RE N ESAS Application Note

Renesas RA Family

RA2 MCU Advanced Secure Bootloader Design using
MCUboot Internal Code Flash and Memory Mirror
Function

Introduction

MCUDboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software update. MCUboot is an operating system and hardware independent and relies on hardware porting
layers from the operating system it works with. Users can benefit from using the FSP MCUboot Module to
create a Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates.

MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot. There
is a \docs folder that holds the documentation for MCUboot in .md file format. This application note refers to
the above-mentioned documents wherever possible and is intended to provide additional information that is
related to using the Renesas FSP MCUboot Module.

For the RA family, RA2A2 and RA2A1 MCU Groups support the Memory Mirror Function (MMF). This
application explains how to design a secure bootloader using the MMF feature and demonstrates the
benefits of combining MCUboot with MMF for the RA2 MCU Series.

Furthermore, MCUboot is a secure bootloader solution. Therefore, the implementation of MCUboot with the
MMF feature is inherently designed as a security solution by default.

Example projects using the EK-RA2A2 evaluation kit are provided in this application project. Users can
review the flash layout for other RA2 MCUs and port the application. In addition, steps for how to master an
application to use with the bootloader and how to download and update to a new application are provided.
Users can follow these steps to recreate the reference bootloader and link the example application projects
included in this application project to use the bootloader.

If you are interested in the basic secure bootloader design using the MCUboot module with RA2 internal
code flash in linear mode, please refer to https://www.renesas.com/en/document/apn/secure-bootloader-ra2-
mcu-series-application-project?r=1470181.

For RA6 MCU group secure bootloader design using MCUboot and code flash linear mode, please refer to
https://www.renesas.com/en/document/apn/ra6-basic-secure-bootloader-using-mcuboot-and-internal-code-
flash?r=1353811.

For RA8 MCU group secure bootloader design using MCUboot and code flash linear mode, please refer to
https://www.renesas.com/en/document/apn/ra8-basic-secure-bootloader-using-mcuboot-and-internal-code-
flash?r=25448206.

Required Resources
Development tools and software

e The e? studio IDE v2025-01
e Renesas Flexible Software Package (FSP) v5.8.0
e SEGGER J-link® USB driver v8.12

The above three software components: the FSP, J-Link USB drivers and e2 studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

e Python v3.9 or later - https://www.python.org/downloads/
Hardware

o EK-RA2A2, Evaluation Kit for RA2A2 MCU Group http://www.renesas.com/ra/ek-ra2a2
e Workstation running Windows® 10
e One USB device cables (type-A male to micro-B male)

RO1AN7766EU0100 Rev.1.00 Page 1 of 47
May.20.25 RENESAS

https://github.com/mcu-tools/mcuboot
https://www.renesas.com/en/document/apn/secure-bootloader-ra2-mcu-series-application-project?r=1470181
https://www.renesas.com/en/document/apn/secure-bootloader-ra2-mcu-series-application-project?r=1470181
https://www.renesas.com/en/document/apn/ra6-basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=1353811
https://www.renesas.com/en/document/apn/ra6-basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=1353811
https://www.renesas.com/en/document/apn/ra8-basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=25448206
https://www.renesas.com/en/document/apn/ra8-basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=25448206
http://www.renesas.com/fsp
https://www.python.org/downloads/
https://www.renesas.com/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra2a2-evaluation-kit-ra2a2-mcu-group

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Prerequisites and Intended Audience

Users of this application project should have some experience with the Renesas e? studio. Users should
read the MCUboot Port section of the FSP User’s Manual as well as the MCU Hardware User’s manual
Flash Memory and Memory Mirror Function (MMF) sections prior to working with this application project.
Users should also have some knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience includes product developers, product manufacturers, product support, or end users
who are involved with designing application systems involving usage of a secure bootloader.

RO1AN7766EU0100 Rev.1.00 Page 2 of 47

May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Contents

1. RA2 MCU Group Memory LayOULccooiiiiiiiiiii e e e e e 5
1.1 RA2A2 MCU Code Flash Configurationc.oouiiiiiiiiiiiiie e 5
1.2 RA2A2 MCU Memory Mirror ADdress Mappingeeeoieeeieiiieiie et 5
1.3 Security Memory Protection Unit and Flash Access WINAOWcooiiiiiiiiiiiiiiiiie e 7
2. Using the Code Flash Linear Mode and MMF Feature with MCUboot Overview...................... 8
2.1 MCUDOOt FUNCHONANHIES OVEIVIEWuveiiiiiiiiee ittt e et e e e sbb e e e e sbaeeeeeaes 9
2.2 Use Direct XIP Firmware Update MOGEoeiiiiiiiiiiiiiee et e e e e e e 9
DZ28C T |V 1= 0 T oV 1Y [T o U] o 1) o 10
2.4 Using Direct XIP Upgrade Mode With MMF 11
2.5 Designing Bootloader and Initial Primary Application OVErviewccccoviiiiieiiiiiiiiiieeee e, 12
3. SYSIEBM OVEIVIEW it e e e e e e e e et e e e e e e e e e aa b b e e eeaaeas 12
3.1 System-Level Major EVENES..........coii ittt e e e e e e e e e et e e e e e e e e anrreeeeaaeeas 12
3.2 XModem Based Image DOWNIOAET...........uu s 13
3.3 Linker Script Update When MMF is ENabled ... e 15
3.4 Introduction to the Included Example Projects ... 16
4. Creating the Bootloader Project using Code Flash Linear Mode and MMF 16
4.1 Include the MCUboot Module in the Bootloader Project ... 16
4.2 Configure the Memory Configuration and Authentication Methodcccooiiiiiiiie, 20
4.3 Enable the Memory Mirror FUNCHION SUPPOITcooiiiiiiiiie e 21
4.4 Configure the TinyCrypt Module and the FIash DFIVErccoiiiiiiiie e 22
4.5 Add the BOOt COUEoeiiiiiiiiiiie ettt e et e e et e e e e e e e e e e eanes 24
4.6 Configure the Python Signing ENVIronmMeNtcooi e 24
4.7 Compile the Bootloader ProjeCt..........cooiiiiiiiiiie ittt 25
4.8 Optimizing the Bootloader ProjeCt Size..........cuuiiiiiiiiii e 25
5. Configuring and Signing an Application Project ... 25
5.1 Configure the Application Project to Use the Bootloader.............eovvieiiiiiiiiiiiie e 26
5.2 Signing the Application IMage...........oouiiiiiiiie ettt e e st e e e e rneeee e e 26
6. Booting the Primary Application and Updating to a New Imageccccccviiiiiiiiiiiiiinininnnnns 29
6.1 Prepare @ SECONAArY IMAGEuuiiiiiiiiei ettt e ettt e e ettt e e e sttt e e e sbbeee e sneeeeesaneeeaeaan 29
6.2 St UP the HArAWAIEoooiiiiiiieie ettt ettt e sttt e e e st e e e e enbeee e eanteeeesaneeeeeaan 33
6.3 Erase the MU ...ttt ettt e ettt e e s bt e e e sttt e e e ebee e e e s bbeeeeabeeeeeaneeeaeaans 33
6.4 Boot the Primary AppPlICAtioN ... e e e e e e 35
6.5 Program the New Application Using the Primary Application Downloader.............ccccccoiiiiiiiiiienneenn. 38
6.6 Boot the New APPIICAtION et e e e e e e e e e e e e e e e e e e annneeeeeaee s 40
7. Memory Mirror Address When Booting IMageuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiii 41
RO1AN7766EU0100 Rev.1.00 Page 3 of 47

May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

8. Production Support Considerationscoooiiiiiiiiiiis e 42
8.1 Protect the Bootloader using Memory Protection Unit and Flash Access Window...........cccccoeeeiiiiennn. 42

9. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects44

LT (=T (=T (=T g =T 45
11. WebSite and SUPPOI ... e e e e e e e e e e e eaaaaas 46
REVISION HISIOIY ..o 47
RO1AN7766EU0100 Rev.1.00 Page 4 of 47

May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

1. RA2 MCU Group Memory Layout

For RA2A2 and RA2A1 MCU groups, the internal flash memory can operate in linear mode or dual bank
mode. In this application, we use the linear mode to demonstrate. In this mode, the code flash memory is
used as one area to boot a new application for a system that includes a bootloader.

1.1 RA2A2 MCU Code Flash Configuration

Based on the code flash memory size, as shown in Figure 1, users can easily calculate the bootloader size
and image size in the bootloader project.

Read address
0x0007_FFFF

Block 255 (2 KB)

512 KB

Block 128 (2 KB)
0x0004_0000

0x0003_FFFF Block 127 (2 KB)

Block 0 (2 KB)

0x0000_0000

Figure 1. Mapping of the code flash memory

1.2 RA2A2 MCU Memory Mirror Address Mapping

The Memory Mirror Function (MMF) links the memory mirror space (0x0200_0000 to 0x027F _FFFF) to the
code flash area, as show in Figure 2.

RO1AN7766EU0100 Rev.1.00 Page 5 of 47
May.20.25 RENESAS

Renesas RA Family

RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

0xFFFF_FFFF

0xE000_0000

0x407F_0000
Ox407E_0000

0x4010_2000

0x4010_0000

0x4000_0000

0x2000_C000

0x2000_0000
0x0280_0000

0x0200_0000
0x0101_0034
0x0101_0008

0x0100_1C21
0x0100_1C00
0x0008_0000

0x0000_0000

System for Cortex®-M23

Reserved area*!

Flash /O registers

Reserved area*’

On-chip flash (data flash)

Peripheral I/O registers

Reserved area*'

On-chip SRAM

Reserved area*'

Memory mapping area
served area

‘On=chip flash (option-setting memory)

Reserved area*!

On-chip flash (Factory Flash)*¢

Reserved area*’

On-chip flash (program flash)
(read only)***

Figure 2. Memory Mapping Area

RO1AN7766EU0100 Rev.1.00

May.20.25

RENESAS

Page 6 of 47

Renesas RA Family

RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

1.3 Security Memory Protection Unit and Flash Access Window

The MCU incorporates a security MPU with four secure regions that include the code flash, SRAM, and two
security functions. In this application, we only use code flash security region. The secure regions can be
protected from non-secure program access. A non-secure program cannot access a protected region.

e A . = = = = == ———————— =y

Security MPU setting

Memory | Memory |
| : Non-secure data
|
Secure function | | Regon3 |l e.. ..
(data flash) I Secure data
________ Non-secure data | Non-secure
Secure function Region 2 program
(secure IPs) I Secure data
________ | {¥oom e
| I Non-secure data
sram || | e
Region1 Secure data +
_________________ i
PC region 1 I Secure program
S (i
| 1
| 1
[1
| |
Code flash : : Non-secure data Non-secure
| | program
| |
| |
________ | P
Region 0 Secure data
_________________ i:____________________
PC region 0 ! Secure program

Figure 3. Security MPU Secure Regions

The Flash Access Window (FAW) defines one contiguous flash region within the MCU flash space. Within
this region, flash erase and write operations are allowed from both secure and non-secure programs. The
access window is only valid in the program flash area.

RO1AN7766EU0100 Rev.1.00
May.20.25

RENESAS

Page 7 of 47

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Address P/E
A

Protected
area

Block 7
(FAWE[10:00] = 0x007) v

A A
Block 6

Access Non-protected
window Block 5 area
Block 4

(FAWS[10:0] = 0x004) y

Block 3

Block 2
Protected
area

Block 1

Block 0

Figure 4. Flash Access Window

By combining the MPU and FAW, the bootloader’s protection will be enhanced. To help users easily
visualize the implementation, we will provide the diagram as shown in Figure 5.

Non-secure Flash

Set up FAW Non-secure Flash Data Region .
Program Region

Secure Flash Data Region
Secure Flash
Program Region

A Non-secure Flash

MCUBoot

w Program Region

Figure 5. Combining the MPU and FAW to protect the bootloader

In addition, for manufacturing usage permanently locking the FAW region prevents a user from updating the
FAW region. Users can refer to Permanent Locking of the FAW Region section in Application Project
R11AN0416.

Note: When permanently locking the FAW region, this action is irreversible.

2. Using the Code Flash Linear Mode and MMF Feature with MCUboot Overview

MCUboot evolved out of the Apache Mynewt bootloader, which was created by runtime.io. MCUboot was
then acquired by JuulLabs in November 2018. The MCUboot github repo was later migrated from JuulLabs
to the mcu-tools github project. In the year 2020, MCUboot was moved under the Linaro Community Project
umbrella as an open-source project.

RO1AN7766EU0100 Rev.1.00 Page 8 of 47
May.20.25 RENESAS

https://github.com/mcu-tools/mcuboot

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

2.1 MCUboot Functionalities Overview

MCUboot handles the firmware authenticity check after start-up and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.
This application project provides an example of downloading a new image using the XModem protocol from
the application project.

The functionality of MCUboot during booting and updating follows the process below:

The bootloader starts when the CPU is released from reset. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader authenticates the Secondary image.

2. Upon successful authentication, the bootloader switches to the new image based on the update method
selected. Available update methods supported by FSP are overwrite, swap, and direct XIP.

3. The bootloader boots the new image.

If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

There is a signing tool included with MCUboot: imgtool.py. This tool provides services for creating Root

keys, key management, and signing and packaging an image with version controls. Read the MCUboot
documentation to understand and use hese operations.

2.2 Use Direct XIP Firmware Update Mode

When using direct XIP mode with code flash in linear mode, the active image slot alternates with each
firmware update. If this update method is used, then two firmware update images must be generated: one of
them is linked to be executed from the primary slot memory region, and the other is linked to be executed
from the secondary slot. Direct XIP is supported in FSP versions 3.6.0 and later.

e Advantages:
o Faster boot time, as there is no overwrite or swap of application images needed.
e Fail-safe and resistant to power-cut failures.
e Disadvantages:
e Added application-level complexity to determine which firmware image needs to be downloaded.
e Encrypted image support is not available.

For overview and usage of other update modes, refer to https://www.renesas.com/en/document/apn/ra8-
basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=25448206 and the MCUboot design
page: https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md.

Note: When using the Direct XIP upgrade mode, the update image needs to have a version number higher
than the current primary image.

RO1AN7766EU0100 Rev.1.00 Page 9 of 47
May.20.25 RENESAS

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://www.renesas.com/en/document/apn/ra8-basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=25448206
https://www.renesas.com/en/document/apn/ra8-basic-secure-bootloader-using-mcuboot-and-internal-code-flash?r=25448206
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Scratch Area
(swap upgrade mode only)

Secondary Appication

Primary Appication

MCUBoot

Figure 6. MCUboot Memory Flash Map: DXIP Upgrade Mode

2.3 Memory Mirror Function

The Memory Mirror Function (MMF) maps the load address of an application image in the code flash
memory to its link address in the unused 23-bit memory mirror space. The user application code is
developed and linked to run from this MMF destination address. The user application code is not required to

know the load location where it is stored in the code flash memory.

For more details, users can refer to Memory Mirror Function (MMF) section in RA2A2 Hardware User’s

Manual.
b31 b24 b23 bi6 b15 b8 b7 b0

Address Bus | 0 | 0 ‘ 0 | 0 | 0 ‘ 0 ‘ 1 | 0 | 0 I Memory mirror space [0x0200_0000-0x027F_FFFF] |
wse []][]1] et AR50 ool o[o[o] o[d]

Code Flash Address | 0 I 0 } 0 | 0 | 0 { 0 { 0 | 0 | 0 I Address bus[22:0] + MMSFR[22:0] |

0x027F_FFFF 7~ MMSFR-1
0x0042_237F
Example: MMSFR = 0x0042_2380
Memory mirror space > < Code flash memory When CPU reads from 0x0200_1000, the link destination

0x027F_FFFF-MMSFR+1

0x027F_FFFF-MMSFR

0x0200_0000

[

\ 0x0000_0000

Address Bus[22:0]
+
MMSFR[22:0]

/] Ox007F_FFFF

MMSFR
0x0042_2380

is 0x0042_3380 in code flash memory.
When CPU reads from 0x023E_8123, the link destination
is 0x0000_A4A3 in code flash memory.

Figure 7. MMF Overview

RO1AN7766EU0100 Rev.1.00
May.20.25

RENESAS

Page 10 of 47

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

2.4 Using Direct XIP Upgrade Mode with MMF

When the MCUboot has MMF enabled, MCUboot decides which image will be “mirrored”. After the image is
reflected on the MMF region, the MCUboot will start booting the application from start address of MMF
(0x0200_0000).

In other words, MCUboot always jumps to start address of MMF to execute the application.

In addition, the benefits of using Direct XIP Upgrade Mode with MMF include:

e A simplified transition from bootloader execution to application execution using a fixed application image
vector table.
o Faster image updates due to Direct XIP mode.

Code flash
0x0001_C000 0%0280_0000 Memory Mirror Region

As functionality of MMF,
all data of memory from
the requested address will

0x0001_4200

be reflected on MMF
0x0001_4000 Header of Secondary App Header of Secondary App region also.
Mirrored
Primary App I Primary App
0x0000_C200 0x0200 0000
0x0000_C000 Header of Primary App After application is "mirrored” on MMF region,
MCUBoot always jump to start address of
MCUBoot MMF to execute the application.
0x0000_0000
Booting Primary Application with MMF
Code flash Memory Mirror Region
0x0001_C000 0x0280_0000
Mirrored
0x0001 4200
Header of Second
0x0001 4000 | eaderof Secondary App
Primary App
0x0000_C200 0x0200 0000
0%0000_CO000 Header of Primary App After application is "mirrored” on MMF region,
MCUBoot always jump to start address of
MCUBoot MMF to execute the application.
0x0000_0000
Booting Secondary Application with MMF
Figure 8. Booting Application with MMF
RO1AN7766EU0100 Rev.1.00 Page 11 of 47

May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

2.5 Designing Bootloader and Initial Primary Application Overview

A bootloader is typically designed with the initial primary application. The following general guidelines apply
to designing the bootloader and the initial primary application:

e Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image as well as the cryptographic library used.

e Develop the initial primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

o Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in adjustment of the memory allocated definition in the bootloader project.

e Sign the application image. The signing command is output to the <bootloader
project>\Debug\>bootloader project>.sbd file. The application image can use a Build
Variable to access this . sbd file. The IDE tools use the signing command to sign the application and
generate a binary file for downloading to the MCU.

o Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

3. System Overview

This section provides information on the major events involved in embedded system design using MCUboot
as the secure bootloader. An XModem-based image downloader is included in this application project, and
its main design flow is described here. In addition, the included example projects are outlined, along with
guidelines for quick evaluation.

3.1 System-Level Major Events

Figure 9. High-Level Design for the Application Project High-Level Design for the Application Project
describes a high-level overview of the key events within the system.

RO1AN7766EU0100 Rev.1.00 Page 12 of 47
May.20.25 RENESAS

Renesas RA Family

RA2 MCU Advanced Secure Bootloader Design using MCUboot

Internal Code Flash and Memory Mirror Function

MCUBoot validates the booting
image

Execute the Primary Application
from the Primary Slot

Update New Application to
Secondary Slot

Selecting Option 2 from the Tera Term
terminal

Image Downloader
Issue a reset to reboot the MCU

MCUBoot validates the booting
image

Excute the Secondary Application
from the Secondary Slot

MCU

Tera Term

Option 1: Display the image slot
information.

UART

Option 2: Download and boot
the new application using the
XMODEM protacol.

JLink VCOM

Figure 9. High-Level Design for the Application Project

3.2 XModem Based Image Downloader

Furthermore, to support updating a new application from the PC to the MCU, this application note
demonstrates the use of the XMODEM protocol over UART.

The XMODEM protocol is a simple file transfer protocol designed for reliable serial communication (UART). It
divides the application image into fixed-size blocks (128 bytes), each accompanied by a checksum to ensure
data integrity during transmission. Each transfer block is as follows:

1’'s complement of
Start of Header | Packet Number the Packet Number The packet | Checksum
Description Value Length Function
Start of Header (SOH) | 0x01 1 byte Signifies the start of the block.

Represents the block number, starting from 1

Packet Number 1 byte and incrementing by 1 for each subsequent
block.
RO1AN7766EU0100 Rev.1.00 Page 13 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

1’s complement of the | 255 — “Packet . . .

Packet Number Number” 1 byte Ensuring the block is received correctly.

The packet 128 bytes | The actual data being transmitted.

Checksum 1 byte A checksurr_1 of the 128 packet bytes is used for
error detection.

During the transfer, each block must be acknowledged (ACK) by the receiver before the next block is sent. In
the case of a failed transmission, the receiver responds with a negative acknowledgement (NAK), and the
block is retransmitted, as shown in Figure 9 XMODEM Transfer Example.

times out after 10 seconds

(1) NAK

(2) |Checksum

040

[] Transmission failed

Transmission completed

v 0) o
OE OEOE OE
7 S
'8 1§
Y
Eg :
(¢] (9]
[c

MCU

Figure 9. XMODEM Transfer Example
Note that the values of ACK, NAK, SOH, and EOT are defined in the xmodem. h file.

To update the new application to the secondary or primary slot, users need to refer to Figure 27 MCUboot
Memory Map with DXIP Update Mode to define the start and end addresses of the image in the header.h
file, as shown in Figure 10 Image Address Configuration in header.h file.

#include "downloader_thread.h"

#define PRIMARY_IMAGE START_ADDRESS 0x00005600

#define PRIMARY_IMAGE_END_ADDRESS @x0e0427FF

#define SECONDARY IMAGE START ADDRESS 0x00042800

#define SECONDARY IMAGE END ADDRESS @xBeO7FFFF

#define FLASH BLOCK SIZE (2 * 1024)

#define PRIMARY_IMAGE_NUM_BLOCKS ((PRIMARY_IMAGE_END_ADDRESS - PRIMARY_IMAGE_START_ADDRESS + 1U) / FLASH_BLOCK_SIZE)
#define SECONDARY_IMAGE_NUM_BLOCKS ((SECONDARY_IMAGE_END_ADDRESS - SECONDARY_IMAGE_START_ADDRESS + 1U) / FLASH_BLOCK_SIZE)

Figure 10. Image Address Configuration in header.h file

RO1AN7766EU0100 Rev.1.00 Page 14 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

3.3 Linker Script Update When MMF is Enabled

Enabling the Memory Mirror Function (MMF) updates the \Debug\memory regions.1d linker script of the
bootloader project. The comparison of the memory regions.1d between configurations with and without
MMF using the bootloader included in this application project is presented in Figure 11
BOOT_IMAGE_FROM_MMF_REGION with and without MMF (memory_regions.|d).

Without MMF With MMF
FLASH_BOOTLOADER_LENGTH = @x5000; FLASH_BOOTLOADER_LENGTH = @x5000;
FLASH_BOOTLOADER_HEADER_LENGTH = 0x200; FLASH_BOOTLOADER_HEADER_LENGTH = @x200;
FLASH_BOOTLOADER_HEADER_LENGTH_2 = 0x200; FLASH_BOOTLOADER_HEADER_LENGTH_2 = 0x200;
FLASH_BOOTLOADER_SCRATCH_LENGTH = @x8; FLASH_BOOTLOADER_SCRATCH_LENGTH = ©x@;
FLASH_APPLICATION_S_LENGTH = ©x3D800; FLASH_APPLICATION_S_LENGTH = ©x3D300;
FLASH_APPLICATION_NSC_LENGTH = @x@; FLASH_APPLICATION_NSC_LENGTH = 6x@;
FLASH_APPLICATION_NS_LENGTH = 0x®; FLASH_APPLICATION_NS_LENGTH = 0x@;
RAM_APPLICATION_NSC_LENGTH = 0x®; RAM_APPLICATION_NSC_LENGTH = @x®;
RAM_APPLICATION_NS_LENGTH = 0x®; RAM_APPLICATION_NS_LENGTH = 0x8;

= 0x1; FLASH APPLICATION IMAGE NUMBER = @x1;
BOOT_IMAGE_FROM_MMF_REGION = 0x@; BOOT_IMAGE_FROM MMF_REGION = @x1;
MIF_REGION_START_ADDR = 0x2000000, MF_REGLON_START_ADDR = 0x2000000;
Note: The value of BOOT_IMAGE_FROM_MMF_REGION is defined in the memory regions.1d file
of the bootloader project.

Figure 11. BOOT_IMAGE_FROM_MMF_REGION with and without MMF (memory_regions.Id)

When the MMF is enabled, as shown in Figure 29 Enable the MMF, the value of
BOOT_IMAGE_FROM_MMF_REGION is set to 1. This value will be assigned to

__bl FLASH_IMAGE_START_FROM_MMF_REGION in the linker script \script\fsp.1d of the
bootloader and the application project.

bl XIP SECONDARY FLASH IMAGE END = bl XIP SECONDARY FLASH IMAGE START + bl FLASH IMAGE LENGTH;
bl FLASH IMAGE START FROM MMF_REGION = DEFINED(BOOT IMAGE FROM MMF_REGION) ? BOOT IMAGE_FROM MMF_REGION : @; |
— bl MEMORY MIRROR REGION START = DEFINED(MMF_REGION START ADDR) ? MMF_REGION START ADDR : O,
bl FLASH NS_START = !DEFINED(FLASH BOOTLOADER LENGTH) ? @ :
FLASH APPLICATION NS_LENGTH == © ? _ bl FLASH IMAGE END :
_ bl FLASH IMAGE START - FLASH BOOTLOADER_HEADER LENGTH + FLASH APPLICATION S_LENGTH;

Figure 12. __bl_FLASH_IMAGE_START_FROM_MMF_REGION in the linker script

Based on the value of __ bl FLASH_IMAGE_START_FROM_MMF_REGION, the value of
FLASH_IMAGE_START_FROM_MMF_REGION is defined in the application project linker script
memory regions.ld, as shown in Figure 13 FLASH_IMAGE_START_FROM_MMF_REGION with and

without MMF.

Without MMF With MMF
FLASH_NS_START - 0x42800; FLASH_NS_START = 0x42800;
FLASH_IMAGE END = ©x42800; FLASH_IMAGE_END = 0x42800;
FLASH_NS_IMAGE_START = @x42800; FLASH_NS_IMAGE_START = @x42800;
2800 FLASH NSC START = @x42800:

! _ _ ; TEFORY TIRROR REGION START = 0x2000000,
RAM_NSC_START = 0x2000C000; RAM_NSC_START = 0x2000C000;
FLASH_IMAGE_LENGTH = 0x3D600; FLASH_IMAGE_LENGTH = 0x3D600;
XIP_SECONDARY_FLASH_IMAGE_END = 0x80800; XIP_SECONDARY FLASH TMAGE END = 0x80000:
’F‘ikaE;ﬁﬁg’é“‘g?;;"sﬂ—ésgg;ﬁTART = @xA42A00; XIP_SECONDARY_FLASH_IMAGE_START = @x42A00;

|_INAGE, ; ; FLASH_IMAGE_START = ©x5200;

Note: The value of FLASH_IMAGE_START_FROM_MMF_REGION is defined in the
memory regions.1ld file of the primary or secondary project.

Figure 13. FLASH_IMAGE_START_FROM_MMF_REGION with and without MMF

RO1AN7766EU0100 Rev.1.00 Page 15 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

The symbol FLASH_IMAGE_START_FROM_MMF_REGION affects the linker script file (fsp. 1d) in the
primary or secondary project. It determines whether the application image will be executed from
MEMORY_MIRROR_REGION_START or FLASH_IMAGE_START, as shown in Figure 14
FLASH_IMAGE_START_FROM_MMF_REGION in the linker script.

FLASH_ORIGIN = !DEFINED(FLASH_IMAGE_START) ? FLASH_START :
XIP_SECONDARY SLOT IMAGE == 1 ? XIP SECONDARY FLASH IMAGE START :
[FLASH_IMAGE_START_FRDM_P“NF_REGIDN == 1 ? MEMORY_MIRROR_REGION_START : FLASH_IMAGE_START;]

LIMITED _FLASH_LENGTH = DEFINED(FLASH_IMAGE LENGTH) ? FLASH_IMAGE LENGTH :
DEFINED(FLASH_BOOTLOADER LENGTH) ? FLASH_BOOTLOADER_LENGTH :
FLASH_LENGTH;

Figure 14. FLASH_IMAGE_START_FROM_MMF_REGION in the linker script
3.4 Introduction to the Included Example Projects

Unzip ra2-secure-bootloader-using-mcuboot-internal-code-flash-mmf.zip to unpack the
example projects included in this application project.

ra2-secure-bootloader-using-mcuboot-internal-code-flash-mmf

5

Name

app_primary_uart_mmf
app_secondary_uart_mmf

ra_mcuboot_ra2aZ_with_mmf

Figure 15. Example Projects Included

e ra mcuboot ra2a2 with mmf: Bootloader, which enables MMF and Direct XIP upgrade mode.

e app primary uart mmf: Primary application, which is configured to work with the bootloader and
implements XModem over UART to download a new application image. FreeRTOS is used with two
threads, one thread blinks the three LEDs on EK-RA2A2 while the other thread downloads the new
application image concurrently.

e app secondary uart mmf: Secondary application, which implements the same functionality as
app primary uart mmf exceptonly the blue LED is blinking.

Refer to the section 9 for instructions on quickly evaluating the projects.

4. Creating the Bootloader Project using Code Flash Linear Mode and MMF

This section demonstrates the creation process of the bootloader project utilizing MCUboot, the Flash Linear
Mode, and MMF.

4.1 Include the MCUboot Module in the Bootloader Project
Follow below steps to start the bootloader project creation and include the MCUboot module in the project:

1. Launch e? studio and start a new C/C++ Project. Click File > New > C/C++ Project.

8 workspace - ¢? studio

m dit Source Refactor Navigate Search Project Renesas Views Run Window Help
Alt+Shift+N > Renesas C/C++ Project >

Open File... [£%] Makefile Project with Existing Code
(" Open Projects from File System... (]| C/C++ Project I ‘Create anew C or C++ project
Recent Files > [T Project...

Figure 16. Start a New Project

RO1AN7766EU0100 Rev.1.00 Page 16 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

2. Choose Renesas RA > Renesas RA C/C++ Project. Click Next.

Q New C/C++ Project O X

Templates for New C/C++ Project

Renesas RA C/C++ Project
=™ Create an executable or static library C/C++ project for
Renesas RA.
Renesas RA
< >

‘.?J < Back Finish Cancel

Figure 17. Choose Renesas RA C/C++ Project

3. Provide the project name ra_mcuboot _ra2a2 with _mmf on the next screen. Click Next.
4. Inthe next screen, choose EK-RA2A2 for Board and click Next.

Board: [EK-RA2A2| I v

Device: RTFAZAZADICFP

Figure 18. Select the Board

5. When the following screen appears, select Flat (Non-TrustZone) Project.

{8 Renesas RA C/C++ Project [} x

Renesas RA C/C++ Project

Project Type Selection

Project Type Selection

@ Flat (Non-TrustZone) Project
® Renesas RA device project without TrustZone separation
® All code, data and peripheral settings will be configured in
this project
* Renesas RA device will remain in secure mode
* EDMAC RAM buffers will automatically be placed in non-
secure RAM

(O TrustZone Secure Project

* Renesas RA device project for TrustZone secure execution

* All code, data and peripherals placed in this project will be
initialized as secure

* Secure project settings such as TrustZone partitions, linker
maps and a list of secure peripherals will be passed to a
selected non-secure project

* After initialization, a call to the non-secure startup handler
will be made

() TrustZone Non-secure Project
& Renesas RA device project for TrustZone non-secure execution
& All code, data and peripherals placed in this project will be
initialized as non-secure
& Must be associated with a secure project or smart bundle
® Non-secure startup handler will be called after secure code
initialization

@ < Back Finish Cancel

Figure 19. Choose Flat Project as Project Type

RO1AN7766EU0100 Rev.1.00 Page 17 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot

Internal Code Flash and Memory Mirror Function
6. Choose Executable for Build Artifact Selection and No RTOS. Click Next.

Q Renesas RA C/C++ Project

Renesas RA C/C++ Project

Build Artifact and RTOS Selection

Build Artifact Selection

RTOS Selection
@ Executable No RTOS v
® Project builds to an executable filg
O static Library
& Project builds to a static library file

O Executable Using an RA Static Library
& Project builds to an executable file
& Project uses an existing RA static library project

<ok Finish Cancel

Figure 20. Choose to Build Executable and No RTOS

7. Choose Bare Metal — Minimal for the Project Template in the next screen and click Finish to establish
the initial project.

® J} Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and the C runtime environment.

Figure 21. Choose the Project Template
8. When the following prompt opens, click Open Perspective.

e

Open the FSP Configuration perspective?

] Remember my decision

|Open Perspectivell No

Figure 22. Choose Open the FSP Configuration Perspective

The project is then created, and the bootloader project configuration is displayed.
9. Select the Pins tab and uncheck Generate data for RA2A2 EK.

Select Pin Configuration _J;II Export to CSV file Z‘ Configure Pin Driver Warnings

V] Manage configurations... [[] Generate data: g_bsp_pin_cfg

Figure 23. Uncheck Generate data for RA2A2 EK Pin Configuration

|rRa222 EK

RO1AN7766EU0100 Rev.1.00

Page 18 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Use the pull-down menu to switch from RA2A2 EK to R7TFA2A2AD3CFP.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that
here we choose to use this configuration which has fewer peripherals/pins configured since the
bootloader does not use the extra peripheral or GPIO pins configured in the RA2A2 EK configuration.
This also reduces some memory usage for the bootloader project.

Select Pin Configuration 4.1‘ Export to CSV file j Configure Pin Driver Warnings

[R?FAZAZAD3CFP.pincfg] v Manage configurations... enerate data: [g_bsp_pin_cfg] |

Figure 24. Select g_bsp_pin_cfg and Generate data g_bsp_pin_cfg

10. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack > Bootloader
> MCUboot.

ke | New Stack =

Al >

Analog »

Audio >

Bootloader S *:B' MCUboot I
Connectivity > 4 MCUboot Image Utilities
DSP > '

Graphics P

Input b

Figure 25. Add the MCUboot Port

11. Next, configure the General properties of MCUboot. We will resolve the errors in the configurator in the
following steps. Currently, the FSP only supports DXIP mode with MMF feature. Therefore, users need
to configure the Update Mode to Direct XIP.

HAL/Common Stacks

4 g_ioport I/O Port £+ MCUboot
(r_ioport)

@ (i)

<
BSP Clocks | Pins Interrupts | Event Links € Stacks | Components
s | Bl console | Properties % | @ Smart Browser L} Smart Manual D Memaory

ot

Property Value
~ Common
v General

Custom mcuboot_config.h
Upgrade Mode Direct XIP
Validate Primary Image Enabled
Downgrade Prevention (Overwrite Only) Disabled
MNumber of Images Per Application 1

Figure 26. General Configuration for MCUboot Module

RO1AN7766EU0100 Rev.1.00 Page 19 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot

Internal Code Flash and Memory Mirror Function

The properties configured are:

Custom mcuboot_config.h: The default mcuboot config.h file contains the MCUboot Module
configuration that the user selected from the RA configurator. The user can create a custom version of
this file to achieve additional bootloader functionalities available in MCUboot.

Upgrade Mode: This property configures the application image upgrade method. The available options
are Overwrite Only, Overwrite Only Fast, Swap and Direct XIP. Only Direct XIP is supported for MMF.
Validate Primary Image: When enabled, the bootloader will perform a hash or signature verification,
depending on the verification method chosen, in addition to the MCUboot magic number-based sanity
check. When disabled, only a sanity check is performed based on the MCUboot magic number.
Number of Images Per Application: This property allows users to choose one image for non-
TrustZone-based applications and two images for TrustZone-based applications. Set this property to 1.
Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is Enabled, a new firmware with a lower version number will not overwrite the
existing application.

4.2 Configure the Memory Configuration and Authentication Method

Configure the Signing Options and Flash Layout of the MCUboot module. Based on the internal code flash
memory described in section 1.1, the MCUBoot memory map is calculated, as shown in Figure 27.

0x0008_0000

Secondary Image

0x0004_2800

Primary Image

0x0000_5000

MCUBoot

0x0000_0000

Figure 27. MCUboot Memory Map with DXIP Update Mode

Follow Figure 27 to update the Properties for the Flash Layout to match with the MCUboot memory map, as
shown in Figure 28.

RO1AN7766EU0100 Rev.1.00 Page 20 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot

Internal Code Flash and Memory Mirror Function

Threads) New Thread %] Remove [5] HAL/Common Stacks 4| New Stack > =% Extend Stack > %] Remave
v % HAL/Common A
*i-ﬁ'- g_ioport I/O Port (r_ioport) ’i’ MCUboot
4 MCUboot
Q)
a
I I I
i ':9' MCUbaot Port for RA (rm_mcuboot_port) -.9 MCUboot logging ':9 MCUboot Ex
Objects %) New Object > 3] Remove (NOT FOR
PRODUCTIOI o
i ~ - N

Summary | BSP ‘Clocks|Pms|lmerrupts|Event Links | Stacks | Components

Problems Console Praperties X Smart Browser Smart Manual Memary Usage Debug Memary Search
MCUboot
Settings Property Value
~ Common

AELIOT0 > General

“ Signing and Encryption Options
» TrustZone

Signature Type
Boot Record

Python python

Encryption Scheme Encryption Disabled

~ Flash Layout

> TrustZone

Bootloader Flash Area Size (Bytes) 0x5000

Image 1 Header Size (Bytes) 0x200

Image 1 Flash Area Size (Bytes) 0x3D800

Scratch Flash Area Size (BEes) 0x0
Signature Type ECDSA P-256
Boot Record None
Custom | ECDSA P-256

RSA 2048

Python
Encryption Scheme 'fﬁ’f.ffzg.. CrToTCo

Figure 28. Configure the Flash Layout and Signing Options

Explanation of the Above Configurations:

Bootloader Flash Area: Size of the flash area allocated for the bootloader, with a boundary of 0x800
since 0x800 is the minimum erase size for RA2A2 code flash.

Image 1 Header Size: Size of the code flash reserved for the application image header. It must meet
minimum VTOR alignment requirements based on the number of interrupts implemented on the RA2A2.
Image 1 Flash Area Size: Size of application image 1, including the header and trailer. For the RA2A2,
this size needs to be on a boundary of 0x800 which is the smallest flash erase size.

Scratch Flash Area Size: This property is only needed for Swap mode. The Scratch Area must be
large enough to store the largest sector that is going to be swapped. For all RA2 MCUs, the Scratch
The area should be set up to 0x800 when Swap mode is used.

Signature Type: Signing algorithm selection. The choices are:

o NONE: Select this option for bootloaders that do not support signature verification.

o ECDSA P-256: Select this option for this example bootloader design.

e RSA 2048 and RSA 3072: Not supported.

Custom: Use the default -—confirm for this bootloader design. Switching to a new image is always
confirmed, and the new image will be booted after a subsequent system reset. Reverting the image with
Direct XIP is not supported with the current FSP version.

Encryption Scheme: Encryption is disabled in this example implementation.

4.3 Enable the Memory Mirror Function Support

Click on the MCUboot stack > Properties > Flash Configuration. Then, enable the Memory Mirror
Function, as shown in Figure 29 Enable the MMF.

RO1AN7766EU0100 Rev.1.00 Page 21 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

&) New Thread HAL/Common Stacks & New Stack > =% Extend Stack > %] Remove

Threads
®.jRemove B

~ & HAL/Common
48 g_ioport /O Port
@ MCUboot a
a
T 1 T
4 MCUboot Port for RA (rm_meuboot_port) @ MCUboot logging 4 MCUboot Example Keys | | 4 MC
(NOT FOR
PRODUCTION)
@ @ @ @®
a
T T
4% MCUboot TinyCrypt @ g_flash0 Flash
(S/W Only) (r_flash_Ip)
< >
] New Object © ©
) New Object >
Objects . 3
%] Remove
< >

Summary [BSP | Clocks [Pins [Interrupts | Event Lim[omponems

Problems Console Smart Browser Smart Manual Memory Debug Search
MCUboot

Settings Property Value
v Common
APl Info
> General
> Signing and Encryption Options
> Flash Layout

~ Flash Configuration

Dual Bank Mode Disabled
I Memory Mirror Function (MMF) support Enabled

> Data Sharing

Figure 29. Enable the MMF

4.4 Configure the TinyCrypt Module and the Flash Driver

Follow steps below to configure the TinyCrypt module and the flash driver:

1. Click on Add Crypto Stack and select the MCUboot TinyCrypt (S/W Only) module.

%" Add Requires Flash

> *ﬁ MCUboot TinyCrypt (H/W Accelerated)
| -# MCUboot TinyCrypt (S/W Only) |
| 4 MbedTLS (Crypto Only)

Figure 30. Select TinyCrypt Module

2. If the user is creating a bootloader with signature verification support, then the ASN.1 Parser stack and

the MCUboot Example Keys stack will be required.

CUboot ASN.1 Parser I

New > M

Figure 31. Add the ASN.1 Parser

Click on the Add [Optional] Add Example Keys stack and choose New > MCUboot Example Keys [NOT
FOR PRODUCTION].

RO1AN7766EU0100 Rev.1.00 Page 22 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

3{,’ Add [Optional] Add 4 MCUboot ASN.1 Pars
Example Keys

I New > 4 MCUboot Example Keys (NOT FOR PRODUCTION]

B |

Figure 32. Add the Example Image Signing Key

Note: The example key is open to public access from MCUboot port, customers should not use them for
production purposes. Customers can follow the procedure in section 3.6.1 in Application Project R11AN0516
to create and use customized signing key.

3. Click on Add Requires Flash stack and select Flash (r_flash_Ip) stack.

. Add Requires Flash

New > 4 Flash (r_flash_Ip)

Figure 33. Add the Flash Driver

4. Next, set the Code Flash Programming to Enabled. As Data Flash Programming is not used in the
bootloader, select Disabled for the Data Flash Programming to reduce the bootloader memory
footprint.

g_flash0 Flash (r_flash_Ip)

Settings Property Value

AT i v Common
Parameter Checking Default (BSP)
Code Flash Programming Enabled
Code Flash Background Operation Support With Bank Programming Disabled
Data Flash Programming Enabled
Data Flash Background Operation Support Enabled
Instant Bank Swap (No Reset Required) After Reset

~ Module g_flash0 Flash (r_flash_Ip)
Name g_flash0
[Data Flash Background Operation Disabled l

Callback NULL
Flash Ready Interrupt Priority Disabled

Figure 34. Configure the Flash Driver
5. Update the BSP > Main Stack Size to 0x1000

Su”n”nary Clocks | Pins | Interrupts | Event Links | Stacks | Components

Problems Console Properties > Smart Browser Smart Manual Memory Usage Debug Mem
EK-RAZ2AZ2
Scttings Property Value
Use Low Voltage Mode Mot Supported
Main Oscillator Wait Time 262144 cycles
ID Code Mode Unlocked (Ignore 1D}
ID Code (32 Hex Characters) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Fill Flash Gap Do not fill gap
v RA Common
| Main stack size (bytes) 0x1000 |
Heap size (bytes)]
MCU Vec (mV) 3300
Parameter checking Disabled
Assert Failures Return FSP_ERR_ASSERTION
Clock Registers not Reset Values during Startup Disabled

Figure 35. Update the Main Stack Size

RO1AN7766EU0100 Rev.1.00 Page 23 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

4.5 Add the Boot Code

Save configuration.xml and click Generate Project Content. Then, expand the Developer
Assistance>HAL/Common>MCUboot>Quick Setup and drag Call Quick Setup to the top of the
hal entry.c of the bootloader project.

Add the following function call to the top of the hal entry () function:
mcuboot quick setup();

4.6 Configure the Python Signing Environment

Signing the application image can be done using a post-build step in e2 studio, using the image signing tool
imgtool.py, which is included with MCUboot. This tool is integrated as a post-build tool in 2 studio to sign
the application image. If this is NOT the first time you have used the Python script signing tool on your
computer, you can skip to section 5.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the ra_mcuboot_ra2a2_with_mmf > ra > mcu-
tools > MCUboot folder in the Project Explorer, right click and select Command Prompt. This will open a
command window with the path set to the \mcu-tools\MCUboot folder.

v lé ra_mcuboot_ra2a2_with_mmf [Debug]

d;;" Binaries
[r}Y Includes
v
22 am
(= board
i fsp
~ 22 meu-tools
(2 ra_gen Go Into
v Bsic Open in New Window
L] hal_entry.c Show In Alt+Shift+W >
(= Debug
= ra_cfg & Cory e
(= script FEE e
{5} configurationxn ¥ Delete s
5| ra_cfgtxt Source £
X| ra_mcuboot_ra2 R
Rename... F2

¥ (@) Developer Assis
% HAL/Commo i1 Import...
23 Export..

Build Project Ctrl+B

Index
Build Targets
Resource Configurations
Source
Team
Compare With
Restore from Local History...
5% C/C++ Project Settings Ctrl+Alt+P

vov v v v v

Renesas C/C++ Project Settings >
“?j‘ Run C/C++ Code Analysis
& System Explorer

@ Command Prompt

v Validate

Source >

Properties Alt+Enter

Figure 36. Open the Command Prompt

RO1AN7766EU0100 Rev.1.00 Page 24 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pip:
python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:

pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

4.7 Compile the Bootloader Project

In the RA configurator, click Generate Project Content, then compile the project.

arm-none-eabi-objcopy -0 srec "ra_mcuboot ra2a2 with_mmf.elf" “ra_mcuboot ra2a2 with_mmf.srec”
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra2a2_with_mmf.elf"

text data bss dec hex filename

17924 5] 4668 22592 5848 ra_mcuboot ra2a2 with_mmf.elf

14:31:12 Build Finished. @ errors, 1 warnings. (took 7s.769ms)

Figure 37. Compile the bootloader ra_mcuboot_ra2a2_with_mmf
There are warnings from third-party code.

4.8 Optimizing the Bootloader Project Size

To further optimize the bootloader project for size, users can follow several optimization methods, such as:

Bootloder Size Initial (bytes): 17924 ‘

No. | Optimization methods Actions Bootloader
Size (bytes)
1 Put some functions into gap area void R_BSP_WarmsStart(bsp_warm_start_event_t event) 17572
(.flash_gap) BSP_PLACE_IN_SECTION(" .flash_gap*");

void mcuboot_quick_setup()
BSP_PLACE_IN_SECTION(".flash_gap*");

fih_ret context_boot_go(struct boot_loader_state *state,
struct boot_rsp *rsp)
BSP_PLACE_IN_SECTION(".flash_gap*");

2 Change the compiling optimization | Optimize Size (-Os) 13532
to Optimize Size (-Os)
3 Combining methods 1 and 2 13180

Figure 38. Several methods to optimize the bootloader size

For more details, users can refer to section 3.2 in Application Project R11AN0516.

5. Configuring and Signing an Application Project

Developing an initial application to use a bootloader starts with developing and testing the application and
the bootloader independently. Using the bootloader with an existing application or developing a new
application to use the bootloader involves the following common steps:

RO1AN7766EU0100 Rev.1.00 Page 25 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

¢ Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

e Configure the application to use the bootloader.

e Sign the application image.

o Developing an application to use a bootloader typically requires the application to have the capability to
download a new application. This application project demonstrates how to download a new application
using the UART interfaces as examples. Users typically have custom methods to download new
application images.

5.1 Configure the Application Project to Use the Bootloader

Users can follow FSP User’s Manual section Tutorial: Your First RA MCU Project — Blinky to establish a new
project. This application note uses the included example project as the initial application project and guides
the user through the procedures to configure the example project to use the bootloader established in
section 4.

Note that the steps described in this section can be applied to other existing application projects to configure
the application project to use the bootloader. Be sure to consider the size of the application project. When
using the bootloader with a different application project, the Image 1 Flash Area Size property should be
adjusted accordingly.

Import the desired application projects to the workspace where the bootloader is created.

Right-click on the application project folder app primary uart mmf in the Project Explorer and select
Properties. Select C/C++ Build > Build Variables, click Add and set the Variable name to
BootloaderDataFile, and check the Apply to all configurations box. Change the Type to File and enter
the path to the . sbd file for the bootloader project ra_mcuboot_ra2a2 with_ mmf:

e Sets {workspace loc:ra mcuboot ra2a2 with mmf}/Debug/ra mcuboot ra2a2 with mmf.sbd for

the value.
Build Variables G- g
Resource
Builders
~ C/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...
Build Variables
Environment
JSON Compilation Datak
Logging ﬁ Define a New Build Variable X Add..
Settings Variable name: | BootloaderDataFile v
Tool Chain Editor
€/C+ General Apply to all configurations Delete
Project Natures Type:
Project Ref:
roject Relerences Value: [222_with_mmf}/Debuglra_mcuboot_ra2a2_with_mmfsbl || Browse
Renesas QE
Run/Debug Settings
Task Tags
Validation

Figure 39. Configure the Build Variable to Use the Bootloader
Click OK, then Apply and Apply and Close in the next screen.

5.2 Signing the Application Image

Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will need to Generate Project Content again to bring in the updated . sbd file.

When using Direct XIP mode, each application can define a version number. This is achieved by defining an
Environment Variable: MCUBOOT_IMAGE_VERSION.

For applications that support signature verification, the signing key can be configured using Environment
Variable MCUBOOT_IMAGE_SIGNING_KEY. If there is no signature verification, then it is not necessary to
set Environment Variable MCUBOOT_IMAGE_SIGNING_KEY.

RO1AN7766EU0100 Rev.1.00 Page 26 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Open the Properties page of the project app primary uart mmf, under Environment, click Add and
configure MCUBOOT_IMAGE_VERSION.

@ Properties for app_primary_uart_mmf O P
type filter text Envir HLrodv g
> Resource
Builders
w C/C++ Build Configuration: |Debug [Active | V‘ ‘Manage Configurarions”.‘
Build Variables
50N Compilation Datak Environment variables to set Add... ‘
Logging
Settings {8} New variable X
Tool Chain Editor Name: | MCUBOOT IMAGE VERSION | | i
> C/C++ General <l = = Edit..
Project Natures Value: [1.0.0 | | ‘ Variables ‘ Delete
Project References 2 .
Renesas QOF dd to all configurations UhsETE
Run/Debug Settings
Task Tags I[OK m cancel |
> Validation TC_VERSION 33 Tarm-13-2& BUICD SYSTEM
@ Append variables to native environment
(O Replace native environment with specified one
a S ‘Restore Defaults‘ ‘ Apply ‘
® |App|y and Clcsel ‘ Cancel |

Figure 40. Configure the Application Version
Similarly, add the new variable for MCUBOOT_IMAGE_SIGNING_KEY.

Environment A
Resource
Builders

~ C/C++ Build Configuration: |Debug [Active | ~ | Manage Configurations...

Build Variables

Environment

JSON Compilation Datak

Environment variables to set Add..
Logging
Settings & New variable X | Origin Select..
Tool Chain Editor BUILD SY,
C/Cs+ General Name: | MCUBOOT IMAGE SIGNING KEY | supsy | Edit.

Project Natures Value: I_mmf}/ra/mcu—to0Is,fMCUboot/root—ec—pZS&peﬂ] Variables USER: CC Delete

Project References . USER: C(|
| & .
Renesas QF dd to all configurations BUILD SH Undefine

Run/Debug Settings BUILD SY|
Cancel
Task Tags BUILD SY

Validation TC_VERSION 3.3, Tarm=-T3-24 BUILD SY|

< >

@ Append variables to native environment

() Replace native environment with specified one

Restore Defaults Apply

® Apply and Close Cancel

Figure 41. Configure the Private Signing Key
Note that the private key used for signing the application image is indicated in the signing command.

${workspace loc:ra mcuboot ra2a2 with mmf}/ra/mcu-tools/MCUboot/root-ec-p256.pem
is used for the example bootloaders. This key is used for testing purposes only. For real world use case and
production support, users MUST change this to the private key of their choice.

RO1AN7766EU0100 Rev.1.00 Page 27 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Figure 42 is the result of the above configuration. Click Apply and Close.

type filter text Envir t =R - 8
> Resource

Builders
v C/C++ Build Configuration: |Debug [Active] v | Manage Configurations...

Build Variables

Environment

J50N Compilation Datat Environment variables to set

. Add...
Logging
Settings Variable Value Origin Select.
Tool Chain Editor WD BUILD SYSTEM
> C/C++ General GCC VERSION 1321 BUILD SYSTEM Edit.
Project Natures MCUBOOT_IMAGE _SIGNING_KEY ${workspace_locra_mcuboot_ra8m1_dualbank}/ra/mcu-tools/MCUboot/root-ec-p256.pem | USER: CONFIG Delete
Project References MCUBOOT_IMAGE_VERSION 1.0.0 USER: CONFIG
Renesas QE PATH BUILD SYSTEM Undefine
Run/Debug Settings PWD BUILD SYSTEM
Task Tags TCINSTALL BUILD SYSTEM
> Validation TC_VERSION 13.2.1.arm-13-7 BUILD SYSTEM
(@ Append variables to native environment
(O Replace native environment with specified one
< > Restore Defaults Apply
@ Apply and Close Cancel

Figure 42. Configure the Application Image version number and Signing Key

To be able to recompile the project whenever the Environment Variables are updated, it is recommended
add a Pre-build step to always delete the . e1f file, as shown in Figure 43, so the application project is
always recompiled.

‘ type filter text Settings oo -~ 8
Resource
. ~
Builders
~ C/C++ Build Configuration: Debug [Active] ~ | Manage Configurations..

Build Variables
Environment
Logaing & Tool Settings | &2 Toolchain Build Artifact| st Binary Parsers | @ Error Parsers
Tool Chain Editor
C/C++ General Command(s):
Git Irm -f §{ProjName).elf I v|
Project Natures
Project References
Renesas QE |

Pre-build steps

Description:

Figure 43. Configure the Pre-build Command

At this point, a user can click Generate Project Content and compile the newly created application project
and ensure that \Debug\app primary uart mmf.bin.signed is generated.

In addition, users need to link the primary application to the primary slot by adding a configuration.

‘~-defsym=XIP SECONDARY SLOT IMAGE=0"as shown in Figure 44.

RO1AN7766EU0100 Rev.1.00 Page 28 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

{;} Properties for app_primary_uart_mmf O X
[] settings b~
> Resource
Builders
~ C/C++ Build Configuration: |Debug [Active] V‘ ‘Manage Configurations. ‘
Build Variables
Environment
JSON Compilation Datak) Tool Settings | &3 Toolchain | #* Build Steps‘ Build Artifact Eg Binary Pa:sers‘ @ Error Parsers‘
Logging 5 - N =
i Target Processor ‘ Linker flags (-Xlinker [option]) LR RERARY ‘
Tool Chain Editor L’i,‘; OptlleaTIDh de p ONDA 0 A 0
> C/C++ General £ Warnings
Project Natures L‘%" Debugging
Project References v 5 E:\IU Arm Cross Assembler
Renesas QF L:f; Preprocessor
Run/Debug Settings ‘;: Includes
Task Tags %;Wammgs
3 Validation (3 Miscellaneous
~ &) GNU Arm Cross C Compiler
(3 Preprocessor Other abjects BRI
(2 Includes
Lf:i Optimization
(2 Warnings
3 Miscellaneous
[om0 am cos e
(3 General
(2 Libraries
~ & GNU Arm Cross Create Flash Image
;33 General Generate map | “${BuildArtifactFileBaseName}.map”
v ENU Arm Cross Print Size [cross reference (-Xlinker --cref)
(3 General [Print link map (-Xlinker --print-map)
Use newlib-nano (--specs=nano.specs)
[J Use float with nana printf {-u _printf_float)
[Juse float with nano scanf (-u _scanf_float)
] Do not use syscalls (—-specs=nosys.specs)
[CIVerbose (-v)
Other linker flags |
. ,
® IlAppIy and Clmsell Cancel |

Figure 44. Configure linker flags to link an application to the primary slot
6. Booting the Primary Application and Updating to a New Image

To update the application, the primary application needs to provide an image downloader. A new image will
also need to be prepared to test the image downloader function.

6.1 Prepare a Secondary Image

In this project, a secondary image is created to test the downloading functionality of the primary application.
The new application can be created by either modifying the existing application or creating a new application
project. If a new application project is used, the user needs to establish the linkage to the bootloader by
following section 5. The newly created application project must also provide a method to download the new
application to the upper bank.

In this application project, we will import the initial application project to the same workspace, rename the
new project, and perform minor updates.

Right-click in the white space in the Project Explorer area and select Import and choose Rename & Import
Existing C/C++ Project into Workspace.

RO1AN7766EU0100 Rev.1.00 Page 29 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

& mport] X
Select \A
Rename and Import and Existing C/C++ Project into the workspace H

Select an import wizard:

‘ type filter text ‘

EE Existing Projects into Workspace ~
(] File System
f“ Preferences
(), Projects from Falder or Archive
[b“ Rename & Import Existing C/C++ Project into Workspace]
% Renesas CS+ Project for CAT8KOR/CAT8KO
&% Renesas CS+ Project for CC-RX, CC-RL and CC-RH
& Sample Projects on Renesas Website
> (= C/C++
> = Git
» [= IAR Embedded Workbench
» [= Install
> [= Oomph
> [= Run/Debug

@ < Back Finish ‘ Cancel |

Figure 45. Import the Initial Application

Once the Import window opens, name the project app secondary uart mmf, check Select root
directory, and click Browse:

Q Import m] X

Rename & Import Project —

Select a directory to search for existing Eclipse projects.

Project name: I app_secondary_uart_mmf I

Use default location

Location Browse.
Create Directory for Project

Choose file system: |default

Import from:

@) Select root directory: v |

(O Select archive file:

Projects:

Options
I Keep build configuration output folders

@ < Back Next > Finish Cancel

Figure 46. Name the New Application
Browse into the Workspace folder and select app secondary uart mmf.

RO1AN7766EU0100 Rev.1.00 Page 30 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

& mport O <
Rename & Import Project ——
Select a directory to search for existing Eclipse projects. ; A/

Project name: Iapp,se(ondary,uar‘t,mmf I ‘

Use default location

ation C\Users\trung.tran-quoc\Documents\RVC_TASK 2 Browse.
Create Directory for Project
Choose file system: |default

Import from:

@ Select root directory: | C\Users\trung.tran-quoc\Documents\RV(Browse...

O Select archive file: Browse

Projects:

I app_primary_uart mmf

< >

Options
[Keep build configuration output folders

@ < Back Next > Cancel

Figure 47. Select to Initial Primary Application
Click Finish. The new application project will be created with the following attributes:

e When importing the primary application, the Build Variable and Environment Variables are
automatically imported.
o The linker flags of the primary application, as shown in Figure 44, are also automatically imported.

Change the Environment variable for the Secondary Image version, as shown in Figure 48. In DXIP mode,

users must ensure that the version number of the secondary image is higher than that of the primary image.

Environment \ad
Resource
Builders

+ C/C++ Build Configuration: | Debug [Active] ~ | | Manage Configurations.

Build Variables

Environment

Logging Environment variables to set Add
Settings
Tool Chain Editor Variable Value Qrigin Select
C/C+ General AMS_KEEP_FILE $0 USER: PREFS
Git AMS_LICENSE_PATH $0 USER: PREFS
Project Natures WD C\Usersh BUILD SYSTEM Delete
Project References GCC_VERSION 13.21 BUILD SYSTEM
Renesas QF MCUBOOT_IMAGE SIG... ${workspace_locra_mcu. USER: CONFIG Undefine
Run/Debug Settings MCUBOOT_IMAGE_VER... 1.00 USER: CONFIG
Task Tags @ Edit variable X
Validation
Name: MCUBOOT_IMAGE_VERSION
Value: | 1.1.0 I Variables
Restore Defaults Apply
@ Apply and Close Cancel

Figure 48. Change MCUBOOT_IMAGE_VERSION Variable
In addition, users need to link the secondary application to the secondary slot by adding a configuration.

“~-defsym=XIP SECONDARY SLOT IMAGE=1"

RO1AN7766EU0100 Rev.1.00 Page 31 of 47
May.20.25 RENESAS

RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Renesas RA Family

Build Variables
Environment
JSON Compilation Datak

&) Tool Settings | & Toolchain | #* Build Steps

Q Properties for app_secondary_uart_mmf O X
L] settings v~
Resource
Builders
~ C/C++ Build Configuration: Debug [Active | ~ | Manage Configurations.

Build Artifact ;'w Binary Parsers| €3 Error Parsers

Logging =
(22 Target Processor Linker flags (-Xlinker [option]) & 8
. 3 Optimization —————————————————
Tool Chain Editor = P B --defsym=XIP_SECONDARY_SLOT_IMAGE=1
C/C++ General £ Wamings ———————————————
Project Natures = ebugging
Project References ~ & GNU Arm Cross Assembler
Renesas QF (2 Preprocessor
)
Run/Debug Settings & I"d“éés
Task Tags (2 Warnings
Validation (2 Miscellaneous
~ & GNU Arm Cross C Compiler
(8 Preprocessor Other objects L3
2 Includes
(2 Optimization
(2 Warnings
5 Miscellaneg
% GNU Arm Cross C Linker
= Libraries
v 1 GNU Arm Cross Create Flash Image | Generate map “${BuildArtifactFileBaseName}.map"
.)) [Cross reference (-Xlinker --cref)
~ &5 GNU Arm Cross Print Size T R ink it
jﬁ‘ General rint link map (-Xlinker --print-map)
Use newlib-nano (--specs=nano.specs)
[Use float with nano printf (-u _printf_float)
[] Use float with nano scanf (-u_scanf float)
-
T 1N nnt ven cucealle { conce_noeee cnnee A
< > < >

Apply and Close

Cancel

Figure 49. Update linker flags to link an application to the secondary slot

Update Existing Application to a New Application
To demonstrate the application update, update the application to blink only the blue LED.

Perform the following code updates in blinky thread entry.c:

Change below section of code in blinky_thread_entry:
/* Update all board LEDs */

for (uint32 t i = 0; i < leds.led count; i++)
{

/* Get pin to toggle */

uint32 t pin = leds.p leds[i];

/* Write to this pin */

R BSP PinWrite ((bsp io port pin t) pin, pin level);
}

To:
/* update the blue led */
R BSP PinWrite (leds.p leds[0], pin level);

Figure 50. Update the LED Control

Save the updated source file, click Generate Project Content, then compile the new project.

RO1AN7766EU0100 Rev.1.00
May.20.25

Re Page 32 of 47
RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

If you create a new application project and would like to debug the new project with the bootloader, follow the
instructions in section 5. When debugging an update image with the bootloader, you can treat the update
image as the primary application.

6.2 Set Up the Hardware

If using app_primary uart mmf as the initial application project:

e Connect J10 (USB Debug) using a USB micro to B cable from the EK-RA2A2 to the development PC to
provide power and debug connection using the on-board debugger.

Note: On the EK-RA2A2 board, the user can use the TX and RX pins available on the debugger chip without
using the UART to USB converter module.

U7
R7TFA4M2AD3CFL
%28 pano VBATT -2
X561 PO01 e —
X6 PO02 veet 4
%—ag-| P13 VSSO0 (31
X3 PO14 VSS1
%5 P15 2
AVCCO
P109/TDO_JLOB 36 41
= OB SWBIG— 35| P100 VREFH (3
50 JLOB_SWCLK 34 E}g; AVSSO/VREFL
JCOB_TDI
gg JOB_TRST 3‘ mﬁ \\//&Egbg ié
25
26| P108/SWDIO 16
57| P109/SWOITXD9 vCC_USB |3
= P110/RXDY VSS_USB
28 3
P111 veL _
PO 150 J[OB RESEF 20 | 011} .
XCIN
Hocpm i 211 paoommi XGoUT X
ECS-120-10-36B-CWY-TR 20 19
4l 3]s P201/MD RES —
8 paoe
1 5| 2 *—g- P207
— P212/EXTAL
cr4 7 —
}mp 54| P213IXTAL
P300/SWCLK
P109 (TXDO) ™0 _| 23
584,502 3 P301/RxD2
I 584502 ¢¢-P110 (RXDO) RXD | 22 | pa02mmxD2 /77
R82 |
15k > P402
USB_JLOB_VBUS
121 pao7UsB_vBUS
*—1g-| P408
R83 H——— P409
30k -
>3 p5oo
R85 27 USB_JLOB_R_DM 14
R86 AN 27 USE_JLOB_R_DP 15 | ysEDM

177

Figure 51. The TX and RX pins on the debugger chip
6.3 Erase the MCU

Once the EK-RA2A2 is powered up, the user needs to initialize the MCU prior to exercising the bootloader
project. This will create a clean environment to start the bootloader project verification.

In this application project, we use J-Flash Lite to erase the entire MCU flash.

J-Flash Lite is a free, simple graphical user interface which allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the J-
Link software & documentation pack is installed.

To use J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the Target
Device, debug Target Interface, and communication Speed.

RO1AN7766EU0100 Rev.1.00 Page 33 of 47
May.20.25 RENESAS

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot

Internal Code Flash and Memory Mirror Function

H SEGGER J-Flash Lite V8.12f X

Target device

[Rrrazrzap | | [-]
Target interface Speed
SwD - 4000 | kz
Flash banks
BaseAddr Mame Loader
0x00000000 Internal program flash Default =
0x40100000 Internal data flash Default v

0x01010008 Internal option - setting memor | Default -

0K

Figure 52. Launch the J-Flash Lite

Click OK. In the next screen, select Erase Chip.

E! SEGGER J-Flash Lite V8.12f - X
File Help

Target

Device Interface Speed

[R7FA2R24D | [swo | [4000 kiiz |

Data File (bin / hex [mot [srec [...}

Program Device

| Erase Chip

Log

Connecting te J-Link...
Bank selecticn: BankAddr=8xB@eeee88 Enabled

Bank selecticn: BankAddr=8x4@100088 Enabled

Bank selection: BankAddr=8x@1810088 Enabled

Loader selection: BankAddr=8x2@@88888 Loader=Default
Loader selection: BankAddr=8x4@180888 Loader=Default
Loader selection: BankAddr=8x@1@18888 Loader=Default
Connecting to target...
Erasing...

Done.

Ready

Figure 53. Erase the MCU using J-Flash Lite

RO1AN7766EU0100 Rev.1.00
May.20.25

Re Page 34 of 47
RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

6.4 Boot the Primary Application
Follow the steps below to start the debug session:

1. Disable flash content caching from the Debugger setting.
Right-click on project app_primary_uart_mmf > Debug As > Debug Configurations, navigate to
Debugger > Debug Tool Settings, and uncheck Allow caching of flash contents. Otherwise, when
debugging bootloader applications, the memory window may show wrong information.

Name: | app_primary_uart_mmf Debug_Flat |

R i — =
|=| Main | %* Debugger | B Startup E Source| [-] Common

Debug hardware: J-Link ARM ~ Target Device: | R7TFA2A2AD

GDB Settings Connection Settings | Debug Tool Settings

Use Flash Breakpoints Yes VoA
Allow Simulation Mo v
~ Flash

Flash Bus Type
Flash Memory Type
WorkRam Start
WorkRam End

Erase on-chip program flash before download No v
Erase on-chip data flash before download No v
Use CFI-Flash No v
CFl Start Ox0
CFl End Ox0

v Semihosting
Semihosting breakpoint address

v RTOS
RTOS Integration in Debug View MNo W
RTOS Debugging - Large Number of Threads. Mo v
w System
Allow caching of flash contents Mo] v
v Time Measurement
Run Break Time Measurement Yes v
Count Every Core Cycle Yes v

Operating Frequency [MHz]
~ Reset Behavior
Behavior of reset command Reset v

Figure 54. Disable Flash Content Caching

2. Configure the load image and symbols properties.
Open the Debug Configurations: app_primary_uart_mmf > Debug As > Debug Configurations.

Make sure app_primary_uart_mmf Debug_Flat is selected and select the Startup tab, then confirm
that the following configuration exists.

RO1AN7766EU0100 Rev.1.00 Page 35 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

&3 Debug Configurations O X
Create, and run figurations ﬁ\v
& % i D - -
g e *‘ Els Name: ‘ app_primary_uart_mmf Debug_Flat ‘
[type filter text || (& main |3 Debugger [startup | common| & source]
E C/C++ Application Initialization Commands
[E]¢/C++ Remote Application [IReset and Delay (seconds): 3
=/ EASE Script
E GDB Hardware Debugging ClHait
E] GDB Simulator Debugging (RH850)
R Launch Group
v [c7] Renesas GDB Hardware Debugging
El app_primary_uart_mmf Debug_Flat
[c*| app_secondary_uart_mmf Debug_Flat Load image and symbols
g ra,mtut;uut,m;nsze!J:gjlaftD bug F Filename Load type Offset (hex) On connect
c"| ra_mcuboot_ra2a2_with_mm ebu
- _— o Program Binary [app_primary_uart mmfelfl Symbols only Yes bt
E] Renesas Simulator Debugging (RX, RL78) N
ra_mcuboot_ra2a2_with_mmf.elf [C\Users\tr.. Image and Symbols 0 Yes Edit..
app_primary_uart_mmf.bin.signed [C\Users\t.. Raw Binary 5000 Yes
Remove
Move up
Mave down
Runtime Options
[Jset program counter at (hex)
Set breakpoint at:
[JResume
Run Commands
< >
-~ Revert Apply
Filter matched 12 of 14 items
—
® Il Debug ||| Close

Figure 55. Debug Configurations
e Under the Startup configuration, verify the Load type of app primary uart mmf.elf is Symbols
only rather than Image and Symbols.

The ra_mcuboot ra2a2 with mmf.elf is added with Load type as Image and Symbols with an
Offest 0 since the bootloader starts form 0x0.

The app primary uart mmf.bin.signed entry exists with Load type as Raw Binary and the
Offset is set to 0x5000 since that is the beginning of the primary application, as shown in Figure 27.

3. Click Debug. Choose Remember my decision and click Switch if prompted to switch the perspective.

ﬁ} Confirm Perspective Switch >

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective supports application debugging by providing views for
displaying the debug stack, variables and breakpoints.

Switch to this perspective?

Remember my decision

T [

Figure 56. Start the Application Execution

RO1AN7766EU0100 Rev.1.00

Page 36 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

4. The debugger should hit the reset handler in the bootloader.

47 = BSP_SECTION_FLASH_GAP void Reset_Handler (void)
43 {

49 /* Initialize system using BSP. */
50 00003864 SystemInit();

51

52 /* Call user application. */

53 00EV386a main();

54

55 00P0386e © while (1)

56 {

57 /* Infinite Loop. */

58 }

59 1

Figure 57. Switch the Perspective

5. Click Resume "™ to run the project.
The program should now be paused in main atthe hal entry () call in the bootloader.

/* generated main source file - do not edit */

2 #include "hal data.h"
3 = int main(void)

4 {

5 PBEBB550 hal_entry ();

6 00008556 return @;

7 3

8

Figure 58. Start the Application Execution

6. Click "™ to run again.
The red, blue, and green LEDs on the EK-RA2A2 should now be blinking while the blinky application is
running.

RO1AN7766EU0100 Rev.1.00 Page 37 of 47
May.20.25 RENESAS

Renesas RA Family

RA2 MCU Advanced Secure Bootloader Design using MCUboot

Internal Code Flash and Memory Mirror Function

6.5 Program the New Application Using the Primary Application Downloader

Follow the steps below to program the new application created in section 6.1:
Note that when using the UART interface, users need to open the Tera Term and configure the Baud Rate
first, as shown in Figure 59 and Figure 60. Then, the debug session can be started from the primary

application.

1. Open Tera Term and choose the JLink CDC UART Port (COM number may be different for your setup),
as shown in Figure 59. Then click OK.

Tera Term: New connection

OTCPIP myhost.example.com
History
Telnet - |22
SSH k i SSH2
Other AT
® Serial Port: | COM29: JLink CDC UART Port (COM29) ~

Cancel Help

Figure 59. Open the USB COM Port
2. Select the Serial Terminal and set the Speed to 115200, as shown in Figure 60. Then click New setting.

Tera Term: Senal port setup and connection X
Port: COM?29 v
New setting

Speed: 115200 v

Data: 8 hit v o]

Parity: none v

Stop bits: 1 bit ~ Help

Flow control: none v

Figure 60. Configure the Baud Rate

The menu in Figure 61 Tera Term Menu will be displayed on the Tera Term.

EK-RA2A2 MCUBoot with MMF

Please select from bhelow menu options:

1 — Display image slot info
2 — Download and boot the new image (XModem?
>

Figure 61. Tera Term Menu

RO1AN7766EU0100 Rev.1.00

May.20.25

Page 38 of 47

RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

3. Select option 1 to print the image slot information.

1

B BT e e e e e e e e M P M M N N
* Primary Image Slot =
Eadafaf oz 2 2 3 2 2 2 2 2 2.z 2.z 2.z 2.z 2.2 3 3
Image version: ¢Rev: B, Build:
Primary image start addm B
Header size: {512 bhytes>
Protected TLU size: (@ bhytes)
Image size: 62DB (25296 bhytes)

Eaafaf ez 2 2 2 2 2 2 2 2.2 2.z 2.z 2.z 2.2 2 2 2 3

* Secondary Image Slot =

Eaafaf ez 2 2 2 2 2 2 2 2.2 2.z 2.z 2.z 2.2 2 2 2 3

Image version: 255.255 (Rev: 65535, Build:

Secondary image start address: Ax00842808
i @xFFFF (65535 bytes)

@xFFFF (65535 bytes>
Image size: BxFFFFFFFF (-1 bhytes)»

Figure 62. Print the Image Slot Information

4. Select option 2 to download the secondary image using the primary image downloader.

1 — Display image slot info
2 — Download and boot the new image (XModem>
>2

Blank checking the secondary slot...

The secondary slot blank
Start Emodem transfer...
System will automatically reset after successful download...

Figure 63. Choose Option 2 to Download the New Image using XModem

5. Open the Transfer interface of the Tera Term.

1 COM29 - Tera Term VT —] X
Edit Setup Control Window Help

Alt+N (@ hytes>

New connection... BB62D8 <25296 bytes)

Duplicate session Alt+D
Cygwin connection Alt+G
L : 65535, Build: -1>
oS sz Ax00642800
- FF (65535 hytes)

—tebe FF <65535 hytes)>

entt g FFFFFF (-1 hytes)

Log dialog u options:

Logging

Send file w image (XModem)>
Transfer > I Kermit >
SSH SCP I XMODEM > | Receive...
Change directory... YMODEM > v
Replay Log... ZMODEM >
TTY Record — ’
TIV Replay Quick-VAN »
Print... Alt+P
Disconnect Alt+|
Exit Alt+Q
Exit All

Figure 64. Start Transfer from Tera Term

RO1AN7766EU0100 Rev.1.00 Page 39 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

6. Choose \app secondary uart mmf\Debug\app secondary uart mmf.bin.signed, then click
Open.

¥ Tera Term: XMODEM Send

Look in: Debug v @ 2 it [+

Name ’ Date modified Type
ra 2/11/2025 10:59 AM File folder
ra_gen 2/18/2025 11:04 AM File folder
src 2/18/2025 11:04 AM File folder

[app_secondary_uart_mmf.bin.signed] 2/18/2025 11:04 AM SIGNED File
app_secondary_uart_mmf.elf 2/18/2025 11:04 AM ELF File
app_secondary_uart_mmf.elf.in 2/18/2025 11:04 AM IN File

B app_secondary_uart_mmf.map 2/18/2025 11:04 AM Linker Address Map

app_secondary_uart_mmf.sbd 2/18/2025 11:04 AM SED File

Figure 65. Choose the Signed Secondary Image

The secondary image is then downloaded and programmed to the secondary slot.

Tera Term: XMODEM Send X |
Filename: app_secondary_uart_r
Protocol: XMODEM (checksum)
Packeti: 397
Bytes transferred: 50816
Elapsed time: 0:10 (4.60KBts)

- 20.2%

Figure 66. Download the New Image via XModem

6.6 Boot the New Application

The system will automatically reboot after the new image is downloaded.

esetting the system

lease select from below menu options:

— Display image slot info
— Download and boot the new image <(XModem>

Figure 67. The New Image is Booted

Select option 1 to read the swapped memory layout.

Please select from below menu options:
i - Display image slot info

2 — Download and bhoot the new image <(XModem?
>1

Primary Image Slot =

Image version: i @, Build:

{512 hytes

{@ hytes>
62D8 (25296 hytes>

1.1 <{Rev: @. Build: 6>
a A428008
(512 hytes
{@ hytes)
Image size: 62B8 (25272 hytes>

Figure 68. The Slot Layout After New Image is Booted

RO1AN7766EU0100 Rev.1.00 Page 40 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Note that even though the secondary image is booted, it cannot be debugged as the symbol downloaded to
the debugger is for the primary image.

Also, if you want to perform further update, the new image must have a version of higher than the current
image in the primary slot.

7. Memory Mirror Address When Booting Image

In this section, we will help users better understand the operation of the Memory Mirror Function (MMF)
when combining the MCUboot.

The MMSFR register will contain the start address of the image on code flash. For more details about the
MMSEFR register, users can refer to section 5.2: Register Descriptions in the RA2A2 Hardware User’s
Manual.

5.2.1 MMSFR : MemMirror Special Function Register

Base address: MMF = 0x4000_1000
Offset address: 0x00

Bit position: 3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Bit field: KEY[7:0] - MEMMIRADDR([15:0]
Value after reset: 0 o] 0 0 0 0 0 0 0] 0 0 0 0 0 0
Bit position: 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit field: MEMMIRADDR[15:0] - - — — — — —
Value after reset: 0 0 0 0 0 0 0 0 0] 0 0 1} 0 0 0

Figure 69. MemMirror Special Function Register

When booting the primary image, the MMSFR register will store the start address of the primary image (it
includes the image header size), as shown in Figure 70 MMSFR Register when booting the primary image.

Console Registers Problems Debugger Console Smart Browser | Memory X |
Monitors 4 ¥ 3% [0x40001000 : 0x40001000 <Hex Integer> X | ¢ New Renderings
Address 0-3 4-7 8-B Cc-F
00000001 00000000 00000000
0000000040001010 00000000 00000000 00000000 00000000
0000000040001020 00000000 00000000 00000000 00000000
0000000040001030 00000000 00000000 00000000 00000000
0000000040001040 00000000 00000000 00000000 00000000
0000000040001050 00000000 00000000 00000000 00000000
0000000040001060 00000000 00000000 00000000 00000000
0000000040001070 00000000 00000000 00000000 00000000
0000000040001080 00000000 00000000 00000000 00000000
0000000040001090 00000000 00000000 00000000 00000000
00000000400010A0 00000000 00000000 00000000 00000000
0000000040001080 00000000 00000000 00000000 00000000
00000000400010C0 00000000 00000000 00000000 00000000
00000000400010D0 00000000 00000000 00000000 00000000
00000000400010E0 00000000 00000000 00000000 00000000
00000000400010F0 00000000 00000000 00000000 00000000
0000000040001100 00000000 00000000 00000000 00000000
0000000040001110 00000000 00000000 00000000 00000000
0000000040001120 00000000 00000000 00000000 00000000
0000000040001130 00000000 00000000 00000000 00000000
0000000040001140 00000000 00000000 00000000 00000000
0000000040001150 00000000 00000000 00000000 00000000
0000000040001160 00000000 00000000 00000000 00000000

Figure 70. MMSFR Register when booting the primary image

After the secondary image is downloaded, the MMSFR register will also store the start address of the
secondary (it includes the image header size), as shown in Figure 71.

RO1AN7766EU0100 Rev.1.00 Page 41 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Console Registers Problems Debugger Console Smart Browser | Memory X |

Monitors 4 3 % [0x40001000 : 0x40001000 <Hex Integer> X | &b New Renderings..

Address 0-3 4.7 3-8 C-F
00000001 00000000 00000000
0000000040001010 00000000 00000000 00000000 00000000
0000000040001020 00000000 00000000 00000000 00000000
0000000040001030 00000000 00000000 00000000 00000000
0000000040001040 00000000 00000000 00000000 00000000
0000000040001050 00000000 00000000 00000000 00000000
0000000040001060 00000000 00000000 00000000 00000000
0000000040001070 00000000 00000000 00000000 00000000
0000000040001080 00000000 00000000 00000000 00000000
0000000040001090 00000000 00000000 00000000 00000000
0000000040001040 00000000 00000000 00000000 00000000
0000000040001080 00000000 00000000 00000000 00000000
00000000400010C0 00000000 00000000 00000000 00000000
00000000400010D0 00000000 00000000 00000000 00000000
00000000400010E0 00000000 00000000 00000000 00000000
00000000400010F0 00000000 00000000 00000000 00000000
0000000040001100 00000000 00000000 00000000 00000000
0000000040001110 00000000 00000000 00000000 00000000
0000000040001120 00000000 00000000 00000000 00000000
0000000040001130 00000000 00000000 00000000 00000000
0000000040001140 00000000 00000000 00000000 00000000
0000000040001150 00000000 00000000 00000000 00000000
0000000040001160 00000000 00000000 00000000 00000000

Figure 71. MMSFR Register when booting the secondary image
8. Production Support Considerations

This section describes one possible flow of production flow. Users may adapt this procedure to their own
needs wherever possible.

8.1 Protect the Bootloader using Memory Protection Unit and Flash Access
Window

In this application, we only need to focus on the secure flash program and data regions.

Users need to determine the bootloader size and set the boundaries for both the secure flash data and
program regions within this area, as shown in Figure 5.

For the secure flash program region, users can configure the Security MPU Regions in the
ra_mcuboot ra2a2 with mmf project under the BSP tab.

Summary Clocks | Pins| Interrupts | Event Links | Stacks| Components

Problems Console Properties X Smart Browser Smart Manual Memory Usage Debug M

EK-RA2A2
Settings Property Value
v RTFA2A2AD3CFP
part_number R7FA2A2AD3CFP
rom_size_bytes 524288
ram_size_bytes 49152
data_flash_size_bytes 8192
package_style LQFP
package_pins 100
v RA2A2
series 2
~ RA2A2 Family
OFS0 register settings
OFS1 register settings
~ MPU
Enable or disable PC Region 0 Enabled
PCO Start 0x000FFFFC
PCO End OxQ00FFFFF
Enable or disable PC Region 1 Disabled
PC1 Start 0xQ00FFFFC
PC1 End OxQ00FFFFF
Enable or disable Memory Region 0 Disabled
Memory Region 0 Start Ox000FFFFC
Memory Region 0 End OxO000FFFFF
Enable or disable Memory Region 1 Disabled
Memory Region 1 Start 0x200FFFFC
Memory Region 1 End Ox200FFFFF
Figure 72. Security MPU Configuration
RO1AN7766EU0100 Rev.1.00 Page 42 of 47

May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

e Secure flash program
— Enable or disable PC Region 0: enable or disable the secure flash program.
— PCO0 Start and PCO End: program counter region for the secure flash program.

For the secure flash data region, users need to create a customized linker script to define it, as shown in
Figure 73. For more details, users can refer to section 5 in Application Project R11AN0416.

/* Linker script to configure memory regions. */

MEMORY
VECTOR TABLE (rx) : ORIGIN = 0x00000000, LENGTH = 0x00000400 /*1024 bytes */
CURE_ (rz) ; ORIGIN — 0x00000400, LENGTH — 0x0007FC0O0Q /* S bytes */
SECURE DATA (rw) : ORIGIN = 0x00080000, LENGTH = 0x00080000 /* /|
FLASH (LX) T ORIGIN — 0x00100000, LENGTH = 0x00100000 7% 1M

SECURE_RAM PROGRAM (rwx) : ORIGIN = 0x1FFE0000, LENGTH = 0x00010000 /*

* /
SECURE_RAM (rw) : ORIGIN = 0x1FFF0000, LENGTH = 0x00040000 /* */
RAM (rwx) : ORIGIN = 0x20030000, LENGTH = 0x00030000 ! */
DATA FLASH (rx) : ORIGIN = 0x40100000, LENGTH = 0x00008000 I */
QSPI_FLASH (rx) : ORIGIN = 0x60000000, LENGTH = 0x04000000 / </
SDRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x02000000 / 3ZM */

Figure 73. Customized Linker Script for Secure Data Region

Note that this is an example of the customized linker script, users need to calculate the memory regions to fit
their application project.

For the FAW region, users only need to call the FSP FAW API:

err = R FLASH LP AccessWindowSet (&g flashO ctrl, FAW START, FAW END);
where:

e g flashO ctrl isthe instance of this flash HAL driver.

e FAW_ START is the start address of the FAW window.

e FAW END is the address of the next block acceptable for programming and erasure defined by the
access window.
Note:

o |Ifthe FAW is permanently locked before running this API, the FAW region cannot be updated using this
API.

e |tis always recommended to set up the FAW region outside of Security MPU Regions, as shown in
Figure 5.

RO1AN7766EU0100 Rev.1.00 Page 43 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

9. Appendix: Compile and Exercise the Included Example Bootloader and
Application Projects

There are three projects:

e ra mcuboot ra2a2 with mmf
e app primary uart mmf
® app secondary uart mmf

Users can follow the steps below to run the example projects in the folder \ra2-secure-bootloader-
using-mcuboot-internal-code-flash-mmf.

Follow the instructions in section 6.2 to set the hardware.

Import the above-mentioned three projects to a workspace.

Open the configuration.xml file from project ra mcuboot ra2a2 with mmf.
Click Generate Project Content.

Follow section 4.6 to set up the Python dependencies. Skip this step if the dependencies are already
met.

6. Compile the project ra_mcuboot ra2a2 with mmf.

7. Openthe configuration.xml file from project app primary uart mmf.

8. Click Generate Project Content.

9. Compile the project app primary uart mmf.

10. Open the configuration.xml file from project app secondary uart mmf.

11. Click Generate Project Content.

12. Compile the project app secondary uart mmf.

13. Erase the entire chip following the instructions in section 6.3.

14. Debug the application from project app primary uart mmf in the e? studio environment.

15. Resume the program execution twice. All three LEDs should be blinking.

16. Open the Tera Term with the enumerated COM port and set up the baud rate as 115200.

17. Use Tera Term to send the
\app_secondary uart mmf\Debug\app secondary uart mmf.bin.signed tothe MCU by
following section 6.6. This will take around 50 seconds.

18. The system will reset automatically after downloading.

19. Blue LED should be blinking.

20. Enter menu item 1 to confirm the image with version 1.1.0 is located in the secondary slot and the image
with version 1.0.0 is located in the primary slot.

ok owbd =

RO1AN7766EU0100 Rev.1.00 Page 44 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

10. References

1. Renesas RA Family RA2 Series MCU Secure Bootloader Design using MCUboot Application Project
(R11AN0516)

2. Renesas RA Family RA6 Series MCU Basic Secure Bootloader Design using MCUboot with Code Flash
Linear Mode Application Project (R11AN0497)

3. Renesas RA Family RA8 Series MCU Basic Secure Bootloader Using MCUboot and Internal Code Flash
(R11AN0909)

4. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)

RO1AN7766EU0100 Rev.1.00 Page 45 of 47
May.20.25 RENESAS

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

11. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA2A2 Resources renesas.com/ra/ek-ra2a2
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
RO1AN7766EU0100 Rev.1.00 Page 46 of 47

May.20.25 RENESAS

https://www.renesas.com/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra2a2-evaluation-kit-ra2a2-mcu-group?srsltid=AfmBOorX2j-C7CP4aIbBnyKVYWhHZTf9gW7sWVYj7rr6gSu29-MFmJY2
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family RA2 MCU Advanced Secure Bootloader Design using MCUboot
Internal Code Flash and Memory Mirror Function

Revision History

Description
Rev. Date Page Summary
1.00 May 20. 25 - Initialize release

RO1AN7766EU0100 Rev.1.00 Page 47 of 47
May.20.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. RA2 MCU Group Memory Layout
	1.1 RA2A2 MCU Code Flash Configuration
	1.2 RA2A2 MCU Memory Mirror Address Mapping
	1.3 Security Memory Protection Unit and Flash Access Window

	2. Using the Code Flash Linear Mode and MMF Feature with MCUboot Overview
	2.1 MCUboot Functionalities Overview
	2.2 Use Direct XIP Firmware Update Mode
	2.3 Memory Mirror Function
	2.4 Using Direct XIP Upgrade Mode with MMF
	2.5 Designing Bootloader and Initial Primary Application Overview

	3. System Overview
	3.1 System-Level Major Events
	3.2 XModem Based Image Downloader
	3.3 Linker Script Update When MMF is Enabled
	3.4 Introduction to the Included Example Projects

	4. Creating the Bootloader Project using Code Flash Linear Mode and MMF
	4.1 Include the MCUboot Module in the Bootloader Project
	4.2 Configure the Memory Configuration and Authentication Method
	4.3 Enable the Memory Mirror Function Support
	4.4 Configure the TinyCrypt Module and the Flash Driver
	4.5 Add the Boot Code
	4.6 Configure the Python Signing Environment
	4.7 Compile the Bootloader Project
	4.8 Optimizing the Bootloader Project Size

	5. Configuring and Signing an Application Project
	5.1 Configure the Application Project to Use the Bootloader
	5.2 Signing the Application Image

	6. Booting the Primary Application and Updating to a New Image
	6.1 Prepare a Secondary Image
	6.2 Set Up the Hardware
	6.3 Erase the MCU
	6.4 Boot the Primary Application
	6.5 Program the New Application Using the Primary Application Downloader
	6.6 Boot the New Application

	7. Memory Mirror Address When Booting Image
	8. Production Support Considerations
	8.1 Protect the Bootloader using Memory Protection Unit and Flash Access Window

	9. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects
	10. References
	11. Website and Support
	Revision History

