
 アプリケーションノート

R01AN2472JU0573 Rev.5.73 Page 1 of 73
Dec.26.25

RX ファミリ
CAN API Firmware Integration Technology

要旨
Renesas CAN API (Application Programming Interface)を使って、CAN バス上のデータを送信、受信、監

視できます。本ドキュメントでは、CAN API の使用方法と CAN モジュールのいくつかの機能について説明

します。

本アプリケーションノートでは CAN API のソースコードファイルが提供されます。API を使ったデモの

ソースコードも提供され、can_api_demo.c、および switches.c に記載されています。

対象デバイス
• RX64M グループ
• RX71M グループ
• RX65N グループ、RX651 グループ
• RX66T グループ
• RX66N グループ
• RX671 グループ
• RX72T グループ
• RX72M グループ
• RX72N グループ

本アプリケーションノートを他のマイコンへ適用する場合、そのマイコンの仕様に合わせて変更し、十分

評価してください。

ターゲットコンパイラ
• ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

各コンパイラの動作確認環境に関する詳細な内容は、セクション「10.1 動作確認環境 」を参照してください。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 2 of 73
Dec.26.25

目次

1. 概要 ... 4
1.1 基本情報 .. 4
1.2 通信層 .. 5
1.3 CAN FIT モジュールを使用する ... 5
1.3.1 CAN FIT モジュールを C++プロジェクト内で使用する ... 5
1.4 接続 ... 6
1.5 メールボックス ... 6
1.6 拡張 CAN ... 6

2. API 情報 .. 7
2.1 ハードウェアの要求 .. 7
2.2 ハードウェアリソースの要求 .. 7
2.2.1 周辺機能 .. 7
2.2.2 その他の周辺機能 .. 7
2.3 ソフトウェアの要求 .. 7
2.4 制限事項 .. 7
2.4.1 RAM の配置に関する制限事項 .. 7
2.5 サポートされているツールチェーン ... 7
2.6 使用する割り込みベクタ ... 8
2.7 ヘッダファイル ... 8
2.8 整数型 .. 8
2.9 コンパイル時の設定 .. 8
2.9.1 割り込みモードとポーリングモードの対比、および CAN の割り込みレベルと生成のタイミング 8
2.9.2 標準 ID と拡張 ID ... 9
2.9.3 チャネルの有効化と端子のマッピング ... 9
2.9.4 レジスタの最大ポーリング時間 .. 10
2.10 コードサイズ ... 11
2.11 FIT モジュールの追加方法 .. 12
2.12 for 文、while 文、do while 文について .. 12

3. API 関数 .. 13
関数一覧... 13
戻り値 .. 14
R_CAN_Create .. 15
R_CAN_PortSet ... 18
R_CAN_Control ... 20
R_CAN_SetBitrate ... 22
R_CAN_TxSet、R_CAN_TxSetXid ... 25
R_CAN_Tx ... 27
R_CAN_TxCheck .. 28
R_CAN_TxStopMsg .. 29
R_CAN_RxSet、R_CAN_RxSetXid .. 30
R_CAN_RxPoll .. 31
R_CAN_RxRead .. 32
R_CAN_RxSetMask .. 34

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 3 of 73
Dec.26.25

R_CAN_CheckErr .. 37
R_CAN_RxSetFIFO()、R_CAN_RxSetFIFOXid ... 40

4. 端子設定 .. 42

5. デモプロジェクト .. 43
5.1 ワークスペースにデモを追加する .. 44
5.1.1 e2 studio でプロジェクトをインポートしてデバッグする .. 44
5.1.2 デモを実行する ... 45
5.2 Renesas デバッグコンソール ... 46

6. テストモード ... 47
6.1 ループバック ... 47
6.1.1 内部ループバック:CAN バスを介さずにノードをテストする .. 47
6.1.2 外部ループバック:テストノード ... 48
6.2 リッスンオンリ（バスモニタ） .. 49

7. タイムスタンプ ... 50

8. CAN スリープモード ... 51

9. CAN FIFO .. 52

10. 付録 ... 53
10.1 動作確認環境 ... 53
10.2 トラブルシューティング ... 67
10.3 Rev. 3.20 から Rev. 4.00 への API 関数の変更 ... 67
10.4 Rev. 4.10 から Rev. 5.00 への API 関数の変更 ... 68
10.5 Rev. 5.00 から Rev. 5.10 への API 関数の変更 ... 68
10.6 Rev. 5.50 から Rev. 5.60 への API 関数の変更 ... 68

テクニカルアップデートの対応について .. 69

改訂記録 ... 70

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 4 of 73
Dec.26.25

1. 概要
RX CAN モジュールにはメールボックスが 32 個あり、CAN バス上で通信を行います。「メールボックス」

とは、MCU の CAN モジュール内で実際にメッセージが格納される場所を指します。本書では「メールボッ

クス」という用語を使用しますが、「メッセージボックス」、「メッセージバッファ」と呼ばれることもあ

ります。メールボックスはメッセージを格納するバッファで、入ってきたデータで上書きされるか、MCU に

よって上書きされるまで、CAN のデータフレームを保持します。

各メールボックスは送信、または受信の設定が動的に行えます。多くの場合は受信に設定され、あまり送

信に設定されることはありませんが、自由に設定して構いません。

1.1 基本情報
CAN は、安全性とリアルタイムな動作が優先されるアプリケーション向けに設計されていて、信頼性の高

い通信手段を提供します。

CAN の通信はマルチマスタ、マルチスレーブが基本です。送信されるメッセージ、またはデータフレーム

には送信ノードのアドレスも、受信ノードのアドレスも含まれません。そのため、どのノードでもマスタ、

またはスレーブになれます。メッセージの送信は、ブロードキャスト送信、または送信時にその ID をリッス

ンしていたノードへの送信が行えます。また、他のノードを更新することなく、新規のノードを追加できま

す。CAN はこのように柔軟に設計できることから、合理的、かつ冗長性を備え、再構築が容易なシステムを

構築できます。

CAN の主な特性を以下に示します。

• 高い信頼性と耐ノイズ性
• チップでのエラー処理
• バス 2 線／ノード接続ポイント－配線コストの低減
• 柔軟なアーキテクチャ
• ネットワークの拡大を容易に実現

エラー処理はチップで行われるため、下層でのエラー処理を扱う複合スタックソフトウェアは必要ありま

せん。MCU のバスコネクタで必要な端子は 2 端子のみのため、CAN ネットワークも物理層にあります。こ

うすることで、複数のバス接続が必要なネットワークスキームよりも高い信頼性を実現できます。新規のノー

ドは、バス線上で追加したい個所をタップするだけで、簡単に追加できます。

接続可能なノード数とケーブル長がビットレートによって決定されます。有効な CAN データビットレート

は 62.5Kbps、125Kbps、250Kbps、500Kbps、1Mbps です。ネットワークは、最高速度において、40 メー

トルのケーブルで 30 ノードに対応し、最低速度において、1000 メートルのケーブルで 100 ノード以上に対

応します。

CAN ネットワークの基本構成は、CAN マイクロコントローラ (MCU) 、ファームウェア、バス信号の伝搬、

および読み込みを行う CAN トランシーバ、バスメディア（2 線）から成ります。アプリケーションに応じて、

十分なメールボックスを備えた CAN MCU を選択してください。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 5 of 73
Dec.26.25

1.2 通信層
下図に CAN の通信層を示します。アプリケーション層が最上層、ハードウェア層が最下層となります。

図 1 CAN の物理層とソースコード層

本ドキュメントでは、CANopenやDeviceNetなどの上層のプロトコルには触れていません。（Renesas CAN

MCU の中には、CANopen ソリューションに対応しているものがあります。詳しくは販売店にお問い合わせ

ください）

1.3 CAN FIT モジュールを使用する

1.3.1 CAN FIT モジュールを C++プロジェクト内で使用する
C++プロジェクトでは、FIT CAN モジュールのインタフェースヘッダファイルを extern “C”の宣言に追加

してください。
Extern “C”
{
#include “r_smc_entry.h”
#include “r_can_rx_if.h”
}

アプリケーション

CANopen、DeviceNet、J1939...

Renesas CAN API (can.cファイル内）

CANモジュール (SFRレジスタ）

MCU／トランシーバ／CANバス

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 6 of 73
Dec.26.25

1.4 接続
CAN モジュールのプロトコルコントローラは、CAN の送信端子 (CTXn)、および受信端子 (CRXn)を介し

て、外部バスのトランシーバに接続する必要があります。

1.5 メールボックス
CAN プロトコルコントローラは CAN モジュールのメールボックスに対して読み込みと書き込みを行いま

す。CAN メッセージが送信されるとき、そのメッセージは、アプリケーションのファームウェアによってメー

ルボックスに書き込まれます。その後、ID がより低いメッセージが他のノードから送信された場合を除いて、

バスがアイドル状態になり次第、メッセージが自動的に送信されます。メールボックスが受信に設定されて

いる場合、メッセージはプロトコルコントローラによってメールボックスに書き込まれます。メールボック

スはネットワークからの次のメッセージに備えて空けておかなければならないので、ユーザは API を使って

このメッセージをユーザメモリ領域にコピーする必要があります。

メールボックスの書き込みと読み出しは API によって行われます。ユーザはアプリケーションデータフ

レーム用の構造体を提供します。この構造体は、API 関数によって、入力メッセージの書き込みと、出力メッ

セージのコピーに使用されます。少なくとも出力メッセージと入力メッセージ用に各 1 つは構造体を作成す

ることをお勧めします。出力メッセージ用は、ローカル変数（スタック上に配置）にすることも可能です。

入力メッセージ用はメールボックスごとに作成することが推奨されます。この CAN データフレーム構造体
(can_frame_t) は API のヘッダファイルで提供します。以下に構造体を示します。

typedef struct
{
uint32_t id;
uint8_t dlc;
uint8_t data[8];
} can_frame_t;

この構造体にはタイムスタンプは含まれませんが、その分、簡単に追加できます。

CAN バスのアービトレーションを除いて、メールボックス番号の低い方が優先されます。ただし、SH
(RCAN-ET)ではメールボックス番号の高い方が優先されます。優先に関しては、送信および受信動作で共通

しています。2 つのメールボックスが同じ CAN ID に設定された場合、メールボックス番号が低い方が優先

されます。2 つのメールボックスが同じ ID で受信に設定された場合、一方のメールボックスのみがメッセー

ジを受信します（もう一方は受信しません）。

1.6 拡張 CAN
拡張 ID を使用するには、r_can_rx_config.h で FRAME_ID_MODE を設定します。拡張 CAN が有効な場合、

‘Xid’が末尾に付く API 関数が呼び出されます。これらの関数では、CAN メールボックスの ID フィールドが

自動的に拡張 ID 用にフォーマットされますので、‘Xid’関数を呼び出すだけで、構造体“can_frame_t”の持つ ID
の値が 29 ビット（11 ビットではない）の ID として送信されます。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 7 of 73
Dec.26.25

2. API 情報
本 FIT モジュールは、下記の条件で動作を確認しています。

2.1 ハードウェアの要求

ご使用になる MCU が以下の機能をサポートしている必要があります。

• CAN モジュール（CAN）

2.2 ハードウェアリソースの要求

本 FIT モジュールに必要なハードウェアリソースについて説明します。明示的に記載していない限り、こ

れらのリソースは他の周辺機能では使用できません。

2.2.1 周辺機能
CAN モジュール（CAN）

2.2.2 その他の周辺機能
CAN バスの送受信用に I / O ポートを割り当てる必要があります。割り当てられたポートは汎用入出力ポー

トとして使用できません。

本 FIT モジュールでは、スタンバイ信号とイネーブル信号として汎用入出力ポートを使ってチャネルごと

に制御するオプション機能があります。

2.3 ソフトウェアの要求

本 FIT モジュールは以下の FIT モジュールに依存しています。

• ボードサポートパッケージ (r_bsp) v5.20 以上

2.4 制限事項

2.4.1 RAM の配置に関する制限事項
FIT では、API 関数のポインタ引数に NULL と同じ値を設定すると、パラメータチェックにより戻り値が

エラーとなる場合があります。そのため、API 関数に渡すポインタ引数の値は NULL と同じ値にしないでく

ださい。

ライブラリ関数の仕様で NULL の値は 0 と定義されています。そのため、API 関数のポインタ引数に渡す

変数や関数が RAM の先頭番地(0x0 番地)に配置されていると上記現象が発生します。この場合、セクショ

ンの設定変更をするか、API 関数のポインタ引数に渡す変数や関数が 0x0 番地に配置されないように RAM
の先頭にダミーの変数を用意してください。

なお、CCRX プロジェクト(e2 studio V7.5.0)の場合、変数が 0x0 番地に配置されることを防ぐために RAM
の先頭番地が 0x4 になっています。GCC プロジェクト(e2 studio V7.5.0)、IAR プロジェクト(EWRX V4.12.1)
の場合は RAM の先頭番地が 0x0 になっていますので、上記対策が必要となります。

IDE のバージョンアップによりセクションのデフォルト設定が変更されることがあります。最新の IDE を

使用される際は、セクション設定をご確認の上、ご対応ください。

2.5 サポートされているツールチェーン

本 FIT モジュールは「10.1 動作確認環境」に示すツールチェーンで動作確認を行っています。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 8 of 73
Dec.26.25

2.6 使用する割り込みベクタ

CAN TX および CAN RX 割り込みを使用する場合、それぞれの割り込みの選択型割り込みの設定を行って

ください。選択型割り込みの設定は「r_bsp_interrupt_config.h」で行えます。

2.7 ヘッダファイル

すべての API 呼び出しとそれをサポートするインタフェース定義は r_ can_rx_if.h に記載しています。

ビルド時に設定可能なコンフィギュレーションオプションは r_can_rx_config.hファイルで選択または定義

されています。

本 FIT モジュールの API をユーザプログラムから参照するには、r_can_rx_if.h をインクルードしてく

ださい。

2.8 整数型

このドライバは ANSI C99 を使用しています。これらの型は stdint.h で定義されています。

2.9 コンパイル時の設定

アプリケーションで必要な機能性を満たすために、r_can_rx_config.h の変更が必要な場合があります。例

えば、CAN ポーリングモード、または CAN 割り込みモードで実行する場合は変更が必要です。ルネサス CAN
API の関数が定義されている r_can_rx.c への変更は前提としていませんが、API で提供されない機能を追加

することで機能を向上できる場合もあります。

e2 studio の Smart Configurator を使用してこのソフトウェアをインストールする場合、この FIT モジュー

ルの設定は Smart Configurator の 「コンポーネント」→「プロパティ」で行います。

それ以外の場合、以降の表を参考にして r_can_rx_config.h を手動で編集します。

2.9.1 割り込みモードとポーリングモードの対比、および CANの割り込みレベルと生成のタイミング
送受信されたメッセージの CAN メールボックスのチェック方法を設定します。

割り込みモードに設定する場合、使用チャネルの割り込み優先レベルも設定します。

定義 設定値 説明

USE_CAN_POLL
0 = 割り込みモード
1 = ポーリングモード

送受信されたメッセージの

CAN メールボックスをチェッ

クする方法を設定します。

CAN_CFG_TXFIFO_INT_GEN_TIMING
0 = 送信が完了するたび。
1 = 送信が完了して送信 FIFO が

空になったとき。

送信 FIFO 割り込み
生成タイミングの制御

CAN_CFG_RXFIFO_INT_GEN_TIMING
0 = 受信が完了するたび。
1 = 受信が完了して受信 FIFO が

バッファ警告状態になったとき。

受信 FIFO 割り込み
生成タイミングの制御

CAN0_INT_LVL 0 ～ 15 (0 のとき割り込み禁止) チャネル 0 の割り込み優先レ

ベルを設定します。

CAN1_INT_LVL 0 ～ 15 (0 のとき割り込み禁止) チャネル 1 の割り込み優先レ

ベルを設定します。

CAN2_INT_LVL
0 ～ 15 (0 のとき割り込み禁止) チャネル 2 の割り込み優先レ

ベルを設定します。

CAN_CFG_EN_NESTED_INT
0 = 多重割り込みを無効
1 = 多重割り込みを有効

多重割り込みを使用するかど

うかを指定します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 9 of 73
Dec.26.25

2.9.2 標準 ID と拡張 ID
本 FIT モジュールで有効にする CAN ID のタイプを、11 ビットの標準 ID か 29 ビットの拡張 ID から選択

します。設定オプションは、STD_ID_MODE、EXT_ID_MODE、または MIXED_ID_MODE に設定できます。

MIXED_ID_MODE に設定した場合、すべての API を使用できます。

バスに標準と拡張の両フレームが存在する場合は MIXED_ID_MODE を使用してください。他の ID モード

を選択すると、正しいデータが得られないことがあります。

定義 設定値 説明

FRAME_ID_MODE

STD_ID_MODE = 標準(11 ビット) CAN ID.
EXT_ID_MODE = 拡張(29 ビット) CAN ID.
MIXED_ID_MODE = 標準(11 ビット) と
拡張(29 ビット) ID の両方を使用

STD_ID_MODE または

EXT_ID_MODE は、その ID モードに

属する API関数のみを有効にします。
MIXED_ID_MODE に設定すると、全

ての API が使用できます。

2.9.3 チャネルの有効化と端子のマッピング
チャネルを有効にすることで、ビルド対象とすることができます。チャネルを無効にすると、無効にした

チャネルに対応するコードがビルドから除外されます。

また、MCU に接続される CAN トランシーバの制御端子も設定が必要です。これらの端子は CAN モジュー

ル専用ではないため、汎用入出力端子を使って設定できます。トランシーバの中にはこの他にも制御端子を

持つものがあり、それらを使用する場合は設定が必要です。

定義 設定値 説明

CAN_USE_CAN0
0 = 無効
1 = 有効

チャネル 0 を有効または無

効にします。

CAN_USE_CAN0_STANDBY_E
NABLE_PINS

0 = 無効
1 = 有効

チャネル 0 におけるスタン

バイ端子とイネーブル端子

を有効または無効にします。

CAN0_TRX_STB_PORT ポートグループ名 スタンバイ端子に使うポー

トのポートグループ名

CAN0_TRX_STB_PIN ポート番号 スタンバイ端子に使う

ポートのポート番号

CAN0_TRX_STB_LVL
0 = Low アクティブ

1 = High アクティブ
スタンバイ信号のアク

ティブレベル

CAN0_TRX_ENABLE_PORT ポートグループ名 イネーブル端子に使う

ポートのポートグループ名

CAN0_TRX_ENABLE_PIN ポート番号 イネーブル端子に使う

ポートのポート番号

CAN0_TRX_ENABLE_LVL
0 = Low アクティブ

1 = High アクティブ
イネーブル信号のアク

ティブレベル

CAN_USE_CAN1
0 = 無効

1 = 有効
チャネル1におけるスタン

バイ端子とイネーブル端子

を有効または無効にします。

CAN_USE_CAN1_STANDBY
_ENABLE_PINS

0 = 無効
1 = 有効

チャネル1におけるスタン

バイ端子とイネーブル端子

を有効または無効にします。

CAN1_TRX_STB_PORT
ポートグループ名 スタンバイ端子に使うポー

トのポートグループ名

CAN1_TRX_STB_PIN
ポート番号 スタンバイ端子に使うポー

トのポート番号

CAN1_TRX_STB_LVL
0 = Low アクティブ
1 = High アクティブ

スタンバイ信号のアクティ

ブレベル

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 10 of 73
Dec.26.25

定義 設定値 説明

CAN1_TRX_ENABLE_PORT
ポートグループ名 イネーブル端子に使うポー

トのポートグループ名

CAN1_TRX_ENABLE_PIN
ポート番号 イネーブル端子に使うポー

トのポート番号

CAN1_TRX_ENABLE_LVL
0 = Low アクティブ
1 = High アクティブ

イネーブル信号のアクティ

ブレベル

CAN_USE_CAN2
0 = 無効
1 = 有効

チャネル 2 におけるスタン

バイ端子とイネーブル端子

を有効または無効にします。

CAN_USE_CAN2_STANDBY
_ENABLE_PINS

0 = 無効
1 = 有効

チャネル 2 におけるスタン

バイ端子とイネーブル端子

を有効または無効にします。

CAN2_TRX_STB_PORT
ポートグループ名 スタンバイ端子に使うポー

トのポートグループ名

CAN2_TRX_STB_PIN
ポート番号 スタンバイ端子に使うポー

トのポート番号

CAN2_TRX_STB_LVL
0 = Low アクティブ
1 = High アクティブ

スタンバイ信号のアクティ

ブレベル

CAN2_TRX_ENABLE_PORT
ポートグループ名 イネーブル端子に使うポー

トのポートグループ名

CAN2_TRX_ENABLE_PIN
ポート番号 イネーブル端子に使うポー

トのポート番号

CAN2_TRX_ENABLE_LVL
0 = Low アクティブ
1 = High アクティブ

イネーブル信号のアクティ

ブレベル

2.9.4 レジスタの最大ポーリング時間
CAN レジスタのビットが期待値を得たかどうかをポーリングするときの最大ループ回数。ポーリングモー

ドを使用する場合、メールボックスがフレームを受信したことを確認するために一定時間待ちたい場合、こ

の値を増加してください。また、小さい値も設定できますが、“0”は設定しないでください。“0”に設定した場

合、メールボックスは全く確認されません。

定義 設定値 説明

MAX_CANREG_POLLCYCLES

0 より大きい整数 ポーリングモードにのみ有効です。
CAN レジスタのビットが期待値を得たかどうか

をポーリングするときの最大ループ回数を設定

します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 11 of 73
Dec.26.25

2.10 コードサイズ

コードサイズの前提は、最適化レベル（optimization level）2 に設定し、Renesas CCRX toolchain 3.07、
GCC for Renesas RX 14.2.0.202505、および IAR Embedded Workbench for Renesas RX 5.20.1 を使用す

ることです。ROM (コード、定数、事前初期化済みデータ) と RAM (事前初期化済みデータ、未初期化デー

タ) のサイズは、デバイスに対応するモジュール設定ヘッダ参照ファイル内で設定したビルド時の設定オプ

ションによって決まります。

ROM と RAM のコードサイズ

ビルド設定 領域 サイズ (バイト)
CCRX GCC IAR

ポーリングモード、チャネル 0 のみが有効
CAN0 Standby/Enable 端子が未使用

ROM 3350 5196 3832

割り込みモード、チャネル 0 のみが有効
CAN0 Standby/Enable 端子が未使用

ROM 3853 5548 4158

割り込みモード、3 個のチャネルが有効
すべての CAN Standby/Enable 端子が有効

ROM

4547 6548 4878

すべて RAM 60 116 60

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 12 of 73
Dec.26.25

2.11 FIT モジュールの追加方法

本モジュールは、使用するプロジェクトごとに追加する必要があります。ルネサスでは、Smart Configurator
を使用した(1)、(2)の追加方法を推奨しています。ただし、Smart Configurator は、一部の RX デバイスのみ

サポートしています。サポートされていない RX デバイスについては(3)の方法を使用してください。

(1) e2 studio 上で Smart Configurator を使用して FIT モジュールを追加する場合

e2 studio の Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加

します。詳細は、アプリケーションノート「Renesas e2 studio スマート・コンフィグレータ ユー

ザーガイド (R20AN0451)」を参照してください。

(2) CS+上で Smart Configurator を使用して FIT モジュールを追加する場合
CS+上で、スタンドアロン版 Smart Configurator を使用して、自動的にユーザプロジェクトに FIT
モジュールを追加します。詳細は、アプリケーションノート「Renesas e2 studio スマート・コン

フィグレータ ユーザーガイド (R20AN0451)」を参照してください。

(3) CS+上で FIT モジュールを追加する場合
CS+上で、手動でユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーション

ノート「RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826)」を参

照してください。

2.12 for文、while文、do while文について

本モジュールでは、レジスタの反映待ち処理等で for 文、while 文、do while 文（ループ処理）を使用して

います。これらループ処理には、「WAIT_LOOP」をキーワードとしたコメントを記述しています。そのた

め、ループ処理にユーザがフェイルセーフの処理を組み込む場合は、「WAIT_LOOP」で該当の処理を検索

できます。

以下に記述例を示します。

while 文の例：
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized.*/
}

for 文の例：
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while 文の例：
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 13 of 73
Dec.26.25

3. API 関数
APIを使用することによって、細かい設定を気にせずに CANモジュールを使用でき、ユーザアプリケーショ

ンとネットワーク上のノード間での通信が簡単に行えます。

CANの設定と通信はCANレジスタを使って行います。詳細はお使いのMCUのユーザーズマニュアル ハー

ドウェア編を参照してください。通信を成立させるには、CAN モジュールのレジスタを正しい順番で設定し

て、読み出す必要があります。CAN API を使えば、このような作業が簡単に行えます。

CAN モジュールの初期設定後に必要なのは、受信および送信に使用する API 呼び出しのみです。その後は

定期的に CAN のエラー状態を確認します。エラー状態になった場合、アプリケーションは待機して、CAN
モジュールの復帰を監視します。CAN モジュールはエラーの状態に応じてオンライン、オフラインになりま

す。CAN モジュールの復帰が確認できたら、アプリケーションを再スタートします。

注記：Rev. 3.20 と Rev. 4.00 の間で、一部の関数に大きな変更を加えました。したがって、CAN FIT Rev.
4.00 を使用するようにアプリケーションをアップグレードする場合、注意深く対処することを推奨します

変更の詳細については、「10.3 Rev. 3.20 から Rev. 4.00 への API 関数の変更」を参照してください。

関数一覧

本 FIT モジュールには以下の API 関数があります。

関数名 説明
R_CAN_Create() CAN モジュールを初期化します。
R_CAN_PortSet() MCU とトランシーバのポート端子を設定します。
R_CAN_Control() CAN の動作モードを設定します。
R_CAN_SetBitrate() CAN のビットレート（通信速度）を設定します。
R_CAN_TxSet()、R_CAN_TxSetXid() メールボックスを送信に設定します。
R_CAN_Tx() CAN バスへのメッセージ送信を開始します。
R_CAN_TxCheck() データフレームが正常に送信されたことを確認します。
R_CAN_TxStopMsg() フレーム送信を要求されたメールボックスを停止します。
R_CAN_RxSet()、R_CAN_RxSetXid() メールボックスを受信に設定します。
R_CAN_RxPoll() メールボックスに受信メッセージがあるかどうかを確認します。
R_CAN_RxRead() メールボックスから CAN データフレームの内容を読み出します。
R_CAN_RxSetMask() CAN ID の承認マスクを設定します。
R_CAN_CheckErr() CAN モジュールのバスおよびエラーの状態を確認します。
R_CAN_RxSetFIFO()、
R_CAN_RxSetFIFOXid()

受信用の FIFO メールボックスを設定します

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 14 of 73
Dec.26.25

戻り値

API に関連する戻り値 説明
R_CAN_OK 処理が正常に完了しました。
R_CAN_NOT_OK 処理に失敗しました。通常は各エラーに特定の戻り値が返され

ます。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_BAD_MODE モード番号が存在していません。
R_CAN_BAD_ACTION_TYPE この関数では対応していないアクションです。
R_CAN_MSGLOST メッセージが上書きされたか、失われました。
R_CAN_NO_SENTDATA メッセージは送信されませんでした。
R_CAN_RXPOLL_TMO 受信メッセージのポーリングが時間切れです。
R_CAN_SW_WAKEUP_ERR CAN モジュールがスリープモードから復帰しません。
R_CAN_SW_SLEEP_ERR CAN モジュールがスリープモードに遷移しませんでした。
R_CAN_SW_HALT_ERR CAN モジュールが Halt モードに遷移しませんでした。
R_CAN_SW_RST_ERR CAN モジュールがリセットモードに遷移しませんでした。
R_CAN_SW_TSRC_ERR タイムスタンプエラー
R_CAN_SW_SET_TX_TMO 前の送信完了待ちが時間切れです。
R_CAN_SW_SET_RX_TMO 前の受信完了待ちが時間切れです。
R_CAN_SW_ABORT_ERR アボート処理待ちが時間切れです。
R_CAN_MODULE_STOP_ERR CAN モジュールがモジュールストップ状態（低消費電力）です。
CAN_ERR_NOT_FIFO_MODE 現在のメールボックスモードが FIFO メールボックスモードでは

ありません。
CAN_ERR_BOX_FULL 送信 FIFO がいっぱいです（4 件の未送信メッセージ）
CAN_ERR_BOX_EMPTY 受信 FIFO 内に未読メッセージはありません

CAN バス状態に関連する戻り値 バスの状態
R_CAN_STATUS_ERROR_ACTIVE 通常動作
R_CAN_STATUS_ERROR_PASSIVE ノードは送信エラーカウンタ、または受信エラーカウンタについ

て、127 を超えるエラーフレームを送信しました。
R_CAN_STATUS_BUSOFF ノードの送信失敗により、エラーカウンタが 255 を超えています。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 15 of 73
Dec.26.25

R_CAN_Create
CAN 周辺回路を初期化します - 通信向けユーザコールバック関数の設定、CAN 割り込みの構成、チャネル

ごとに異なるビットレートの設定、メールボックスのデフォルト設定、CAN 動作モードへの移行を実施しま

す。

本関数で、CAN 割り込みの優先レベルとユーザコールバック関数を設定します。本関数は R_CAN_SetBitrate()
も呼び出し、マスクをデフォルト（フレームをマスクしない）に設定します。

Format
uint32_t R_CAN_Create(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const can_bitrate_config_t p_cfg,
 void (*tx_cb_func)(void),
 void (*txf_cb_func)(void),
 void (*rx_cb_func)(void),
 void (*rxf_cb_func)(void),
 void (*err_cb_func)(void));

Parameters
ch_nr

使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mb_mode

通常のメールボックス（0）
FIFO メールボックス（1）

p_cfg
これは、BRP、TSEG1、TSEG2、SJW を保持しているデータ構造体のアドレスであり、これらの構造体

要素はチャネル ch_nr に対応するビットレートを形成します。
tx_cb_func

メールボックスの送信完了時、CAN API から呼び出されるユーザアプリケーションの関数名。
ポーリングモードを使用する場合、または割り込みモードでコールバック関数を使用しない場合、
NULL を指定します。

txf_cb_func
送信 FIFO 内のメールボックスが送信を終えるたび、または送信が完了したことが原因で送信 FIFO が

空になったときに、CAN ドライバが呼び出す、アプリケーション内の関数の名前。何らかの理由で割

り込みモードでコールバックの使用を希望しない場合、NULL を指定することができます。
rx_cb_func

メールボックスの受信完了時、CAN API から呼び出されるユーザアプリケーションの関数名。
ポーリングモードを使用する場合、または割り込みモードでコールバック関数を使用しない場合、
NULL を指定します。

rxf_cb_func
受信 FIFO 内のメールボックスが受信を終えるたび、または受信が完了したことが原因で受信 FIFO が

バッファ警告状態になったときに、CAN ドライバが呼び出す、アプリケーション内の関数の名前。何ら

かの理由で割り込みモードでコールバックの使用を希望しない場合、NULL を指定することができます。
err_cb_func

CAN エラー発生時、CAN API から呼び出されるユーザアプリケーションの関数名。
ポーリングモードを使用する場合、または割り込みモードでコールバック関数を使用しない場合、
NULL を指定します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 16 of 73
Dec.26.25

Return Values
R_CAN_OK 処理が正常に完了しました。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_BAD_MODE モード番号が存在していません。
R_CAN_SW_RST_ERR CAN モジュールがリセットモードに遷移しませんでした。
R_CAN_MODULE_STOP_ERR CAN モジュールがモジュールストップ状態（低消費電力）です。

PRCR レジスタでモジュールストップ状態が解除されていないようです。

R_CAN_Control()関数の戻り値もご確認ください。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

r_can_rx.c で実装されます。

Description
本関数は CAN モジュールを CAN スリープモードから復帰させて、CAN リセットモードに遷移させます。

また、メールボックスを下記のデフォルト設定に設定します。

• メールボックスのモードを設定します。通常のメールボックスモード、または FIFO メールボックス

モード。
• 新規フレーム到着時は、メールボックスの読み出し未のデータは上書きする。
• デバイスを ID 優先送信モード（メールボックス番号優先モードではなく、CAN の通常動作）に設定

する。
• すべてのメールボックスのマスクを無効にする。

r_can_rx_config.h で USE_CAN_POLL がコメント化されている場合、R_CAN_SetBitrate 関数を呼び出し

て、CAN 割り込みを設定します。

本関数は復帰する前にすべてのメールボックスをクリアし、CAN モジュールをオペレーションモードに

設定し、エラーをクリアします。

注記：ユーザはボーレートプリスケーラの分周比とビットのタイミング値を宣言し、R_CAN_Create()関数

を呼び出す前に p_cfg 引数を通じて CAN チャネルのビットレートを設定する必要があります。以下の例を参

照してください。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 17 of 73
Dec.26.25

Example
/* CAN0 に対応するボーレートプリスケーラの分周比とビットのタイミング値を宣言 */
#define CAN0_BRP (5)
#define CAN0_SJW (2)
#define CAN0_TSEG1 (15)
#define CAN0_TSEG2 (8)

/* CAN0_bitrate_cfg を通じて CAN0 のビットレートを設定 */
can_bitrate_config_t CAN0_bitrate_cfg;
CAN0_bitrate_cfg.BRP = CAN0_BRP;
CAN0_bitrate_cfg.SJW = CAN0_SJW;
CAN0_bitrate_cfg.TSEG1 = CAN0_TSEG1;
CAN0_bitrate_cfg.TSEG2 = CAN0_TSEG2;

#if USE_CAN_POLL
 api_status = R_CAN_Create(g_can_channel, mb_mode, CAN0_bitrate_cfg, NULL, NULL,
NULL, NULL);
#else

 /* 割り込みを使用 */
 api_status = R_CAN_Create(g_can_channel, mb_mode, CAN0_bitrate_cfg,
my_can_txf0_callback, my_can_rx0_callback, my_can_rxf0_callback,
my_can_err0_callback);
#endif

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 18 of 73
Dec.26.25

R_CAN_PortSet
MCU とトランシーバのポート端子を設定します。

“Enable”などのトランシーバのポート端子は設計により異なりますので、その内容に応じて本関数でも

修正が必要です。

また、本関数を使って、リッスンオンリモードなどの CAN ポートテストモードへの遷移も可能です。

Format
uint32_t R_CAN_PortSet(const uint32_t ch_nr,
 const uint32_t action_type);

Parameters
ch_nr

使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
action_type

 ポートのアクション
 ENABLE : CAN ポート端子と CAN トランシーバを有効にします。
 DISABLE : CAN ポート端子と CAN トランシーバを無効にします。
 CANPORT_TEST_LISTEN_ONLY : リッスンオンリモードに設定します。
 ACK またはエラーフレームは送信されません。
 「6.2 リッスンオンリ（バスモニタ）」を参照してください。
 CANPORT_TEST_0_EXT_LOOPBACK : 外部バスおよびループバックを使用します。
 これは、初回のデバッグ時に有用です。
 「6.1 ループバック」を参照してください。
 CANPORT_TEST_1_INT_LOOPBACK : メールボックスとの通信を内部でのみ行います。
 これは、初回のデバッグ時に有用です。
 「6.1 ループバック」を参照してください。
 CANPORT_RETURN_TO_NORMAL : ポートを通常の使用に戻します。

Return Values
R_CAN_OK 処理が正常に完了しました
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_BAD_ACTION_TYPE この関数では対応していないアクションです。
R_CAN_SW_HALT_ERR CAN モジュールが Halt モードに遷移しませんでした。
R_CAN_SW_RST_ERR CAN モジュールがリセットモードに遷移しませんでした。

R_CAN_Control()関数の戻り値もご確認ください。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。r_can_rx.c で実装されます。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 19 of 73
Dec.26.25

Description
ループバックモードを使用している場合（初回のテストまたはデバッグ時）を除いては、ボードのデフォ

ルト設定を行う関数（例:hwsetup）を呼び出した後に、本関数を呼び出してください。

MCU の CAN ポート端子が他のボードセットアップコード（r_bsp の設定）で設定された場合、それらの

端子からの不正な High/Low 出力がバスに悪影響を与えていないか注意してください。あるノードのハードリ

セットによって、他のノードがエラーモードになることがあります。これは、CAN がポートを再設定する前

に、すべてのポートの High/Low 出力をデフォルトで設定したためと考えられます。このような問題を引き起

こすコードは削除する必要があります。このようなコードがあると、わずかな期間、ポートは High/Low 信号

を出力し、CAN バスの電圧レベルを狂わせる可能性があります。

お使いのトランシーバに応じて、必要があれば、トランシーバのポート端子を変更、または追加してくだ

さい。

Example:
/* CAN バスの通常使用 */
R_CAN_PortSet(0, ENABLE);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 20 of 73
Dec.26.25

R_CAN_Control
CAN の動作モードを設定します。

CAN 制御レジスタで指定された CAN 動作モードへの遷移を制御します。例えば、Halt モードは、後に受

信メールボックスを設定するために使用されます。

Format
uint32_t R_CAN_Control(const uint32_t ch_nr,
 const uint32_t action_type);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。

action_type
 CAN モジュールのアクション
 EXITSLEEP_CANMODE : CAN スリープモードから復帰します。
 スリープモードは CAN モジュール開始時のデフォルトモードです
 （「8.CAN スリープモード」参照）。
 ENTERSLEEP_CANMODE : CAN スリープモードに遷移します。
 このモードでは、消費電力が低減されます。
 RESET_CANMODE : CAN モジュールをリセットモードに遷移させます。
 HALT_CANMODE : CAN モジュールを Halt モードに遷移させます。
 CAN モジュールはバスに接続された状態ですが、
 通信は停止されます。
 OPERATE_CANMODE : CAN モジュールをオペレーションモードに遷移させます。

Return Values
R_CAN_OK 処理が正常に完了しました
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_BAD_ACTION_TYPE この関数では対応していないアクションです。
R_CAN_SW_WAKEUP_ERR CAN モジュールがスリープモードから復帰しません。
R_CAN_SW_SLEEP_ERR CAN モジュールがスリープモードに遷移しませんでした。
R_CAN_SW_HALT_ERR CAN モジュールが Halt モードに遷移しませんでした。
R_CAN_SW_RST_ERR CAN モジュールがリセットモードに遷移しませんでした。

R_CAN_PortSet()関数の戻り値もご確認ください。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
Halt モードへ遷移するために本 API を呼び出す場合を除いて、CAN のモード遷移は、他の API 関数を介し

て自動的に行われます。例えば、開始時のデフォルトのモードは CAN スリープモードです。他の動作モード

には API を使って切り替えます。例えば、ビットレートと割り込みの設定に使用する CAN レジスタを初期

化する場合、スリープモードから復帰してリセットモードに遷移します。その後、Halt モードに遷移して、

メールボックスを設定します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 21 of 73
Dec.26.25

Example:
/* CAN バスの通常使用 */

result = R_CAN_Control(0, OPERATE_CANMODE); //結果が“R_CAN_OK”であることを確認。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 22 of 73
Dec.26.25

R_CAN_SetBitrate
CAN のビットレート（通信速度）を設定します。

CAN の設定時はビットレートとビットタイミングを必ず設定する必要があります。なお、リセットモード

に遷移すれば、これらの設定は後から変更できます。

Format
void R_CAN_SetBitrate(const uint32_t ch_nr
 const can_bitrate_config_t p_cfg);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
p_cfg
これは、BRP、TSEG1、TSEG2、SJW を保持しているデータ構造体のアドレスであり、これらの構造体要素はチャネル
ch_nr に対応するビットレートを形成します。

Return Values
なし

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description

CAN バスのビットレート、またはデータ速度を設定するには、ユーザーズマニュアル ハードウェア編の

図表を参照いただいた上で、CAN のビットタイミングと MCU 周波数に関する理解が要求されます。API で
は、ビットレートのデフォルトは 500KB です。MCU クロック、または周辺クロックの周波数が変更されな

い限りは、デフォルト設定で関数を呼び出すだけで動作します。

ボーレートを設定する前に、いくつかの計算を実行する必要があります。p_cfg が示す、ボーレートプリス

ケーラの分周比の値、タイムセグメント 2 の制御方法、タイムセグメント 1 の制御方法、および再同期ジャ

ンプ幅の制御方法を選択します。CAN システムクロック(fcanclk)は CAN 周辺クロックの内部クロック周期で

す。この CAN システムクロックは CAN のボーレートプリスケーラ値および周辺バスクロックによって決定

されます。1Tq は CAN クロック周期と等しくなります。

CAN バスの 1 ビット時間は複数の Tq の総和です。各ビットレートレジスタには、CAN の 1 ビット周期

（Tqtot）を構成する Tq の総数が設定されます。

ビットレートレジスタを設定するための計算式

 PCLK は周辺クロック周波数、PCLKB です。

 fcan = PCLK/EXTAL

 プリスケーラ値によって CAN 周辺クロックの周波数を下げます。

 fcanclk = fcan/prescaler

 1 Tq は CAN クロックの 1 周期です。

 Tq =1/fcanclk

Tqtot は、CAN の 1 ビット時間内の CAN 周辺クロック周期の総数で、「時間セグメント」と
「SS（常に “1”）」の合計で構成される周辺クロックによって成り立ちます。

コードでの Tqtot は以下のようになります。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 23 of 73
Dec.26.25

(BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL) / (CAN_BRP * BITRATE * BSP_CFG_PCKB_DIV)

これらのマクロを設定して、Tqtot が CAN レジスタで許容されている数値より大きくならないよう

にします。

注記：CAN_BRP ユーザプログラム内で定義

 BITRATE は予期されるビットレート

ユーザーズマニュアル ハードウェア編でビットレート設定例の表を参照してください。

その他の制限を以下に示します。

 Tqtot = TSEG1 + TSEG2 + SS (条件:TSEG1 > TSEG2)

SS は常に“1”です。多くの場合、同期ジャンプ幅 (SJW)はバス・アドミニストレータによって提供さ

れます。“1 ≦ SJW ≦ 4”を選択します。

ビットレートレジスタの設定を計算する例

CAN BITRATE の設定
HW マニュアルの「CAN Communication Speed Setting」（CAN 通信速度の設定）と「Bit Rate」（ビッ

トレート）の各セクションを参照してください。

CCLKS は 0（PCLK、つまり PCLKB で動作)、言い換えると、
FCAN = PCLK = PCLKB.
CAN_BRP = ボーレートプリスケーリング。
FCANCLK = FCAN / CAN_BRP
P = BCR 内の BRP[9:0]ビットで選択した値（P = 0～1023）。P + 1 = CAN_BRP.
TQTOT = 1 ビットに対応する CAN クロックの数 = FCANCLK/BITRATE。

CCLKS = 0 の場合、r_bsp マクロを使用すると、次の結果が得られます。
FCAN = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV) (Eq. 1)
TQTOT = (FCAN/(CAN_BRP * BITRATE)) (Eq. 2)

式(1)を式(2)に代入：
TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV)/(CAN_BRP *
BITRATE))、言い換えると
TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/(CAN_BRP * BITRATE *
BSP_CFG_PCKB_DIV) (Eq. 3)

例：希望するボーレートは 500 kbps。
 CAN_BRP = 4 を試します。式 3 は次のようになります。
 TQTOT = (24000000 * 10)/(4 * 500000 * 4) = 30。 これでは大きすぎます。TQTOT の最大値は

25 です。
 CAN_BRP = 5 を試します。
 TQTOT =
 (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/(CAN_BRP * BITRATE *

BSP_CFG_PCKB_DIV)
 = (24000000 * 10)/(5 * 500000 * 4) = ***24***
 TQTOT = 24 = TSEG1 + TSEG2 + SS:
 次の値を試します。
 SS = 1 Tq は常に想定します。
 TSEG1 = 15 Tq
 TSEG2 = 8 Tq
 ============

 SUM = 24

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 24 of 73
Dec.26.25

ビットレートの変更には、以下の Python コードを利用することもできます。

Python 3.5.1.Python のシンプルなコードを利用して、ビットレートレジスタの設定値を計算する。
Python を持っていない場合も以下のコードを追ってみてください。レジスタの設定値をマニュアルで計算する
方法を確認できます。

from fractions import Fraction
BITRATE = 500000

BRP試行。レジスタ設定に対して TQTOT が大きすぎる場合は数値を上げる。
CAN_BRP = 4

TQTOT が完全な整数でない場合、許容範囲内に制限してください。
そうでない場合は正確なビットレートを取得できず、
数値はテストできません。
MAX_TQ_FRACTION_DEV = 0.1

XTAL_HZ = 12000000

PLL_MUL = 4 # MCU によってはこの定義は使用不可の場合あり。その場合は“1”に設定。
PCKB_DIV = 2
TQTOT = (XTAL_HZ * PLL_MUL)/(CAN_BRP * BITRATE * PCKB_DIV)

print ("TQTOT is", round(TQTOT, 2), "=> Set TSEG1 larger than TSEG2, and SJW
to 1, so that the sum of these is TQTOT.")
print ("=============")

Example:
/* CAN0 に対応するボーレートプリスケーラの分周比とビットのタイミング値を宣言 */
#define CAN0_BRP (5)
#define CAN0_SJW (2)
#define CAN0_TSEG1 (15)
#define CAN0_TSEG2 (8)

/* CAN0_bitrate_cfg を通じて CAN0 のビットレートを設定 */
can_bitrate_config_t CAN0_bitrate_cfg;
CAN0_bitrate_cfg.BRP = CAN0_BRP;
CAN0_bitrate_cfg.SJW = CAN0_SJW;
CAN0_bitrate_cfg.TSEG1 = CAN0_TSEG1;
CAN0_bitrate_cfg.TSEG2 = CAN0_TSEG2;

/* BAUDRATE の設定 */
R_CAN_SetBitrate(0, CAN0_bitrate_cfg);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 25 of 73
Dec.26.25

R_CAN_TxSet、R_CAN_TxSetXid

メールボックスを送信に設定します。

R_CAN_TxSet は、指定された ID、データ長、データフレームペイロードをメールボックスに書き込み、

R_CAN_Tx()を呼び出して、メールボックスを送信モードに設定し、フレームをバスに送信します。

R_CAN_TxSetXid は、R_CAN_TxSet と同様の動作ですが、ID が 29 ビット ID になります。

Format
uint32_t R_CAN_TxSet(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 const can_frame_t* frame_p,
 const uint32_t frame_type);

uint32_t R_CAN_TxSetXid(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 can_frame_t* frame_p,
 const uint32_t frame_type);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mbox_nr

 使用するメールボックス（0 ～ 32）
mb_mode

通常のメールボックス（0）
FIFO メールボックス（1）

frame_p*
 メモリ内のデータフレーム構造体へのポインタ。

 この構造体には、送信されるデータフレームを構成する ID、DLC、およびデータが含まれます。
frame_type

 DATA_FRAME: 通常のデータフレームを送信

 REMOTE_FRAME: リモートフレームの要求を送信

Return Values
R_CAN_OK メールボックスが送信に設定されました。

R_CAN_SW_BAD_MBX 不正なメールボックス番号です。

R_CAN_BAD_CH_NR 存在しないチャネル番号です。

R_CAN_BAD_MODE モード番号が存在していません。

CAN_ERR_BOX_FULL 送信 FIFO がいっぱいです（4 件の未送信メッセージ）。

R_CAN_BAD_ACTION_TYPE この関数では対応していないアクションです。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 26 of 73
Dec.26.25

Description
この関数は、通常のメールボックスの送信または FIFO メールボックスの送信用の設定を行います。

FIFO メールボックスを送信しようとする場合、この関数はメールボックスをセットアップするとき、最初

にメールボックスを一時的に割り込み禁止にします。次に、メールボックスの設定を行うために、送信 FIFO
がいっぱいになっていないことを確認します。データフレームのペイロードのバイト（0～7）をメールボッ

クスにコピーして、データフレームまたはリモートフレームの要求を選択した後、そのメールボックスに対

応する ID の値を設定し、最後に frame_p が表すデータ長コードを設定します。USE_CAN_POLL が定義さ

れた場合以外は、メールボックスの割り込みは有効になり、送信 FIFO の割り込み生成タイミングも再び有

効になります。最後に、R_CAN_Tx を呼び出してメッセージを配信します。

通常のメールボックスの場合、この関数は最初に、指定されたメールボックスのそれ以前の送信が完了す

るまで待ちます。その後、メールボックスの割り込みを一時的に無効にして、メールボックスにメールボッ

クスの ID 値、および frame_p で示されるデータ長コードを設定し、データフレームかリモートフレームかを

選択し、最後にメールボックスにデータフレームペイロードバイト (0～7)をコピーします。USE_CAN_POLL
が定義されている場合を除いて、メールボックスの割り込みを有効に戻します。R_CAN_Tx を呼び出して、

メッセージを送信します。

Example:
#define MY_TX_SLOT 7
can_frame_t my_tx_dataframe;
my_tx_dataframe.id = 1;
my_tx_dataframe.dlc = 2;
my_tx_dataframe.data[0] = 0xAA;
my_tx_dataframe.data[1] = 0xBB;

/* フレーム送信 */
api_status = R_CAN_TxSet(0, 0, MY_TX_SLOT, &my_tx_dataframe, DATA_FRAME);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 27 of 73
Dec.26.25

R_CAN_Tx
CAN バスへのメッセージ送信を開始します。

本 API はメールボックスが前のフレームの処理を完了するまで待ってから、メールボックスを送信モード

に設定します。

Format
uint32_t R_CAN_Tx(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr);

Parameters
ch_nr
 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mb_mode

通常のメールボックス（0）

FIFO メールボックス（1）
mbox_nr
 使用するメールボックス（0 ～ 31）

Return Values
R_CAN_OK 送信設定が正常に行われました。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_BAD_MODE モード番号が存在していません。
CAN_ERR_BOX_FULL 送信 FIFO がいっぱいです（4 件の未送信メッセージ）。
R_CAN_SW_SET_TX_TMO 前の送信完了待ちが時間切れです。
R_CAN_SW_SET_RX_TMO 前の受信完了待ちが時間切れです。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
本関数はメールボックスの内容を送信するだけですので、システムがメールボックスの内容の設定を開始

してから、少なくとも一度は R_CAN_TxSet を呼び出す必要があります。

Example:
#define MY_TX_SLOT 7

/* メールボックスの内容を送信。メールボックスはこれより以前に送信に設定されていることが前提。*/
R_CAN_Tx(0, 0, MY_TX_SLOT);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 28 of 73
Dec.26.25

R_CAN_TxCheck
データフレームが正常に送信されたことを確認します。

Format
uint32_t R_CAN_TxCheck(const uint32_t ch_nr,
 const uint32_t mbox_nr);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mbox_nr

 使用するメールボックス（0 ～ 31）

Return Values
R_CAN_OK 送信が正常に完了しました。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_MSGLOST メッセージが上書きされたか、失われました。
R_CAN_NO_SENTDATA メッセージは送信されませんでした。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
本関数は、アプリケーションでメッセージの送信を確認する必要がある場合にのみ使用します。例えば、

ステートマシンの処理を実行したい場合や、連続でメッセージを送信したい場合などに使用します。チップ

上の CAN の通信制御であれば、API によってメールボックスの送信が実行された場合、かなりの確度でメー

ルの送信は実行されたと言えます。送信をより確実にしたい場合、送信後に本関数をご使用ください。

Example:
/*** 対象のフレームが送信されたことを確認 */
api_status = R_CAN_TxCheck(0, CANBOX_TX);

if (api_status == R_CAN_OK)
{

/* メインアプリケーションに通知 */
message_x_sent_flag = TRUE;
}

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 29 of 73
Dec.26.25

R_CAN_TxStopMsg
フレーム送信を要求されたメールボックスを停止します。

Format
uint32_t R_CAN_TxStopMsg(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mb_mode

通常のメールボックス（0）

FIFO メールボックス（1）
mbox_nr

 使用するメールボックス（0 ～ 31）

Return Values
R_CAN_OK 処理が正常に完了しました。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_MODE モード番号が存在していません。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_SW_ABORT_ERR アボート処理待ちが時間切れです。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
この関数は、メールボックスの制御フラグをクリアするか、送信 FIFO の制御フラグをクリアする方法で、

送信を停止します（通常のメールボックスの場合、TrmReq を 0 に設定し、FIFO メールボックスの場合、TFE
を 0 に設定します）。このとき、ソフトウェアカウンタで、最大期間までアボート処理を待機します。

メッセージ送信が停止しなかった場合、R_CAN_SW_ABORT_ERR を返します。このエラーの原因として

は、メッセージが送信済みだったことが考えられます。

Example:
R_CAN_TxStopMsg(0, 0, MY_T X_SLOT);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 30 of 73
Dec.26.25

R_CAN_RxSet、R_CAN_RxSetXid

メールボックスを受信に設定します。

R_CAN_RxSet は、指定された CAN ID を持つデータフレームを受信するようにメールボックスを設定し

ます。その ID を持つデータフレームがメールボックスに格納されます。

R_CAN_RxSetXid は、R_CAN_RxSet と同様の動作ですが、ID が 29 ビット ID になります。

Format
uint32_t R_CAN_RxSet(const uint32_t ch_nr,
 const uint32_t mbox_nr,
 const uint32_t id,
 const uint32_t frame_type);

uint32_t R_CAN_RxSetXid(const uint32_t ch_nr,
 const uint32_t mbox_nr,
 uint32_t xid,
 const uint32_t frame_type);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mbox_nr

 使用するメールボックス（0 ～ 31）
id
xid

 メールボックスが受信する CAN ID（0 ～ 7FFh）
frame_type

 DATA_FRAME :通常のデータフレームを送信

 REMOTE_FRAME :リモートフレームの要求を送信

Return Values
R_CAN_OK 処理が正常に完了しました。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
R_CAN_SW_SET_TX_TMO 前の送信完了待ちが時間切れです。
R_CAN_SW_SET_RX_TMO 前の受信完了待ちが時間切れです。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
本関数は、まずは指定されたメールボックスで以前の送信／受信が完了するのを待ちます。その後、メー

ルボックスの割り込みを一時的に無効にして、メールボックスに指定された標準 ID を設定し、通常のデータ

フレーム、またはリモートフレーム要求のいずれを受信するかを設定します。

Example:
#define MY_RX_SLOT 8
#define SID_FAN_SPEED 0x10

R_CAN_RxSet(0, MY_RX_SLOT, SID_FAN_SPEED, DATA_FRAME);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 31 of 73
Dec.26.25

R_CAN_RxPoll
メールボックスに受信メッセージがあるかどうかを確認します。

Format
uint32_t R_CAN_RxPoll(const uint32_t ch_nr,
 const uint32_t mbox_nr);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mbox_nr

 確認するメールボックス（0 ～ 31）

Return Values
R_CAN_OK 待機中のメッセージがあります。
R_CAN_NOT_OK 待機中、または保留中のメッセージはありません。
R_CAN_RXPOLL_TMO 保留中のメッセージがありますが、時間切れです。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
指定のメッセージを受信するようにメールボックスを設定してから、その受信が正常に完了したことを確

認することが重要です。確認は、以下の 2 つの方法で行えます。

1. ポーリングを使用。API を定期的に呼び出して、新規メッセージを確認します。この方法では、CAN の

設定ファイルで USE_CAN_POLL を定義する必要があります。メッセージがあると判定された場合、

R_CAN_RxRead を使って、メッセージを取得します。
2. CAN 受信割り込みを使用（USE_CAN_POLL は定義しない）。本 API を使って受信したメールボックス

を確認し、結果をアプリケーションに通知します。
メールボックスに新規データが確認された場合、本関数は“R_CAN_OK”を返します。

Example:
R_CAN_RxRead()の Example を参照してください。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 32 of 73
Dec.26.25

R_CAN_RxRead
メールボックスから CAN データフレームの内容を読み出します。

本 API は、指定されたメールボックスに受信メッセージがあることを確認します。メッセージが確認でき

た場合、メールボックスのデータフレームのコピーを該当する構造体に書き込みます。

Format
uint32_t R_CAN_RxRead(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 can_frame_t* const frame_p);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mb_mode

通常のメールボックス（0）
FIFO メールボックス（1）

mbox_nr
 確認するメールボックス（0 ～ 31）
frame_p

 メモリ内のデータフレーム構造体へのポインタを参照。
 メールボックスが受信した CAN データフレームのコピーが配置されるデータ構造体へのアドレス

Return Values
R_CAN_OK 待機中のメッセージがあります。
R_CAN_BAD_MODE モード番号が存在していません。
R_CAN_SW_BAD_MBX 不正なメールボックス番号です。
R_CAN_BAD_CH_NR 存在しないチャネル番号です。
CAN_ERR_BOX_EMPTY 受信 FIFO 内に未読メッセージはありません
R_CAN_MSGLOST メッセージが上書きされたか、失われました。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
この関数は、通常のメールボックスまたは受信 FIFO メールボックスを使用してメッセージを受信します。

FIFO メールボックスを受信する場合、この関数は Receive FIFO Empty Status Flag（受信 FIFO 空白ステー

タスフラグ）を参照し、受信 FIFO 内に未読メッセージが存在しているかどうかを確認します。存在してい

る場合、メールボックス内でそのメッセージの ID 値、データ長コード、データフレームのペイロードのバイ

ト（0～7）をロードします。最後に、この関数は Message Lost（メッセージが失われたかどうか）を参照し、

その後、FF を受信 FIFO ポインタ制御レジスタに書き込みます。

通常のメールボックスを使用する場合、最初に R_CAN_RxPoll()を使用して、そのメールボックスがメッ

セージを受信したかどうかを確認してください。

ポーリングモード、または CAN 受信割り込み使用時、本関数を使って、メールボックスからメッセージを

取得します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 33 of 73
Dec.26.25

Example:
#define MY_RX_SLOT 8
can_frame_t my_rx_dataframe;

api_status = R_CAN_RxPoll(0, CANBOX_RX_DIAG);
if (api_status == R_CAN_OK)
 R_CAN_RxRead(0, mb_mode, CANBOX_RX_DIAG, &my_rx_dataframe);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 34 of 73
Dec.26.25

R_CAN_RxSetMask
CAN ID の承認マスクを設定します。

1 つの ID のみを承認するには、すべてのマスクを“1”に設定します。すべてのメッセージを承認する場合、

すべてのマスクを“0”に設定します。ある範囲のメッセージを承認する場合、その範囲に対応する ID ビット

を“0”に設定します。

Format
void R_CAN_RxSetMask(const uint32_t ch_nr,
 const uint32_t mbox_nr,
 const uint32_t mask_value);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。
mbox_nr

 マスクするメールボックス（0 ～ 31）。グループ内の 4 つのメールボックスに影響。
mask_value

 マスク値（0 ～ 7FFh）

Return Values
なし

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
受信メールボックスはマスクを使って、1 つのメッセージを抽出することも、また、ある範囲のメッセー

ジ（CAN ID の範囲)を受信することもできます。これは、メールボックスグループの ID フィールドを使って

行われます。マスクはメールボックス 0～3 に 1 つ、4～7 に 1 つなどとなっています。ですから、マスクを

変更すると、隣接するメールボックスの動作に影響します。
• マスクを“0”に設定することは、「このビットをマスクする」または「このビットは見ない」というこ

とを意味し、ビットの内容に関わらず承認します。
• マスクを“1”に設定すると、その位置の CAN-ID ビットがメールボックスの CAN-ID と一致するかを確

認します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 35 of 73
Dec.26.25

マスクの設定方法

メールボックスで受信したい CAN-ID の範囲を 700-704h とします。標準 11 ビット ID を使用する場合、該

当範囲の ID は 16 進数とバイナリで以下のようになります。

16 進数 バイナリ

0x700 011100000000b

0x701 011100000001b

0x702 011100000010b

0x703 011100000011b

0x704 011100000100b

通常、メールボックスは設定された受信 ID と一致した ID を持つフレームのみを承認しますが、ビット位

置のマスクが“0”の場合、0 と 1 の両方の ID ビットを承認します。その後、上記のすべてを承認したい場合、

マスクを“011111111000b”、または“07F8h”としてマスクを設定します。

CAN 受信フィルタはビット位置 b10 (MSB)～b3 (LSB)のみを確認し、これらがメールボックスの受信 ID
と一致しているかどうかを確認します。

その後、上記のマスクに属するいずれかのメールボックス（1 つのマスクごとに 4 つのメールボックスに

グループ化）が ID 0x700 を受信するように設定した場合、そのメールボックスは 0x700～0x707 からすべて

の ID を承認します（ID を 0x700～0x707 に設定すると結果は同じ）。そのため、ID 0x705～0x707 は無視さ

れるように、アプリケーションソフトウェアで設定する必要があります。

アクセプタンスフィルタサポートによるメッセージの高速フィルタリング

マスクを使って広範囲のメッセージ ID を受信した場合、ファームウェアを使って、実際に必要なメッセー

ジをフィルタする必要があります。この検索速度を上げるために、アクセプタンスフィルタサポートを使用

できます。

アクセプタンスフィルタサポートユニット (ASU)は、マスクを使ったメッセージのソフトウェアフィルタ

（R_CAN_RxSetMask API 使用）と比べて、検索が高速で行えます。標準 ID ビットはメモリに通常のワード

として格納されず、再配置されるため、時間を要することがあります。また、承認マスクは、必要なメッセー

ジを特定の組み合わせで受信できないとう点が問題になる場合があります。すべてのメッセージを承認する

ようにマスクを設定した場合、各入力 ID に対して、ソフトウェアを使って多数のメッセージを確認すること

で、不要な時間を費やしてしまうことがあります。また、この手動フィルタでは、すべての ID を読み込み可

能なフォーマットで持たなくてはなりません。このような場合に効果的なソリューションが ASU です。

ASU を使用する場合、メッセージボックスに保存されているとおりに CAN-ID を ASU に書きます。ASU
レジスタから読み戻すとき、ワード単位でテーブルを検索します。読み出したデータは次のような内容になっ

ています。ビット 0～7 の構成は、アドレス検索情報 (ASI)で SID10～3 です。ビット 8～15 の構成は、ビッ

ト検索情報“BSI”です。SID0～3 はビット位置に変換されて、高速なテーブル検索を可能にします。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 36 of 73
Dec.26.25

図 2 アクセプタンスフィルタサポートユニット (ASU)

読み出し時、テーブルの高速検索を可能にするために、ID がフォーマットされます。これによって、通常

の CAN ID の配列を検索するよりも応答が速くなります。

検索テーブル

検索テーブルはユーザが用意する必要があり、アプリケーションで要求している ID かどうかを確認するた

めに使用します。ファームウェアによって、各バイトの ASI および各ビットの BSI でテーブルを検索します。

ビットの BSI 値がユーザのテーブルに設定され、ビットパターンがレジスタの BSI パターンと一致すると、

そのアドレスはノードが要求する情報であることを意味し、アプリケーションによってフレームが処理され

ます。

CSID7 CSID6 CSID5 CSID4 CSID3 CSID2 CSID1 CSID0 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

受信ID（11ビット）

アクセプタンスフィルタ

サポートレジスタ
受信IDの上位8ビット

高速検索を実施するために

SID0～3の値はビット位置に変換

読み出し中のレジスタの設定内容

b15 b8 b7 b0

BSI = 下位3ビットの変換値

CSIDx = SID2～0が“x”の場合、“1”

例: CSID3 = SID2～0が“3”の場合、“1”

ASI = 受信IDの上位8ビット

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 37 of 73
Dec.26.25

R_CAN_CheckErr

CAN モジュールのバスおよびエラーの状態を確認します。

Format
uint32_t R_CAN_CheckErr(const uint32_t ch_nr);

Parameters
ch_nr

 使用する CAN チャネル（0 ～ 2）（使用可能なチャネルは MCU に依存します）。

Return Values
R_CAN_ BAD_CH_NR 存在しないチャネル番号
R_CAN_STATE_ERROR_ACTIVE CAN バスの状態:通常動作
R_CAN_STATE_ERROR_PASSIVE CAN バスの状態:ノードは送信エラーカウンタ、または受信エラー

カウンタについて、127 を超えるエラーフレームを送信しました。
R_CAN_STATUS_BUSOFF CAN バスの状態:ノードの送信失敗により、エラーカウンタが 255

を超えています。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
本 API は CAN モジュールの CAN 状態フラグを確認し、状態エラーコードを返します。これによって、ノー

ドが機能している状態かどうかを確認でき、アプリケーションのエラー処理に使用できます。

メインループから定期的にポーリングするか、CAN エラー割り込みを使用します。CAN モジュールは再送

信とエラーフレームの処理を自動的に行うため、エラー割り込み処理は特に必要ありません。

エラー状態になった場合、CAN モジュールはエラーの状態に応じてオンライン、またはオフラインになり

ますので、アプリケーションは待機しながら、CAN モジュールの復帰を監視します。CAN モジュールの復

帰が確認できたら、アプリケーションを再スタートします。

バスの状態
CAN は、CAN ネットワークのノードで異常が発生した場合、ネットワーク通信を保護するように設計され

ています。送信でエラーフラグが検出された場合、送信エラーカウンタがカウントアップされ、受信フレー

ムでエラーが検出された場合、受信エラーカウンタがカウントアップされます。送信、および受信エラーカ

ウンタはフレームが正常に送信、または受信される度に、それぞれカウントダウンされます。エラーアクティ

ブ状態（通常動作の状態）、およびエラーパッシブ状態のときは、メッセージの送信および受信が行えます。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 38 of 73
Dec.26.25

図 3 CAN バスのエラー状態

(1) エラーアクティブ
ノードがエラーアクティブ状態の場合、バスと通常の通信を行っています。エラーが検出された場合、ア

クティブエラーフラグが送信されます。エラーカウントが 127 を超えたら、エラーパッシブ状態に切り替わ

ります。

(2) エラーパッシブ
送信、または受信エラーカウンタが 127 を超えた場合、そのノードの状態ははエラーパッシブ状態に変わ

ります。この状態でもメッセージの送受信は行えますが、ノードはエラーフレームを送信しません。エラー

フレームはユーザからは見えず、MCU の CAN モジュールによって処理されます。

(3) バスオフ
送信エラーカウンタが 255 を超えた場合、CAN のノードはバスオフ状態になります。これによって、不具

合ノードによってバスで障害が発生するのを防ぎます。深刻な問題によって、CAN ノードがバスオフ状態に

なった場合、バス上に連続した 11 ビットのリセッシブ(recessive)ビットが 128 回検出されるまで、または

CAN モジュールがリセットされるまで、そのノードでメッセージの送信および受信は行えません。アプリ

ケーションによってバスオフからの復帰が検出されたら、CAN モジュールのすべてのレジスタを初期化し

て、アプリケーションを再スタートする必要があります。

(a) CAN のポーリングを使用する
ノードがバスオフ状態のときに通信が行われないように、API を定期的に呼び出して CAN の状態を確認し

ます。以下の説明はメインアプリケーションのループごとに handle_can_bus_state()を 1 回呼び出した場合

です。

エラーアク

ティブ
通常動作

バスオフ
通信なし

バス上に連続した 11 ビットの

リセッシブビットを 128 回検出
TEC > 127
または

REC > 127

TEC < 128
かつ

REC < 128

TEC > 255

エラーパッシ

ブエラーフレー
ム送信なし

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 39 of 73
Dec.26.25

図 4 アプリケーションのバスオフ復帰の対応（バスオフ復帰は MCU で検出）

バス上で連続した 11 ビットのリセッシブビットを 128 回検出した後、ノードは通常のエラーアクティブ

状態に自動復帰します。ノードがバスオフ状態になる時間は、1 ミリ秒以下など、非常に短い時間です。

メインルーチンのサイクルごとに、チェックエラー関数でポーリングを行うか、または CAN エラー割り込

みを使って、ノードの状態を確認します。ノードが、一定期間内で一定回数バスオフ状態になった場合、警

告を送信したり、LED を点灯することもできます。

バスオフになった場合にノードに要求される最低限のアクションを上図に示します。通信の試行を停止し、

チェックエラー関数を使って、CAN モジュールが通常のエラーアクティブ状態に復帰しているかどうかを確

認します。ノードが復帰してから、CAN モジュールとアプリケーションの初期設定を行い、スロットを適切

な状態にします。

Example:
can_api_demo.c で handle_can_bus_state()を参照してください。

(b) CAN エラー割り込みを使用する

CANエラー割り込みを使って、ノードのエラー状態を確認できます。ただし、単純なエラーは CANモジュー

ルで処理されますので、通常は定期的にポーリングすれば十分です。

本 API はエラーISR から呼び出されると、エラー状態を判定し、状態遷移が発生したかどうかをアプリケー

ションに通知します。多くの場合、ここでの処理は、送信、または受信エラーカウンタがインクリメントさ

れるのみです。

単一のエラー発生、エラーパッシブ状態への遷移、バスオフ状態への遷移のそれぞれに対して個別に割り

込みを有効にできます。例えば、CAN エラー割り込みを有効にした場合、エラーが検出される度に割り込み

が生成されます。ただし、CAN でエラー処理を行うため、通常は割り込みを生成する必要はありません。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 40 of 73
Dec.26.25

R_CAN_RxSetFIFO()、R_CAN_RxSetFIFOXid

受信用のメールボックスを設定します。

R_CAN_RxSetFIFO: この API は、指定した CAN 11 ビット ID を持つデータフレームを受信するように、

指定した FIFO メールボックスを設定します。これと同じ ID を持つ受信データフレームは、このメールボッ

クス内に保存されます。

R_CAN_RxSetFIFOXid: ID として 29 ビット ID を使用することを除き、同じ動作を実行します。

Format
uint32_t R_CAN_RxSetFIFO(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 const uint32_t fidcr0_value,
 const uint32_t fidcr1_value,
 const uint32_t fidcr0_frame_type,
 const uint32_t fidcr1_frame_type,
 const uint32_t mkr6_value,
 const uint32_t mkr7_value)
uint32_t R_CAN_RxSetFIFOXid(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 const uint32_t xfidcr0_value,
 const uint32_t xfidcr1_value,
 const uint32_t fidcr0_frame_type,
 const uint32_t fidcr1_frame_type,
 const uint32_t mkr6_value,
 const uint32_t mkr7_value)

Parameters
ch_nr

 使用する CAN チャネル（MCU によって異なる、0～2 の値）。
mb_mode

 通常のメールボックス（0）

 FIFO メールボックス（1）
mbox_nr

 どの CAN メールボックスを使用するか。（28～31）
fidcr0_value
fidcr1_value
xfidcr0_value
xfidcr1_value

 メールボックスが受け取る CAN ID。
fidcr0_frame_type
fidcr1_frame_type

 DATA_FRAME 通常のデータフレームを送信します。
 REMOTE_FRAME リモートデータフレームの要求を送信します。

mkr6_value
mkr7_value

 マスクレジスタ

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 41 of 73
Dec.26.25

Return Values
R_CAN_OK アクションが正常に完了しました。
R_CAN_SW_BAD_MBX メールボックス番号が正しくありません。
R_CAN_BAD_CH_NR チャネル番号が存在していません。
R_CAN_BAD_MODE モード番号が存在していません。
CAN_ERR_NOT_FIFO_MODE 現在のメールボックスモードがFIFOメールボックスモードではありま

せん。

Properties
r_can_rx_if.h にプロトタイプ宣言されています。

Description
この関数は最初に、メールボックスを一時的に割り込み禁止にします。この関数は次に、通常の CAN デー

タフレームを受信するか、リモートフレームの要求を受信するかを設定します。また、FIFO メールボックス

を特定の ID 値に設定します。次に、マスクレジスタの値を設定します。詳細については、R_CAN_RxSetMask
を参照してください。

Example
uint32_t ch_nr = 0;
uint32_t mb_mode = 1;
uint32_t mbox_nr = 0;
const uint32_t FIDCR0_value = 0x05A;
const uint32_t FIDCR1_value = 0x06B;
const uint32_t FIDCR0_frame_type = DATA_FRAME;
const uint32_t FIDCR1_frame_type = DATA_FRAME;
const uint32_t MKR6_value = 0x00;
const uint32_t MKR7_value = 0x00;
api_status = R_CAN_RxSetFIFO(ch_nr, mb_mode, mbox_nr, FIDCR0_value, FIDCR1_value,
FIDCR0_frame_type, FIDCR1_frame_type, MKR6_value, MKR7_value);

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 42 of 73
Dec.26.25

4. 端子設定
CAN FIT モジュールを使用するためには、マルチファンクションピンコントローラ（MPC）で周辺機能の

入出力信号を端子に割り付ける（以下、端子設定と称す）必要があります。端子設定は、R_CAN_Create()
関数を呼び出した後に行ってください。

e2 studio で端子設定を行う場合、スマート・コンフィグレータの端子設定機能を利用できます。端子設定

機能を使用する場合、スマート・コンフィグレータの端子設定ウィンドウで選択したオプションに応じてソー

スファイルが生成されます。その後、ソースファイルで定義された関数を呼び出して端子を設定します。そ

のソースファイルで定義された関数を呼び出すことにより端子を設定できます。詳細は表 4.1 を参照してく

ださい。

表 4.1「スマート・コンフィグレータ」が出力する関数一覧

使用マイコン 出力される関数名 備考
全デバイス共通 R_CAN_PinSet_CANx x:チャネル番号

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 43 of 73
Dec.26.25

5. デモプロジェクト
デモプロジェクトには、FIT モジュールとそのモジュールが依存するモジュール（例：r_bsp）を使用する

main()関数が含まれます。本 FIT モジュールには以下のデモプロジェクトが含まれます。

注記：これらのデモは、CAN FIT module Rev. 5.50 を使用するようにアップグレード済みです

デモ更新の改訂記録:

- Rev 4.00:
Rev. 4.00 での API 関数変更の詳細については、「10.3 Rev. 3.20 から Rev. 4.00 への API 関数の変

更」を参照してください。

- Rev 5.00:
Rev. 5.00 での API 関数変更の詳細については、「10.4 Rev. 4.10 から Rev. 5.00 への API 関数の変

更」を参照してください。
デモプログラム内の大きな変更点：ボーレートプリスケーラの分周比とビットのタイミング値を宣言

し、R_CAN_Create()関数を呼び出す前に p_cfg 引数を通じて CAN チャネルのビットレートを設定

します。

- Rev 5.50:
FIFO コールバックをサポートするためのデモプロジェクトを更新。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 44 of 73
Dec.26.25

5.1 ワークスペースにデモを追加する

デモプロジェクトは、本アプリケーションノートで提供されるファイルの FITDemos サブディレクトリに

あります。ワークスペースにデモプロジェクトを追加するには、「ファイル」→「インポート」を選択し、

「インポート」ダイアログから「一般」の「既存プロジェクトをワークスペースへ」を選択して「次へ」ボタ

ンをクリックします。「インポート」ダイアログで「アーカイブ・ファイルの選択」ラジオボタンを選択し、

「参照」ボタンをクリックして FITDemos サブディレクトリを開き、使用するデモの zip ファイルを選択して

「完了」をクリックします。

CAN アプリケーションデモコードのファイルは、..¥src ディレクトリにある can_api_demo.c、および

switches.c です。

デモを実行するには、以下の説明に従って、圧縮 e2 studio プロジェクト（can_demo_xxxx.zip）を e2 studio
にインポートします。

5.1.1 e2 studioでプロジェクトをインポートしてデバッグする
5.1.1.1 新規にワークスペースを作成する

1. ワークスペースを作成したい場所に空フォルダを作成します。
2. e2 studio を開始し、ワークスペースとして、上記で作成したフォルダを指定します。
3. Workbench アイコン（「ようこそ」ウィンドウの右下）をクリックします。
以下の手順を続けます。

5.1.1.2 既存のワークスペースを使用する

1. 「インポート」を選択します。
2. 「一般」→「既存プロジェクトをワークスペースへ」を選択します。または、アーカイブファイル

かディレクトリから新しいプロジェクトを作成します。
• デモのコードがエクスポートして作成されたアーカイブ ZIP ファイルの場合、そのファイル

を参照します。
• デモのコードがソースコード（.project ファイル）と一緒に e2 studio プロジェクトのディレ

クトリにある場合、プロジェクトのルートディレクトリを参照します。コードをワークス

ペース（.metadata ディレクトリがある場所）に持ちたい場合、「プロジェクトをワークス

ペースにコピーする」を選択してください。
3. [終了]ボタンをクリックします。
4. アーティファクト名を$(ProjName)に変更します。「プロジェクト」→「プロパティ」→

「C/C++ ビルド」→「設定」を選択します。こうすることで、プロジェクト名を変更した場合も、

正しくビルドされます。
これでワークスペースにデモプロジェクトがインポートできました。同じワークスペースに別のプロジェ

クトをインポートすることもできます。

5.1.1.3 コードを実行する
デバッグセッションを作成してダウンロードし、コードを実行します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 45 of 73
Dec.26.25

5.1.2 デモを実行する
同梱の CAN API のデモプロジェクトパッケージには、CAN API を使って 500kbps で送受信を行うプログ

ラムが含まれます。メールボックスのポーリング、または CAN 送信/受信割り込みのいずれを使っても、デ

モを実行できます。 割り込みモードでは、デモは通常または FIFO メールボックスモード (g_mb_mode に

よって決定され、デフォルトは CANBOX_NORMAL) で実行できます。

デモはいくつかの方法で設定できます。

• 2 つのボードをプログラムし、CAN バスでそれらを接続します。デモをプログラムして実行する前に、一

方のボードで、CAN ID 値“TX_CANID_DEMO_INIT”および“RX_CANID_DEMO_INIT”を切り替えます。
• CAN バスモニタ（例:SysTec 製 低コストモニタ 3204000）を使用して、デモでフレームを送受信

します。
• R_CAN_PortSet API の CANPORT_TEST_1_INT_LOOPBACK を使って、内部で通信できます。外部

バスは必要ありません。
CAN 割り込みが有効な場合、リモートフレームのデモも行えます。

5.1.2.1 動作説明
デモはデフォルトの CAN-ID の TX_CANID_DEMO_INIT と RX_CANID_DEMO_INIT を使って、フレーム

を送受信します。テストフレーム NR_STARTUP_TEST_FRAMES をできるだけ高速で連続送信することに

よって、デモが開始されます。このデモの目的は、1) バスリンクを確認、2) メッセージを高速で連続送信

する、の 2 点です。

5.1.2.2 ユーザアクション
SW1 を押下して CAN フレームを 1 つ送信します。TxID をインクリメントさせるには、SW2 を押した状

態で、SW3 を押します。デモのアクションは、can_int_demo()関数、または can_poll_demo()関数内（いず

れの関数かは r_can_rx_config.h の USE_CAN_POLL の設定による）で確認していただくのが一番わかりや

すいです。

5.1.2.3 リモートフレーム
標準 CAN フレームの送受信の他に、デモプログラムは CAN-ID 50h(標準 ID モード)または 50000h(拡張 ID

モードまたはミックス ID モード)でリモートフレームの送信とリモートフレームの受信要求に応答します。

CAN-ID は can_api_demo.h ファイル内の REMOTE_TEST_ID で定義されます。

この機能をデモに追加するには、can_api_demo.h で REMOTE_DEMO_ENABLE を“1”に設定します。

割り込みモードが要求されますので、CAN API の config ファイルで USE_CAN_POLL を"0"に設定します。

リモートフレームの要求は、前述の CAN モニタなど、外部のソースから行う必要があります。リモートフレー

ム要求を CAN-ID 50h(標準 ID モード)または 50000h(拡張 ID モードまたはミックス ID モード)に送信するよ

うに、外部の CAN ソースを設定してください。

5.1.2.4 FIFO メールボックスモード
can_api_demo.c で変数 g_mb_mode が CANBOX_FIFO に設定されている場合、デモは FIFO メールボッ

クスモードでフレームを送受信します。
注：

1. FIFO メールボックスモードのデモは、割り込みモード(USE_CAN_POLL を 0 に設定)でのみ実行し

ます。

2. FIFO メールボックスは、一度にデータフレーム(REMOTE_DEMO_ENABLE = 0)またはリモートフ

レーム(REMOTE_DEMO_ENABLE = 1)のみを受信できます。

3. FIFO メールボックスは、標準 ID モードでのみリモートフレームを受信できます。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 46 of 73
Dec.26.25

5.2 Renesas デバッグコンソール

E1/E20 から e2 studio のデバッグコンソールに対してトレースデータを有効にすると、ユーザアプリケー

ションからリアルタイムでデータを出力することができます。これによって、C 言語の printf()を使って、ト

レースした文字列を送信して、標準出力が可能になります。この場合、標準出力は E1/E20 デバッグレジス

タになります。

これを行うには、../r_config/r_bsp_config.h の BSP_CFG_IO_LIB_ENABLE を“1”に設定します。

デバッグコンソールを有効にするために、マクロが自動的にコードを有効にします。そのためには以下の

手順を行ってください。

1. INIT_IOLIB()が呼び出されていることを、resetprog.c で確認してください。
2. lowlvl.c 内のコードには charput および charget 関数を含む必要があります。これによって、最下レベ

ルの入出力処理に E1/E20 デバッグレジスタが使用されます。
例えば、charput には以下を含む必要があります。
/* 送信バッファが空になるのを待機 */
while(0 != (E1_DBG_PORT.DBGSTAT & TXFL0EN));

3. printf を使用したい場合、ファイルに<stdio.h>を記載してください。
printf()を呼び出すファイルには以下を追加します。
#if BSP_CFG_IO_LIB_ENABLE
 #include <stdio.h>
#endif

4. e2 studio にて、以下のように[Renesas デバッグ仮想コンソールの有効化／無効化]および[コンソール

のピン留め]の両方をクリックして、「デバッグコンソール」ウィンドウを追加します。E1/E20 のプリ

ントバッファを空にし、また、コードの実行がブロックされないようにするには、これらをオンにする

必要があります。

図 5 デバッグコンソールの制御ボタン。

コンソールが応答していないようであれば、e2 studio で [Renesas デバッグ仮想コンソールの有効化／
無効化]を再度押してください。

5. 何もプリントされない場合、[Renesas デバッグ仮想コンソールのクリア]（[Renesas デバッグ仮想コ

ンソールの有効化／無効化]アイコンの左のアイコン）を数回押します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 47 of 73
Dec.26.25

6. テストモード
製品開発時などに有用なテストモードがあります。テストモードには、内部／外部ループバックモードと、

リッスンオンリモードがあります。

6.1 ループバック

ループバックモードで、メールボックスが同じメッセージを受信するように設定すると、ノードが送信し

たメッセージをそのノードで受信します。これはアプリケーションをテストするのに、またアプリケーショ

ンのデバッグ中に自己診断するのに有用です。

6.1.1 内部ループバック:CANバスを介さずにノードをテストする
内部ループバックモード、いわゆるセルフテストモードでは、バスに接続せずに、CAN メールボックスを

介して通信が行えます。ノードは、データフレームの ACK ビットを使って送信したデータを認識します。ま

た、メールボックスに同じ CAN ID が設定されていた場合、送信したデータを受信メールボックスに格納し

ます。このような動作は通常の動作では行われません。

図 6 CAN 内部ループバックモード:CAN バスを介さないノードの機能テスト

内部ループバックはテスト時に有用です。内部ループバックでは、CAN コントローラは、バス上にノード

が 1 つのときに ACK 未受信による CAN エラーを送信せずに動作できるため、送信したフレームを同じノー

ドで受信します。

送信スロット

受信スロット

メッセージ送信

CANバス

ノードは自身のデータを認識でき、CAN
バスを介さずに、他のメールボックスに
送信したデータを受信できる（ノードの
通信は必要なし）

送信および受信スロットに
同じIDを設定

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 48 of 73
Dec.26.25

6.1.2 外部ループバック:テストノード
外部ループバックは、ノードが CAN バスと接続されていて、メッセージがバスに送信されるという点を除

いて、内部ループバックと同じです。内部ループバックと同様に、ノードは送信したメッセージを認識しま

すので、ノードはバス上に 1 つで構いません。ノードを単独でテストできることは、この方法の利点です。

図 7 外部ループバック:CAN バスを介してメッセージを送信し、同じノードでメッセージを受信

これは、バス上の単一ノードでコードをテストするときに有用です。

送信スロット

受信スロット

メッセージ送信

CANバス

ノードは自身のデータを認識でき、
CANバスを介して、他のメールボック
スに送信したデータを受信できる（ノ
ードの通信は必要なし）

送信および受信スロットに
同じIDを設定

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 49 of 73
Dec.26.25

6.2 リッスンオンリ（バスモニタ）

リッスンオンリモード、いわゆるバスモニタモードでは、ノードは ACK やエラーフレームなどを送信しま

せん。この方法では、バストラフィックに影響することなくノードをテストできます。

【注意】
1. リッスンオンリモードのノードからフレームを送信しないでください。これは不正な動作であり、

CAN モジュールでは対応していません。
2. ネットワークにあるノードが 2 つのみで、そのうち 1 つがリッスンオンリモードだった場合、他方

のノードは ACK を受信せずに、送信を繰り返します。
3. リッスンオンリモードへの遷移箇所をコード内で明確にし、再度リッスンオンリモードを無効にする

ことを忘れないようにしてください。

図 8 リッスンオンリモードのノード: ACK もエラーメッセージも送信しない

既存の CAN バスに新規のノードを追加する場合に、リッスンオンリモードは有用です。新たに接続された

ノードを実際に稼働する前に、そのノードがフレームを正しく受信できるかどうかを確認できます。

これは新規ユニットを実稼働する前にバスの通信速度を検出するための一般的な用法です。リッスンオン

リモードは Bosch CAN 仕様ではありませんが、ビットレート検出においては、ISO-11898 に準拠すること

が要求されます。

バスノード

バスノード

ノードはリッス
ンオンリモード

送信ノード

バスノード

バスノード

ノードはリッス
ンオンリモード

送信ノード

ノードがフレーム
を送信

通常のノード: ACKを出力、または
エラーフレームを出力（通信エラー発生時）

リッスンオンリモードのノード:
ACKもエラーフレームも送信しない

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 50 of 73
Dec.26.25

7. タイムスタンプ
タイムスタンプ関数は、受信メッセージがメールボックスに取り込まれたときのタイムスタンプカウンタ

値を取得します。例えば、タイムスタンプを確認することによって、複数の受信メールボックスにメッセー

ジが散在している場合、メッセージの順序を判断できます。タイムスタンプの読み出しは API では行いませ

んので、メールボックスをポーリングして、戻り値が R_CAN_OK（メッセージ待機中）になったときに、

メールボックスからタイムスタンプを読み出してください。

図 9 CAN のタイムスタンプ:各メールボックスのタイムスタンプを使用可

受信ID

受信データ

タイムスタンプ

受信スロット

16ビット フリーランニング

カウンタ

プリスケーラ

（1/2/4/8分周）

標準サイクル:
1ビット時間サイクル

サイクルと初期化は

プログラマブル

ソフトウェアによるリセット

通常の受信動作では自動的にタイム

スタンプが書き込まれる。
タイムスタンプは、グループで受信さ
れたメッセージの順序を判断するのに

使用できる。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 51 of 73
Dec.26.25

8. CAN スリープモード
MCU リセット後の CAN のデフォルトモードは CAN スリープモードです。他の動作モードへは API を使っ

て切り替えます（R_CAN_Control API 参照）。CAN スリープモードに遷移すると、CAN モジュールへのク

ロック供給が即座に停止され、消費電力を低減できます。CAN スリープモードへの遷移時、すべてのレジス

タの状態はそのまま維持されます。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 52 of 73
Dec.26.25

9. CAN FIFO
RX MCU では、CAN FIFO を使用できます。24 個のメールボックスが送信、または受信に設定されます。

FIFO はポーリング、または割り込みと使用できます。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 53 of 73
Dec.26.25

10. 付録

10.1 動作確認環境
このセクションでは、CAN FIT モジュールの動作確認用の環境について説明します。

表 10.1 動作確認環境 (Rev.5.73)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 2025-10
IAR Embedded Workbench for Renesas RX 5.20.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.07.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 14.2.0.202505
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 5.20.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.73
使用ボード Renesas Starter Kit+ for RX65N-2MB (型名: RTK50565N2CxxxxxBE)

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 54 of 73
Dec.26.25

表 10.2 動作確認環境 (Rev.5.72)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.07.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202411
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 5.10.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.72
使用ボード -

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 55 of 73
Dec.26.25

表 10.3 動作確認環境 (Rev.5.71)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.07.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202411
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 5.10.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.71
使用ボード -

表 10.4 動作確認環境 (Rev.5.70)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 2024-01
IAR Embedded Workbench for Renesas RX 5.10.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.06.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202311
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 5.10.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.70
使用ボード Renesas Starter Kit+ for RX671 (型名: RTK55671EDC1xxxxBJ)

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 56 of 73
Dec.26.25

表 10.5 動作確認環境 (Rev.5.60)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.05.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202305
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.60
使用ボード Renesas Starter Kit+ for RX671 (型名: RTK55671EDC1xxxxBJ)

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 57 of 73
Dec.26.25

表 10.6 動作確認環境 (Rev.5.50)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 2023-07
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.05.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202305
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.50

使用ボード

Renesas Starter Kit+ for RX64M (型名: R0K50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (型名: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX72N (型名.: RTK5572Nxxxxxxxxxx).
Renesas Starter Kit+ for RX71M (型名: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (型名: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (型名: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (型名: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (型名: RTK50566T0CxxxxxBE)

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 58 of 73
Dec.26.25

表 10.7 動作確認環境 (Rev.5.40)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.04.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202104
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.40

使用ボード

Renesas Starter Kit+ for RX64M (型名: R0K50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (型名: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX71M (型名: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (型名: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (型名: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (型名: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (型名: RTK50566T0CxxxxxBE)

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 59 of 73
Dec.26.25

表 10.8 動作確認環境 (Rev.5.30)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.04.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202104
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.30

使用ボード

Renesas Starter Kit+ for RX64M (型名: R0K50564MxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (型名: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX71M (型名: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (型名: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (型名: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (型名: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (型名: RTK50566T0CxxxxxBE)

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 60 of 73
Dec.26.25

表 10.9 動作確認環境 (Rev.5.21)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.03.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202004
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.21
使用ボード Renesas Starter Kit+ for RX671 (product 型名：RTK55671xxxxxxxxxx).

表 10.10 動作確認環境 (Rev.5.20)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.03.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202004
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.20
使用ボード Renesas Starter Kit+ for RX671 (product 型名：RTK55671xxxxxxxxxx).

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 61 of 73
Dec.26.25

表 10.11 動作確認環境 (Rev.5.10)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V. 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.03.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202004
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.3
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.10
使用ボード Renesas Starter Kit+ for RX671 (product 型名：RTK55671xxxxxxxxxx).

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 62 of 73
Dec.26.25

表 10.12 動作確認環境 (Rev.5.00)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.21.1.0
IAR Embedded Workbench for Renesas RX 4.20.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.03.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.202004
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.20.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.5.00

使用ボード

Renesas Starter Kit+ for RX64M (product 型名：R0K50564MSxxxBE).
Renesas Starter Kit+ for RX65N-2M (product 型名：RTK50565Nxxxxxxxxx).
Renesas Starter Kit for RX66T (product 型名：RTK50566T0SxxxxxBE).
Renesas Starter Kit+ for RX71M (product 型名：R0K50571MSxxxBE).
Renesas Starter Kit+ for RX72M (product 型名：RTK5572Mxxxxxxxxxx).
Renesas Starter Kit+ for RX72N (product 型名：RTK5572Nxxxxxxxxxx).

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 63 of 73
Dec.26.25

表 10.13 動作確認環境 (Rev.4.10)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.7.8.0
IAR Embedded Workbench for Renesas RX 4.12.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.02.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.201904
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.12.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.4.10

使用ボード

Renesas Starter Kit+ for RX64M (product 型名：R0K50564MSxxxBE).
Renesas Starter Kit+ for RX65N-2M (product 型名：RTK50565Nxxxxxxxxx).
Renesas Starter Kit for RX66T (product 型名：RTK50566T0SxxxxxBE).
Renesas Starter Kit+ for RX71M (product 型名：R0K50571MSxxxBE).
Renesas Starter Kit+ for RX72M (product 型名：RTK5572Mxxxxxxxxxx).
Renesas Starter Kit+ for RX72N (product 型名：RTK5572Nxxxxxxxxxx).

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 64 of 73
Dec.26.25

表 10.14 動作確認環境 (Rev.4.00)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.7.8.0
IAR Embedded Workbench for Renesas RX 4.12.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.02.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 8.3.0.201904
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.12.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.4.00

使用ボード
Renesas Starter Kit+ for RX65N-2M (product 型名：RTK50565Nxxxxxxxxx).
Renesas Starter Kit+ for RX72M (product 型名： RTK5572Mxxxxxxxxxx).

表 10.15 動作確認環境 (Rev.3.20)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.01.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 4.8.4.201902
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.12.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.3.20
使用ボード Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx).

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 65 of 73
Dec.26.25

表 10.16 動作確認環境 (Rev.3.11)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.01.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 4.8.4.201902
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.12.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.3.11
使用ボード Renesas Starter Kit+ for RX72M（型名：RTK5572Mxxxxxxxxxx）

表 10.17 動作確認環境 (Rev.3.10)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.01.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 4.8.4.201902
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.12.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.3.10
使用ボード Renesas Starter Kit+ for RX72M（型名：RTK5572Mxxxxxxxxxx）

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 66 of 73
Dec.26.25

表 10.18 動作確認環境 (Rev.3.00)

項目 内容

統合開発環境（IDE） ルネサスエレクトロニクス製 e2 studio V.7.3.0
IAR Embedded Workbench for Renesas RX 4.10.1

C コンパイラ

ルネサスエレクトロニクス製 C/C++ Compiler Package for RX Family
V3.01.00
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-lang = c99

GCC for Renesas RX 4.8.4.201803
コンパイルオプション：統合開発環境のデフォルト設定に以下のオプションを

追加
-std=gnu99
リンクオプション：「Optimize size (サイズ最適化) (-Os)」を使用する場合、

統合開発環境のデフォルト設定に以下のオプションを追加
-Wl,--no-gc-sections
これは、FIT 周辺機器モジュール内で宣言されている割り込み関数をリンカが

誤って破棄（discard）することを回避（work around）するための対策です。

IAR C/C++ Compiler for Renesas RX version 4.10.1
コンパイルオプション：統合開発環境のデフォルト設定

エンディアン ビッグエンディアン／リトルエンディアン
モジュールのリビジョン Rev.3.00
使用ボード Renesas Starter Kit+ for RX65N-2M（型名：RTK50565Nxxxxxxxxx）

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 67 of 73
Dec.26.25

10.2 トラブルシューティング
(1) Q：本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「Could not open source file

"platform.h"」エラーが発生します。

A： FIT モジュールがプロジェクトに正しく追加されていない可能性があります。プロジェクトへの追

加方法をご確認ください。

• CS+を使用している場合

アプリケーションノート RX ファミリ CS+に組み込む方法 Firmware Integration Technology
(R01AN1826)」

• e2 studio を使用している場合
アプリケーションノート RX ファミリ e2 studio に組み込む方法 Firmware Integration
Technology (R01AN1723)」

また、本 FIT モジュールを使用する場合、ボードサポートパッケージ FIT モジュール(BSP モジュー

ル)もプロジェクトに追加する必要があります。BSP モジュールの追加方法は、アプリケーション

ノート「ボードサポートパッケージモジュール(R01AN1685)」を参照してください。

(2) Q：本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「This MCU is not supported
by the current r_can_rx module.」エラーが発生します。

A： 追加した FIT モジュールがユーザプロジェクトのターゲットデバイスに対応していない可能性が

あります。追加した FIT モジュールの対象デバイスを確認してください。

(3) Q：本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「コンフィグ設定が間違っ

ている場合のエラーメッセージ」エラーが発生します。

A： “r_can_rx_config.h”ファイルの設定値が間違っている可能性があります。“r_can_rx_config.h”ファ

イルを確認して正しい値を設定してください。詳細は「2.9 コンパイル時の設定」を参照してくだ

さい。

10.3 Rev. 3.20 から Rev. 4.00 への API 関数の変更
(1) R_CAN_TxSet(); R_CAN_Create()、R_CAN_TxSetXid()、R_CAN_Tx()、R_CAN_TxStopMsg()、

R_CAN_RxRead()：複数の新しい入力引数（mb_mode、txf_cb_func、rxf_cb_func）を追加しました。詳細

については、「3. API 関数」を参照してください。

(2) R_CAN_RxSetMask()：CAN の動作を OPERATE_CANMODE に遷移するコマンドを削除しました。

R_CAN_TxSet()または R_CAN_TxSetXid()を呼び出す前に、R_CAN_Control(ch_nr, OPERATE_CANMODE)
を呼び出す必要があります。

(3) R_CAN_Control()：action_type が EXITSLEEP_CANMODE の場合、CAN は OPERATE_CANMODE に

遷移せず、代わりに RESET_CANMODE に遷移します。

(4) R_CAN_PortSet()：有効と無効それぞれの状況で端子を設定するソースコードを削除しました。現在は、

"/smc_gen/r_pincfg/r_can_rx_pinset.c"内で R_CAN_PinSet_CANn()(n=0,1,2)を使用して端子/ポートを設定

します。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 68 of 73
Dec.26.25

10.4 Rev. 4.10 から Rev. 5.00 への API 関数の変更
(1) R_CAN_Create()、R_CAN_SetBitrate()：新しい入力引数（p_cfg）を追加しました。

これ以降の場所で、ユーザプログラム内でビットレートを設定するために、ボーレートプリスケーラの分

周比とビットのタイミング値を定義します。

詳細については、「3. API 関数」を参照してください。

10.5 Rev. 5.00 から Rev. 5.10 への API 関数の変更
(1) R_CAN_RxSet()：入力引数名を sid から id に変更

10.6 Rev. 5.50 から Rev. 5.60 への API 関数の変更
(1) R_CAN_RxSetFIFO(); R_CAN_RxSetFIFOXid(): FIFO メールボックスモードでのデータフレームとリ

モートフレームの両方の受信をサポートするために、引数 Frame_type を削除し、2 つの新しい引数
fidcr0_frame_type と fidcr1_frame_type を追加しました。
詳細については、「3. API 関数」を参照してください。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 69 of 73
Dec.26.25

テクニカルアップデートの対応について
本モジュールは以下のテクニカルアップデートの内容を反映しています。

TN-RX*-A151A/E

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 70 of 73
Dec.26.25

改訂記録

Rev. 発行日
改訂内容

ページ ポイント
2.11 May.23.17 — 初版発行
 ﾌﾟﾛｸﾞﾗﾑ RX64M および RX71M ユーザーズマニュアル ハードウェア 43.2.8 章の注

記（SENTDATA ビットと TRMREQ ビットは同時に“0”に設定できない）に関

連して、r_can_rx.c で R_CAN_TxCheck()および R_CAN_TxStopMsg()関数を

変更。
 MIXED_ID_MODE を使用する場合のみ、要求されたフレームタイプに応じて

IDE ビットを設定するように変更。
 R_CAN_RxRead()関数内で MIXED_ID_MODE モードを変更。
 R_CAN_Control()関数内のケースで、EXITSLEEP_CANMODE、

ENTERSLEEP_CANMODE、OPERATE_CANMODE の処理を変更。
 ユーザが開発およびテスト時に、バスの問題を診断できるように、

can_api_demo.c にユーザレベルの CAN エラー診断を追加。このコードはマ

クロで、ERROR_DIAG を“1”に設定することで有効になります。
 USE_LCD コードをすべて削除。代わってデバッグコンソール（printf）を使

用。デモにこれに対応したトレースコードを追加。
 レガシー目的の API 以外の関数名を変更。
 関数“handle_can_bus_state()” のコードを整理。
2.13 Jul.17.18 1 対象デバイスに RX66T を追加。
 9 R_CAN_Create()の説明を変更。R_CAN_RxSetMask ()および

R_CAN_PortSet ()呼び出しへの参照を削除。
 24 R_CAN_RxSetMask()のコメントセクションのテキストを修正。

CAN_ERS_ISR()でチャネル 1と 2の ICU.GRPBE0.BITを変更（すべてをチャ

ネル 0 に設定）。
 28 図 4 のテキストを「TEC または REC > 127」から「TEC < 128 かつ REC <128」

へ変更。
 31 7.2 リモートフレーム用に USE_CAN_POLL の値を"0"に修正。
2.14 Nov.16.18 全体 ドキュメントの全体的な構成や表現を見直し
2.15 Jan.10.19 1 対象デバイスに RX72T を追加。
3.00 May.20.19 — 以下のコンパイラをサポート。

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

 7 「2.3 ソフトウェアの要求」r_bsp v5.20 以上が必要
 12 「2.9 コードサイズ」セクションを更新。
 46 表 9.1「動作確認環境 (Rev. 3.00)」：更新。
 47 「9.2 トラブルシューティング」のセクションを追加。
 48 「Web サイトおよびサポート」のセクションを削除。
 プログラム GCC と IAR コンパイラに関して、以下を変更。

1. 「evenaccess」を、BSP のマクロ定義で置き換えた。
2. NOP を BSP の固有関数で置き換えた。
3. 割り込み関数の宣言を、BSP のマクロ定義で置き換えた。

 RTOS を使用している場合や、複数の割り込みを有効にしている場合に発生

する、複数の周辺装置機能の間でのレジスタアクセスの競合（register access
contention）を防止するために、処理に変更を加えた。

1. IEN (Interrupt Request Enable、割り込み要求の有効化) ビットのセット処

理（setting process）を変更。
「Description」
BSP の API 関数内で R_BSP_InterruptRequestDisable と
R_BSP_InterruptRequestEnable を使用するように、IEN (割り込み要求の有

効化) ビットのセットプロセス（setting process）を変更。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 71 of 73
Dec.26.25

Rev. 発行日
改訂内容

ページ ポイント

2. GENBL1 (Group Interrupt Request Enable Register、グループの割り込み

要求の有効化レジスタ) ビットのセット処理を変更 (RX64M、RX65N、

RX66T、RX71M、および RX72T)。
「Description」
割り込みが無効になっている間に、GENBL1 (グループの割り込み要求の有効

化レジスタ) ビットのセット処理を実行するように変更。
3.10 Aug.15.19 1

12
46

プログラム

RX72M のサポートを追加。
RX72M に対応するコードサイズを追加。

「9.1 動作確認環境」：
Rev.3.10 に対応する表を追加。
RX72M のサポートを追加

3.11 Sep.16.19 7
46

プログラム

割り込みベクタ章の追加。
「9.1 動作確認環境」：
Rev.3.11 に対応する表を追加。
割り込み要因にベクタ番号が設定されていなかった問題の修正。

3.20 Dec.30.19 1
13
47

プログラム

RX66N、RX72N のサポートを追加。
RX66N、RX72N に対応するコードサイズを追加。

「9.1 動作確認環境」：
Rev.3.20 に対応する表を追加。
RX66N、RX72N のサポートを追加。

4.00 Jun.30.20 8, 13-16,
23-25, 27,
30, 31, 38,

39, 47
9, 10

11
40
48

プログラム

CAN FIFO のサポートを追加。

「2.9.3 CAN チャネルの有効化と端子のマッピング」：
r_can_rx_config.h から TX、RX 端子設定マクロを削除。
CAN FIFO に対応するコードサイズを更新。

「4. 端子設定」を追加。
「10.1 動作確認環境」：
Rev.4.00 に対応する表を追加。
CAN FIFO のサポートを追加。
端子設定のサポートを追加。RX、TX の端子設定はスマート・コンフィ

グレータによって行えます。
RX651 をサポートしていなかった MDF ファイルを修正。
R_CAN_Control() を修正。EXITSLEEP_CANMODE の場合。
R_CAN_RxSetMask()を修正。
MDF ファイルに STB/EN ポート/ピンの警告テキストを追加。
r_can_rx_config.h 内の STB/EN ポート/ピンのマクロ値の括弧を削

除。
デモプロジェクトの更新と新規デモプロジェクトの追加。

4.10 Jan.04.2021 13, 41
48

53

プログラム

API の変更に関する注記を追加。
「10.1 動作確認環境」：
Rev.4.10 に対応する表を追加。

「Rev. 3.20 から Rev. 4.00 への API 関数の変更」セクションを追加。
R_CAN_Create()内の txf_cb_func が NULL の場合、can_tx_callback
を can_txf_callback に変更。

CAN FIT module Rev. 4.00 を使用するようにデモをアップグレード。

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 72 of 73
Dec.26.25

Rev. 発行日
改訂内容

ページ ポイント
5.00 Apr.01.2021 10

12

15, 16, 17
22, 23, 24

43

51

58

プログラム

セクション 2.9.4 「Bitrate Settings」（ビットレートの設定）を削除。
チャネルごとに異なるビットレートを設定するためのサポート機能

に対応するコードサイズを更新。
セクション 2.12 で、「for」、「while」、「do while」の各ステート

メントを追加。
引数 p_cfg を追加し、次のものに対応する例を更新。
R_CAN_Create()と R_CAN_SetBitrate()。
5.デモプロジェクト：
CAN FIT モジュール Rev. 5.00 に対応する変更に関する注記を更新。

「10.1 動作確認環境」：
Rev.5.00 に対応する表を追加。

「Rev. 4.10 から Rev. 5.00 への API 関数の変更」セクションを追加。
チャネルごとに異なるビットレートを設定するためのサポートを追

加。
ビットレートを設定するためのデフォルトのマクロを削除。
CAN FIT module Rev. 5.00 を使用するようにデモをアップグレード。

5.10 Apr.07.2021 1
5

11
30
51

59

プログラム

RX671 のサポートを追加。
「1.3 CAN FIT モジュールを使用する」のセクションを追加。
「1.3.1CAN FIT モジュールを C++プロジェクト内で使用する」のセ

クションを追加。
RX671 に対応するコードサイズを追加。
R_CAN_Rxset()で sid を id に変更した。

「10.1 動作確認環境」：
Rev.5.10 に対応する表を追加。

「Rev. 5.00 から Rev. 5.10 への API 関数の変更」セクションを追加。
RX671 のサポートを追加。
R_CAN_Rxset()で sid を id に変更した。

5.20 Sep.13.2021 51

プログラム

「10.1 動作確認環境」：

Rev.5.20 に対応する表を追加。

デモプロジェクトの更新と追加。

デモプロジェクトに CS+ のサポートを追加。
5.21 Feb.21.2022 7

43

51

60

プログラム

｢2.4 制限事項｣

古い制限事項を削除。

｢5. デモプロジェクト｣

関連する章へのリンクを修正。

10.1 動作確認環境」：

Rev.5.21 に対応する表を追加。

｢10.4 Rev. 4.10から Rev. 5.00 への API関数の変更｣

関連する章へのリンクを修正。

マイナーバージョンを更新。
5.30 Jun.28.2022 51

プログラム

10.1 動作確認環境」：

Rev.5.30 に対応する表を追加。

デモプロジェクトを更新

5.40 Sep.20.2022 51

59

10.1 動作確認環境」：

Rev.5.40 に対応する表を追加。

10.3 Rev. 3.20 から Rev. 4.00への API関数の変更

セクション(2)：R_CAN_TxSetXid()を追加

RX ファミリ CAN API Firmware Integration Technology

R01AN2472JU0573 Rev.5.73 Page 73 of 73
Dec.26.25

Rev. 発行日
改訂内容

ページ ポイント
プログラム デモプロジェクトを更新

5.50 Sep.08.2023 11, 42

43, 45

51

プログラム

「2.11 FIT モジュールの追加方法」、「4 端子設定」から FIT
Configurator の説明を削除した。
5.デモプロジェクト
デモプロジェクトの変更の注記を追加
デモプロジェクトの概要を追加
FIFO コールバックサポートを追加
10.1 動作確認環境」：
Rev.5.50 に対応する表を追加。
デモプロジェクトの更新と追加。
FIFO コールバックをサポートするためのデモプロジェクトを更新
WAIT_LOOP コメントを追加。

5.60 Dec.21.2023 11 CAN v5.60 に対応するコードサイズを更新しました。
 14, 25 CAN_ERR_BOX_FULL の説明を修正。
 27-32, 34,

40
mbox_nr の説明を修正。

 40 引数 Frame_type を削除し、R_CAN_RxSetFIFO と

R_CAN_RxSetFIFOXid に 2 つの新しい引数 fidcr0_frame_type と

fidcr1_frame_type を追加して、FIFO メールボックスモードでのデー

タフレームとリモートフレームの両方の受信をサポートしました。
 41 R_CAN_RxSetFIFO と R_CAN_RxSetFIFOXid の例を更新しました。
 53 10.1 動作確認環境」：

Rev.5.60 に対応する表を追加。
 65 「Rev. 5.50 から Rev. 5.60 への API 関数の変更」セクションを追加。

RX671 のサポートを追加。
 プログラム FIFO メールボックスモードでのデータフレームとリモートフレーム

の両方の受信サポートを追加。
FIFOメールボックスモードでの拡張 IDのリモートフレームを受信で

きない問題を修正。
5.70 Nov.01.2024 8

53

プログラム

多重割り込みをサポートするために新しいマクロ

CAN_CFG_EN_NESTED_INT を追加。
10.1 動作確認環境」：
Rev.5.70 に対応する表を追加。
多重割り込みのサポートを追加。

5.71 Mar.15.2025 53

プログラム

10.1 動作確認環境」：
Rev.5.71 に対応する表を追加。
FITモジュールの免責事項と著作権を更新。

5.72 Oct.30.2025 53 10.1 動作確認環境」：
Rev.5.72 に対応する表を追加。

 プログラム FITDemos フォルダから doc フォルダを削除し、.rcpc ファイルを更

新。
5.73 Dec.26.2025 11 CAN v5.73 に対応するコードサイズを更新しました。
 27 R_CAN_Tx の Return values を変更。
 53 10.1 動作確認環境」：

Rev.5.73 に対応する表を追加。
 プログラム XML ファイル内の <package> 要素のフォーマットを更新。

R_CAN_Tx() において、送信 FIFO がフルでないことを確認する条件

を追加。
R_CAN_RxRead() のソースコードを更新し、「mbox_nr」の代わり

にメールボックス 28 を指定するように更新。

製品ご使用上の注意事項
ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテク

ニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保

存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアース

を施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱い

をしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSI の内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リ

セット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセッ

ト機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入によ

り、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記

載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっ

ています。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識

されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後

に切り替えてください。リセット時、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが十分安定した

後、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り替え先

のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、VIL（Max.）から

VIH（Min.）までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL（Max.）から VIH（Min.）

までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス（予約領域）のアクセス禁止

リザーブアドレス（予約領域）のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス（予約領域）

があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュ

メモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合がありま

す。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

© 2025 Renesas Electronics Corporation. All rights reserved.

ご注意書き
1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよ

びこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害（お

客様または第三者いずれに生じた損害も含みます。以下同じです。）に関し、当社は、一切その責任を負いません。
2. 当社製品または本資料に記載された製品デ－タ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、

著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではあり

ません。
3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要とな

る場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、

複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図し

ております。
 標準水準： コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等
 高品質水準： 輸送機器（自動車、電車、船舶等）、交通制御（信号）、大規模通信機器、金融端末基幹システム、各種安全制御装置等
当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある

機器・システム（生命維持装置、人体に埋め込み使用するもの等）、もしくは多大な物的損害を発生させるおそれのある機器・システム（宇宙機器と、

海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等）に使用されることを意図しておらず、これらの用途に

使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負い

ません。
7. あらゆる半導体製品は、外部攻撃からの安全性を 100％保証されているわけではありません。当社ハードウェア／ソフトウェア製品にはセキュリティ

対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害（当社製品または当社製品が使用されているシス

テムに対する不正アクセス・不正使用を含みますが、これに限りません。）から生じる責任を負うものではありません。当社は、当社製品または当社

製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為（「脆弱

性問題」といいます。）によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切

責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア／ソフトウェア製品について、商品性および特定目

的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
8. 当社製品をご使用の際は、最新の製品情報（データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体

デバイスの使用上の一般的な注意事項」等）をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲

内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責

任を負いません。
9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場

合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っ

ておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責

任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってく

ださい。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を

規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことによ

り生じた損害に関して、当社は、一切その責任を負いません。
11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品およ

び技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それら

の定めるところに従い必要な手続きを行ってください。
12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に

支配する会社をいいます。
注 2. 本資料において使用されている「当社製品」とは、注１において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地 お問合せ窓口
〒135-0061 東京都江東区豊洲 3-2-24（豊洲フォレシア）

www.renesas.com

 弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口

に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の

商標です。すべての商標および登録商標は、それぞれの所有者に帰属し

ます。

https://www.renesas.com/
http://www.renesas.com/contact/

	1. 概要
	1.1 基本情報
	1.2 通信層
	1.3 CAN FITモジュールを使用する
	1.3.1 CAN FITモジュールをC++プロジェクト内で使用する

	1.4 接続
	1.5 メールボックス
	1.6 拡張CAN

	2. API情報
	2.1 ハードウェアの要求
	2.2 ハードウェアリソースの要求
	2.2.1 周辺機能
	2.2.2 その他の周辺機能

	2.3 ソフトウェアの要求
	2.4 制限事項
	2.4.1 RAMの配置に関する制限事項

	2.5 サポートされているツールチェーン
	2.6 使用する割り込みベクタ
	2.7 ヘッダファイル
	2.8 整数型
	2.9 コンパイル時の設定
	2.9.1 割り込みモードとポーリングモードの対比、およびCANの割り込みレベルと生成のタイミング
	2.9.2 標準IDと拡張ID
	2.9.3 チャネルの有効化と端子のマッピング
	2.9.4 レジスタの最大ポーリング時間

	2.10 コードサイズ
	2.11 FITモジュールの追加方法
	2.12 for文、while文、do while文について

	3. API関数
	関数一覧
	戻り値
	R_CAN_Create
	R_CAN_PortSet
	R_CAN_Control
	R_CAN_SetBitrate
	R_CAN_TxSet、R_CAN_TxSetXid
	R_CAN_Tx
	R_CAN_TxCheck
	R_CAN_TxStopMsg
	R_CAN_RxSet、R_CAN_RxSetXid
	R_CAN_RxPoll
	R_CAN_RxRead
	R_CAN_RxSetMask
	R_CAN_CheckErr
	(1) エラーアクティブ
	(2) エラーパッシブ
	(3) バスオフ

	R_CAN_RxSetFIFO()、R_CAN_RxSetFIFOXid

	4. 端子設定
	5. デモプロジェクト
	5.1 ワークスペースにデモを追加する
	5.1.1 e2 studioでプロジェクトをインポートしてデバッグする
	5.1.2 デモを実行する

	5.2 Renesasデバッグコンソール

	6. テストモード
	6.1 ループバック
	6.1.1 内部ループバック:CANバスを介さずにノードをテストする
	6.1.2 外部ループバック:テストノード

	6.2 リッスンオンリ（バスモニタ）

	7. タイムスタンプ
	8. CANスリープモード
	9. CAN FIFO
	10. 付録
	10.1 動作確認環境
	10.2 トラブルシューティング
	10.3 Rev. 3.20からRev. 4.00へのAPI関数の変更
	10.4 Rev. 4.10からRev. 5.00へのAPI関数の変更
	10.5 Rev. 5.00からRev. 5.10へのAPI関数の変更
	10.6 Rev. 5.50からRev. 5.60へのAPI関数の変更

	テクニカルアップデートの対応について
	改訂記録
	製品ご使用上の注意事項
	ご注意書き

