

RL78/G16

タイマ・アレイ・ユニット (インターバル・タイマ)

要旨

本アプリケーションノートでは、タイマ・アレイ・ユニット (TAU) によるインターバル・タイマ機能の 使用方法を説明します。タイマ割り込み発生ごとに、LED 表示の反転を行います。また、スイッチを押した回数によってタイマ割り込みの発生周期を変更します。

動作確認デバイス

RL78/G16

本アプリケーションノートを他のマイコンへ適用する場合、そのマイコンの仕様にあわせて変更し、十分評価してください。

目次

1.	仕様	3
1.1	仕様概要	3
1.2	2 動作概要	5
2.	動作確認条件	6
3.	ハードウェア説明	7
3.1	ハードウェア構成例	7
3.2	2 使用端子一覧	7
4.	ソフトウェア説明	8
4.1	オプション・バイトの設定一覧	8
4.2	2 定数一覧	8
4.3	3	8
4.4	! 関数一覧	9
4.5	5 関数仕様	9
4.6	5 フローチャート	10
4.6.	5.1 メイン処理	10
4.6.	5.2 TAUO チャネル O のタイマ割り込み処理	11
4.6.	5.3 外部割り込み処理	12
4.6.	6.4 LED 点灯 / 消灯処理	14
5.	サンプルコード	15
6.	参考ドキュメント	15
改言	訂記録	16

1. 仕様

1.1 仕様概要

本アプリケーションノートでは、インターバル・タイマのタイマ割り込み (INTTM00) 、端子入力エッジ 検出による外部割り込み (INTP0) の使用例を示しています。

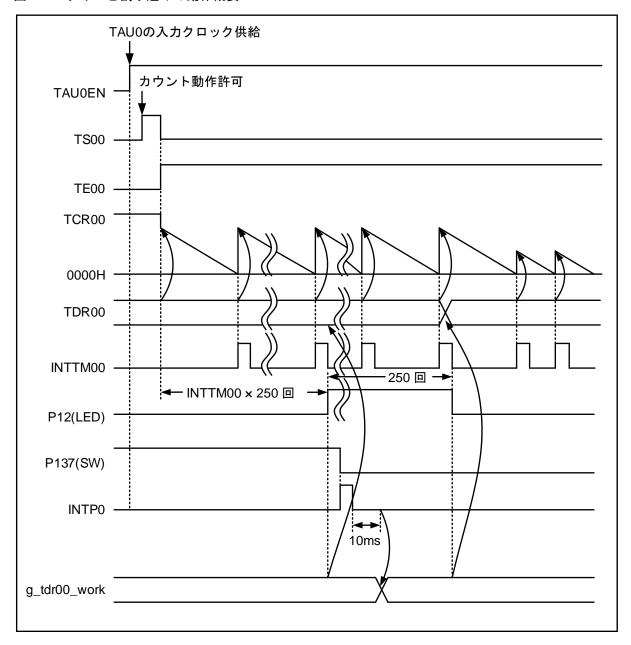

タイマ割り込み (INTTM00) 発生ごとに LED 表示の反転を行います。また、スイッチ (SW) を押した回数によってタイマ割り込み (INTTM00) の発生周期を変更します。

表 1-1 に使用する周辺機能と用途を示し、図 1-1 にタイマと割り込みの動作概要を示します。

表 1-1 使用する周辺機能と用途

周辺機能	用途	
タイマ・アレイ・ユニット 0 (TAU0)	16 ビット・インターバル・タイマの割り込み (INTTM00)	
チャネル 0	LED 表示の反転用インターバル時間制御	
P12	LED 表示用出力ポート	
外部割り込み	スイッチ入力による端子入力エッジ検出の割り込み (INTP0)	
	タイマ割込み (INTTM00) の発生間隔変更制御	

図 1-1 タイマと割り込みの動作概要

1.2 動作概要

本アプリケーションノートでは、TAUOのインターバル・タイマ機能の設定を行います。

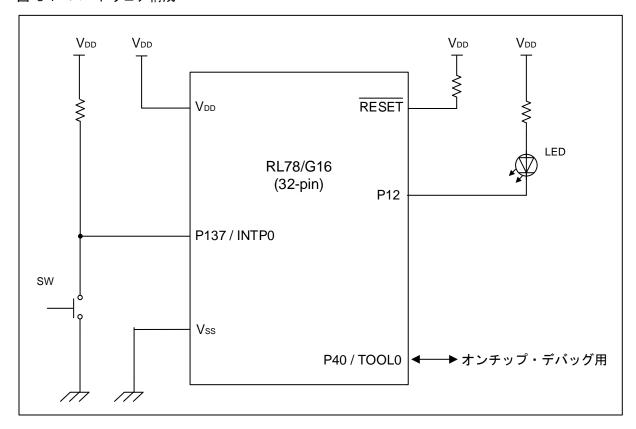
設定完了後は、インターバル・タイマのタイマ割り込み (INTTM00) の発生回数をカウントし、カウント 回数が 250 回になるごとに LED 表示の反転を行います。また、スイッチを押した回数によってタイマのタイマ・データ・レジスタ値を変え、タイマ割り込み (INTTM00) の発生周期を変更し、LED 点灯/消灯周期が $500\text{ms} \rightarrow 250\text{ms} \rightarrow 125\text{ms} \rightarrow 62.5\text{ms} \rightarrow 500\text{ms} \rightarrow \dots$ と変化します。

- (1) TAU の初期設定を行います。
 - タイマ動作モードはインターバル・タイマ・モードを使用します。
 - タイマ・データ・レジスタ 00 (TDR00) は初期値 7CFFH (2ms) に設定します。
 - タイマ出力許可レジスタは動作禁止に設定します。
 - タイマ・チャネル 0 のタイマ割り込み (INTTM00) を使用します。
- (2) 出力ポートの初期設定を行います。
 - P12: 出力ポートに設定します。
- (3) 外部割り込みの初期設定を行います。
 - INTPO 端子の有効エッジを立ち下がりエッジに設定します。
 - INTPO 割り込み (INTPO) を使用します。
- (4) HALT 命令を実行し、タイマ割り込み (INTTMOO) を待ちます。
- (5) タイマ割り込み (INTTM00) で HALT モードが解除されると、INTTM00 割り込みの発生回数をカウントします。
- (6) タイマ割込み (INTTM00) のカウント回数が 250 回のとき、LED 表示の反転を行います。また、タイマ・データ・レジスタ用 RAM (g_tdr00_work) の値をタイマ・データ・レジスタ (TDR00) に設定します。
- (7) 外部割り込み (INTP0) 処理でスイッチ入力回数 (INTP0 割り込み発生回数) と g_tdr00_work の値を 書き替えます。

2. 動作確認条件

本アプリケーションノートのサンプルコードは、下記の条件で動作を確認しています。

表 2-1 動作確認条件


内容
RL78/G16 (R5F121BCAFP)
RL78/G16 Fast Prototyping Board (RTK5RLG160C00000BJ)
高速オンチップ・オシレータ・クロック: 16MHz
CPU/周辺ハードウエア・クロック: 16MHz
5.0V (2.4V~5.5V で動作可能)
SPOR 検出電圧
立ち上がり時 TYP. 2.57 V (2.44 V ~ 2.68 V)
立ち下がり時 TYP. 2.52 V (2.40 V ~ 2.62 V)
ルネサス エレクトロニクス製
CS+ V8.10.00
ルネサス エレクトロニクス製
CC-RL V1.12.01
ルネサス エレクトロニクス製
e2 studio V2023-07 (23.7.0)
ルネサス エレクトロニクス製
CC-RL V1.12.01
IAR Systems 製
IAR Embedded Workbench for Renesas RL78 V5.10.1
IAR Systems 製
IAR C/C++ Compiler for Renesas RL78 V5.10.1
ルネサス エレクトロニクス製
V1.7.0
ルネサス エレクトロニクス製
V1.60

3. ハードウェア説明

3.1 ハードウェア構成例

図 3-1に本アプリケーションノートで使用するハードウェア構成例を示します。

図 3-1 ハードウェア構成

- 注意 1. この回路イメージは接続の概要を示す為に簡略化しています。実際に回路を作成される場合は、端子処理などを適切に行い、電気的特性を満たすように設計してください (入力専用ポートは個別に抵抗を介して VDD 又は Vss に接続して下さい)。
- 注意 2. VDD は SPOR にて設定したリセット解除電圧(VSPOR)以上にしてください。

3.2 使用端子一覧

表 3-1 に使用端子と機能を示します。

表 3-1 使用端子と機能

端子名	入出力	内容
P12	出力	LED 表示用出力ポート
P137 / INTP0	入力	スイッチ (SW) 用入力端子 (外部割り込み要求入力端子)

注意 本アプリケーションノートは、使用端子のみを端子処理しています。実際に回路を作成される場合 は、端子処理などを適切に行い、電気的特性を満たすように設計してください。

4. ソフトウェア説明

4.1 オプション・バイトの設定一覧

表 4-1にオプション・バイト設定を示します。必要に応じて、お客様のシステムに最適な値を設定してください。

表 4-1 オプション・バイト設定

アドレス	設定値	内容
000C0H	11101111B	ウォッチドッグ・タイマ動作停止
		(リセット解除後、カウント停止)
000C1H	11111011B	SPOR 検出電圧
		立ち上がり時 TYP.2.57 V (2.44 V ~ 2.68 V)
		立ち下がり時 TYP.2.52 V (2.40 V ~ 2.62 V)
000C2H	11111001B	高速オンチップ・オシレータ・クロック:16MHz
000C3H	10000101B	オンチップ・デバッグ許可

4.2 定数一覧

表 4-2にサンプルコードで使用する定数を示します。

表 4-2 サンプルコードで使用する定数

定数名	設定値	内容
g_tdr00_data[]	(32000-1)	スイッチ押下回数ごとの TDR00 への設定値
	(16000-1)	
	(8000-1)	
	(4000-1)	
g_10ms_count[]	(5+1)	スイッチ押下回数ごとの 10ms カウント値
	(10+1)	
	(20+1)	
	(40+1)	

4.3 変数一覧

表 4-3にグローバル変数を示します。

表 4-3 グローバル変数

型	変数名	内容	使用関数
saddr uint8_t	g_sw_counter	スイッチ押下回数	main
			r_Config_INTC_intp0_interrupt
saddr uint16_t	g_tdr00_work	タイマ割り込み発生 250 回	main
		ごとの TDR00 への設定値	r_invert_led
			r_Config_INTC_intp0_interrupt
saddr uint8_t	g_inttm00_counter	タイマ割り込み発生回数	main
			r_invert_led

4.4 関数一覧

表 4-4に関数を示します。

表 4-4 関数

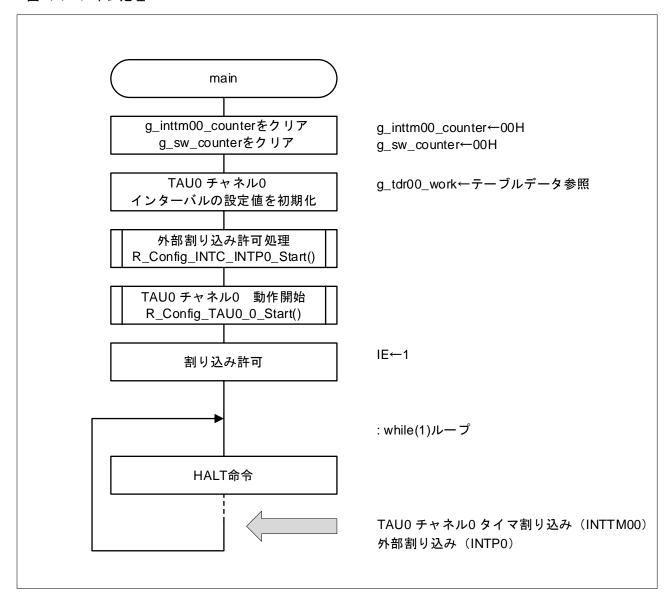
関数名	概要
r_Config_TAU0_0_interrupt()	TAUO チャネル O のタイマ割り込み処理
r_Config_INTC_intp0_interrupt()	外部割り込み処理
r_invert_led()	INTTM00 回数をカウントして 250 回ごとに LED 表示の反転処理

4.5 関数仕様

サンプルコードの関数仕様を示します。

[関数名] r_Config_TAU0_0_interrupt()			
概要	TAUO チャネルOのタイマ割り込み処理		
ヘッダ	r_cg_macrodriver.h、r_cg_userdefine.h、Config_TAU0_0.h		
宣言	static voidnear r_Config_TAU0_0_interrupt(void)		
説明	LED 表示を反転させる関数をコールします。		
引数	なし		
リターン値	なし		

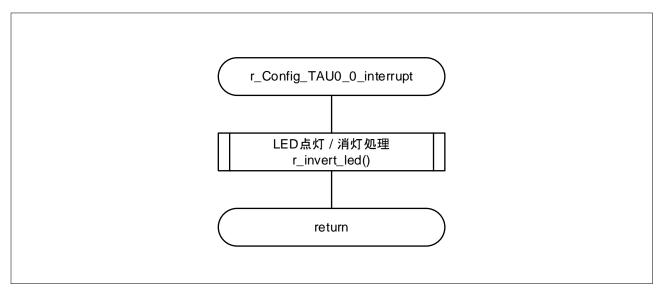
[関数名] r_Config_INTC_intp0_interrupt()			
概要	外部割込み処理		
ヘッダ	r_cg_macrodriver.h、r_cg_userdefine.h、Config_INTC.h		
宣 言	static voidnear r_Config_INTC_intp0_interrupt(void)		
	SW 押下による外部割り込み (INTP0) の処理です。		
説明	本関数にて 10ms 以上ウエイトし、P13.7 (SW 入力端子) の状態を確認します。		
	SW 押下状態であれば、g_tdr00_work の値を変更します。		
引数	なし		
リターン値	なし		


[関数名] r_invert_le	ed()
概要	LED表示の反転処理
ヘッダ	r_cg_macrodriver.h、r_cg_userdefine.h
宣言	void r_invert_led(void)
	タイマ割り込み (INTTM00) を 250 回カウントし、LED 表示の反転を行います
説明	(ポート・ラッチ反転) 。
	また、g_tdr00_work で指定した値に TDR00 設定値を変更します。
引数	なし
リターン値	なし

4.6 フローチャート

4.6.1 メイン処理

図 4-1にメイン処理のフローチャートを示します。


図 4-1 メイン処理

4.6.2 TAU0 チャネル 0 のタイマ割り込み処理

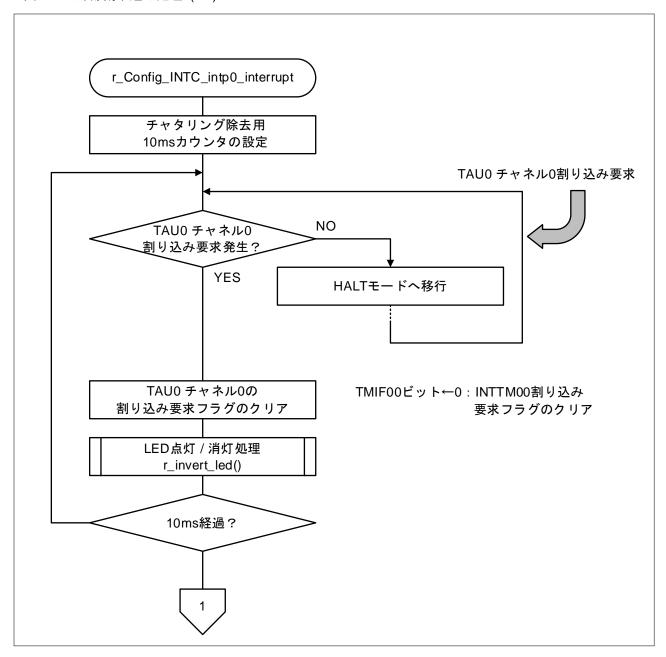
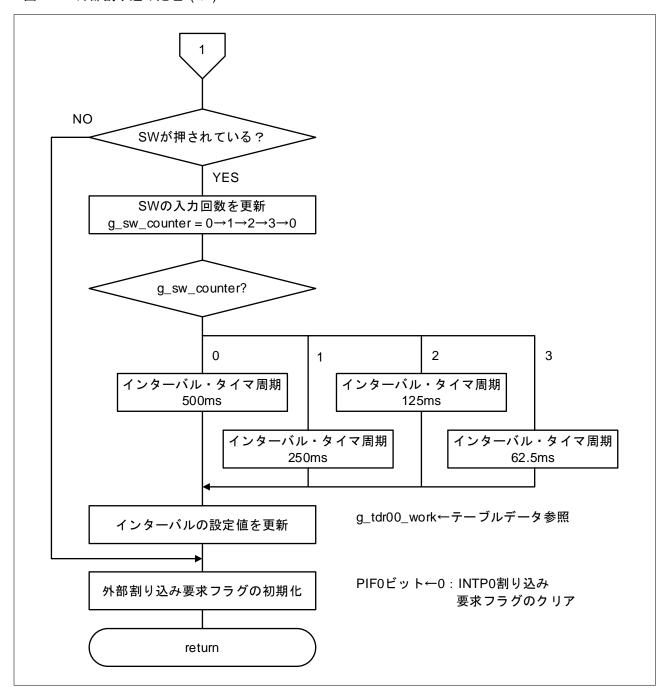
図 4-2にTAU0 チャネル0のタイマ割り込み処理のフローチャートを示します。

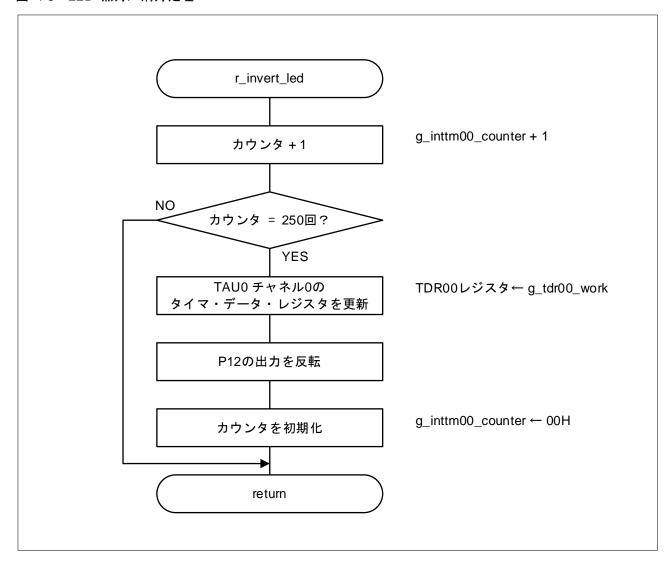
図 4-2 TAU0 チャネル 0 のタイマ割り込み処理

4.6.3 外部割り込み処理

図 4-3、図 4-4に外部割り込み処理のフローチャートを示します。

図 4-3 外部割り込み処理 (1/2)


図 4-4 外部割り込み処理 (2/2)

4.6.4 LED 点灯 / 消灯処理

図 4-5にLED 点灯/消灯処理のフローチャートを示します。

図 4-5 LED 点灯/消灯処理

5. サンプルコード

サンプルコードは、ルネサスエレクトロニクスホームページから入手してください。

6. 参考ドキュメント

RL78/G16 ユーザーズマニュアルハードウェア編 (R01UH0980J)
RL78 ファミリユーザーズマニュアルソフトウェア編 (R01US0015J)
RL78 スマート・コンフィグレータ ユーザーガイド: CS+編 (R20AN0580J)
RL78 スマート・コンフィグレータ ユーザーガイド: e2studio 編 (R20AN0579J)
(最新版をルネサスエレクトロニクスホームページから入手してください。)

テクニカルアップデート

(最新の情報をルネサスエレクトロニクスホームページから入手してください。)

すべての商標および登録商標は、それぞれの所有者に帰属します。

改訂記録

		改訂内容		
Rev.	発行日	ページ	ポイント	
1.00	2023.10.16	_	初版発行	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害 (お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図 しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のあ る機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機 器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これら の用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その 青仟を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。)によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたしませ
- 13 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的 に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓 口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/