2.1 ハードウェアの要求
	2.2 ソフトウェアの要求
	2.3 サポートされているツールチェーン
	2.4 ヘッダファイル
	2.5 整数型
	2.6 コンパイル時の設定
	2.7 サンプルプロジェクトのコードサイズ
	2.8 引数
	2.9 戻り値
	2.10 FITモジュールの追加方法
	(1) e2 studio上でスマート・コンフィグレータを使用してFITモジュールを追加する場合
	(2) e2 studio上でFITコンフィグレータを使用してFITモジュールを追加する場合

	2.11 for文、while文、do while文について

	3. API関数
	3.1 R_FWUPCOMM_Open関数
	3.2 R_FWUPCOMM_Close関数
	3.3 R_FWUPCOMM_CmdSend関数
	3.4 R_FWUPCOMM_ProcessCmdLoop関数

	4. 本モジュールの拡張方法
	4.1 コマンドの追加
	(1) UserDefinedコマンドを定義するソースファイル(例: r_fwupcomm_cmd_user_defined.c)とヘッダファイル(例: r_fwupcomm_cmd_user_defined.h)を作成します。
	(2) ヘッダファイルに、UserDefinedコマンドを定義する列挙型(例: r_fwupcomm_cmd_class_user_defined_t)を作成し、ADDITIONAL1, ADDITIONAL2コマンドを表す列挙子を定義します。列挙型の最後に、要素数を表す列挙子を定義します。
	(3) ソースファイルに、r_fwupcomm_cmd_table_t型の配列を定義し、配列の各要素にADDITIONAL1, ADDITIONAL2コマンドの情報を定義します。
	(4) ソースファイルに、セカンダリMCUがUserDefinedコマンドを受信した時に実行する処理を記述したハンドラ関数を定義します。 引数のr_fwupcomm_cmd_info_t型のポインタ変数には、受信したコマンドの情報(Command argumentやCommand dataへのポインタ等)が入っており、このコマンド情報を参照してこのハンドラ関数内で処理を実施し、同じく引数のr_fwupcomm_resp_info_t型のポインタ変数に、プライマリMCUに送信するレスポンスの情報(C...
	(5) 先ほどソースファイルで定義したUserDefinedコマンドのr_fwupcomm_cmd_table_t型の配列を、ヘッダファイルにextern宣言します。また、同様にUserDefinedコマンドのハンドラ関数をプロトタイプ宣言します。
	(6) r_fwupcomm\src\commands\r_fwupcomm_cmd.hファイルに、UserDefinedコマンドのヘッダファイルをインクルードします。
	(7) r_fwupcomm_cmd.hファイルに定義されているFWUPCOMM_CMD_NUM_CLASSマクロに、UserDefinedコマンド追加後のコマンドクラスの総数を入力します。
	(8) r_fwupcomm_cmd.hファイルに定義されているr_fwupcomm_cmd_class_t列挙型に、UserDefinedコマンドを表す列挙子を追加します。
	(9) r_fwupcomm_cmd.cファイルに定義されているr_fwupcomm_cmd_def_table_t型の配列に、UserDefinedコマンドを追加します。
	(10) r_fwupcomm_cmd.cファイルに定義されているR_FWUPCOMM_CmdHandler_t型の配列に、ソースファイルで定義したUserDefinedコマンドのハンドラ関数を追加します。

	4.2 通信方式の変更
	4.2.1 通信インターフェース
	4.2.1.1 fwupcomm_err_t (*open)(void)
	4.2.1.2 void (*close)(void)
	4.2.1.3 fwupcomm_err_t (*send)(uint8_t *src, uint16_t size)
	4.2.1.4 fwupcomm_err_t (*recv)(uint8_t *dest, uint16_t size)
	4.2.1.5 void (*rx_reset)(void)

	4.2.2 通信方式の変更方法
	(1) 変更したい通信方式を使って、4.2.1の通信インターフェースの関数を実装します。
	(2) 「const r_fwupcomm_ch_api_t」型のr_fwupcomm_ch_api変数を定義し、作成した通信インターフェースの関数で以下のように初期化します。
	(3) ヘッダファイル(例: r_fwupcomm_ch_user_defined.h)を作成し、r_fwupcomm_ch_api変数をextern宣言します。
	(4) r_fwupcomm\src\r_fwupcomm_private.hファイルに通信インターフェースの定義を追加し、作成したヘッダファイルが代わりにインクルードされるようにします。

	5. デモプロジェクト
	5.1 デモプロジェクトの構成
	5.1.1 プライマリMCU
	5.1.2 セカンダリMCU

	5.2 動作環境準備
	5.2.1 TeraTermのインストール
	5.2.2 Python実行環境のインストール
	5.2.3 フラッシュライタのインストール

	5.3 プロジェクトの実行手順
	5.3.1 実行環境
	5.3.2 デモプロジェクトの構築
	5.3.2.1 プライマリMCU用の初期イメージと更新イメージを作成
	(1) e2 studioにbootloader_rx65n_ck_w_buffer, app_rx65n_ck_primaryプロジェクトをインポートし、ビルドします。全面更新方式の場合、ビルド前にapp_rx65n_ck_primary\src\fwup\app_fwup_config.hの「APP_COMM_CONFIG_FWUP_FULL_UPDATE」マクロ定義を(1)に変更してください。
	(2) 各プロジェクトのHardwareDebugフォルダ内に、以下のMOTファイルが生成されていることを確認します。
	(3) bootloader_rx65n_ck_w_buffer\src\smc_gen\r_fwup\toolフォルダにビルドしたデモプロジェクトのMOTファイルを格納します。また、同様にFITDemos\keys\fwup\secp256r1.privatekeyファイルを格納します。
	(4) bootloader_rx65n_ck_w_buffer\src\smc_gen\r_fwup\toolフォルダで以下のコマンドを実行し、初期イメージを作成します。
	(5) app_rx65n_ck_primary\src\app_rx65n_ck_primary.hファイルを開き、DEMO_VER_MAJORの定義を(1)から(2)に変更し、再度app_rx65n_ck_primaryプロジェクトをビルドします。ビルドしたプロジェクトのMOTファイルを同様にtoolフォルダに格納します。
	(6) 以下のコマンドを実行し、更新イメージを作成します。

	5.3.2.2 セカンダリMCU用の初期イメージと更新イメージを作成
	(1) e2 studioにbootloader_rx140_fpb_w_buffer, app_rx140_fpb_w_bufferプロジェクトをインポートし、ビルドします。
	(2) 各プロジェクトのHardwareDebugフォルダ内に、以下のMOTファイルが生成されていることを確認します。
	(3) bootloader_rx140_fpb_w_buffer\src\smc_gen\r_fwup\toolフォルダにビルドしたデモプロジェクトのMOTファイルを格納します。また、同様にFITDemos\keys\fwup\secp256r1.privatekeyファイルを格納します。
	(4) bootloader_rx140_fpb_w_buffer\src\smc_gen\r_fwup\toolフォルダで以下のコマンドを実行し、初期イメージを作成します。全面更新方式の場合は、RX140_Linear_Half_ImageGenerator_PRM.csvではなくRX140_Linear_Full_ImageGenerator_PRM.csvを使用します。
	(5) app_rx140_fpb_w_buffer\src\fwupcomm_demo_main.hファイルを開き、DEMO_VER_MAJORの定義を(1)から(2)に変更し、再度app_rx140_fpb_w_bufferプロジェクトをビルドします。ビルドしたプロジェクトのMOTファイルを同様にtoolフォルダに格納します。
	(6) 以下のコマンドを実行し、更新イメージを作成します。全面更新方式の場合は、RX140_Linear_Half_ImageGenerator_PRM.csvではなくRX140_Linear_Full_ImageGenerator_PRM.csvを使用します。

	5.3.3 初期イメージの書き込み
	5.3.4 ファームウェアアップデートの実行
	(1) PCでTeraTermを2画面起動し、プライマリMCU(CK-RX65Nv2)とセカンダリMCU(FPB-RX140)のシリアルCOMポートを選択し接続設定を行います。
	(2) ボードの電源を投入します。TeraTermに以下のメッセージが出力されます。
	(3) プライマリMCU側のTeraTerm画面で、ファームウェア更新を実施する対象のMCUの番号を入力します。
	(4) TeraTermから更新イメージを送信します。

	5.4 MCUbootプロジェクトの実行手順
	5.4.1 実行環境
	5.4.2 デモプロジェクトの構築
	5.4.2.1 プライマリMCU用の初期イメージと更新イメージを作成
	(1) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.2動作確認準備」を実施します。
	(2) e2 studioにkey_injection_rx65n_ck_mcuboot, bootloader_rx65n_ck_mcuboot, app_rx65n_ck_mcuboot_primaryプロジェクトをインポートします。
	(3) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.1鍵のインジェクション」を実施します。
	(4) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.2署名検証用公開鍵の埋め込み」を実施します。
	(5) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.3デモプロジェクトのイメージの準備」を実施します。
	(6) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.4デモプロジェクトの書き込み」を実施します。

	5.4.2.2 セカンダリMCU用の初期イメージと更新イメージを作成
	(1) key_injection_rx261_fpb_mcuboot, bootloader_rx261_fpb_mcuboot, app_rx261_fpb_mcubootプロジェクトをインポートします。
	(2) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.1鍵のインジェクション」を実施します。
	(3) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.2署名検証用公開鍵の埋め込み」を実施します。
	(4) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.3デモプロジェクトのイメージの準備」を実施します。
	(5) 「RXファミリ MCUboot Firmware Integration Technology (R01AN7374)」の「4.3デモプロジェクトの実行手順」の「4.3.4デモプロジェクトの書き込み」を実施します。

	5.4.3 ファームウェアアップデートの実行

	5.5 PC-プライマリMCU間の通信方式がXMODEMの場合のデモプロジェクトの実行手順
	(1) プライマリMCUのCK-RX65Nv2またはRSK-RX65N-2MB(TSIP)を「6.3.6.1 PC-プライマリMCU間の通信方式がXMODEMの場合の接続構成」のように接続してください。
	(2) プライマリMCUのアプリケーションプロジェクトのsrc/comm/app_comm_config.hで定義されているAPP_COMM_CONFIG_PROTOCOLを(2)に設定してください。
	(3) 「5.3.2デモプロジェクトの構築」、「5.3.3初期イメージの書き込み」の手順を実施します。
	(4) 「5.3.4ファームウェアアップデートの実行」で、TeraTermを3画面起動し、プライマリMCU(CK-RX65Nv2)とセカンダリMCU(FPB-RX140)のシリアルCOMポートに加えて、追加で接続したUSB端子のシリアルCOMポートを選択し接続設定を行います。
	(5) ボードの電源を投入します。TeraTermに以下のメッセージが出力されます。
	(6) プライマリMCU側のTeraTerm画面で、ファームウェア更新を実施する対象のMCUの番号を入力します。
	(7) TeraTermから更新イメージを送信します。

	5.6 マイコン間の通信方式がSPIの場合のデモプロジェクトの設定方法

	6. 付録
	6.1 動作確認環境
	6.2 UART通信設定
	6.3 デモプロジェクトの動作環境
	6.3.1 RX140の動作確認環境
	6.3.1.1 マイコン間通信がUARTの場合の接続構成
	6.3.1.2 マイコン間通信がSPIの場合の接続構成

	6.3.2 RX23E-Bの動作確認環境
	6.3.2.1 マイコン間通信がUARTの場合の接続構成
	6.3.2.2 マイコン間通信がSPIの場合の接続構成

	6.3.3 RX261の動作確認環境
	6.3.3.1 マイコン間通信がUARTの場合の接続構成
	6.3.3.2 マイコン間通信がSPIの場合の接続構成

	6.3.4 RX66Tの動作確認環境
	6.3.4.1 マイコン間通信がUARTの場合の接続構成
	6.3.4.2 マイコン間通信がSPIの場合の接続構成

	6.3.5 RX660の動作確認環境
	6.3.5.1 マイコン間通信がUARTの場合の接続構成
	6.3.5.2 マイコン間通信がSPIの場合の接続構成

	6.3.6 RX65Nの動作確認環境
	6.3.6.1 PC-プライマリMCU間の通信方式がXMODEMの場合の接続構成
	6.3.6.2 RSK-RX65N-2MB(TSIP)でRSPIを用いたSPI通信を行う場合の接続構成

	改訂記録

