
 Application Note

R11AN0915EU0110 Rev.1.10 Page 1 of 37
Oct.01.25

Renesas RA Family

RA AWS Cloud Connectivity and Firmware Update OTA on
CK-RA6M5 v2 with Ethernet
Introduction
This application note offers a step-by-step guide to creating IoT Cloud connectivity solutions utilizing AWS
IoT Core. It includes instructions for implementing firmware updates Over-The-Air (OTA) and step-by-step
creation of a Bootloader project using MCUboot for firmware upgrades.

The provided application example is centered around showcasing the Renesas RA Cloud connectivity
solution and highlighting Firmware updates. It demonstrates the integration of AWS IoT Core and
underscores the firmware update capabilities supported within the Renesas FSP, along with secure
MCUboot.

This application note helps developers effectively use FSP MQTT/TLS modules and AWS OTA in their
product designs. By following the guide, developers can integrate "AWS Core MQTT," "Mbed TLS," and
"AWS TCP Sockets Wrapper" via Ethernet, along with AWS OTA libraries. They'll configure these
components for their applications and use the provided example code as a reference for streamlined
development.

References to detailed API descriptions and other application projects that demonstrate more advanced uses
of the module are in the FSP User’s Manual (available at: https://renesas.github.io/fsp/), which serves as a
valuable resource in creating more complex designs.

This MQTT/TLS AWS Cloud Connectivity solution is supported on the CK-RA6M5 v2 Kit.

Applies to:
RA6M5 MCU Group

Required Resources
To build and run the application project, the following resources are needed.

Development tools and software
• Flexible Software Package (FSP) v6.1.0 and required tools (renesas.com/us/en/software-tool/flexible-

software-package-fsp)
• Openssl: v3.0.12 or later (OpenSSL website: https://www.openssl.org/, OpenSSL App for Windows OS:

https://slproweb.com/products/Win32OpenSSL.html)
• Python: v3.12.0 or later (https://www.python.org/downloads/)

Hardware
• Renesas CK-RA6M5 v2 kit (renesas.com/ra/ck-ra6m5)
• PC running Windows® 10 or Windows® 11
• Micro USB cables included as part of the kit. See CK-RA6M5 v2 — User’s Manual)
• USB-C cable for Power supply (See CK-RA6M5 v2 — User’s Manual)
• CAT5 Ethernet cable
• A router/switch with at least one available 100 Mbps/full duplex Ethernet port with connectivity to the

internet

https://renesas.github.io/fsp/
https://www.renesas.com/ra/ck-ra6m5
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.openssl.org/
https://slproweb.com/products/Win32OpenSSL.html
https://www.python.org/downloads/
https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 2 of 37
Oct.01.25

Prerequisites and Intended Audience
This application note assumes that the user is adept at operating the Renesas e2 studio IDE with Flexible
Software Package (FSP). If not, we recommend reading and following the procedures in the FSP User's
Manual sections for ‘Starting Development,’ including ‘Debug the Blinky Project.’ Doing so enables
familiarization with e2 studio and FSP and validates proper debug connection to the target board. In addition,
this application note assumes prior knowledge of Cloud connectivity and its communication protocols, and
knowledge of firmware upgrades over the air.

The intended audience is users who intend to develop a solution for updating firmware over the air using
AWS services and the Renesas RA MCU series.

Note: If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP
on your system to run the Blinky Project and to get familiar with the e2 studio and FSP development
environment before proceeding to the next sections.

Note: This Application Project and Application Note can only use versions FSP v6.1.0.

Prerequisites

1. Access to online documentation is available in the References section.
2. Knowledge of the MCU Bootloader and access to the Renesas Bootloader documentation.
3. Knowledge of OTA and access to the AWS OTA documentation.
4. Access to the latest documentation for the identified Renesas Flexible Software Package.
5. Prior knowledge of operating the e2 studio and the built-in (or standalone) RA Configurator.
6. Access to associated hardware documentation, such as User Manuals, Schematics, and other relevant

kit information (renesas.com/ra/ck-ra6m5).

https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 3 of 37
Oct.01.25

Contents

1. Introduction to Components for Cloud Connectivity ... 4
1.1 General Overview .. 4
1.2 Cloud Service Provider .. 4
1.3 AWS IoT Core ... 5
1.4 MQTT Protocol Overview .. 5
1.5 TLS Protocol Overview .. 5
1.6 Device Certificates, CA, and Keys .. 6

2. Running the MQTT/TLS Ethernet with OTA Application Example .. 7

3. AWS IoT Over-the-air Update Library with Ethernet Interface .. 7
3.1 AWS IoT Over-the-air Update Library ... 7
3.2 AWS Core MQTT .. 8
3.3 Transport Layer Implementation ... 9
3.4 Mbed TLS .. 10
3.5 MQTT Agent Module APIs Usage ... 11
3.6 AWS OTA PAL on MCUboot ... 11

4. Cloud Connectivity Application Example .. 13
4.1 Overview .. 13
4.2 MQTT/TLS Application Software Overview ... 15
4.3 Creating the Application Project using the FSP Configurator ... 19
4.4 Creating the FSP Solution Project ... 31
4.5 MQTT/TLS Configuration .. 32

5. Sensor Stabilization Time .. 33

6. MQTT/TLS Module Next Steps .. 34

7. References .. 34

8. Known Issues and Troubleshooting ... 35

9. Debugging ... 35

Revision History .. 37

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 4 of 37
Oct.01.25

1. Introduction to Components for Cloud Connectivity
1.1 General Overview
The Internet-of-Things (IoT) is a global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving interoperable information and
communication technologies. The ‘things’ in this definition are objects in the physical world (physical objects)
or information world (virtual) that can be identified and integrated into communication networks. In the
context of the IoT, a ‘device’ is a piece of equipment with the mandatory capabilities of communication and
the optional capabilities of sensing, actuation, data capture, data storage, and data processing.
Communication is often performed with providers of network-hosted services, infrastructure, and business
applications to process/analyze the generated data and manage the devices. Such providers are called
Cloud Service Providers. While there are many manufacturers of devices and cloud service providers, for the
context of this application note, the device is a Renesas RA Microcontroller (MCU) connecting to services
provided by Amazon Web Services (AWS) for IoT.

1.2 Cloud Service Provider
AWS IoT provides the cloud services that connect your IoT devices to other devices and AWS cloud services
As a Cloud Service Provider, AWS IoT provides the ability to:

• Connect and manage devices.
• Secure device connections and data.
• Process and act upon device data.
• Read and set the device state at any time.

Figure 1 summarizes the features provided by AWS IoT.

Figure 1. AWS IoT Features, Service Components, and Data Flow Diagram
A key feature provided by AWS is the AWS IoT Software Development Kit (SDK) written in C, which allows
devices such as sensors, actuators, embedded micro-controllers, or smart appliances to connect,
authenticate, and exchange messages with AWS IoT using the MQTT, HTTP, or WebSocket’s protocols.
This application note focuses on configuring and using the AWS IoT Device SDK and the MQTT protocol
included, which is available through the Renesas Flexible Software Package (FSP) for Renesas RA MCUs.

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 5 of 37
Oct.01.25

1.3 AWS IoT Core
AWS IoT Core is a managed cloud service that lets connected devices easily and securely interact with
cloud applications and other devices. AWS IoT Core can support billions of devices and trillions of
messages. It can process and route messages to AWS endpoints and other devices reliably and securely.
With AWS IoT Core, customer applications can keep track of all devices all the time, even when devices are
not connected.

AWS IoT Core addresses security concerns for the infrastructure by implementing mutual authentication and
encryption. AWS IoT Core provides automated configuration and authentication upon a device’s first
connection to AWS IoT Core, as well as end-to-end encryption throughout all points of connection, so that
data is only exchanged between devices and AWS IoT Core with proven identity.

This application note focuses on complementing the security needs of AWS IoT Core by installing a proven
identity for the RA MCU by storing an X.509 certificate and asymmetric cryptography keys in Privacy
Enhanced Mail (PEM) format in the onboard flash. The RA MCU has on-chip security features, such as Key
Wrapping, to protect the private key associated with the public key and the certificate associated with the
device1. Additionally, RA MCUs can also generate asymmetric keys using features of the Secure Engine and
API available through the FSP. The Secure Engine accelerates symmetric encryption/decryption of data
between the connected device and AWS IoT, allowing the ARM Cortex-M processor to perform other
application-specific computations.

1.4 MQTT Protocol Overview
This application note features Message Queuing Telemetry Transport (MQTT) as it is a lightweight
communication protocol specifically designed to tolerate intermittent connections, minimize the code footprint
on devices, and reduce network bandwidth requirements. MQTT uses a publish/subscribe architecture,
which is designed to be open and easy to implement, with up to thousands of remote clients capable of
being supported by a single server. These characteristics make MQTT ideal for use in constrained
environments where network bandwidth is low or where there is high latency, and with remote devices that
might have limited processing capabilities and memory. The RA MCU device in this application note
implements a Core MQTT service that communicates with AWS IoT and exchanges example telemetry
information, such as temperature, pressure, humidity, accelerometer, magnetometer, and many more types
of sensor data.

1.5 TLS Protocol Overview
The primary goal of the Transport Layer Security (TLS) protocol is to provide privacy and data integrity
between two communicating applications or endpoints. AWS IoT mandates the use of secure
communication. Consequently, all traffic to and from AWS IoT is sent securely using TLS. TLS protocol
version 1.2 or later ensures the confidentiality of the application protocols supported by AWS IoT. A variety of
TLS Cipher Suites are supported. This application note configures the RA Flexible Software Package for the
MCU-based device to provide the following capabilities, and AWS IoT negotiates the appropriate TLS Cipher
Suite configuration to maximize security.

Table 1. TLS with Crypto Capabilities in RA FSP

Secure Crypto Hardware Acceleration Supported
Key Format Supported AES, ECC, RSA
Hash SHA-256
Cipher AES
Public Key Cryptography ECC, ECDSA, RSA
Message Authentication Code (MAC) HKDF

On top of these supported features, Mbed Crypto middleware also supports a variety of features that can be
enabled through the RA Configurator. Refer to the FSP User’s Manual section for the Crypto Middleware
(rm_psa_crypto).

1 This application note does not focus on using Key Wrapping for securely storing the private key for devices
deployed in a production environment.

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 6 of 37
Oct.01.25

1.6 Device Certificates, CA, and Keys
Device Certificates, Certificate Authorities (CA), and Asymmetric Key Pairs create the foundation for trust
needed for a secure environment. The background information on these commonly used components in
AWS is provided in this section.

A digital certificate is a document in a known format that provides information about the identity of a device.
The X.509 standard includes the format definition for public-key certificate, attribute certificate, certificate
revocation list (CRL), and attribute certificate revocation list (ACRL). X.509-defined certificate formats (X.509
Certificates) are commonly used on the internet and in AWS IoT for authenticating a remote entity/endpoint,
that is, a Client and/or Server. In this application note, an X.509 certificate and asymmetric cryptography key
pair (public and private keys) are generated from AWS IoT and installed (during binary compilation) into the
RA MCU device running the Core MQTT to establish a known identity. In addition, a root Certification
Authority (CA) certificate is also downloaded and used by the device to authenticate the connection to the
AWS IoT gateway.

Certification Authority (CA) certificates are issued by a CA to itself or a second CA for the purpose of creating
a defined relationship between the two CAs. The root CA certificate allows devices to verify that they're
communicating with AWS IoT Core and not another server impersonating AWS IoT Core.
The public and private keys downloaded from AWS IoT use RSA algorithms for encryption, decryption,
signing, and verification2. These key pairs and certificates are used together in the TLS process to:

1. Verify device identity.
2. Exchange symmetric keys for algorithms such as AES for encrypting and decrypting data transfers

between endpoints.

2 Public Key length used is 2048 bits.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 7 of 37
Oct.01.25

2. Running the MQTT/TLS Ethernet with OTA Application Example
Refer to the RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet -
Getting Started Guide as part of this project bundle for details on running the project and how to update
new firmware using OTA via AWS.

3. AWS IoT Over-the-air Update Library with Ethernet Interface
3.1 AWS IoT Over-the-air Update Library
The AWS IoT Over-the-air Update Library included in RA FSP facilitates firmware updates via AWS IoT,
utilizing various protocols such as MQTT or HTTP, with the support of a secure bootloader. This application
project and application note focuses on the MQTT protocol.

When users use FreeRTOS project with FSP (can refer to the step-by-step application creation guide in
section 4.3, “Set up the Application and Downloader project”), the AWS IoT Over-the-air Update Library
can be directly imported into a Thread stack. It is configured through the RA Configuration Perspective. To
add the AWS IoT Over-the-air Update Library to a new thread, open Configuration.xml with the RA
Configuration. While ensuring that the correct thread is selected on the left, use the tab for Stacks > New
Stack > Search and search for the keyword AWS IoT Over-the-air Update Library.

Figure 2. Add AWS IoT Over-the-air Update Library
Adding the AWS IoT Over-the-air Update Library stack results in the default configuration, as shown in
Figure 3. AWS IoT Over-the-air Update Library Stack View.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 8 of 37
Oct.01.25

Figure 3. AWS IoT Over-the-air Update Library Stack View

3.2 AWS Core MQTT
The AWS MQTT library included in RA FSP can connect to AWS MQTT. The complete library
documentation is available on the AWS IoT Device SDK C: MQTT website. Primary features supported by
the library are:

• MQTT connections over TLS to an AWS IoT Endpoint, Mosquitto server, or other MQTT broker.

Figure 4. AWS Core MQTT Stack View
While the AWS Core MQTT stack shown includes many dependencies and configurable properties, most
default settings can be used as-is. The following change is needed to meet all unmet dependencies (marked
in red) for the AWS Core MQTT stack added to a new project (as shown above):

• Enable Mutex and Recursive Mutex usage support as needed by AWS IoT SDK and FreeRTOS in the
created Thread properties.

Upon completion of the above step, the AWS Core MQTT is ready to accept a socket implementation, which
has dependencies on using a TLS Session and an underlying TCP/IP implementation.

Additional documentation on the AWS Core MQTT is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > Networking > AWS MQTT.

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 9 of 37
Oct.01.25

3.3 Transport Layer Implementation
The FSP AWS Transport Interface provides options for Wi-Fi, Cellular, and Ethernet. AWS Transport
Interface on MbedTL/PKCS11 module is used for the network communication interface of the AWS Core
MQTT. While the RA FSP contains a Secure Socket Implementation for Wi-Fi, Cellular, and Ethernet, this
application and application note focus on using the Ethernet Interface.

Ethernet Sockets can be added to the Thread Stack by clicking on Add Sockets Wrapper > New > AWS
TCP Sockets Wrapper.

Figure 5. Adding Ethernet Interface to the Core MQTT Module
In addition, the needed stack is complete and has unmet dependencies for the dependent modules.

Now, hover the cursor over the red blocks, and the error will appear. Make the appropriate settings.

• AWS Transport Interface on MbedTLS/PKCS11 errors:
 For error: Requires FreeRTOS heap implementation 4 or 5, choose the heap implementation using New

Stack > RTOS > FreeRTOS Heap 4. Also, set Dynamic Memory allocation in Thread’s properties:
using New Thread > Properties > Thread > Memory Allocation > Support Dynamic Allocation >
Enabled.

 For error: Mutexes must be enabled in the FreeRTOS thread; enable mutexes in the Thread’s common
properties using New Thread > Properties > Common > General > Use Mutexes > Enabled.

• For AWS PKCS11 to MbedTLS error: MBEDTLS_CMAC_C must be defined, using MbedTLS (Crypto
Only) > Common > Message Authentication Code (MAC) > MBEDTLS_CMAC_C > Define.

• For MbedTLS error: MBEDTLS_ECDH_C must be defined, using MbedTLS (Crypto Only) > Common
> Public Key Cryptography (PKC) > ECC > MBEDTLS_ECDH_C > Define.

• MbedTLS (Crypto Only) errors relate to minimum RTOS heap, set Heap Memory allocation using New
Thread > Properties > Thread > Memory Allocation > Total Heap Size > 0x20000.

• For LittleFS error: A heap is required to use Malloc, add a heap under BSP Tab > Properties > RA
Common > Heap size (bytes) > 0x20000.

• For LittleFS errors:
o A heap is required to use Malloc; add a heap under BSP Tab > Properties > RA Common > Heap size

(bytes) > 0x20000.
o Add a stack for LittleFS: Add LittleFS Port [Required] > New > LittleFS on Flash (rm_littlefs_flash).
• Mutexes must be enabled using New Thread > Common > General > Use Mutexes > Enabled.
• Mutexes must be enabled using New Thread > Common > General > Use Recursive Mutexes >

Enabled.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 10 of 37
Oct.01.25

Note: These are the basic settings required to remove the error from the configurator. More specific
configurations are listed in the specific module and its usage.

After all the appropriate settings have taken care of the errors due to the missing configuration, the new
configurator screenshot looks clean with no mistakes, as shown in Figure 6. Expanded TCP Socket Interface
Module.

Figure 6. Expanded TCP Socket Interface Module

3.4 Mbed TLS
Mbed TLS is Arm®’s implementation of the TLS protocols and the cryptographic primitives required by those
implementations. Mbed TLS is also solely used for its cryptographic features, even if the TLS/SSL portions
are not used.

TLS Support uses FreeRTOS+Crypto, which eventually uses Mbed TLS. Use of Mbed TLS requires
configuration and operation of the Mbed Crypto module, which in turn operates the Secure IP on the MCU
(For RA6M5, it’s SCE).

The following underlying mandatory changes are needed to the project using the TCP Sockets on
FreeRTOS+Crypto module (Please refer to section 4.3 Creating the Application Project using the FSP
Configurator for more detailed configuration):

1. Use FreeRTOS heap implementation scheme 4 (first fit algorithm with coalescence algorithm) or scheme
5 (first fit algorithm with coalescence algorithm with heap spanning over multiple non-adjacent/non-
contiguous memory regions.

2. Enable support for dynamic memory allocation in FreeRTOS.
3. Enable Mbed TLS platform memory allocation layer.
4. Enable the Mbed TLS generic threading layer that handles default locks and mutexes for the user and

abstracts the threading layer to use an alternate thread library.
5. Enable the Elliptic Curve Diffie-Hellman (ECDH) library.
6. Change FreeRTOS Total Heap Size to a value greater than 0x20000.
7. Add Persistent Storage on LittleFS.

Additional documentation on the Mbed Crypto hardware acceleration port is available in the FSP User’s
Manual under RA Flexible Software Package Documentation > API Reference > Modules > Security > Mbed
Crypto H/W Acceleration (rm_psa_crypto).

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 11 of 37
Oct.01.25

3.5 MQTT Agent Module APIs Usage
Table 2 lists APIs provided by AWS Core MQTT Agent (via AWS Core MQTT Stack) that are used as a part
of the Application Example.

Table 2. MQTT Agent Module APIs

API Description
MQTTAgent_Init Perform any initialization the MQTT agent

requires before it can be used. Must be called
before any other function.

MQTTAgent_Connect Add a command to call MQTT_Connect() for
an MQTT connection. If a session is resumed
with the broker, it will also resend the
necessary QoS1/2 publishes.

MQTTAgent_Subscribe Add a command to call MQTT_Subscribe() for
an MQTT connection.

MQTTAgent_Publish Add a command to call MQTT_Publish() for an
MQTT connection.

MQTTAgent_Ping Add a command to call MQTT_Ping() for an
MQTT connection.

MQTTAgent_Unsubscribe Add a command to
call MQTT_Unsubscribe() for an MQTT
connection.

MQTTAgent_Disconnect Add a command to disconnect an MQTT
connection.

MQTTAgent_CommandLoop Process commands from the command queue
in a loop.

MQTTAgent_ResumeSession Resume a session by resending publishes if a
session is present in the broker, or clear state
information if not.

MQTTAgent_Terminate Add a termination command to the command
queue.

MQTTAgent_CancelAll Cancel all enqueued commands and those
awaiting acknowledgment while the command
loop is not running.

3.6 AWS OTA PAL on MCUboot
AWS OTA PAL layer implementation for programming downloaded firmware images into memory provides
the hardware port layer (MCUboot) for AWS IoT Over-the-air Update Library. It allows image signature
verification with the sig-sha256-ecdsa method.

Figure 7. AWS OTA PAL stack view

https://freertos.github.io/coreMQTT-Agent/v1.2.0/coreMQTT/core__mqtt_8h.html#aed1e4dc123a8ba79ac569cb17c69bfa0
https://freertos.github.io/coreMQTT-Agent/v1.2.0/coreMQTT/core__mqtt_8h.html#a567aa9c38726a7879f9cbf943e813e8f
https://freertos.github.io/coreMQTT-Agent/v1.2.0/coreMQTT/core__mqtt_8h.html#a1d8217e9d30fb2aed002060a8c97c63e
https://freertos.github.io/coreMQTT-Agent/v1.2.0/coreMQTT/core__mqtt_8h.html#a66eced0c62ace790354ae3de40fc0959
https://freertos.github.io/coreMQTT-Agent/v1.2.0/coreMQTT/core__mqtt_8h.html#a77c911dbe24c5a51aaea88250895dba4

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 12 of 37
Oct.01.25

Note: Currently, RA Flexible Software Package (FSP) v6.1.0 only supports OTA with the sig-sha256-ecdsa
signature method.

The following underlying mandatory changes are needed for the project:

- Add Flash to AWS OTA PAL stack by clicking on Add Requires Flash > New > Flash (r_flash_hp)

Figure 8. Add Flash to AWS OTA PAL

- Flash > Property > Module Fash > Data Flash Background Operation > Disabled
- Flash > Property > Common > Code Flash Programming Enable > Enabled
- MCUboot Image Utilities > Property > Common > General: Fill in the hyperlink paths leading to

the MCUboot configuration files generated after building the bootloader project. Please refer to
section 3.3 in RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with
Ethernet - Getting Started Guide, or section 4.3 Creating the Application Project using the FSP
Configurator in this APN for more detailed configuration.

Figure 9. MCUboot Image Utilities Configuration

Note: Regarding the memory settings in the MCUboot section, the application example employs Upgrade
Mode as swap mode, with code flash memory in linear mode. The size of MCUboot is 0x20000 Bytes, the
size of the Cloud Application image used is 0x90000 Bytes, and the scratch area is 0x8000 Bytes. Users can
customize these values depending on their source code. Below is the memory map of the OTA application
example:

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 13 of 37
Oct.01.25

Figure 10. Memory map of the OTA application example

The user application image, once built, will be signed using AWS Code Signing (private key) with a Python
tool (imgtool.py – It is included in FSP). The primary (initial) image will be loaded onto the board and verified
first by the bootloader (MCUBoot). The secondary (new) image will be verified by the AWS OTA PAL on the
MCUBoot after it has been downloaded from the cloud. If the verification is successful, the new image will be
booted up. At this point, the bootloader will verify the new image once again. Please refer to sections 3, 4,
and 5 in RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet -
Getting Started Guide to get more details about signature installation and OTA operations with AWS OTA
PAL on MCUboot.

Additional documentation on the AWS OTA PAL is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > Networking > AWS OTA PAL on MCUboot.

4. Cloud Connectivity Application Example
4.1 Overview
This application project showcases the utilization of APIs accessible via Renesas FSP-integrated modules
for Amazon IoT SDK C, Mbed TLS module, Amazon FreeRTOS, and HAL Drivers on Renesas RA MCUs.
Ethernet module is employed to establish network connectivity. Running on a Renesas Cloud Kit, the
application also functions as a tutorial for Core MQTT, Mbed TLS/Crypto, OTA using Ethernet, and its
configuration using the FSP configurator. It can serve as a foundation for developing customized cloud-
based solutions with OTA using Renesas RA MCUs. Moreover, it offers a straightforward demonstration of
firmware OTA service operation and setup provided by the cloud service provider.

The upcoming subsections show step-by-step instructions for creating device and security credentials
policies as required by the AWS IOT on the cloud side to communicate with the end devices. The example
accompanying this documentation demonstrates the Subscribe and Publish messaging between Core MQTT
and MQTT Broker, on-demand publication of sensor data, and asynchronous publication of a “sensor data”
event from the MCU to the Cloud. The device is also subscribed to receive actuation events (LED indication)
from the Cloud.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 14 of 37
Oct.01.25

Figure 11. MQTT Publish/Subscribe to/from AWS IoT Core

Figure 12. Thread architecture diagram
- Console Thread: To manage user interaction via CLI (Command Line Interface); display information

regarding the board's UUID and the current firmware's FSP version, and save Cloud credentials to
Data Flash memory.

- Sensors Thread: Collecting data from sensors using I2C channel 0 (HS3001, ICP, ICM).
- Zmod Thread: Collecting data from sensors using I2C channel 2 (ZMOD4410, ZMOD4510).
- Oximeter Thread: Collecting data from sensors using I2C channel 1 (OB1203).
- App Thread: Handles provisioning Cloud credentials from the CLI Thread. This thread aggregates

sensor data from the "Sensors Thread," "ZMOD4xxx Thread", and "Oximeter Thread" to publish to

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 15 of 37
Oct.01.25

AWS Cloud. Additionally, it subscribes to the topic from IoT Core to send corresponding sensor data
or control LEDs on board when message requests are received.

- MQTT Agent Thread: Manage the MQTT protocol operations such as connecting/disconnecting the
MQTT broker, publishing, subscribing… and monitoring the MQTT connection status.

- OTA Demo Thread: Manage MQTT connection and OTA implementation status.
- OTA Agent Thread: Manage the OTA firmware update for the device, invoke the callback

implementations to publish job-related control information, and receive chunks of pre-signed
firmware images from the MQTT broker.

- Bootloader: responsible for initializing the device and loading the main application firmware after
verifying the firmware’s signature.

Figure 13. Hardware Setup

4.2 MQTT/TLS Application Software Overview
The following files from this application project serve as a reference, as shown in Table 3.

Table 3. Application Project Files

No. Filename Purpose
1. src/app_thread_entry.c Contains initialization code and has the main

thread used in the Cloud Connectivity
application.

2. src/common_init.c Contains code used to initialize common
peripherals across the project.

3. src/common_init.h Contains macros, data structures, and
function prototypes used to initialize common
peripherals across the project.

4. src/common_utils.c Contains code commonly used across the
project.

5. src/common_utils.h Contains macros, data structures, and
function prototypes commonly used across
the project.

6. src/console_thread_entry.c Contains the code for the command-line
interface and flash memory operations.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 16 of 37
Oct.01.25

No. Filename Purpose
7. src/icm.h Contains user-defined data types and function

prototypes which have implementation in
RA_ICM42605.c

8. src/ICM42605.c Contains driver codes for the 6 Axis sensor
(Gyroscope, Accelerometer)

9. src/ICM42605.h Contains the Data structure function
prototypes for the 6 Axis sensor (Gyroscope,
Accelerometer)

10. src/ICP_20100.c Contains the driver codes for Barometric
Pressure and Temperature Sensor.

11. src/ ICP_20100.h Contains the Data structure and function
prototypes for Barometric Pressure and
Temperature Sensor

12. src/icp.h Contains user-defined data types and function
prototypes which have an implementation in
RA_ICP20100.c

13. src/oximeter_thread_entry.c Contains codes for the oximeter sensor
thread’s operation.

14. src/oximeter.c Contains codes for oximeter sensor’s
initialization and measurement.

15. src/oximeter.h Contains the data structure and function
prototypes for the oximeter sensor.

16. src/r_typedefs.h Contains the common derived data types
17. src/RA_HS3001.c Contains the code and function for Renesas

Relative Humidity and Temperature Sensor.
18. src/RA_HS3001.h Contains the common data structure’s

function prototypes for the Renesas Relative
Humidity and Temperature sensors.

19. src/RA_ICM42605.c Contains codes for 6 Axis sensor (Gyroscope,
Accelerometer) sensor’s initialization and
measurement.

20. src/RA_ICP20100.c Contains codes for Barometric Pressure and
Temperature sensor’s initialization and
measurement.

21. src/RA_ZMOD4XXX_Common.c Contains the common code for the Renesas
ZMOD sensors

22. src/RA_ZMOD4XXX_Common.h Contains the common data structure’s
function prototypes for the Renesas ZMOD
sensors

23. src/RA_ZMOD4XXX_IAQ1stGen.c Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

24. src/RA_ZMOD4XXX_OAQ_NO2_O3.c Contains the common code for the Renesas
ZMOD Outer Air Quality sensors

25. src/RmcI2C.c Contains the I2C wrapper functions for the
third-party sensors not integrated with FSP

26. src/RmcI2C.h Contains the I2C function prototypes for
wrapper functions for the third-party sensors
not integrated with FSP

27. src/sensors_thread_entry.c Contains the Code to access the Sensor data
from the different sensors and order topic to
publish.

28. src/user_choice.c Contains the code for user’s choice of sensors
and user configurations

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 17 of 37
Oct.01.25

No. Filename Purpose
29. src/user_choice.h Contains the Function prototypes for the

Sensor and its user configuration for the
different sensors and their data accessibility.

30. src/usr_config.h To customize the user configuration to run the
application.

31. src/usr_data.h Accompanying header file for the application
thread.

32. src/usr_hal.c Contains data structures and functions used
for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

33. src/usr_hal.h Accompanying header for exposing
functionality provided by usr_hal.c.

34. src/usr_network.c Contains data structures and functions used
in FreeRTOS TCP/IP and Ethernet Module.

35. src/usr_network.h Contains declarations of data structures and
functions used in usr_network.c

36. src/zmod_thread_entry.c Contains the code for indoor air and outdoor
air quality sensors

37. src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer
(RTT), which allows real-time communication
on targets that support debugger memory
accesses while the CPU is running.

38. src/SEGGER_RTT/SEGGER_RTT.h
39. src/SEGGER_RTT/SEGGER_RTT_Conf.h
40. src/SEGGER_RTT/SEGGER_RTT_printf.c
41. src/backoffAlgorithm/backoff_algor

ithm.c
Retry algorithms with random backoff for the
next retry attempt

42. src/backoffAlgorithm/backoff_algor
ithm.h

Retry algorithms with random backoff for the
next retry attempt header file

43. src/console_menu/console.c Contains data structures and functions used
to print data on the console using the UART

44. src/console_menu/console.h Contains the Function prototypes used to print
data on the console using UART

45. src/console_menu/menu_flash.c Contains data structures and functions used
to provide a CLI flash memory-related menu

46. src/console_menu/menu_flash.h Contains the Function prototypes and macros
used to provide the CLI flash memory-related
menu

47. src/console_menu/menu_kis.c Contains functions to get the FSP version, get
UUID, and a help option for the main menu on
CLI

48. src/console_menu/menu_kis.h Contains the function prototypes and macros
used to get the FSP version, get uuid and the
help option for the main menu on the CLI

49. src/console_menu/menu_main.c Contains data structures and functions used
to provide CLI main menu options

50. src/console_menu/menu_main.h Contains the Function prototypes and macros
used to provide CLI main menu options

51. Src/flash/flash_hp.c Contains data structures and functions used
to perform flash memory-related operations

52. src/flash/flash_hp.h Contains the Function prototypes and macros
used to perform flash memory-related
operations

53. src/ob1203_bio/KALMAN/kalman.c
54. src/ob1203_bio/KALMAN/kalman.h
55. src/ob1203_bio/SAVGOL/SAVGOL.c

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 18 of 37
Oct.01.25

No. Filename Purpose
56. src/ob1203_bio/SAVGOL/SAVGOL.h Contains an algorithm for Heart Rate, Blood

Oxygen Concentration, Pulse Oximetry,
Proximity, Light, and Color Sensor sample
calculations

57. src/ob1203_bio/SPO2/SPO2.c
58. src/ob1203_bio/SPO2/SPO2.h

59. src/ob1203_bio/ob1203_bio.c Contain codes for the OB1203 sensor’s
implementation to use with FSP stacks.

60. src/ob1203_bio/ob1203_bio.h Contain user data structure and function
prototypes used in ob1203_bio.c

61. src/ob1203_bio/OB1203_Config.c Contain configuration used for OB1203 driver.
62. src/ob1203_bio/OB1203_Config.h Contains the Function prototypes and macros

used in OB1203_Config.c
63. src/ob1203_bio/OB_driver/rm_ob1203

/ppg_mode/rm_ob1203_ppg_mode.c
Contain codes for the OB1203 driver.

64. src/ob1203_bio/OB_driver/rm_ob1203
/proximity_mode/rm_ob1203_proximit
y_mode.c

65. src/ob1203_bio/OB_driver/rm_ob1203
/rm_ob1203_ra_driver.c

66. src/ob1203_bio/OB_driver/rm_ob1203
/rm_ob1203.c

67. src/ob1203_bio/OB_driver/rm_ob1203
_api.h

68. src/ob1203_bio/OB_driver/rm_ob1203
_cfg.h

69. src/ob1203_bio/OB_driver/rm_ob1203
.h

70. src/hal_entry.c Contains HAL-level functions used in the
application 71. src/hal_warmstart.c

72. src/OtaOverMqttDemoExample.c Contain AWS OTA Demo code
73. src/agent/demo_config.h Defines AWS OTA demo common

configuration options
74. src/agent/mqtt_agent/mqtt_agent_ta

sk.c
This file contains the initial task created after
the TCP/IP stack connects to the network

75. src/agent/mqtt_agent/mqtt_agent_ta
sk.h

Contains declarations of the structures and
functions used in mqtt_agent_task.c

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 19 of 37
Oct.01.25

Figure 14. Application Example Implementation Details

4.3 Creating the Application Project using the FSP Configurator
Complete the steps to create the project from the start using the e2 studio and FSP configurator. Table 4
shows the step-by-step process of creating the project. It is assumed that the user is familiar with the
e2 studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 4. Step-by-step Details for Creating the Application Project for Ethernet with OTA feature

No Steps Intermediate Steps

Set up the Bootloader project
1 Project Creation: File → New → Renesas C/C++ Project → Renesas RA

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 20 of 37
Oct.01.25

No Steps Intermediate Steps
2 Project Template: Templates for Renesas RA Project →

Renesas RA C/C++ Project → Next
3 e2 studio - Project Configuration (RA

C/C++ Project) →
Project Name: bootloader_ck_ra6m5 → Next

4 Device Selection → FSP Version: 6.1.0
Board: CK-RA6M5 V2
Device: R7FA6M5BH3CFC
Language: C

5 Select Tools Toolchain: GNU ARM Embedded
Toolchain version: 13.2.1.arm-13-7
Debugger: J-Link ARM  Next

5a Project Type Selection Flat (Non-TrustZone) Project  Next
5b Preceding Project or Smart Bundle

Selection
None  Next

6 Build Artifact and RTOS Selection Artifact Selection: Executable
RTOS Selection: No RTOS → Next

6a Project Template Selection Project Template Selection: Bare Metal – Minimal →
Finish

7 Clock HOCO 20MHz →PLL Src: HOCO → PLL Div/2 →PLL Mul
x20.0 → PLL 200MHz

8 Update the pin configuration file
Pins tab
Select Pin Configuration: RA6M5_2
CK

→Uncheck the box: Generate data

Select Pin Configuration:
R7FA6M5BH3CFC.pincfg

→Check the box:  Generate data
Generate data: g_bsp_pin_cfg

Note: Bootloader does not use the extra peripheral or GPIO pins configured in the RA6M5_2 CK
configuration. This also reduces some memory usage for the bootloader project.

9 Add MCUboot stack
Stacks tab → New Stack → Bootloader → MCUboot

9a Under MCUboot Port for RA → Add
Requires a crypto stack →

New → MbedTLS (Crypto Only)

Under MCUboot Port for RA → Add
Requires Flash →

New → Flash (r_flash_hp)

9b Flash configuration
Property → Common → Code Flash Programming Enable: Enabled

Data Flash Programming Enable: Disabled
Property → Module Flash → Name: g_flash0

Data Flash Background Operation: Disabled
Callback: NULL
Flash Ready Interrupt Priority: Disabled
Flash Error Interrupt Priority: Disabled

10 Modifying the BSP Settings – RA Common for (Main stack, Heap, and Sub clock Settings);
RA6M5 Family for Dual bank mode settings
BSP Tab → Settings → RA Common Main stack size (bytes): 0x1000

Heap size (bytes): 0x400
Subclock Populated: Not Populated

10a BSP Tab → Settings → RA6M5
Device Options → OFS Registers →

DUALSEL (Dual Mode Select Register) Settings: Enabled
Bank Mode: Linear

11 Some dependencies related to TLS Support need to be resolved to remove the error in the FSP
configurator by modifying the MbedTLS (Crypto Only) property settings.
Common → General → MBEDTLS_THREADING_ALT: Undefine

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 21 of 37
Oct.01.25

No Steps Intermediate Steps
Common → General → MBEDTLS_THREADING_C: Undefine
Common → General → MBEDTLS_MEMORY_BUFFER_ALLOC_C: Define
Common → Public Key
Cryptography (PKC) → RSA →

MBEDTLS_RSA_C: Undefine

12 MCUboot configuration
Common → General → Upgrade Mode: Swap
Common → General → Validate Primary Image: Enabled
Common → Signing and Encryption
Options →

Signature Type: ECDSA P-256
(RA FSP (v6.1.0) currently only supports OTA with the sig-
sha256-ecdsa signature method)

Common → Signing and Encryption
Options →

Custom: --pad

Additional documentation on the MCUboot Port is available in the FSP User’s Manual under RA
Flexible Software Package Documentation > API Reference > Modules > Bootloader > MCUboot
Port

13 Add the user application files to folder bootloader_ck_ra6m5/src: file hal_entry.c, file key.c
14 Follow the section “Setting Up the Device” in the (RA AWS Cloud Connectivity and Firmware Update

OTA on CK-RA6M5 v2 with Ethernet - Getting Started Guide) document to generate key pairs, a
certificate, and add secp256r1.privatekey to the Bootloader project.

15 Build project bootloader_ck_ra6m5 to generate file bootloader_ck_ra6m5.sbd in folder
bootloader_ck_ra6m5/Debug

Set up the Application and Downloader project

16 Project Creation: File → New → C/C++ Project
17 Project Template: Templates for New C/C++ Project →

Renesas RA C/C++ Project → Next
18 e2 studio - Project Configuration (RA

C/C++ Project) →
Project Name (Name for the Project)
Note: Input your desired name for the project → Next

19 Device Selection → FSP Version: 6.1.0
Board: CK-RA6M5 V2
Device: R7FA6M5BH3CFC
Language: C

20 Toolchains Toolchain: GNU ARM Embedded
Toolchain version: 13.2.1.arm-13-7
Debugger: J-Link ARM  Next

20a Project Type Selection Flat (Non-TrustZone) Project  Next
20b Preceding Project or Smart Bundle

Selection
Preceding Project: bootloader_ck_ra6m5
 Next

21 Build Artifact and RTOS Selection Artifact Selection: Executable
RTOS Selection: FreeRTOS(v11.1.0+fsp6.1.0) → Next

21a Project Template Selection Project Template Selection: FreeRTOS – Minimal – Static
Allocation → Finish

22 Modifying the BSP Settings – RA Common for (Main stack, Heap, and Subclock Settings)
BSP Tab → Property Settings for RA
Common

Main stack size (bytes): 0x2000
Heap size (bytes): 0x20000
Subclock Populated: Not Populated

23 Clocks HOCO 20MHz →PLL Src: HOCO → PLL Div/2 →PLL Mul
x20.0 → PLL 200MHz

24 Add the Heap Implementation in HAL/Common
Stacks tab → New Stack → RTOS → FreeRTOS Heap 4

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 22 of 37
Oct.01.25

No Steps Intermediate Steps
25 Adding the HAL Modules as required for the Application Project: Clock Generation Circuit and GPT

Timer1 for control publishing sensor value into MQTT
HAL/Common Stacks → New Stack → System → Clock Generation Circuit (r_cgc)
Module g_cgc0 Clock Generation
Circuit (r_cgc)

Name: g_cgc0

HAL/Common Stacks → New Stack → Timers → Timer, General PWM (r_gpt)
Module g_timer0 Timer, General
PWM (r_gpt) → General

Name: g_timer1
Channel: 1
Mode: Periodic
Period: 1
Period Unit: Seconds

Module g_timer0 Timer, General
PWM (r_gpt) → Interrupts

Callback: g_user_timer_cb
Overflow/Crest Interrupt Priority: Priority 5

25a Configure Pins for CGC
Pins Tab → Pin Selection →
Peripherals → System: CGC →
CGC0 →

Operation Mode: Main+Sub Osc

26

Create and configure for App Thread
Stacks Tab→ Threads → New Thread
Config Thread Properties→ Symbol: app_thread

Name: App Thread
Stack size (bytes): 0x12000
Priority: 3
Thread Context: NULL
Memory Allocation: Static

26a Generic RTOS configs under thread (Additional configuration on top of the Default Config provided by
FSP)
Common → General Use Mutexes: Enabled

Use Recursive Mutexes: Enabled
Thread → Memory Allocation Support Dynamic Allocation: Enabled

Total Heap Size: 0x20000

27 Adding the AWS MQTT Wrapper Module to the Application Thread
Note: Now the newly created thread (Application thread) is ready to add a new stack (Here, the AWS
IoT Over-the-air Update Library is added)
New Stack → Networking → AWS IoT Over-the-air Update Library
AWS IoT Over-the-air Update
Library

Common → Log2 File Block Size: 12

27a Under the AWS Transport Interface
on MbedTLS/PKCS11 → Add
Sockets Wrapper [Required], add

New → AWS TCP Sockets Wrapper

27b Under the SCE Compatibility Mode
→ Add Key Injection for PSA Crypto
(Optional), add

New → Key Injection for PSA Crypto

27c AWS Core MQTT → Common → Retry count for reading CONNACK from
network → 10

28 Adding persistent storage support for AWS PKCS11
Under the MbedTLS (Crypto only) →
Add Persistent Storage on LittleFS
(Optional) →

Use → LittleFS

28a Under AWS PKCS11 PAL on LittleFS
→ LittleFS → Add LittleFS Port
[Required], add

New → LittleFS on Flash

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 23 of 37
Oct.01.25

No Steps Intermediate Steps
28b LittleFS on Flash → Module LittleFS

on Flash (rm_littlefs_flash) →
Block Count → (BSP_DATA_FLASH_SIZE_BYTES/256)

29 Some dependencies related to TLS Support need to be resolved to remove the error in the FSP
configurator by modifying the MbedTLS (Crypto Only) property settings.
Common → Platform → MBEDTLS_PLATFORM_MEMORY: Define
Common → General → MBEDTLS_THREADING_C: Define
Common → General → MBEDTLS_THREADING_ALT: Define
Common → Public Key
Cryptography (PKC) →

ECC → MBEDTLS_ECDH_C: Define

Common →Hardware Acceleration
→ Public Key Cryptography (PKC)

RSA 3072 → Verification: Enabled

Common →Hardware Acceleration
→ Public Key Cryptography (PKC)

RSA 4096 → Verification: Enabled

Common → Storage → MBEDTLS_FS_IO: Define
Common → Storage → MBEDTLS_PSA_CRYPTO_STORAGE_C: Define
Common → Storage → MBEDTLS_PSA_ITS_FILE_C: Define
Common → Message
Authentication Code (MAC)→

MBEDTLS_CMAC_C: Define

30 MCUboot Image Utilities Configuration
Under AWS OTA PAL
(rm_aws_ota_pal_mcuboot)
→MCUboot Image Utilities →
Property → Common → General →

Bootloader mcuboot_config.h:
../../../../../bootloader_ck_ra6m5/ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h
Bootloader sysflash.h:
../../../../../bootloader_ck_ra6m5/ra_cfg/mcu-
tools/include/sysflash/sysflash.h
Bootloader mcuboot_logging.h:
../../../../../bootloader_ck_ra6m5/ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_logging.h

In case of using another bootloader folder name, please update the above configurations accordingly.
30a Under MCUboot Image Utilities →

Add Requires Flash →
New → Flash (r_flash_hp)

31 Under MCUboot Image Utilities → Flash →
Property → Module Fash
(r_flash_hp) →

Name: g_flash1
Data Flash Background Operation: Disabled

Property → Common → Code Flash Programming Enable: Enabled
Data Flash Programming Enable: Enabled

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 24 of 37
Oct.01.25

No Steps Intermediate Steps
32 FreeRTOS + TCP Configuration

Note: This is only applicable to the Ethernet application project. Most of the default settings remain the
same, except a few of the default configurations need to be changed.
Common → DNS Request Attempts: 20

Stack size in words (not bytes):
configMINIMAL_STACK_SIZE * 16
DHCP callback function: Enable
Set the maximum number of events:
ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS + 16
Size of Rx buffer for TCP sockets: 8192
Size of Tx buffer for TCP sockets: 8192

Under FreeRTOS+TCP Wrapper to
ethernet driver
(rm_freertos_plus_tcp) → Add
Ethernet Driver, add

New → Ethernet (r_ther)

Properties setting for g_ether0
Ethernet → Module g_ether0
Ethernet (r_ether) → General →

Name: g_ether0
MAC address: <User needs to define the valid values for
their network>

Properties setting for g_ether0
Ethernet → Module g_ether0
Ethernet (r_ether) → Buffers →

Number of TX buffers: 8
Number of RX buffers: 8

Properties setting for g_ether0
Ethernet → Module g_ether0
Ethernet (r_ether) → Interrupts →

Interrupt priority: Priority 5

Properties setting for g_ether_phy0
Ethernet (r_ether_phy) → Common

ICS1894 target: Enabled
Reference clock: Enabled

g_ether_phy0 Ethernet
(r_ether_phy) → Module
g_ether_phy0 Ethernet

PHY-LSI Address: 5

g_ether_phy0 Ethernet
(r_ether_phy) → Pins

ET0_LINKSTA: None
ET0_WOL: None

Properties setting for
g_ether_phy_lsi0 Ethernet PHY-LSI

PHY-LSI Address: 5

33 Adding FreeRTOS Objects for the Application and Sensors
33a Stacks Tab → Objects → New Object → Queue

Property Settings for the Queue Symbol: g_topic_queue
Item Size (Bytes): 65
Queue Length (Items): 16
Memory Allocation: Static

33b Stacks Tab → Objects → New Object → Mutex
Property Settings for the Mutex Symbol: g_console_out_mutex

Type: Mutex
Memory Allocation: Static

33c Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_hs3001_queue

Item Size (Bytes): 8
Queue Length (Items): 1
Memory Allocation: Static

33d Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_iaq_queue

Item Size (Bytes): 12
Queue Length (Items): 1

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 25 of 37
Oct.01.25

No Steps Intermediate Steps
Memory Allocation: Static

33e Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_oaq_queue

Item Size (Bytes): 4
Queue Length (Items): 1
Memory Allocation: Static

33f Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_icm_queue

Item Size (Bytes): 72
Queue Length (Items): 1
Memory Allocation: Static

33g Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_icp_queue

Item Size (Bytes): 16
Queue Length (Items): 1
Memory Allocation: Static

33h Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_ob1203_queue

Item Size (Bytes): 10
Queue Length (Items): 1
Memory Allocation: Static

34 Add Console Thread
Stacks Tab → Threads New Thread
Config Thread Properties →

Symbol: console_thread
Name: Console Thread
Stack size (bytes): 4096
Priority: 3
Thread Context: NULL
Memory Allocation: Static

34a Add the UART module to Console Thread
New Stack → Connectivity → UART
Common → FIFO Support: Enable

DTC Support: Enable
Flow Control Support: Enable

Module UART → General → Name: g_console_uart
Channel: 5
Data Bits: 8bits
Parity: None
Stop Bits: 1bit

Module UART → Baud→ Baud rate: 115200
Module UART → Interrupts → Callback: user_uart_callback
Pins → TXD5: P501

RXD5: P502
CTS5: P500
CTSRTS5: P508

34b Add Flash module to Console Thread
New Stack → Storage → Flash
Module Flash → Name: user_flash

Data Flash Background Operation: Disabled
Callback: flash_callback

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 26 of 37
Oct.01.25

No Steps Intermediate Steps
Flash Ready Interrupt Priority: Priority 2
Flash Error Interrupt Priority: Priority 2

35

Add Sensors Thread, this thread is used to access the sensor’s values of HS3001, ICP-20100, and
ICM-42605; and prepare topics to publish messages using timer1 and g_topic_queue.
Stacks Tab → Threads New Thread
Config Thread Properties → Symbol: sensors_thread

Name: Sensors Thread
Stack size (bytes): 8192
Priority: 3
Thread Context: NULL
Memory Allocation: Static

35a Adding the HS300X Temperature/Humidity Sensor Module to the Sensors Thread
New Stack → Sensor → HS300X Temperature/Humidity Sensor
Config HS300X
Temperature/Humidity sensor→

Name: g_hs300x_sensor0
Callback: hs300x_callback

Config g_comms_i2c_bus0 I2C
Shared Bus

Name: g_comms_i2c_bus0
Channel: 0
Rate: Fast-mode

Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master(r_iic_master)

Config for I2C Master → Name: g_i2c_master0
Interrupt Priority Level: Priority 5

35b Adding ICP-20100 and ICM-42605 sensors to the Sensors Thread.
Note: FSP doesn’t provide an integrated module for ICP-20100 and ICM-42605 sensors. This needs to
be integrated via the I2C communication device and external IRQ manually. Also, the related sensor
driver code needs to be added to the src folder.
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device
→

Name: g_comms_i2c_device4
Slave Address: 0x63
Callback: ICP_comms_i2c_callback

Under the I2C Communication
Device → Add I2C Shared Bus →

Use → g_comms_i2c_bus0 I2C Shared Bus

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq6

Channel: 6
Trigger: Falling
Callback: ICP_IRQ_CALLBACK

35c Adding I2C Communication Device and External IRQ for ICM-42605 into Sensors Thread
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device
→

Name: g_comms_i2c_device5
Slave Address: 0x68
Callback: ICM_comms_i2c_callback

Under the I2C Communication
Device → Add I2C Shared Bus →

Use → g_comms_i2c_bus0 I2C Shared Bus

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq3

Channel: 3
Trigger: Falling
Callback: ICM_42605_Callback2

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq12

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 27 of 37
Oct.01.25

No Steps Intermediate Steps
Channel: 12
Trigger: Falling
Callback: ICM_42605_Callback1

36

Add Oximeter Thread for OB1203 sensor’s handling.
Stacks Tab → Threads New Thread
Config Thread Properties → Symbol: oximeter_thread

Name: Oximeter Thread
Stack size (bytes): 2048
Priority: 4
Thread Context: NULL
Memory Allocation: Static

36a Adding I2C Communication Device and External IRQ for OB1203 sensor module into Oximeter Thread.
Note: Beginning with FSP v6.0.0, FSP doesn’t provide an integrated module for the OB1203 sensor.
This needs to be integrated via the I2C communication device and external IRQ manually. Also, the
sensor driver code related to it needs to be added to the src folder.
New Stack → Connectivity→ I2C Communication Device
Config I2C Comm Device → Name: g_comms_i2c_device3

Slave Address:0x53
Callback: rm_ob1203_comms_i2c_callback

Under the I2C Communication
Device → Add I2C Shared Bus →

New → I2C Shared Bus

Config I2C Shared Bus → Name: g_comms_i2c_bus1
Channel: 1
Rate: Standard

Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master (r_iic_master)

Config I2C Master → Name: g_i2c_master1
Interrupt Priority Level: Priority 12

New Stack → Input → External IRQ
Config for External IRQ → Name: g_external_irq14

Channel: 14
Trigger: Falling
Callback: rm_ob1203_irq_callback
Pins: IRQ14: P403

New Stack → Connectivity→ I2C Communication Device
Config I2C Comm Device → Name: g_comms_i2c_device6

Slave Address: 0x53
Callback: rm_ob1203_comms_i2c_callback

Under the I2C Communication
Device → Add I2C Shared Bus →

Use → g_comms_i2c_bus1 I2C Shared Bus

37

Add Zmod Thread for ZMOD4410 IAQ and ZMOD4510 OAQ sensors’ handling.
Stacks Tab → Threads New Thread
Config Thread Properties → Symbol: zmod_thread

Name: Zmod Thread
Stack size (bytes): 1024
Priority: 3
Thread Context: NULL
Memory Allocation: Static

37a Adding the ZMOD4XXX Gas Sensor module (ZMOD4410 IAQ) to the Zmod Thread.
New Stack → Sensor → ZMOD4XXX Gas Sensor

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 28 of 37
Oct.01.25

No Steps Intermediate Steps
Config ZMOD4XXX Gas Sensor→ Name: g_zmod4xxx_sensor0

Comms I2C Callback: zmod4xxx_comms_i2c_callback
IRQ Callback: zmod4xxx_irq0_callback

Under the ZMOD4XXX Gas Sensor
→ Add Requires ZMOD Library →

New → ZMOD4410 IAQ 1st Generation

Under the ZMOD4410 IAQ 1st
Generation → I2C Communication
Device →

Name: g_comms_i2c_device1

Under the I2C Communication
Device → Add I2C Share Bus →

New → I2C Shared Bus

Config I2C Shared Bus → Name: g_comms_i2c_bus2
Channel: 2
Rate: Fast-mode

Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master (r_iic_master)

Config I2C Master → Name: g_i2c_master2
Interrupt Priority Level: Priority 5

Under the ZMOD4XXX Gas Sensor →
Add IRQ Driver for measurement
[optional] →

New → External IRQ

Config External IRQ Name: g_external_irq4
Channel: 4
Trigger: Falling
Pin Interrupt Priority: Priority 3

37b Adding the ZMOD4XXX Gas Sensor module (ZMOD4510 OAQ) to the Zmod Thread.
New Stack → Sensor → ZMOD4XXX Gas Sensor

Config ZMOD4XXX Gas Sensor→ Name: g_zmod4xxx_sensor1

Comms I2C Callback: zmod4xxx_comms_i2c1_callback
IRQ Callback: zmod4xxx_irq1_callback

Under the ZMOD4XXX Gas Sensor
→ Add Requires ZMOD Library →

New → ZMOD4510 NO2 O3

Under the ZMOD4510 NO2 O3
Generation → I2C Communication
Device →

Name: g_comms_i2c_device2

Under the I2C Communication
Device → Add I2C Share Bus →

Use → g_comms_i2c_bus2 I2C Shared Bus

Under the ZMOD4XXX Gas Sensor
→ Add IRQ Driver for measurement
→

New → External IRQ

Config External IRQ Name: g_external_irq15
Channel: 15
Trigger: Falling
Pin Interrupt Priority: Priority 12

38 Pins tab → Pin Selection →
Peripherals → System:DEBUG →
DEBUG0

Operation Mode: SWD

39 Enable “Use float with nano printf” to print float values and add flag.

Project → Properties → C/C++ Build
→ Settings → Tool Settings tab →
GNU ARM Cross C Linker →
Miscellaneous

→Check the box:  Use float with nano printf (-u
_printf_float)
Other linker flags: --specs=rdimon.specs

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 29 of 37
Oct.01.25

No Steps Intermediate Steps
40 Add environment variables

Project → Properties → C/C++ Build
→ Environment → Add

Name: MCUBOOT_IMAGE_SIGNING_KEY
Value:
${workspace_loc:bootloader_ck_ra6m5}/src/secp256r1.p
rivatekey
→Check the box:  Add to all configurations

40a Project → Properties → C/C++ Build
→ Environment → Add

Name: MCUBOOT_IMAGE_VERSION
Value: 0
→Check the box:  Add to all configurations

Select Apply and Close to apply the settings and close the configuration window

Note: Please add the folder aws_ck_ra6m5_v2_ethernet_ota_app/ra/fsp from the package
released to this project with the corresponding directory due to the issue of FSP.

The above configuration is a prerequisite to generating the required stack and features for the cloud
connectivity application provided in this application note. Once the Generate Project Content button is
clicked, it generates the source code for the project. The generated source code contains the required
drivers, stack, and middleware. The user application files must be added to the src folder.

Note: app_thread_entry.c, sensors_thread_entry.c, oximeter_thread_entry.c,
zmod_thread_entry.c and console_thread_entry.c are the auto-generated files as part of
the project creation. Users are required to add code to this file.

Note: To run the application with the supplied code, app_thread_entry.c,
sensors_thread_entry.c, oximeter_thread_entry.c, zmod_thread_entry.c and
console_thread_entry.c are available parts of this application note bundle that can be merged
or overwritten to the auto-generated files.

Note: FSP-generated code must be called/used from the application, while some of the middleware needs
to be called exclusively as part of the application for proper initialization. For instance, the
Mbedtls_platform_setup()call initializes the SCE and TRNG.

For validation of the created project, the same source files listed in section MQTT/TLS Application Software
Overview (as shown in Table 3) may be added. Users are required to add the directory path and subdirectory
for proper compilation. The following includes paths that need to be added to Project → Properties →
C/C++ Build → Settings → Tool Settings tab → GNU Arm Cross C Compiler → Includes → Include
paths (-I) (Please choose Add subdirectories). Refer to the enclosed project for more details.

Example: Add “${workspace_loc:/${ProjName}/src/agent}” directory path:

"${workspace_loc:/${ProjName}/src/"
"${workspace_loc:/${ProjName}/src/backoffAlgorithm}"
"${workspace_loc:/${ProjName}/src/agent}"
"${workspace_loc:/${ProjName}/src/SEGGER_RTT}"
"${workspace_loc:/${ProjName}/src/ob1203_bio/KALMAN}"
"${workspace_loc:/${ProjName}/src/ob1203_bio/SAVGOL}"
"${workspace_loc:/${ProjName}/src/ob1203_bio}"
"${workspace_loc:/${ProjName}/src/ob1203_bio/SPO2}"
"${workspace_loc:/${ProjName}/ra/aws/FreeRTOS/FreeRTOS-Plus/Source/AWS/ota/source/portable}"

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 30 of 37
Oct.01.25

Figure 15. Add a directory path before building project

Note: In FSP v6.1.0, there is a limitation with the switching image flow due to the swap type of MCUboot. It
affects the operation of OTA. Please add “case BOOT_SWAP_TYPE_REVERT:” to
otaPal_GetPlatformImageState function, at line 359, in rm_aws_ota_pal_mcuboot.c file
(aws_ck_ra6m5_v2_ethernet_ota_app/ra/fsp/src/rm_aws_ota_pal_mcuboot/rm_aws_ota_pal_mcuboot.c) as
below:

Figure 16. Modify otaPal_GetPlatformImageStage function

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 31 of 37
Oct.01.25

Right-click the application project → Build Project.
Note: The details of the configurator, from the default settings to the changed settings, are described in
section 4.5 MQTT/TLS Configuration, including the reason for the change.

Note: After building the project, you might encounter the error: ‘ERROR: Could not find HEADER_SIZE
macro in bsp_linker_info.h.’ Starting with FSP 6.0.0 onwards, the MCUboot project and the application
project must be linked using an RA FSP solution project

The following section will show the steps to create an FSP solution project.

4.4 Creating the FSP Solution Project
Table 5 shows the step-by-step process of creating the FSP solution project, after the user completes
creating the bootloader project and the application project.

Table 5 Step-by-step Details for Creating the FSP Solution Project

No Steps Intermediate Steps
1 Project Creation: File → New → C/C++ Project
2 Project Template: Templates for New RA C/C++ Project →

Renesas FSP Solution Project (Advanced) → Next
3 FSP Solution Project → Project Name:

Note: Input your desired name for the project → Next
4 FSP Solution Project → Provide an

existing FSP C/C++ executable
project chain:

Project → Choose the application that you created at 4.3
– No 18: The project chain will display the bootloader project
and the application project (a total of 2 applications).
→ Finish

Create a memory layout for the bootloader, application image (primary and secondary), as shown in Figure 10.
Memory map of the OTA application example. About the symbol conventions for memory partitioning, the user
can refer to the guide at FSP User’s Manual under RA Flexible Software Package Documentation > API
Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port).
5 solution.xml → Memories

Choose FLASH →
Choose FLASH_CM33_B
Size: 0x20000

6 Choose FLASH → Add Partition
Name: __BL_0_P_H
Start: 0x00020000
Size: 0x200
Security: Secure
→ OK

7 Choose FLASH → Choose FLASH_CM33_S
Start: 0x00020200
Size: 0x8FE00

8 Choose FLASH → Choose FLASH_CM33_C
Start: 0x000B0000
Size: 0x8000

9 Choose FLASH → Add Partition
Name: __BL_0_S_H
Start: 0x000B8000
Size: 0x200
Security: Non-secure
→ OK

10 Choose FLASH → Choose FLASH_CM33_C
Start: 0x000B0000
Size: 0x0

11 Choose FLASH → Choose __BL_0_S_H
Start: 0x000B0000
Size: 0x200

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 32 of 37
Oct.01.25

12 Choose FLASH → Add Partition
Name: __BL_0_S_I
Start: 0x000B0200
Size: 0x8FE00
Security: Non-secure
→ OK

13 Choose FLASH → Add Partition
Name: __BL_S
Start: 0x00140000
Size: 0x8000
Security: Non-secure
→ OK

14 Choose RAM → Choose RAM_CM33_S
Size: 0x74000

15 Choose RAM → Choose RAM_CM33_C
Start: 0x20078000
Size: 0x2000

16 Choose RAM → Add Partition
Name: NS_BUFFER
Start: 0x2007A000
Size: 0x6000
Security: Non-secure
→ OK

17 Choose RAM → Choose RAM_CM33_C
Start: 0x20078000
Size: 0x0

18 Choose RAM → Choose NS_BUFFER
Start: 0x20078000
Size: 0x8000

After setting the solution project, right-click the FSP Solution Project → Build Project.
The bootloader project and application project will be built again with the new memory partition setting.

Note: Follow section “3. Importing, Setting, Building and Loading the Project” in the (RA AWS Cloud
Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet – Getting Started Guide)
document to set up the device, build and load the application projects, refer to the downloader
application’s name, which users created at 4.3 – No 18 is aws_ck_ra6m5_v2_ethernet_ota_app,
and the FSP solution project name is aws_ck_ra6m5_v2_ethernet_ota_solution.

4.5 MQTT/TLS Configuration
This section describes the MQTT and TLS module configuration settings that are included in this application
example.

The following table lists changes made to a default configuration populated by the RA Configurator.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 33 of 37
Oct.01.25

Table 6. Default Configuration for CK-RA6M5v2

Property Original Value Changed
Value

Reason for Change

Application Thread
Common → General → Use Mutexes Disabled Enabled This requirement is set by

the AWS IOT SDK C stack
Common → General → Use Recursive
Mutexes

Disabled Enabled This requirement is set by
the AWS IOT SDK C stack

Thread → Memory Allocation →
Support Dynamic Allocation

Disabled Enabled This requirement is set by
the AWS IOT SDK C stack

Thread → Memory Allocation → Total
Heap Size

0 0x20000 Heap required for the
FreeRTOS, AWS IOT
SDK, Mbed TLS

Mbed TLS (Crypto Only)
Platform →
MBEDTLS_PLATFORM_MEMORY

Undefine Define This selection is required
to support the MbedTLS.

General →
MBEDTLS_THREADING_ALT

Undefine Define This selection is required
to support the MbedTLS to
plug in any thread library.

General →
MBEDTLS_THREADING_C

Undefine Define This selection is required
to support the MbedTLS to
abstract the threading
layer to allow easy
plugging in of any thread
library.

Public Key Cryptography (PKC) →
ECC → MBEDTLS_ECDH_C

Undefine Define This selection is required
to support the MbedTLS to
enable the ECDH module.

LittleFS (Heap Selection)
BSP → RA Common → Heap Size
(bytes)

0 0x20000 Heap selection for Heap 4
and other usages with
malloc.

5. Sensor Stabilization Time
This table gives the time required for the sensors to sense and provide valid data to the users. Here, you will
see two columns: column 1 – when powered up for the first time, and column 2 - after a software or hard
reset. If the system boots up from a cold start, the time for the sensors to provide the valid data is up to (1
min – 4 hours), whereas if the system boots up from a warm start, the time for the sensors to provide the
valid data is up to (10 sec – 2 hours). For more details, refer to the specific sensor datasheet.

Table 7. Sensor Stabilization Time

Sensor Name When Powered Up for the First
Time

After Soft or Hard Reset

ZMOD4410 IAQ Up to 1 minute Up to 1 minute
ZMOD4510 OAQ Up to 4 hours Up to 5 minutes
OB1203 Up to 1 minute (after placing the

index finger on the sensor, it may
take up to 60 seconds to sense data)

Up to 10 seconds (after placing the
index finger on the sensor, it may
take up to 60 seconds to sense data)

HS3001 Up to 1 minute Up to 10 seconds
ICP Up to 1 minute Up to 10 seconds
ICM Up to 1 minute Up to 10 seconds

Note: Stabilization time of the sensor provided above is from the point of sensor initialization.

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 34 of 37
Oct.01.25

6. MQTT/TLS Module Next Steps
• For setting up a client using a device certificate signed by a preferred CA certificate, refer to the link:

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
• For using a self-signed certificate to configure AWS, refer to the link:

https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

7. References

[1] International Telecommunication Union, "ITU-T Y.4000/Y.2060 (06/2012)," 15 06 2012. [Online].
Available: http://handle.itu.int/11.1002/1000/11559.

[2] Amazon Web Services, "AWS IoT Core Features," [Online]. Available:
https://www.amazonaws.cn/en/iot-core/features/.

[3] Amazon Web Services, "AWS IoT Core," [Online]. Available: https://www.amazonaws.cn/en/iot-core/.

[4] I. E. T. Force, "The Transport Layer Security (TLS) Protocol Version 1.2," [Online]. Available:
https://tools.ietf.org/html/rfc5246.

[5] Amazon Web Services, "AWS IoT Security," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html.

[6] Amazon Web Services, "Transport Security in AWS IoT," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html.

[7] International Telecommunication Union, "X.509 (10/19) Summary," 10 2019. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-t/rec/x/T-REC-X.509-201910-I!!SUM-HTM-E.htm.

[8] Eclipse Foundation, "Eclipse Mosquitto™ - An open source MQTT broker," [Online]. Available:
https://mosquitto.org/.

[9] Amazon Web Services, "AWS IoT Device SDK C: MQTT," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html.

[10] R. Barry, "Mastering the FreeRTOS™ Real Time Kernel," in A Hands-On Tutorial Guide, 2016.

[11] A. I. D. S. C. Documentation, "AWS IoT Device SDK C: MQTT Functions," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/mqtt_functions.html.

[12] Amazon, "Configuring the FreeRTOS Demos," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html.

[13] "Amazon FreeRTOS mbedTLS," [Online]. Available: https://github.com/aws/amazon-
freertos/blob/master/libraries/3rdparty/mbedtls/utils/mbedtls_utils.c.

[14] Renesas Electronics Corporation, "Renesas Flash Programmer (Programming GUI) - Documentation,"
[Online]. Available: https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-
flash-programmer-programming-gui.html#documents.

[15] Renesas Electronics Corporation, "AWS OTA PAL on MCUBoot," [Online]. Available:
https://renesas.github.io/fsp/group___a_w_s___o_t_a___p_a_l___m_c_u_b_o_o_t.html.

[16] Renesas Electronics Corporation, "Booting Encrypted Image using MCUboot and QSPI," [Online].
Available: https://www.renesas.cn/cn/zh/document/apn/booting-encrypted-image-using-mcuboot-and-
qspi-application-project.

[17] Nordic Semiconductor, "Bootloader," [Online]. Available:
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/mcuboot/design.html.

[18] Amazon Web Services, "FreeRTOS Over-the-Air Updates," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html.

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 35 of 37
Oct.01.25

[19] Renesas Electronics Corporation, "How to implement FreeRTOS OTA using Amazon Web Services in
RX65N," [Online]. Available: https://www.renesas.com/us/en/document/apn/rx-family-how-implement-
freertos-ota-using-amazon-web-services-rx65n-v20221001-lts-rx-110-or-later.

[20] Renesas Electronics Corporation, "RA6 Basic Secure Bootloader Using MCUboot and Internal Code
Flash," [Online]. Available: https://www.renesas.com/us/en/document/apn/ra6-basic-secure-bootloader-
using-mcuboot-and-internal-code-flash.

[21] W. T. L. L. O. S. R. N. S. R. X. G. K. N. K. S. F. M. K. D. L. I. R. Valerie Lampkin, Building Smarter
Planet Solutions with MQTT and IBM WebSphere MQ Telemetry, IBM Redbooks, 2012.

8. Known Issues and Troubleshooting
• This section talks about the known FSP and tool-related issues. More details can be found at the link:

https://github.com/renesas/fsp/issues.
• When running debug on e2 studio, if the application is rerun multiple times, it might randomly cause an

issue with the I2C communication of the OB1203 sensor. Users need to reconnect the USB cable (J10) to
reset the OB1203 sensor and run the application again.

9. Debugging
Enable the USR_LOG_LVL (LOG_DEBUG) macro in the application project for additional information on the
error during debugging.

https://github.com/renesas/fsp/issues

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 36 of 37
Oct.01.25

Website and Support
Visit the following vanity URLs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RA6M5v2 Kit Information
RA Cloud Solutions
RA Product Information

renesas.com/ra/ck-ra6m5
renesas.com/cloudsolutions
renesas.com/ra

RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family RA AWS Cloud Connectivity and Firmware Update OTA on CK-RA6M5 v2 with Ethernet

R11AN0915EU0110 Rev.1.10 Page 37 of 37
Oct.01.25

Revision History

Rev. Date
Description
Page Summary

1.00 Aug.22.24 — Initial release
1.10 Oct.01.25 — Migrated to FSP 6.1.0

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Components for Cloud Connectivity
	1.1 General Overview
	1.2 Cloud Service Provider
	1.3 AWS IoT Core
	1.4 MQTT Protocol Overview
	1.5 TLS Protocol Overview
	1.6 Device Certificates, CA, and Keys

	2. Running the MQTT/TLS Ethernet with OTA Application Example
	3. AWS IoT Over-the-air Update Library with Ethernet Interface
	3.1 AWS IoT Over-the-air Update Library
	3.2 AWS Core MQTT
	3.3 Transport Layer Implementation
	3.4 Mbed TLS
	3.5 MQTT Agent Module APIs Usage
	3.6 AWS OTA PAL on MCUboot

	4. Cloud Connectivity Application Example
	4.1 Overview
	4.2 MQTT/TLS Application Software Overview
	4.3 Creating the Application Project using the FSP Configurator
	4.4 Creating the FSP Solution Project
	4.5 MQTT/TLS Configuration

	5. Sensor Stabilization Time
	6. MQTT/TLS Module Next Steps
	7. References
	8. Known Issues and Troubleshooting
	9. Debugging
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

