
 Application Note

R11AN0909EU0100 Rev.1.00 Page 1 of 50
Sep.06.24

Renesas RA Family
RA8 Basic Secure Bootloader Using MCUboot and
Internal Code Flash
Introduction
MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software updates. MCUboot is independent of the operating system and hardware and relies on hardware
porting layers from the operating system it works with. The Renesas Flexible Software Package (FSP)
integrates an MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot
Module to create a Root of Trust (RoT) for the system and perform secure booting and fail-safe application
updates.
MCUboot is maintained by Linaro on the GitHub MCU-tools page: https://github.com/mcu-tools/mcuboot.
There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note
refers to the above-mentioned documents wherever possible and is intended to provide additional
information that is related to using the MCUboot Module with Renesas RA FSP v3.0.0 or later.
This application note guides you through application project creation using the MCUboot Module on the
Renesas EK-RA8M1 kit for internal flash usage using FSP v5.5.0. Example projects for the use case of
designing with TrustZone® for multi-image support are provided for EK-RA8M1 internal flash. The MCUboot
Module is supported across the entire RA MCU Family. Guidelines on how to adapt the example project
configurations for other RA Family MCUs are provided.

Required Resources
Development tools and software
• The e2 studio IDE v2024-07
• Renesas Flexible Software Package (FSP) v5.5.0
• SEGGER J-link® USB driver
Note: The above three software components are bundled in a downloadable platform installer available on

the FSP webpage at renesas.com/ra/fsp.
• Python v3.9 or later (https://www.python.org/downloads/)

Hardware
• EK-RA8M1 Evaluation Kit for RA8M1 MCU Group (http://www.renesas.com/ra/ek-ra8m1)
• Workstation running Windows® 10 and Tera Term console or similar application
• One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience
This application note assumes that you have some experience with the Renesas e2 studio IDE and Arm®
TrustZone-based development models with e2 studio. You also need to understand the device lifecycle
management of Renesas RA TrustZone-based MCU groups. This knowledge can be acquired by reading the
HW User’s Manual section “Security Features” and Renesas Application Project R11AN0469. In addition,
you should read the entire MCUboot Port section of the FSP User’s Manual prior to moving forward with this
application project. This application project also assumes that you have some knowledge of cryptography.

The intended audience includes product developers, product manufacturers, product support, and end users
who are involved with designing application systems involving the use of a secure bootloader.

https://github.com/mcu-tools/mcuboot
http://www.renesas.com/fsp
https://www.python.org/downloads/
http://www.renesas.com/ra/ek-ra8m1

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 2 of 50
Sep.06.24

Contents

1. Overview of MCUboot .. 4
1.1 History of MCUboot ... 4
1.2 MCUboot Functionalities Overview ... 4
1.2.1 Validate Application before Booting and Updating .. 4
1.2.2 Applications Update Strategies ... 4

2. Architecting an Application with MCUboot Module using FSP .. 6
2.1 MCU Memory Configuration using MCUboot Module with FSP ... 6
2.2 Overview of FSP MCUboot Module .. 6
2.2.1 General Configuration ... 7
2.2.2 Application Image Signature Type Options ... 8
2.2.3 Signing Options ... 9
2.2.4 MCU Memory Configuration .. 10
2.3 Designing Bootloader and the Initial Primary Application Overview ... 11
2.4 General Guidelines using the MCUboot Module Across RA Family MCUs .. 11
2.5 Customize the Bootloader ... 12
2.6 Production Support .. 12
2.6.1 Key Provisioning .. 12
2.6.2 Make the Bootloader Immutable for Enhanced Security ... 12
2.6.3 Advance the Device Lifecycle States Prior to the Deploying the Product to the Field 12

3. Running the Example Projects ... 12
3.1 Set Up the Hardware ... 13
3.1.1 Set up EK-RA8M1 ... 13
3.2 Configure the Python Signing Environment .. 14
3.3 Running the EK-RA8M1 Overwrite Update Mode Example with TrustZone ... 16
3.3.1 Initialize the RA8M1 MCU ... 16
3.3.2 Import the Projects under \ra8m1_overwrite_with_bootloader_tz 16
3.3.3 Compile All the Projects .. 16
3.3.4 Debug the Applications and Boot the Primary Applications .. 17
3.3.5 Open the J-Link RTT Viewer ... 18
3.3.6 Downloading and Running the Secondary Applications ... 18
3.3.7 Update the Non-Secure Secondary Image ... 19
3.4 Running the EK-RA8M1 Swap Update Mode Example without Test Mode with TrustZone 20
3.4.1 Downloading and Running the Secondary Applications ... 21
3.5 Running the EK-RA8M1 DXIP Update Mode Example ... 22
3.5.1 Downloading and Running the Secondary Applications ... 23
3.6 Running the EK-R8M1 Overwrite Update Mode Example without TrustZone 24
3.6.1 Import the Projects under Folder \ra8m1_overwrite_with_bootloader to a Workspace 24
3.6.2 Compile the Projects ... 24

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 3 of 50
Sep.06.24

3.6.3 Debug the Applications and Boot the Primary Application .. 25
3.6.4 Open the J-Link RTT Viewer ... 25
3.6.5 Downloading and Running the Secondary Applications ... 26
3.7 Running the EK-RA8M1 Swap Test Update Mode Example without TrustZone 27
3.7.1 Import the Projects .. 27
3.7.2 Compile the Projects ... 28
3.7.3 Debug the Applications and Boot the Primary Application .. 28
3.7.4 Open the J-Link RTT Viewer ... 28
3.7.5 Downloading and Running the Secondary Applications ... 29
3.8 Troubleshooting ... 29

4. Creating the Bootloader ... 29
4.1 Creating a Bootloader Project for RA Family .. 29
4.1.1 Start Bootloader Project Creation with e2 studio ... 30
4.1.2 Resolve the Configurator Dependencies .. 34
4.1.3 Setting up the Booting Authentication Support ... 39
4.1.4 Setting up the Application Authentication Signature Type .. 40
4.1.5 Add MCUboot Initialization Code .. 40

5. Using the Bootloader with Applications .. 41
5.1.1 Import the Standalone Application Projects .. 41
5.1.2 Configure the Application Projects to Use the Bootloader .. 41
5.2 Signing the Existing Application Projects to Use the Bootloader .. 42
5.2.1 Click Generate Project Content and Compile All Four Application Projects 44
5.2.2 Configure the Debug Configuration ... 44
5.3 Mastering and Delivering a New Application ... 47
5.4 Customize the Bootloader to other MCUs ... 47

6. Appendix ... 48
6.1 Making the Bootloader for Cortex-M85 Immutable ... 48
6.2 Making the Bootloader for Cortex-M33 Immutable ... 48
6.3 Making the Bootloader for Cortex-M4 Immutable ... 48
6.4 Device Lifecycle Management for Renesas RA Cortex-M85 MCUs ... 49
6.5 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs ... 49
6.6 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs ... 49

7. References .. 49

8. Website and Support ... 49

Revision History .. 50

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 4 of 50
Sep.06.24

1. Overview of MCUboot
1.1 History of MCUboot
MCUboot evolved out of the Apache Mynewt bootloader, which was created by runtime.io. MCUboot was
then acquired by JuulLabs in November 2018. The MCUboot github repo was later migrated from JuulLabs
to the mcu-tools github project. In 2020, MCUboot was moved under the Linaro Community Project umbrella
as an open-source project.

1.2 MCUboot Functionalities Overview
MCUBoot handles the firmware authenticity check after startup and the firmware switch stage of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is a functionality that is provided by the application project itself.

1.2.1 Validate Application Before Booting and Updating
For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary
App, and the Scratch Area. Figure 1 is an example of the single-image MCUboot memory map. For more
information on the MCUboot memory layout, refer to the Flash Map section of the MCUboot website.

Figure 1. Single Image MCUboot Memory Flash Map
The functionality of the MCUboot during booting and updating follows the process below:

The bootloader is started when the CPU is released from reset. For TrustZone-based MCUs, MCUboot is
designed to run in secure mode with all access privileges available to it. If there are images in the Secondary
App memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader authenticates the Secondary App image.
2. Upon successful authentication, the bootloader switches to the new image based on the update method

selected. Available update methods are introduced in section 1.2.2.
3. The bootloader boots the new image.

If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

There is a signing tool included with MCUboot: imgtool.py. This tool provides services for creating Root
keys, key management, and signing and packaging an image with version controls. Read the MCUboot
documentation to understand and use these operations.

1.2.2 Applications Update Strategies
The following are the update strategies supported by MCUboot. The analysis of pros and cons is based on
the MCUboot functionality but not the FSP MCUboot Module functionality. In addition, this application note is
not intended to provide all details on the MCUboot application update strategies. We recommend acquiring
more details on these update strategies by referring to the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

https://github.com/mcu-tools/mcuboot
https://www.linaro.org/community-projects/
https://docs.mcuboot.com/design.html#flash-map
https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 5 of 50
Sep.06.24

• Overwrite
In the Overwrite update mode, the active firmware image is always executed from the Primary slot, and
the Secondary slot is a staging area for new images. Before the new firmware image is executed, the
entire contents of the Primary slot are overwritten with the contents of the Secondary slot (the new
firmware image).
• Pros

• Fail-safe and resistant to power-cut failures.
• Less memory overhead, with a smaller MCUboot trailer and no Scratch Area.
• Encrypted image support is available when using external flash.

• Cons
• Does not support pre-testing of the new image prior to overwriting.
• Does not support automatic application fallback mechanism.

Overwrite upgrade mode is supported by Renesas RA FSP v3.0.0 or later. External flash memory
support is supported by FSP v3.5.0 or later. The overwrite update mode is demonstrated in sections 3.3
and 3.6.

• Swap

In the Swap image upgrade mode, the active image is also stored in the Primary slot and is always
started by the bootloader. If the bootloader finds a valid image in the Secondary slot that is marked for
upgrade, then the contents of the Primary slot and the Secondary slot are swapped. The new image then
starts from the Primary slot. Upgrading an old image with a new one by swapping can be a two-step
process. In this process, MCUboot performs a “test” swap of image data in Flash and boots the new
image. The new image can then update the contents of flash at runtime to mark itself “OK”, and
MCUboot will then still choose to run it during the next boot.
• Pros

• The bootloader can revert the swapping as a fallback mechanism to recover the previous
working firmware version after a faulty update.

• The application can perform a self-test to mark itself permanently.
• This image upgrade mode is fail-safe and resistant to power-cut failures.
• Encrypted image support is available when using external flash.

• Cons
• Need to allocate a Scratch Area.
• Larger memory overhead due to a larger image trailer and additional Scratch Area.
• Larger number of write cycles in the Scratch Area, thus faster wearing out of Scratch sectors.

Swap upgrade mode is supported by Renesas RA FSP v3.0.0 or later. Runtime image testing is
supported by FSP v3.4.0 or later, excluding v3.5.0. External flash memory support is supported by FSP
v3.5.0 or later. The swap update mode without the test mode is demonstrated in section 3.4 and the
swap update mode with test mode is demonstrated in section 3.7.

• Direct execute-in-place (DXIP)

In the direct execute-in-place mode, the active image slot alternates with each firmware update. If this
update method is used, then two firmware update images must be generated: one of them is linked to be
executed from the Primary slot memory region, and the other is linked to be executed from the
Secondary slot.
• Pros

• Faster boot time, as no overwrite or swap of application images is needed.
• Fail-safe and resistant to power-cut failures.

• Cons
• Added application-level complexity to determine which firmware image needs to be downloaded.
• Encrypted image support is not available.

Direct execute-in-place mode is enabled in FSP for the code flash linear mode as well as code flash dual
bank mode. The DXIP update mode is demonstrated in section 3.5.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 6 of 50
Sep.06.24

• RAM loading firmware update
Like the direct-XIP mode, RAM loading firmware update mode selects the newest image by reading the
image version numbers in the image headers. However, instead of executing it in place, the newest
image is copied to RAM for execution. The load address (the location in RAM where the image is copied
to) is stored in the image header. This upgrade method is not typically used in an MCU environment.
Refer to the RAM Loading section on the MCUboot page for more information on this update strategy.
This image update mode does not support encrypted images (see MCUboot documentation on
encrypted image operation).
RAM loading update mode is not supported by the Renesas RA FSP.

2. Architecting an Application with MCUboot Module using FSP
This section provides an overview of the FSP MCUboot Module, which integrates MCUboot as a module into
the FSP. The available upgrade modes and memory architecture design are discussed. In addition, signing
and mastering new images are discussed.

2.1 MCU Memory Configuration using MCUboot Module with FSP
For single-image projects, refer to Figure 1 from section 1.2.1 to see the default memory map layout. For
applications with two separately updateable images, such as TrustZone® applications where the Secure and
Non-Secure images can be updated separately, the default memory map layout is shown in Figure 2.

Figure 2. Two-Image MCUboot Module Memory Map (TrustZone)
Note that for RA8 MCUs, bit 28 of the address space indicates whether this region is defined as a secure or
non-secure region. If bit 28 is 0, the corresponding region is a secure region. If bit 28 is 1, the corresponding
region is non-secure. This is reflected in Figure 14 and Figure 23.

2.2 Overview of FSP MCUboot Module
This section provides a high-level overview of the MCUboot Module in the FSP. Currently, the FSP supports
four firmware update methods:

• Overwrite Only: The entire Primary slot is overwritten with the Secondary slot.
• Overwrite Only Fast: Only sizeof(secondary_image) is copied into Primary slot. Unused sectors are not

copied.
• Swap: The entire Primary and Secondary slots are swapped. A Scratch region is required.
• Direct XIP: The new image is run directly from its flash partition.

We recommend reviewing MCUboot port section of the FSP User’s Manual to understand the Build Time
Configurations for MCUboot. This section is not meant to cover all the configurable properties. Only some of
the most frequently used configuration options are introduced.

https://docs.mcuboot.com/design.html#ram-load
https://docs.mcuboot.com/encrypted_images.html

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 7 of 50
Sep.06.24

2.2.1 General Configuration

Figure 3. FSP MCUboot Module General Configuration Properties
General configuration properties include:

• Custom mcuboot_config.h: The default mcuboot_config.h file contains the MCUboot Module
configuration that you selected from the RA configurator. You can create a custom version of this file to
achieve additional bootloader functionalities that are available in MCUboot.

• Upgrade Mode: This property configures the application image update method selection explained at
the beginning of section 2.2. The options are Overwrite Only, Overwrite Only Fast, Swap, and Direct XIP,
as shown in Figure 4. Overwrite Only is the default setting.

Figure 4. Application Image Update Mode

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 8 of 50
Sep.06.24

Figure 5 is a more detailed application image format that can be referenced to understand the various
MCUboot property definitions.

Figure 5. General Configuration for MCUboot Module
• Validate Primary Image:

When Validate Primary Image is enabled, the bootloader performs a hash or signature verification,
depending on the verification method chosen, in addition to the MCUboot sanity check based on the
image header and TLV area magic numbers. The Header and TLV area magic numbers are always
checked as part of the sanity checking prior to the integrity checking and the signature verification.
When the Validate Primary Image is disabled, the integrity check based on the hash is performed, and
the sanity check is performed as well. It is highly recommended that this property is always enabled if
boot time is not a concern. Note that the image magic number is not part of the image validation; it is a
reference value that can be used for sanity checks during the application upgrade debugging process.
This image magic number is written to the flash after a successful image upgrade.

• Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is enabled, new firmware with a lower version number will not overwrite the existing
application.

• Number of Images Per Application: This property allows you to choose one image for Non-
TrustZone®-based applications and two images for TrustZone-based applications.

2.2.2 Application Image Signature Type Options
Application images using MCUboot must also be signed to work with MCUboot. At a minimum, this involves
adding a hash and an MCUboot-specific constant value in the image trailer.

Figure 6 shows the signature types available for the application image signing methods supported by the
MCUboot module. For memory-restricted devices, you can choose None for Signature Type, which will
reduce the bootloader size. For example, the bootloader for the Overwrite update mode uses a flash area of
64 KB when using the ECDSA P-256 signature type, but when signature support is not used, the bootloader
reduces to about 19 KB.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 9 of 50
Sep.06.24

Figure 6. Application Image Signature Type for FSP MCUboot Module

2.2.3 Signing Options
Figure 7 shows the default Custom signing option configuration provided by FSP.

Figure 7. FSP Default Signing Option
By default, FSP sets --confirm for the Custom property for both Image 1 and Image 2 when TrustZone is
used. For TrustZone-based applications, the Secure Image (Image 1) and Non-Secure Image (Image 2) can
have different configurations such that there is a different update policy for the Secure and Non-Secure
Images. Some commonly used signing options are:

• Option --pad:
This option places a trailer on the image that indicates that the image should be considered for an
upgrade. Writing this image in the Secondary slot causes the bootloader to upgrade to it. When Swap
mode is selected, this option generates a signing command such that the Secondary image will first be
swapped with the Primary application image. On the next reset, the Primary application previously used
will be swapped back and rebooted.

• Option --confirm:
When Swap mode is selected, this option generates a signing command such that the Secondary image
will first be swapped with the Primary application. At the next reset, there will be no swap between the
Primary and Secondary application and the Secondary application will be booted. Confirm is the default
Force Upgrade configuration.

• No input:
If no option is put in this property, application images signed with the signing command generated from
this setting will not be updated.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 10 of 50
Sep.06.24

When Overwrite mode is selected, the --pad or --confirm option generates signing commands such that the
overwrite will occur, and the Secondary application will overwrite the Primary application.

The image signing tool imgtool.py is included with MCUboot. It is integrated as a post-build tool in
e2 studio to sign the application image. For detailed information about using this tool with e2 studio, refer to
the application image signing information in section 5.2. For more information on the possible options
available for this property setting, refer to the description in the imagetool.py md file and visit the MCUboot
documentation page https://docs.mcuboot.com/imgtool.html.

2.2.4 MCU Memory Configuration
Figure 8 shows the default memory configuration options provided by the FSP configurator for RA8 MCU
groups.

Figure 8. MCU Memory Configuration Default Settings
For both single-image and two-image configurations, the following four properties need to be defined:

• Bootloader Flash Area: Size of the flash area allocated for the bootloader.
• Image 1 Header Size: Size of the flash area allocated for the application header for single image

configuration or the secure application image header size in the case of a TrustZone®-based application.
This property should be set to 0x200 for RA8, RA6 and RA4 MCUs and 0x100 for RA2 MCUs.

• Image 1 Flash Area Size: Size of the flash area allocated for the application image for single image
configuration or the secure application image in the case of a TrustZone-based application.

• Scratch Flash Area Size: This property is only needed for Swap mode. The Scratch area must be large
enough to store the largest sector that is going to be swapped. For RA8M1, the Scratch area is set up to
be 32KB (0x8000).

The properties under TrustZone are for TrustZone-based applications:

• Non-Secure Callable Region Size (Bytes): This area is used for the TrustZone Non-Secure Callable
area plus the MCUboot trailer. This property needs to be set to a multiple of 1024 bytes. Each Non-
Secure Callable function takes 8 bytes of flash area. The non-secure Callable function usage can be
identified by referring to the section .sgstub in the secure application map file. For Swap mode, the
MCUboot trailer size is calculated as 128*(5+(3*BOOT_MAX_IMG_SECTORS)).
BOOT_MAX_IMG_SECTORS is the number of flash sectors in either the secure or the non-secure
image, whichever is larger.
For Overwrite mode, the image trailer is less than 256 bytes; for a typical application with a limited
number of Non-Secure Callable APIs, it is recommended to set the Non-Secure Callable Region Size to
0x400.

• Non-Secure Flash Area Size: Size of the Non-Secure Flash region. You can compile the non-secure
application to get the size of the image and set this value accordingly. This value must be a multiple of
the flash block size.

• Non-Secure Callable RAM Region: This property is the size of the Non-Secure Callable RAM region of
the Secure image. This property needs to be set to a multiple of 1024 bytes.

• Non-Secure RAM Region Size: Size of the Non-Secure RAM region. This property must be an integer
multiple of 8192 bytes.

• Image 2 Header Size: The non-secure application header size. This property should be set up by
following the same rule as explained for the Image 1 Header Size.

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://docs.mcuboot.com/imgtool.html

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 11 of 50
Sep.06.24

2.3 Designing Bootloader and the Initial Primary Application Overview
A bootloader is typically designed with the initial Primary application. The following are the general guidelines
for designing the bootloader and the initial Primary application:

• Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image. The bootloader maintains a memory map of
all the different images shown in Figure 1 and Figure 2.

• Develop the initial Primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

• Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in the adjustment of the memory allocated definition in the bootloader project.

• Test the bootloader and the initial Primary application.

Most of these design aspects are addressed in the walk-through in section 4.

2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
The MCUboot Module is supported by all RA Family MCUs. The cryptographic support is provided via
MbedTLS Crypto only module and Tiny Crypt module. Both crypto modules are supported on all RA MCUs
either through software or MCU hardware. The MbedTLS Crypto Only module is supported by the MCU
hardware if the corresponding algorithms are supported by the hardware crypto engine, otherwise MbedTLS
software stack will be used. The MbedTLS offers more crypto algorithms, is generally faster, and has a larger
memory footprint. On the other hand, the TinyCrypt module offers a smaller number of algorithms and is
slower but has a much smaller memory footprint. TinyCrypt does not support the RSA algorithm.

For both algorithms, the image validation of the primary image prior to execution at MCU reset can be
disabled to reduce the boot time. See explanations on the validation property in section 2.2.1.

Table 1 is the typical cryptographic selection recommendation when using MCUboot with RA MCUs. If
memory footprint is a priority, users can choose the TinyCrypt module over the MbedTLS Crypto Only
module for some of these use cases. To improve the verification speed and reduce boot time when using
TinyCrypt, users can consider disabling image validation to improve verification and boot time performance.

Table 1. Typical Cryptographic Selection Recommendations for RA MCUs
Crypto Stack RA2 No

Encryption
RA2 with
Encryption

RA4W1, RA4M1,
RA6T2 No
Encryption

RA4W1, RA4M1,
RA6T2 with
Encryption

RA4E1, RA6E1,
RA6M1/M2/M3,
RA6T1,
RA4M2/M3,
RA6M4/M5
with or without
Encryption

RA8M1,
RA8D1,
RA8T1, with
or without
Encryption

MbedTLS
(Crypto Only)
HW

x x

TinyCrypt
(HW AES)

 x x

TinyCrypt
(SW Only) x x

For the Renesas RA Cortex®-M85 MCU series internal flash usage, refer to the RA8M1 example projects
demonstrated in this application project.

For the Renesas RA Cortex®-M33 MCU and RA Cortex®-M4 MCUs RA6 MCU series internal flash usage,
refer to the RA6M4 and RA6M3 example projects demonstrated in the RA6 Basic Secure Bootloader Using
MCUboot and Internal Code Flash application project (R11AN0497).

For the Renesas RA Cortex®-M23 MCU series, refer to the RA2E1 example projects demonstrated in the
Secure Bootloader for the RA2 MCUs application project (R11AN0516).

For RA6 MCUboot with encryption support, refer to the RA6M4 example projects demonstrated in the
Booting Encrypted Image using MCUboot and QSPI application project (R11AN0567).

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 12 of 50
Sep.06.24

2.5 Customize the Bootloader
The following aspects need to be considered when customizing the bootloader in a product design:

• Customize the image validation method.
• Customized method to download the application.
• Use various optimization methods to reduce bootloader and application image size. For example,

compile the bootloader by Optimize size.

2.6 Production Support
2.6.1 Key Provisioning
By default, the public key is embedded in the bootloader code, and its hash is added to the image manifest
as a KEYHASH TLV entry. See section 4.1.3 for more details about the public key and private key that are
used for testing purposes. For production support, follow the example shown in key.c to add the public key.
In addition, you must update the private key for application image signing. Refer to Figure 65 and Figure 66
for the private key selection in the signing command.

As an alternative, the bootloader can be made independent of the included test keys by setting the
MCUBOOT_HW_KEY option. In this case, the hash of the public key must be provided to the target device, and
MCUboot must be able to retrieve the key-hash from there. For this reason, the target must provide a
definition for the boot_retrieve_public_key_hash() function that is declared in
boot/bootutil/include/bootutil/sign_key.h. The full option for the -public-key-format
imgtool argument is also required to add the whole public key (PUBKEY TLV) to the image manifest instead
of its hash (KEYHASH TLV).

During boot, the public key is validated before it is used for signature verification. MCUboot calculates the
hash of the public key from the TLV area and compares it with the key hash that was retrieved from the
device. This way, MCUboot is independent from the public key(s). The key(s) can be provisioned at any time
and by different parties.

2.6.2 Make the Bootloader Immutable for Enhanced Security
For a Cortex®-M85 MCU, refer to section 6.1 to make the bootloader immutable. For a Cortex®-M33 MCU,
refer to section 6.2 to make the bootloader immutable. For a Cortex®-M4 MCU, refer to section 6.3 to make
the bootloader immutable.
2.6.3 Advance the Device Lifecycle States Prior to Deploying the Product to the Field
For a Cortex®-M85 MCU, refer to section 6.4 for the device lifecycle management of the MCU. For a
Cortex®-M33 MCU, refer to section 6.4 for the device lifecycle management of the MCU. For a Cortex®-M4
MCU, refer to section 6.6 for the device lifecycle management of the MCU.

3. Running the Example Projects
This section provides a walk-through of running the included example projects. To recreate the bootloader
example projects demonstrated in this section, refer to section 4.1 for the Cortex®-M85 implementation.

The bootloader projects introduced have similar functionality, except that the memory map definition and
application image update mode are different.

Unzip example_projects_with_bootloader.zip, and you will see that there are five folders. Each
folder contains example projects for the specific MCU, which include bootloader projects and example
application projects.

Figure 9. Example Projects with Bootloader Support

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 13 of 50
Sep.06.24

Set up the Python development environment by following section 3.3 step 3.2. Note that this step only needs
to be performed once.

3.1 Set Up the Hardware
3.1.1 Set up EK-RA8M1
• Jumper setting: J12 is set to pins 2-3 and J15 is closed.
• Connect J10 using a USB micro to B cable from EK-RA8M1 to the development PC to provide power

and debug connection using the onboard debugger.

Once the EK-RA8M1 is powered up, initialize the MCU prior to exercising the bootloader project.

Erase the entire MCU flash and ensure the MCU is in a Secure Software Development Device Lifecycle
State. This can be achieved using the Renesas Device Partition Manager.

1. Power cycle the board, launch e2 studio, and open the Renesas Device Partition Manager.

Figure 10. Open Renesas Device Partition Manager

2. Select Read current device information.
If the DLM state is OEM (PL2, PL1 or PL0), proceed to step 3. Otherwise, you must switch to a different
kit to continue the rest of the operation. Below is an example of the readout from an RA8M1 MCU that is
in the OEM state.

Figure 11. Read the Device Lifecycle States

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 14 of 50
Sep.06.24

3. Select Initialize device back to factory default, choose J-Link as the connection method, and click
Run.

Figure 12. Initialize RA8M1 using Renesas Device Partition Manager

The entire flash will be erased if sections are not permanently locked down. In addition, if the device is in
the PL1 or PL0 state, the RA8M1 will be initialized to the PL2 state.

3.2 Configure the Python Signing Environment
If this is NOT the first time you have used the Python script signing tool on your computer, you can skip this
section. Note that section 3.3 to section 3.7 can be evaluated independently; it is not necessary to follow a
particular sequence.

Download and Install Python v3.9 or later from https://www.python.org/downloads/.
If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work:

• From the included example project sets (refer to Figure 9), choose the set of projects you would like to
do first.

• Import that set of projects into a workspace. In this example, we assume you have chosen to import the
projects under the folder:
\example_projects_with_bootloader\ra8m1_overwrite_with_bootloader_tz.

• Navigate to folder \MCUboot in the bootloader project included, for example,
ra_mcuboot_ra8m1>ra>mcu-tools>MCUboot, right click, and select Command Prompt.
Depending on your PC policy, administrator privileges may be required when running the Command
Prompt. This opens a command window with the path set to the \mcu-tools\MCUboot folder.

https://www.python.org/downloads/

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 15 of 50
Sep.06.24

Figure 13. Open the Command Prompt

• We recommend upgrading pip prior to installing the dependencies. Enter the following command to
update pip:
python -m pip install --upgrade pip

• Note that if you have multiple Python versions installed, make sure to check that the Python version
is version 3.9.0 or later.

• Next, in the command window, enter the following command line to install all the MCUboot
dependencies:
pip3 install --user -r scripts/requirements.txt

This will verify and install any required dependencies. Make sure this step runs successfully prior to moving
to the following sections. If your project path contains special characters or spaces, an error may occur when
executing the Python script.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 16 of 50
Sep.06.24

3.3 Running the EK-RA8M1 Overwrite Update Mode Example with TrustZone
Follow the steps below to run the example projects for EK-RA8M1 using the MCUboot Module Overwrite
Only Update mode with TrustZone.

3.3.1 Initialize the RA8M1 MCU
Follow section 3.1.1 to initialize the RA8M1 MCU.

3.3.2 Import the Projects under \ra8m1_overwrite_with_bootloader_tz
New users should refer to the FSP User’s Manual section on Importing Projects into the IDE for guidelines.
Ensure the Python signing environment is set up referencing section 3.2.

Figure 14. Example Projects for RA8M1 Overwrite Update Mode
• ra_mcuboot_ra8m1: The bootloader project is configured with Overwrite update mode.
• app_ra8m1_s_primary: The Primary Secure application project with FSP flash driver support with the

flash driver configured as Non-Secure Callable.
• app_ra8m1_ns_primary: The Primary Non-Secure application project calls the Non-Secure Callable

flash driver to erase and write to a code flash region at the top of the code flash area. Upon successful
flash operation, all three LEDs blink.

• app_ra8m1_s_secondary: The Secondary Secure application project with FSP flash driver support
with the flash driver configured as Non-Secure Callable. This application image has the same
functionality as the Primary Secure application. You can use this project as a template to update the
different functionalities and exercise the operation of updating the Secure image independently of the
Non-Secure Image update.

• app_ra8m1_ns_secondary: The Secondary Non-Secure application project, which is called the Non-
Secure Callable flash driver, erases and writes to a code flash region at the top of the code flash area.
Upon successful flash operation, only the blue and green LEDs blink.

3.3.3 Compile All the Projects
The bootloader project must be compiled first prior to compiling the application projects. In addition, the
secure project must be compiled first prior to compiling the corresponding non-secure project. For each
project, open the configuration.xml file, click Generate Project Contents, and then click to build
the project. Compile the projects following the order listed below:

1. ra_mcuboot_ra8m1
2. app_ra8m1_s_primary
3. app_ra8m1_ns_primary
4. app_ra8m1_s_secondary
5. app_ra8m1_ns_secondary

For the application projects, the post-build command will also sign the corresponding images. The signed
image for the application project is located under the /Debug folder and is named

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 17 of 50
Sep.06.24

<application_project_name>_bin.signed (For example,
/app_ra8m1_s_primary/Debug/app_ra8m1_s_primary.bin.signed).

3.3.4 Debug the Applications and Boot the Primary Applications
Right-click on project app_ra8m1_s_primary, select Debug As > Debug Configurations, and confirm the
following configuration information:

• The bootloader is downloaded using the .elf format (which includes image and symbol).
• The Primary secure and non-secure images (app_ra8m1_s_primary.bin.signed,

app_ra8m1_ns_primary.bin.signed) are downloaded using the signed binary as Raw Binary.
• The Primary secure and non-secure image symbols are included using the .elf files.

Figure 15. Debug Configuration RA8M1 Overwrite
Click Debug.

The debugger should hit the reset handler in the bootloader. Note the address is in the bootloader image.

Figure 16. Start the Application Execution

Click Resume twice and boot the Primary image. All three LEDs should be blinking. Pause the
execution and confirm that the execution is in the Non-secure Primary slot.

Click to run again.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 18 of 50
Sep.06.24

3.3.5 Open the J-Link RTT Viewer
Configure the RTT Viewer as shown below. Set up the search range as 0x32000000 0xE0000.

Figure 17. Configure the RTT Viewer
Click OK and observe the output on the RTT Viewer. This repeated output shows that the Primary
application is being executed and all three LEDs are blinking.

Figure 18. Execution of Primary Non-Secure Application for Overwrite Mode

3.3.6 Downloading and Running the Secondary Applications
During development, you can use the ancillary loading capability to load the new secure image to the
intended location. You can use the example of the new secure application provided in this project and follow
the steps below to perform an application upgrade:

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 19 of 50
Sep.06.24

1. Press the button to pause the program.

2. On the top of the e2 studio toolbar, click the Load Ancillary File button to load the new application
images to the Secondary slot region. Refer to section 3.8 for troubleshooting when using the Load
Ancillary File function.

Figure 19. Load the Secondary Secure Application Image for Overwrite Update Mode

Figure 20. Load the Secondary Non-Secure Application Image for Overwrite Update Mode

3. Click Resume . The overwrite occurs, and the new image is executed. The blue and green LEDs will
be blinking instead of all three LEDs.

4. On the RTT Viewer output, confirm that the following messages are printed and that only the blue and
green LEDs are blinking.

Figure 21. Executing the Secondary Non-Secure image for Overwrite Update Mode

3.3.7 Update the Non-Secure Secondary Image
This step is provided as a reference for the implementation of individual image updates when designing in a
TrustZone environment. The Non-Secure Secondary Image can be updated independently of the Non-
Secure Primary Image.

Click Pause again and download the Primary Non-Secure application to the Secondary Non-Secure slot

using the Load Ancillary File tool. Click OK. Click Resume again. The three LEDs start to blink
again, and the RTT Viewer shows the same message as Figure 36.

• For Overwrite update mode, if the Secondary image is marked for update, overwrite always occurs.
• It is possible to update the Secure and Non-Secure applications individually with proper application

design.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 20 of 50
Sep.06.24

Figure 22. Load the Secondary Non-Secure Image to the Second Slot

3.4 Running the EK-RA8M1 Swap Update Mode Example without Test Mode with
TrustZone

The process of running the EK-RA8M1 Swap Update mode is similar to the Overwrite Update mode with
TrustZone. This section focuses on the difference in the operation:

1. Follow section 3.1.1 to initialize the RA8M1 MCU.
2. Import the project under folder \ra8m1_swap_with_bootloader_tz to a workspace.

Figure 23. Example Projects for RA8M1 Swap Update Mode

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 21 of 50
Sep.06.24

• The bootloader project ra_mcuboot_ra8m1 has similar functionality as the bootloader with
Overwrite Update mode introduced in section 3.3 step 3.3.3 except that the memory map definition
and application image update mode are different.

• The functionalities of the application projects are the same as the Overwrite Update mode.
3. Configure the Python Signing Environment by following section 3.2 if this is the first time you have

signed the application image.
4. Compile the example projects in the same order as the Overwrite update mode by referencing section

3.3 step 3.3.3. Ensure the signed image for the application project is located under the /Debug folder and
is named <application_project_name>_bin.signed.

5. Review the Debug Configuration and boot the Primary applications by referencing section 3.3.4.

Figure 24. Debug Configuration RA8M1 Swap Update Mode

6. Open the J-Link RTT Viewer and set up the same configuration as Figure 17.
7. Click OK and observe the following output on the RTT Viewer. This output shows that the Primary

application is being executed, and all three LEDs are blinking.

Figure 25. Execution of Primary Non-Secure Application for Swap Update Mode

3.4.1 Downloading and Running the Secondary Applications
During development, you can use the Ancillary loading capability to load the new Secure image to the
intended location. You can use the example new Secure application provided in this application and follow
the steps below to perform an application upgrade. Refer to section 3.8 for troubleshooting when using the
Load Ancillary File function.

1. Press the button to pause the program.

2. Load the secure new application images to the Secondary slot region using the Ancillary loading

capability from the top of the e2 studio toolbar in a similar way as Figure 19 except use address
0x02020000.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 22 of 50
Sep.06.24

3. Load the non-secure new application image to the Secondary slot region using the Ancillary loading

capability from the top of the e2 studio toolbar in a similar way as Figure 20 except use address
0x12060000.

4. Click Resume . The swap occurs, and the new image is executed. Only the blue and green LEDs
should be blinking.

5. Confirm the execution result.

Figure 26. Executing the Secondary Non-Secure Image for Swap Update Mode

3.5 Running the EK-RA8M1 DXIP Update Mode Example
The process of running the EK-RA8M1 DXIP Update Modes is similar to the Overwrite Update mode. This
section will focus on the difference in the operation:

1. Follow section 3.1.1 to initialize the RA8M1 MCU.
2. Import the project under folder \ra8m1_dxip_with_bootloader_flat to a workspace and see the

following set of example projects.

Figure 27. Example Projects for RA8M1 Direct XIP Update Mode

The functionalities of the application projects are blinking the LEDs and providing RTT viewer outputs.
3. Configure the Python signing environment by following section 3.2 if this is the first time you have signed

the application image.

4. The bootloader needs to be compiled first. For each project, open the configuration.xml file, click
Generate Project Contents, and then click to build the project. Compile the example projects
following the order below. Ensure the signed image for the application project is located under the
/Debug folder and is named <application_project_name>_bin.signed

1. ra_mcuboot_ra8m1_dxip
2. app_ra8m1_primary
3. app_ra8m1_secondary

5. Verify the debug configuration and follow section 3.3 step 3.3.4 to start debugging the application.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 23 of 50
Sep.06.24

Figure 28. Debug Configuration DXIP Update Mode

6. Open the J-Link RTT Viewer and set up a configuration similar to Figure 17, except change the search
range to 0x22000000 0x8000.

7. Click OK and observe the following output on the RTT Viewer. This output shows that the Primary
application is being executed, and all three LEDs are blinking.

Figure 29. Execution of Primary Application for DXIP Update Mode

3.5.1 Downloading and Running the Secondary Applications
Refer to section 3.8 for troubleshooting when using the Load Ancillary File function.

During development, you can use the Ancillary loading capability from the top of the e2 studio toolbar
to load the new image to the intended location. You can use the example new application provided in this
application and follow the steps below to perform an application upgrade:

1. Press the button to pause the program.

2. Load the new application images to the Secondary slot region using the Ancillary loading capability
from the top of the e2 studio toolbar.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 24 of 50
Sep.06.24

Figure 30. Load the Secondary Secure Application Image for DXIP Update Mode

3. Click Resume . The swap occurs, and the new image is executed. Only the blue and green LEDs
should be blinking.

4. Confirm the same configuration as shown in Figure 17, then click OK.

Figure 31. Executing the Secondary Image for DXIP Update Mode

3.6 Running the EK-R8M1 Overwrite Update Mode Example without TrustZone
Follow the steps below to run the example projects for EK-RA8M1 using the MCUboot Overwrite Only
Update mode without TrustZone.

3.6.1 Import the Projects under Folder \ra8m1_overwrite_with_bootloader to a
Workspace

The following example projects are included in this folder:

Figure 32. Example Projects for RA8M1 Overwrite Update Mode
• Project ra_mcuboot_ra8m1 is the bootloader project.
• Project app_ra8m1_primary is the initial Primary application project. This project blinks the three

LEDs on the EK-RA8M1 kit.
• Project app_ra8m1_secondary is the Secondary application project. This project blinks the blue LED

on the EK-RA8M1 kit.

Follow section 3.2 to set up the Python signing environment if this is the first time you have signed the
application image.

3.6.2 Compile the Projects
The bootloader needs to be compiled first. For each project, open the configuration.xml file, click
Generate Project Contents, and then click to build the project. For the application projects, the post-
build command will also sign the corresponding images. The signed image is located under the \Debug

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 25 of 50
Sep.06.24

folder and is named <project_name>.bin.signed (for example,
/app_ra8m1_primary/Debug/app_ra8m1_primary.bin.signed)

1. ra_mcuboot_ra8m1
2. app_ra8m1_primary
3. app_ra8m1_secondary

3.6.3 Debug the Applications and Boot the Primary Application
Right-click on project app_ra8m1_primary and select Debug As > Debug Configuration.

Figure 33. Debug Configuration RA8M1 Overwrite Update
Click Debug.

The debugger should be at the reset handler in the bootloader. Note the address is in the bootloader image.

Figure 34. Start the RA8M1 Application Execution

Click Resume twice and boot the Primary image. All three LEDs should be blinking.

3.6.4 Open the J-Link RTT Viewer
Configure the RTT Viewer as shown below. Configure the address search range as 0x22000000 0x8000.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 26 of 50
Sep.06.24

Figure 35. Configure the RTT Viewer for RA8M1 Project
Click OK and observe the following output on the RTT Viewer. This output shows that the Primary
application is being executed and all three LEDs are blinking.

Figure 36. Execution of Primary Application for Overwrite Mode

3.6.5 Downloading and Running the Secondary Applications

During development, you can use the Ancillary loading capability to load the new Secure image to the
intended location. Follow the steps below to perform an application upgrade. Refer to section 3.8 for
troubleshooting when using the Load Ancillary File function.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 27 of 50
Sep.06.24

1. Press to pause the program.

2. Load the new application images to the Secondary slot region using the Ancillary loading capability
from the top of the e2 studio toolbar. Select Load as raw binary image and configure the Address to
0x02020000.

Figure 37. Load the Secondary Application Image for Overwrite Mode

3. Click Resume . The overwrite occurs, and the new image is executed. Now, only the Blue LED
should be blinking.

4. Confirm the same configuration as shown in Figure 35, then click OK. The following output is printed,
and only the blue LED blinks.

Figure 38. Executing the Secondary Application Image for Overwrite Update Mode

3.7 Running the EK-RA8M1 Swap Test Update Mode Example without TrustZone
Follow the steps below to run the example projects for EK-RA8M1 using the MCUboot Swap Test Update
mode without TrustZone.

3.7.1 Import the Projects
Import the projects under Folder \ra8m1_swap_test_with_bootloader to a Workspace.

The following example projects are included in this folder:

Figure 39. Example Projects for RA8M1 Swap Test Update Mode
• Project ra_mcuboot_ra8m1_swap_testmode is the bootloader project.
• Project app_ra8m1_primary is the initial Primary application project. This project blinks the three

LEDs on the EK-RA8M1 kit.
• Project app_ra8m1_secondary is the Secondary application project. This project blinks the blue LED

on the EK-RA8M1 kit.

Follow section 3.2 to set up the Python signing environment if this is the first time you have signed the
application image.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 28 of 50
Sep.06.24

3.7.2 Compile the Projects
The bootloader project needs to be compiled first. For each project, open the configuration.xml file,
click Generate Project Contents, and then click to build the project. Compile the projects in the following
order:
1. ra_mcuboot_ra8m1_swap_testmode
2. app_ra8m1_primary
3. app_ra8m1_secondary

For the application projects, the post-build command will also sign the corresponding images. The signed
image is located under the \Debug folder and is named <project_name>.bin.signed (for example,
/app_ra8m1_primary/Debug/app_ra8m1_primary.bin.signed)

3.7.3 Debug the Applications and Boot the Primary Application
Right-click on project app_ra8m1_primary and select Debug As > Debug Configurations.

Figure 40. Debug Configuration RA8M1 Overwrite Update
Click Debug.

Click Resume twice and boot the Primary image. All three LEDs should be blinking.

3.7.4 Open the J-Link RTT Viewer
Configure the RTT Viewer as shown in Figure 35. Observe the following output on the RTT Viewer. This
output shows that the Primary application is being executed and all three LEDs are blinking.

Figure 41. Execution of Primary Application for Swap Test Mode

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 29 of 50
Sep.06.24

3.7.5 Downloading and Running the Secondary Applications

During development, you can use the Ancillary loading capability to load the new Secure image to the
intended location. Follow the steps below to perform an application upgrade. Refer to section 3.8 for
troubleshooting when using the Load Ancillary File function.

1. Press to pause the program.

2. Load the new application images to the Secondary slot region using the Ancillary loading capability
from the top of the e2 studio toolbar in a similar way as Figure 37. Select Load as raw binary image and
configure the Address to 0x02020000.

3. Click Resume . A swap occurs, and the new image is executed. Now, only the blue LED should be
blinking.

4. Confirm the same configuration as shown in Figure 35, then click OK. The following output is printed and
only the blue LED should blink.

Figure 42. Executing the Secondary Application Image for Swap Test Update Mode
5. Pause and reset the application from the debugger.

3.8 Troubleshooting
When running the example projects, you may experience a USB Debug connection or the RTT Viewer
connection issue when using the “Load Ancillary File” button to download the Secondary image. To
recover from these failures:

• If the USB Debug connection disconnects, the recommendation is to try out another available USB port
on the development PC for the USB Debug connection. If failure persists, contact Renesas support.

• If the RTT Viewer disconnects, the recommendation is to power cycle the board and restart the debug
session.

4. Creating the Bootloader
This section provides a walk-through of the bootloader creation of the example projects, as well as how to
link the standalone application with the bootloader. For most of the steps, the considerations and
configurations in creating a bootloader with the different upgrade modes are common. Whenever there is a
difference in the implementation of the different update modes, the difference will be addressed.

The walk-through of the bootloader creation in this section targets the bootloader used in section 3.3 for the
TrustZone® enabled system. Wherever there is a need to address the Non-TrustZone-enabled
implementation, it will be addressed.

4.1 Creating a Bootloader Project for RA Family
The screen captures used in these sections are based on the RA8M1-based bootloader projects used in
section 3.3, 3.4, and 3.5. Follow this section to establish the bootloader projects used in section 3.3, which
uses Overwrite Only as the application update mode. Updates needed for the bootloader projects used in the
section 3.4 and 3.5 are addressed.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 30 of 50
Sep.06.24

4.1.1 Start Bootloader Project Creation with e2 studio
Follow the steps below to create the initial bootloader project based on EK-RA8M1:

1. From the e2 studio Workspace, navigate to the File > New > Renesas C/C++ Project > Renesas RA
and then select Renesas RA C/C++ Project and press Next.
Provide the project name ra_mcuboot_ra8m1 and click Next. The exact name needs to be provided to
follow the default instructions in this section. If a different name is provided, all instructions related to the
name of the bootloader project need to be updated accordingly.
In the next screen, select FSP version 5.5.0 and the EK-RA8M1 board. Use the default Debugger
setting J-Link Arm and click Next.
Note that if the creation process is using other newer FSP versions, some details on the error messages
shown when the MCUboot module is initially added may be different. Adapt the actions accordingly to
satisfy the dependencies.

2. When the following screen appears.
• For a Bootloader Project using TrustZone, select TrustZone Secure Project.

Figure 43. Choose TrustZone Secure Project as Project Type

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 31 of 50
Sep.06.24

• For a Bootloader Project not using TrustZone, select Flat (Non-TrustZone) Project.

Figure 44. Choose Flat Project as Project Type

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 32 of 50
Sep.06.24

3. The following screen appears.
For a Bootloader Project using TrustZone, choose the project template. As shown in Figure 45, there are
two Secure project templates. You can choose which templates to use based on whether an RTOS is used
in the Non-secure project.

• Bare Metal – Minimal

Secure project with MCU Initialization functions with support for transitioning to Non-secure partition.
This application note uses the Bare Metal – Minimal project template as an example to explain the
general steps of creating a secure project.

• TrustZone Secure RTOS – Minimal
 Secure projects will add the required RTOS context in the Secure region for the Thread that needs to

access the NSC APIs in an RTOS-enabled project. When this project type is selected, the Arm
TrustZone Context RA Port will be added, as shown in Figure 45.

 The RTOS kernel and user tasks will reside in the Non-secure partition.

Figure 45. Choose the Project Template
Click Finish to allow the Project Generator to populate the project template.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 33 of 50
Sep.06.24

For a Bootloader Project not using TrustZone, choose Executable as the Build Artifact Selection and
No RTOS. Click Next.

Figure 46. Choose Executable and No RTOS

In the next screen, select the project template.
Choose Bare-Metal – Minimal as the Project Template Selection and click Next.

4. For a Bootloader Project using TrustZone. In the clocks tab, set Clock as Security.

Figure 47. Security Clock Security

5. Update the Pin configuration file.
The project will now be created, and the bootloader project configuration will be displayed. Select the
Pins tab and deselect the Generate data check box. Use the pull-down menu to switch from RA8M1 EK
to R7FA8M1AHECBD.pincfg for the Select Pin Configuration option, select the Generate data check
box, and enter g_bsp_pin_cfg.

Figure 48. Uncheck Generate Data for RA8M1 EK Pin Configuration

Figure 49. Select R7FA8M1AHECBD.pincfg and Generate data g_bsp_pin_cfg

Note that when we select the Flat Project model, the I/Os are configured as Secure by default. Updating
the pin configuration, as shown above, selects the pin configuration with the minimal number of pins
defined because any I/O that is defined in the Flat project will not be available for use in the Non-Secure
application and can only be accessed by the Secure application.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 34 of 50
Sep.06.24

6. Add the MCUboot module.
Change to the Stacks tab and select New Stack > Bootloader > MCUboot.

Figure 50. Add the MCUboot Module

4.1.2 Resolve the Configurator Dependencies
After the MCUboot module is brought into the configurator, follow the steps in this section to resolve the
dependencies:

1. Resolve the following dependency of the MCUboot by adding the MbedTLS (Crypto Only) stack.

Figure 51. MCUboot Module Dependency

Left-click on Add Crypto Stack, choose New and add the MbedTLS (Crypto Only) stack.

Figure 52. Add MbedTLS (Crypto Only) Module

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 35 of 50
Sep.06.24

2. Configure the Mbed Crypto dependencies.
Follow the prompt in Figure 53 to update the corresponding properties for the MCUboot Port for the RA
Module.

Figure 53. Dependencies of MCUboot Module for RA Stack

Configure the following properties:

Figure 54. Configure Highlighted Properties for the MbedTLS (Crypto Only) Stack

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 36 of 50
Sep.06.24

Add the r_flash_hp module:

Figure 55. Add the r_flash_hp Stack

Configure the r_flash_hp stack:

Figure 56. Configure the r_flash_hp Stack

3. Hover the cursor over MbedTLS (Crypto Only) stack. You will see warnings as shown in Figure 57.
4. Under the BSP tab, set up the stack and heap size to support ECC:

• RA Common > (set Main stack size to 0x1000 and Heap size to 0x400)

Figure 57. Dependencies of Mbed TLS (Crypto Only) Stack

5. Disable RSA following the prompt in Figure 58. This bootloader design uses ECC for signature
generation. Disable the RSA algorithm to save the BSP Heap size.

Figure 58. Dependencies of RSA

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 37 of 50
Sep.06.24

Figure 59. Disable RSA

At this point, the error message in the stack window should have been resolved.
6. Decide the number of application images.

For MCUs with TrustZone support:
• If the application uses TrustZone, there will be two application images in each slot: secure and non-

secure applications. In this case, set the Number of images per Application to 2.
• If the application does not use TrustZone, there will be one application image in each slot. In this

case, set the Number of images per Application to 1.
• The bootloader used in section 3.3 uses TrustZone, so for this example bootloader, set the Number

of images per Application to 2. MCUboot > Common > General > Number of images per
Application (change from 1 to 2).

For MCUs without TrustZone support, set this property to 1.
7. Configure the Flash Layout for RA8M1 Overwrite Update mode with TrustZone as shown below based

on the standalone application projects described in section 5. For your application projects, you can
follow the guidelines in section 2.3 to design the bootloader memory allocation. This configuration
matches the bootloader used in section 3.3.

Figure 60. Memory Configuration of Overwrite Update Mode RA8M1 with TrustZone

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 38 of 50
Sep.06.24

Configure the MCUboot module and application memory allocation based on RA8M1 Swap Update
mode with TrustZone as shown below based on the standalone application projects described in section
5. This configuration matches the bootloader used in section 3.4.

Figure 61. Memory Configuration of Swap Update Mode RA8M1 with TrustZone

Configure the MCUboot module and application memory allocation based on RA8M1 Direct XIP mode
based on the example projects presented in section 3.5. This configuration matches the bootloader used
in section 3.5.

Figure 62. Memory Configuration of Direct XIP Update Mode RA8M1

Configure the MCUboot module and application memory allocation based on the RA8M1 Overwrite
Update mode without TrustZone based on the example projects presented in section 3.6. This
configuration matches the bootloader used in section 3.6.

Figure 63. Memory Configuration of Overwrite Update Mode RA8M1 without TrustZone

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 39 of 50
Sep.06.24

Configure the MCUboot module and application memory allocation based on RA8M1 Swap Test Update
mode without TrustZone based on the example projects presented in section 3.7. This configuration
matches the bootloader used in section 3.7.

Figure 64. Memory Configuration of Swap Test Update Mode RA8M1 without TrustZone
For the configuration of the swap test mode run-time support, refer to application note R11AN0516 to
understand the operation.

4.1.3 Setting up the Booting Authentication Support
You can choose to use the default pair of public/private keys included in MCUboot for testing purposes:

• The default public keys are defined in /ra_mcuboot_ra8m1/ra/mcu-
tools/MCUboot/sim/mcuboot-sys/csupport/keys.c.

• The default private keys are included in folder /ra_mcuboot_ra8m1/ra/mcu-tools/MCUboot/sim.

Figure 65. Example Public Keys and Private Keys Included in MCUboot Port Stack
To use the example keys, select Add Example Keys > New > MCUboot Example Keys (NOT FOR
PRODUCTION).

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 40 of 50
Sep.06.24

Figure 66. Add the MCUboot Example Key
Note: The example public key and private key used in the MCUboot is for testing purposes only. Refer to

section 2.6 for guidelines on selecting the public key and private key for production support.
Application Project R11AN0567 includes procedures to create customized key pair preparation. Refer
to R11AN0567 to create customized key pairs.

4.1.4 Setting up the Application Authentication Signature Type
There are three signature types supported in FSP, as shown below. Open the Property page of stack
MCUboot > Common > Signing and Encryption Options to look at the signing options. In this example
implementation, ECDSA P-256 is used for all the example bootloaders demonstrated in section 3.

4.1.5 Add MCUboot Initialization Code
Follow the steps below to add the MCUboot activation code and compile the bootloader:

1. Add the source code and compile the bootloader.
Follow the steps below to add the source code to the bootloader project and compile the project.
• Open hal_entry.c.
• Open Developer Assistance.
• Go to HAL/Common > MCUboot > Quick Setup. Drag Call Quick Setup to the top of the

hal_entry.c file before the hal_entry() function call.
• Call this function at the top of the hal_entry() function

• mcuboot_quick_setup();
Notes on the mcuboot_quick_setup function
• The main functionality established in the bootloader project is established by the function

mcuboot_quick_setup, which performs the following functions:
• The boot_go function does most of the functions of a bootloader except the final step of

jumping to the main image. This function returns a structure pointer (rsp for return structure
pointer) from which the image is booted.

• The RM_MCUBOOT_PORT_BootApp function cleans up resources used by the bootloader and
jumps to the application image.

2. Compile the bootloader project.
• Save the project (save the source code and the configuration.xml file), click Generate Project

Content and then compile the project.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 41 of 50
Sep.06.24

5. Using the Bootloader with Applications
A set of existing non-bootloader-based projects is used to demonstrate how to configure existing application
projects to use the bootloader. General guidelines are also provided for adapting to other existing
applications. Unzip example_projects_no_bootloader.zip.

These projects have the same functionality as the projects demonstrated in section 3.3 except these projects
are not configured to use the bootloader. Follow the steps below to configure the standalone application
projects to use the bootloader and sign the application.

5.1.1 Import the Standalone Application Projects
Import the RA8M1 standalone example project to the same workspace as the bootloader project you created
in the previous section. In this section, we will update these existing projects to use the bootloader created in
the previous section.

Figure 67. Standalone Example Projects for RA8M1 with No Bootloader support

5.1.2 Configure the Application Projects to Use the Bootloader
We will now alter the project Properties configuration to allow it to use the bootloader. Right-click on the
app_ra8m1_s_primary folder in the Project Explorer and select Properties. Select C/C++ Build>Build
Variables, click Add, set the Variable name to BootloaderDataFile, and check the Apply to all
configurations box. Change the Type to File and enter
${workspace_loc:ra_mcuboot_ra8m1}/Debug/ra_mcuboot_ra8m1.bld for the value. Click OK to save the
changes.

Figure 68. Configure the Build Variable to Use the Bootloader

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 42 of 50
Sep.06.24

Follow the same procedure and settings as shown in Figure 68 to configure the other three projects:

• app_ra8m1_ns_primary
• app_ra8m1_s_secondary
• app_ra8m1_ns_secondary

5.2 Signing the Existing Application Projects to Use the Bootloader
The signing command for the application image will be automatically generated when the bootloader is
compiled. In the Project Explorer, navigate to the <boot_project > debug > <boot_project
> .bld file. The signing command is under the section <image >.

Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will need to select Generate Project Content again to bring in the
updated .bld file.

Each application can have a defined version number. This version number can be used in the Overwrite
Upgrade mode when Downgrade Prevention is Enabled. This is achieved by defining an Environment
Variable: MCUBOOT_IMAGE_VERSION. If there is signature verification, then it is necessary to set the
Environment Variable: MCUBOOT_IMAGE_SIGNING_KEY.

Figure 69. Add New Environment Variable
Add the Environment variable for the application image version.

Figure 70. Add MCUBOOT_IMAGE_VERSION Variable
Add an Environment variable to configure the application image signing key.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 43 of 50
Sep.06.24

Figure 71. Add MCUBOOT_IMAGE_SIGNING_KEY Variable

Figure 72. Configure the Signing Key and Application Version
Note: The private key used for signing the application image is indicated in the signing command.

/ra/mcu-tools/MCUboot/root-ec-p256.pem is used as an example bootloader. This key is
used for testing purposes only. For real-world use cases and production support, you MUST change
this to the private key of their choice.

To be able to always recompile the project when the environment variables or the linker script are updated,
we recommend adding a Pre-build step to always delete the .elf file, as shown in Figure 73.

Figure 73. Configure the Pre-build Command

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 44 of 50
Sep.06.24

Follow the same procedure to configure the other three projects:

• app_ra8m1_ns_primary
• app_ra8m1_s_secondary
• app_ra8m1_ns_secondary

5.2.1 Click Generate Project Content and Compile All Four Application Projects
For both Primary and Secondary applications, compile the Secure application first and then the Non-Secure
application.

5.2.2 Configure the Debug Configuration
1. Open the Debug Configurations: app_ra8m1_s_primary > Debug As > Debug Configurations

Make sure that app_ra8m1_s_primary Debug is selected and select the Startup tab.

Figure 74. Configure the Primary Secure Project Debug Startup

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 45 of 50
Sep.06.24

2. Set up the Debug Configurations.
Click Add… and then Workspace. Navigate to the ra_mcuboot_ra8m1 project and select the
ra_mcuboot_ra8m1.elf file from the debug folder. Click OK.

Figure 75. Add the Bootloader Project

Click Add again and add the app_ra8m1_ns_primary project binary app_ra8m1_ns_primary.elf as in
the prior step. Click OK.

Figure 76. Add the Non-Secure Project

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 46 of 50
Sep.06.24

Change the load type of the Program Binaries for the app_ra8m1_ns_primary and
app_ra8m1_s_primary to Symbols only by clicking on the cell for load type and selecting Symbols
only from the drop-down menu.

Figure 77. Select to load Symbols only for the Secure and Non-Secure Project

3. Add the signed binary image to the download options using the Raw Binary Load type.

Figure 78. Load the Signed Images

Note that for different update modes and different application images, the load address needs to be
updated. For the example projects included in this application project, you can reference the memory
configuration images included in Figure 60 to Figure 64 to set up the load address.

4. After the above is set up, follow section 3.3 to run the projects if Overwrite Update mode is used or follow
section 3.4 to run the projects if Swap Update mode is used.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 47 of 50
Sep.06.24

5.3 Mastering and Delivering a New Application
Mastering and delivering a new application involves similar steps described above in section 4.2 and section
5.2. Typically, the following aspects must be considered in the design of delivering new applications:

1. Create the new application and sign the latest application by following the steps below:
A. Refer to the Renesas RA Family Security Design with Arm® TrustZone® - IP Protection for new

project creation with TrustZone support.
B. Refer to section 4 to configure the new application to use the bootloader and sign the new

application.
2. Download the new application to the Secondary slots.

This step varies based on the downloading method selected by each user. In this application project, the
Ancillary file download capability from e2 studio is used for demonstration purposes. You can use this
method as a testing tool when developing a customized new image downloader. Application Projects
R11AN0570 and R11AN0576 include image downloader examples using XModem over COM port. They
can be used as references.

5.4 Customize the Bootloader to other MCUs
When customizing to other MCUs, a recreation of the bootloader project is recommended. Changing the
board BSP selection is not a recommended path. Recreating the bootloader project is needed, particularly
when moving to a different FSP version.

• Users need to adjust the memory configuration based on the bootloader size and the application size
(refer to).

• When customizing to other MCUs using the same FSP version, users can use the stack export and
import functionality to save some steps in the bootloader project recreation.

• Note that there can be errors after exporting and importing the stack; the user needs to
review the imported stack by comparing it with the original bootloader to correct any errors.

To export a stack, right-click on the module, select Export, and save the stack with .xml as the file extension.

Figure 79. Export a Stack
To import a stack, right-click in the open area of the Stack window, select Import, and choose the
exported .xml file.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 48 of 50
Sep.06.24

Figure 80. Import a Stack

6. Appendix
6.1 Making the Bootloader for Cortex-M85 Immutable
To make the bootloader immutable, you must lock the flash blocks containing the bootloader from being
programmed and erased.

The RA8M1 features two sets of registers that facilitate flash block locking. Block Protect Setting (BPS)
Registers feature bits that map to individual flash blocks. When a bit is set to zero, the corresponding flash
block cannot be erased or programmed. The Permanent Block Protect Setting (PBPS) Registers have a
similar bit mapping to flash blocks. When a bit is set in one of these registers, the corresponding flash block
is permanently locked from being erased and programmed if the same bit in the Block Protect Setting
Register is also cleared to zero. This process is irreversible. Once a flash block is permanently locked, it
cannot be unlocked again.

Based on the example bootloaders provided in this application project, the flash blocks used by the
bootloader are:

• RA8M1 Overwrite Mode: block 0-7
• RA8M1 Swap Mode: block 0-8

Refer to the Renesas RA Family MCU Securing Data at Rest Using the Arm® TrustZone® Application Project
to understand the operational flow of setting up the Flash Block Protection.

Note that ticking the BSP0 and PBPS0 Flash Block settings will permanently lock the flash blocks. This
CANNOT be reversed. Further details can be found in sections 6.2.9 and 6.2.10 of the RA8M1 Hardware
User’s Manual.

6.2 Making the Bootloader for Cortex-M33 Immutable
Refer to the Renesas RA Family MCU Securing Data at Rest Using the Arm® TrustZone® Application Project
to understand the operational flow of setting up the Flash Block Protection.

6.3 Making the Bootloader for Cortex-M4 Immutable
Refer to the Renesas RA MCU Family Securing Data at Rest Utilizing the Renesas Security MPU application
project section Permanent Locking of the Flash Access Window (FAW) Region to understand how to make
the bootloader for Cortex-M4 Immutable. Section PC Application to Permanently Lock the FAW in the same
application note describes how to handle Flash locking in production mode.

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 49 of 50
Sep.06.24

6.4 Device Lifecycle Management for Renesas RA Cortex-M85 MCUs
Once the bootloader development is finished, you can transition the Device Lifecycle State of the RA Cortex-
M85 MCU to lock down the debugger and the serial programming interface.

We recommend referring to the Device Lifecycle State Transitions in the Production Flow section in the
Renesas RA Family Device Lifecycle Management Key Injection Application Note to understand the device
lifecycle management options during production.

The operational overview of how to use Renesas Flash Programmer to perform these transitions is explained
in the Overview of Device Lifecycle State Transitions using the Renesas Flash Programmer section.

6.5 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs
Once the bootloader development is finished, you can transition the Device Lifecycle State of the RA Cortex-
M33 MCU to lock down the debugger and the serial programming interface.

We recommend referring to the Device Lifecycle State Transitions in the Production Flow section in the
Renesas RA Family Device Lifecycle Management Key Injection Application Note to understand the device
lifecycle management options during production.

The operational overview of how to use Renesas Flash Programmer to perform these transitions is explained
in the Overview of Device Lifecycle State Transitions using the Renesas Flash Programmer section.

6.6 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs
Once the bootloader development is finished, set up the ID Code protection on the Renesas RA Cortex-M4
MCU to lock down the debugger and the serial programming interface.

You can refer to the Securing Data at Rest Utilizing the Renesas Security MPU Application Project section
Setting up the Security Control for Debugging for the desired setting to control the device lifecycle
management of the RA Cortex-M4 MCUs using the ID Code protection method.

7. References
• Renesas RA Family Securing Data at Rest Using the Arm® TrustZone® (R11AN0468)
• Renesas RA Family Device Lifecycle Management for RA8 MCUs (R11AN0785)
• Renesas RA Family Security Design with RA8 MCU using Arm® TrustZone® - IP Protection (R11AN0897)
• Renesas RA Family Secure Bootloader for RA2 MCU Series (R11AN0516)
• Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank (R11AN0570)
• Renesas RA Family RA6 Booting Encrypted Image using MCUboot and QSPI (R11AN0567)

8. Website and Support
Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA8M1 Resources renesas.com/ra/ek-ra8m1
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support

https://www.renesas.com/ra/ek-ra8m1
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family RA8 Basic Secure Bootloader Using MCUboot and Internal Code Flash

R11AN0909EU0100 Rev.1.00 Page 50 of 50
Sep.06.24

Revision History

Rev. Date
Description
Page Summary

1.00 Sep.06.24 - First release document.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of MCUboot
	1.1 History of MCUboot
	1.2 MCUboot Functionalities Overview
	1.2.1 Validate Application Before Booting and Updating
	1.2.2 Applications Update Strategies

	2. Architecting an Application with MCUboot Module using FSP
	2.1 MCU Memory Configuration using MCUboot Module with FSP
	2.2 Overview of FSP MCUboot Module
	2.2.1 General Configuration
	2.2.2 Application Image Signature Type Options
	2.2.3 Signing Options
	2.2.4 MCU Memory Configuration

	2.3 Designing Bootloader and the Initial Primary Application Overview
	2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
	2.5 Customize the Bootloader
	2.6 Production Support
	2.6.1 Key Provisioning
	2.6.2 Make the Bootloader Immutable for Enhanced Security
	2.6.3 Advance the Device Lifecycle States Prior to Deploying the Product to the Field

	3. Running the Example Projects
	3.1 Set Up the Hardware
	3.1.1 Set up EK-RA8M1

	3.2 Configure the Python Signing Environment
	3.3 Running the EK-RA8M1 Overwrite Update Mode Example with TrustZone
	3.3.1 Initialize the RA8M1 MCU
	3.3.2 Import the Projects under \ra8m1_overwrite_with_bootloader_tz
	3.3.3 Compile All the Projects
	3.3.4 Debug the Applications and Boot the Primary Applications
	3.3.5 Open the J-Link RTT Viewer
	3.3.6 Downloading and Running the Secondary Applications
	3.3.7 Update the Non-Secure Secondary Image

	3.4 Running the EK-RA8M1 Swap Update Mode Example without Test Mode with TrustZone
	3.4.1 Downloading and Running the Secondary Applications

	3.5 Running the EK-RA8M1 DXIP Update Mode Example
	3.5.1 Downloading and Running the Secondary Applications

	3.6 Running the EK-R8M1 Overwrite Update Mode Example without TrustZone
	3.6.1 Import the Projects under Folder \ra8m1_overwrite_with_bootloader to a Workspace
	3.6.2 Compile the Projects
	3.6.3 Debug the Applications and Boot the Primary Application
	3.6.4 Open the J-Link RTT Viewer
	3.6.5 Downloading and Running the Secondary Applications

	3.7 Running the EK-RA8M1 Swap Test Update Mode Example without TrustZone
	3.7.1 Import the Projects
	3.7.2 Compile the Projects
	3.7.3 Debug the Applications and Boot the Primary Application
	3.7.4 Open the J-Link RTT Viewer
	3.7.5 Downloading and Running the Secondary Applications

	3.8 Troubleshooting

	4. Creating the Bootloader
	4.1 Creating a Bootloader Project for RA Family
	4.1.1 Start Bootloader Project Creation with e2 studio
	4.1.2 Resolve the Configurator Dependencies
	4.1.3 Setting up the Booting Authentication Support
	4.1.4 Setting up the Application Authentication Signature Type
	4.1.5 Add MCUboot Initialization Code

	5. Using the Bootloader with Applications
	5.1.1 Import the Standalone Application Projects
	5.1.2 Configure the Application Projects to Use the Bootloader
	5.2 Signing the Existing Application Projects to Use the Bootloader
	5.2.1 Click Generate Project Content and Compile All Four Application Projects
	5.2.2 Configure the Debug Configuration

	5.3 Mastering and Delivering a New Application
	5.4 Customize the Bootloader to other MCUs

	6. Appendix
	6.1 Making the Bootloader for Cortex-M85 Immutable
	6.2 Making the Bootloader for Cortex-M33 Immutable
	6.3 Making the Bootloader for Cortex-M4 Immutable
	6.4 Device Lifecycle Management for Renesas RA Cortex-M85 MCUs
	6.5 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs
	6.6 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs

	7. References
	8. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

