
APPLICATION NOTE

REJ05B1401-0100 Rev.1.00 Page 1 of 30
Aug 2, 2010

1. Abstract
This document describes how to use the multi-master I2C-bus interface (I2C-bus interface) function.

2. Introduction
The application example described in this document applies to the following microcomputers (MCUs):

MCUs: R32C/116 Group, R32C/117 Group, R32C/118 Group, R32C/116A Group, R32C/117A Group, and
 R32C/118A Group

This program can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as
the above groups. Check the manuals for any modifications to functions. Careful evaluation is recommended before
using the program described in this application note.

REJ05B1401-0100
Rev.1.00

Aug 2, 2010

R32C/116, 117, 118, 116A, 117A, and 118A Groups
Multi-Master I2C-bus Interface

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 2 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

3. Overview
The I2C-bus interface is a serial communication circuit based on the I2C-bus data transmit/receive format, and is
equipped with arbitration lost detection and clock synchronous functions.

3.1 General Call
A general call can be detected when the address data is all 0's.
A general call means that the master transmits general call address 00h to all slaves.

3.2 Addressing Format
7-bit addressing format is supported.
Only the 7 high-order bits of the I2C-bus slave address register (slave address) are compared with the address data.

3.3 I2C-bus Interface Related Pins
MSCL pin: Clock I/O pin of the I2C-bus interface.
MSDA pin: Data I/O pin of the I2C-bus interface.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 3 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

3.4 Selectable Functions
The functions below can be selected when using the I2C-bus interface.

(1) Transmit/Receive modes
There are four transmit/receive modes available when performing data communication:
• Master-transmission mode: Start and stop conditions are generated (master mode). Address and control data

are output to the MSDA in synchronization with the MSCL clock generated by the master device.
• Master-reception mode: Data from the transmitting device is received in synchronization with the MSCL

clock generated by the master device.
• Slave-transmission mode: Start and stop conditions generated by the master device are received (slave mode).

Control data is output in synchronization with the clock generated by the master device.
• Slave-reception mode: Data from the transmitting device is received in synchronization with the clock

generated by the master device.

(2) SCL mode
SCL mode can be selected from Standard-mode (100 kHz or less) and Fast-mode (400 kHz or less).

(3) ACK clock
ACK clock can be selected from the following:
• ACK clock not available: No ACK clocks are generated after a data transfer.
• ACK clock available: The master generates an ACK clock each time 1 byte of data is transferred.

(4) Data format
Data format can be selected from the following:
• Addressing format: The received slave address and bits SAD6 to SAD0 in the I2CSAR register are compared.

 When an address match is found or when a general call is received, an interrupt request is generated and
 additional data is transmitted and received.

• Free data format: An interrupt request is generated and additional data is transmitted and received regardless
of the received slave address.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 4 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

4. Data Transmit/Receive Example
The data transmit/receive examples are described in this section. The conditions for the examples are below.

• Slave address: 7 bits
• Data: 8 bits
• ACK clock available
• Standard-mode, bit rate: 100 kbps (fIIC: 16 MHz; φIIC: 4 MHz)

16 MHz (fIIC) divided-by-4 = 4 MHz (φIIC)
4 MHz (φIIC) divided-by-8 and further divided-by-5 = 100 kbps (bit rate).

• In receive mode, ACK is returned for data other than the last data. NACK is returned after the last data is
received.

• When receiving data, I2C-bus interrupt at the eighth clock (before the ACK clock): disabled
• Stop condition detection interrupt: enabled
• Timeout detection interrupt: disabled
• Set own slave address to the I2CSAR register.

While receiving data, if an interrupt is enabled at the eighth clock, ACK or NACK can be set after each byte of
received data is checked.

4.1 Initial Settings
Follow the initial setting procedure below for 4.2 Master Transmission to 4.5 Slave Transmission.
(1) Write own slave address to bits SAD6 to SAD0 in the I2CSAR register.
(2) Write 85h to the I2CCR register (CCR value: 5, standard-mode selected, ACK clock generated).
(3) Write 01h to the I2CCR2 register (φIIC: set bits ICK1 and ICK0 in the I2CCR1 register, timeout detector is

disabled by the interrupt event).
(4) Write 03h to the I2CCR1 register (φIIC: fIIC divided-by-2, successful receive interrupt is enabled and a stop

condition detection interrupt is enabled).
(5) Write 0Fh to the I2CSR register (transmit/receive mode: slave-receive mode).
(6) Write 98h to the I2CSSCR register (SSC value: 18h; start condition/stop condition generating mode selection:

long mode).
(7) Write 08h to the I2CCR0 register (number of transmit/receive bits: 8, I2C-bus interface enabled, addressing

format).
If the MCU uses a single-master system and the MCU itself is the master, start the initial setting procedures from
step (2).

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 5 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

4.2 Master Transmission
Master transmission is described in this section. Programs (A) to (C) below refer to (A) to (C) in the following
figure.

Figure 4.1 Example of Master Transmission

(A) Slave address transmission
(1) The BBSY bit in the I2CSR register must be 0 (bus free).
(2) Write E0h to the I2CSR register (start condition standby).
(3) Write a slave address to the upper 7 bits and set the least significant bit (LSB) to 0 (start condition generated,

then slave address transmitted).
After a stop condition is generated and the BBSY bit becomes 0, the I2CSR register is write disabled for 1.5 cycles
of φIIC. Therefore, when writing E0h to the I2CSR register and a slave address to the I2CTRSR register, a start
condition is not generated.
When generating a start condition immediately after the BBSY bit in the I2CSR register changes from 1 to 0,
confirm that both the TRX and MST bits are 1 (transmission mode and master mode) after step (1), and then execute
step (2).

(B) Data transmission (in the I2C-bus interrupt routine)
(1) Write transmit data to the I2CTRSR register (data transmission).

(C) Completion of master transmission (in the I2C-bus interrupt routine)
(1) Write C0h to the I2CSR register (stop condition standby).
(2) Write dummy data to the I2CTRSR register (stop condition generated).

When the transmission is completed or ACK is not returned from the slave device (NACK returned), master
transmission should be completed as shown in the example above.

MSCL

MSDA

IR bit in the I2CIC
register

(A) Slave address transmission
(B) Data transmission (C) End of master transmission

Stop condition

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s sm m

Slave address
(7 bits) WS A Data

(8 bits) A Data
(8 bits) A/A P

S: Start condition
P: Stop condition

A: ACK
A: NACK W: Write

m: Master outputs to MSDA
s: Slave outputs to MSDA

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 6 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

4.3 Master Reception
Master reception is described in this section. Programs (A) to (D) below refer to (A) to (D) in the following figure.

Figure 4.2 Example of Master Reception

(A) Slave address transmission
(1) The BBSY bit in the I2CSR register must be 0 (bus free).
(2) Write E0h to the I2CSR register (start condition standby).
(3) Write a slave address to the upper 7 bits and set the least significant bit (LSB) to 1 (start condition generated,

then slave address transmitted).

(B) Data reception 1 (after slave address transmission) (in the I2C-bus interrupt routine)
(1) Write AFh to the I2CSR register (master receive mode).
(2) Set the ACKD bit in the I2CCCR register to 0 (ACK sent) because the data is not the last one.
(3) Write dummy data to the I2CTRSR register.

(C) Data reception 2 (data reception) (in the I2C-bus interrupt routine)
(1) Read the received data from the I2CTRSR register.
(2) Set the ACKD bit in the I2CCCR register to 1 (NACK sent) because the data is the last one.
(3) Write dummy data to the I2CTRSR register.

(D) End of master reception (in the I2C-bus interrupt routine).
(1) Read the received data from the I2CTRSR register.
(2) Write C0h to the I2CSR register (stop condition standby state).
(3) Write dummy data to the I2CTRSR register (stop condition generated).

MSCL

MSDA

IR bit in the I2CIC
register

(A) Slave address transmission

(B) Data reception 1

(D) End of master reception

Stop condition

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s m

Slave address
(7 bits) RS A Data

(8 bits) A Data
(8 bits) A P

S: Start condition
P: Stop condition

A: ACK
A: NACK

R: Read m: Master outputs to SDA
s: Slave outputs to SDA

(C) Data reception 2

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 7 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

4.4 Slave Reception
Slave reception is described in this section. Programs (A) to (C) below refer to (A) to (C) in the following diagram.

Figure 4.3 Example of Slave Reception

(A) Start of slave reception (in the I2C-bus interrupt routine)
(1) Check the content of I2CSR register. When the TRS bit is 0, the I2C-bus interface is in slave receive mode.
(2) Write dummy data to the I2CTRSR register.

(B) Data reception 1 (in the I2C-bus interrupt routine)
(1) Read the received data from the I2CTRSR register.
(2) Set the ACKD bit in the I2CCCR register to 0 (ACK sent) because the data is not the last one.
(3) Write dummy data to the I2CTRSR register.

(C) Data reception 2 (in the I2C-bus interrupt routine)
(1) Read the received data from the I2CTRSR register.
(2) Set the ACKD bit in the I2CCCR register to 1 (NACK sent) because the data is the last one.
(3) Write dummy data to the I2CTRSR register.

MSCL

MSDA

IR bit in the
I2CIC register

(A) Start of slave reception

(C) Data reception 2

End of slave reception

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s sm m

Slave address
(7 bits) WS A Data

(8 bits) A Data
(8 bits) A/A P

S: Start condition
P: Stop condition

A: ACK
A: NACK W: Write

m: Master outputs to MSDA
s: Slave outputs to MSDA

(B) Data reception 1

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 8 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

4.5 Slave Transmission
Slave transmission is described in this section. Programs (A) and (B) below refer to (A) and (B) in the following
diagram.
When arbitration lost is detected, the TRS bit becomes 0 (receive mode) even when the bit after the slave address is
1 (read). Therefore, after arbitration lost is detected, read the I2CTRSR register. When bit 0 in the I2CTRSR register
is 1, write 4Fh (slave transmit mode) to the I2CSR register and execute slave transmission.

Figure 4.4 Example of Slave Transmission

(A) Start of slave transmission (in the I2C-bus interrupt routine)
(1) Read the I2CSR register. When the TRS bit is 1, the I2C-bus interface is in slave transmit mode.
(2) Write transmit data to the I2CTRSR register.

(B) Data transmission (in the I2C-bus interrupt routine)
(1) Write transmit data to the I2CTRSR register.

Write dummy data to the I2CTRSR register even if an interrupt occurs at an ACK clock of the last transmit data.
When the I2CTRSR register is written, the MSCL pin becomes high-impedance.

MSCL

MSDA

IR bit in the
I2CIC register

(A) Start of slave transmission

Stop condition

This signal is driven low by accepting an interrupt request or
by setting the bit to 0.

m s m s m

Slave address
(7 bits) RS A Data

(8 bits) A Data
(8 bits) A P

S: Start condition
P: Stop condition

A: ACK
A: NACK

R: Read m: Master outputs to MSDA
s: Slave outputs to MSDA

(B) Data transmission

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 9 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

5. Arbitration Lost
The following describes the operation of the I2C-bus interface when arbitration lost occurs. Figure 5.1 shows the
Operation Timing of the Arbitration Lost Detect Flag.

Figure 5.1 Operation Timing of the Arbitration Lost Detect Flag

When arbitration lost occurs, the arbitration lost detect flag becomes 1.

(1) Arbitration lost occurs while transmitting a slave address.
When arbitration lost is detected, the communication mode automatically changes to slave reception, enabling the
slave address to be received.
If the selected data format is the addressing format, the slave address can be resolved by reading the AAS bit in
the I2CSR register.

(2) Arbitration lost occurs while transmitting data following the slave address.
When arbitration lost is detected, the communication mode automatically changes to slave reception, enabling the
data to be received.

MSDA output of master device

MSDA output of another master device

MSDA

MSCL

Arbitration-lost detect flag

Arbitration-lost occurs

Hereafter, MSDA is left open

1

0

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 10 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

6. Interrupts
The I2C-bus interface has the interrupt source listed below.

(1) Interrupt when 9-bit transmission/reception is completed (including ACK/NACK)
The interrupt source can be determined by reading the RIE bit in the I2CCR1 register. When the RIE bit is 0, it is
determined that the generated interrupt is attributable to this interrupt source.

(2) Interrupt when 8 bits are received
Setting the RIE bit to 1 enables this interrupt source.
The interrupt source can be determined by reading the RIE bit. When the RIE bit is 1, it is determined that the
generated interrupt is attributable to this interrupt source.
If no determination is made of ACK/NACK transmissions, there is no need to use this interrupt.

(3) Interrupt when a stop condition is detected
Setting the STIE bit in the I2CCR1 register to 1 enables this interrupt source.
The interrupt source can be determined by reading the STOP bit in the I2CCR2 register. When a stop condition is
detected, the STOP bit becomes 1.

(4) Interrupt when the SCL clock is held high for a specified period of time during communication.
Setting the TOE bit in the I2CCR2 register to 1 enables this interrupt source.
The interrupt source can be determined by reading the TOF bit in the I2CCR2 register. When the MSCL clock
remains high for more than a predetermined time during communication, the TOF bit becomes 1.

Figure 6.1 shows the I2C-bus Interface Interrupt Request Generation Timing.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 11 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

Figure 6.1 I2C-bus Interface Interrupt Request Generation Timing

The above figure assumes the following:
1. The TRS bit in the I2CSR register is 0 (receive mode).
2. The ACKCLK bit in the I2CCCR register is 1 (ACK clock generated).

IR bit
in the I2CIC register

1
0

0
1

This signal is driven low by accepting an interrupt request
or by setting the bit to 0.

Timeout detected

Timeout detection interval

MSCL clock stops oscillating
(held high)

RIE is 0, STIE is 0

2. I2C-bus interface interrupt attributed to timeout detection.

This signal is driven low by accepting an interrupt request
or by setting the bit to 0.

No interrupt request is generated at the 8th bit
in the address data received.

RIE is 1, STIE is 1

IR bit
in the I2CIC register

IR bit
in the I2CIC register

IR bit
in the I2CIC register

IR bit
in the I2CIC register

RIE is 0, STIE is 1

0

1

RIE is 1, STIE is 0

0

1

RIE is 0, STIE is 0

1

0

1. I2C-bus interface interrupt source attributed to setting bits RIE and STIE in the I2CCR1 register.

Stop condition

MSCL

MSDA

MSDA

MSCL

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 12 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

7. Notes on I2C-bus Interface

7.1 Generating a Start Condition
After a stop condition is generated and the BBSY bit becomes 0 (bus free), the I2CSR register is write disabled for
1.5 cycles of φIIC. Therefore, when writing E0h to the I2CSR register and a slave address to the I2CTRSR register,
a start condition is not generated.
When generating a start condition immediately after the BBSY bit changes from 1 to 0, confirm that bits TRS and
MST are both 1 after writing E0h in the I2CSR register, and then write a slave address to the I2CTRSR register.

8. Sample Program

8.1 Connection Example
Figure 8.1 shows a Connection Example.

Figure 8.1 Connection Example

8.2 Operation Conditions
Table 8.1 lists the Sample Program Operation Conditions.

Table 8.1 Sample Program Operation Conditions
Item Content

I2C-bus interface clock (fIIC) 16 MHz (Xin: 16 MHz)
I2C-bus system clock (φIIC) 4 MHz (fIIC divided-by-5)

Bit rate 100 kbps (φIIC divided-by-8 and further divided-by-5)
SCL mode Standard-mode
Data format Addressing format

Slave address compare Only I2CSAR register enabled
Data receive interrupt Enabled

Stop condition detect interrupt Enabled
Timeout detector Enabled

Master Slave

MCU MCU

MSDA pin (P7_0)
MSCL pin (P7_1)

Note:
 1. Pins MSCL and MSDA are N-channel open drain output.
 When connecting, pull-up each pin.

(See Note 1)

MSCL pin (P7_1)
MSDA pin (P7_0)

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 13 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.3 Setting Example
Four transmit/receive modes can be used in the sample program: master transmission, master reception, slave
reception, and slave transmission. When calling the mode_ini function, the transmit/receive modes can be selected
by setting arguments.
Set the other slave address and own slave address in the define declaration area in the sample program.
Figure 8.2 shows a Setting Example of Master Transmission. Figure 8.3 shows a Setting Example of Slave Address
(0x09) and Own Slave Address (0x10).

Figure 8.2 Transmit/Receive Mode Setting Example

Figure 8.3 Slave Address Setting Example

/*""func comment""***/
/* Main Program
/*""func comment end""**/
void main(void){

- Omitted -

/*==*/
/*= Modify start
/*==*/

 mode_ini(MASTER,SND); /* First argument */
/* MASTER : master */
/* SLAVE : slave */
/* Second argument */
/* SND : transfer */
/* REV : receive */

/*==*/
/*= Modify end
/*==*/

Set the master (MASTER)/slave (SLAVE) as the first
argument and send (SND)/receive (REV) as the second
argument.

/**/
/* DEFINE
/**/
/*==*/
/*= Modify start
/*==*/
#define SLAVE_ADD 0x09 /* Other slave address(7bit) */
#define SELF_ADD 0x10 /* My slave address(7bit) */

/*==*/
/*= Modify end
/*==*/

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 14 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.4 Operation Example

8.4.1 Master Transmission and Slave Reception
Figure 8.4 shows a Master Transmission and Slave Reception Operation Example.

Figure 8.4 Master Transmission and Slave Reception Operation Example

(1) Master: A start condition is generated after writing E0h to the I2CSR register and transmit data to the
I2CTRSR register.

(2) Master: The slave address set to bits b7 to b1 in the I2CTRSR register and the Write("0") set to b0 are output.
Slave: ACK is output when a match is found between the received slave address and the value in the I2CSAR
register.

(3) Master: After ACK reception, the IR bit in the I2CIC register becomes 1.
Slave: After ACK transmission, the IR bit becomes 1.

(4) Slave: After data reception, the IR bit becomes 1. During interrupt handling, set the ACKD bit to 0 and ACK
is output.

(5) Master: After ACK reception, the IR bit becomes 1.
Slave: After ACK transmission, the IR bit becomes 1.

(6) Slave: After receiving 5 bytes, set the ACKD bit to 1 and NACK is output.
(7) Master: A stop condition is generated.

Slave: When detecting the stop condition, the IR bit becomes 1.

Address (7 bits) W A A A

Address (7 bits) W

AAA

Data

Data Data

Data

MSCL

MSDA

Master
MSDA

Slave
MSDA

(1) (2) (4) (5) (7)(3) (6)

Master
IR bit in the I2CIC register

Slave
IR bit in the I2CIC register

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 15 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.4.2 Master Reception and Slave Transmission
Figure 8.5 shows a Master Reception and Slave Transmission Operation Example.

Figure 8.5 Master Reception and Slave Transmission Operation Example

(1) Master: A start condition is generated after writing E0h to the I2CSR register and transmit data to the I2CTSR
register.

(2) Master: The slave address set to bits b7 to b1 in the I2CTSR register and Read("1") set to b0 are output.
Slave: ACK is output when a match is found between the received slave address and the I2CSAR register
value.
The TRS bit in the I2CSR register becomes 1 (transmit mode) (only when the ALS bit in the I2CCR0 register
is 1 (addressing mode)).

(3) Master: After ACK reception, the IR bit in the I2CIC register becomes 1.
Slave: After ACK transmission, the IR bit becomes 1.

(4) Slave: After data reception, the IR bit becomes 1. During interrupt handling, set the ACKD bit to 0 and ACK
is output.

(5) Master: After ACK transmission, the IR bit becomes 1.
Slave: After ACK reception, the IR bit becomes 1.

(6) Slave: After receiving 5 bytes, set the ACKD bit to 1 and NACK is output.
(7) Slave: After receiving NACK, the TRS bit becomes 0 (receive mode) only when the AAS bit is 1.
(8) Master: A stop condition is generated.

Slave: When detecting the stop condition, the IR bit becomes 1.

Address (7 bits) R A A A

Address (7 bits) R A

A

Data

Data

Data

MSCL

MSDA

Master
MSDA

Slave
MSDA

(1) (2)

Master
IR bit in the I2CIC register

Slave
IR bit in the I2CIC register

(4) (5) (6) (7) (8)

Data

A

(3)

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 16 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.5 Function Tables

Declaration void iic_ini(unsigned char ini, unsigned char sub_address)
Outline I2C-bus initialization function

Argument

Argument name Meaning

ini
I2C-bus function enabled/disabled
ENABLED: I2C-bus function enabled
DISABLED: I2C-bus function disabled

sub_address Slave address setting

Variable (global)
Variable name Content
iic_mode For selecting transmit/receive modes
iic_index For the number of transfers

Returned value None

Function

Argument ini = When ENABLED (I2C-bus function enabled), initialize the I2C-bus
before enabling interrupts.
Argument ini = When DISABLED (I2C-bus function disabled), disable the I2C-bus
interface and the I2C-bus interrupt.

Declaration void mode_ini(unsigned char ms, unsigned char sr)
Outline Function for setting respective transmit/receive modes

Argument

Argument name Meaning

ms
Select master or slave
MASTER: Master
SLAVE: Slave

sr
Select transmission or reception
SND: Transmission mode
REV: Reception mode

Variable (global)

Variable name Content

iic_ram[] Data storage alignment for master
transmit

iic_length For transmit and receive size
Returned value None
Function Set the respective transmit/receive modes.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 17 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

Declaration unsigned char iic_master_start(unsigned char slave, unsigned char sr, unsigned char
*buf, unsigned char len)

Outline Master start function

Argument

Argument name Meaning
slave Specified slave address (0x00 to 0x7f)

sr
Select transmission or reception
SND: Transmission mode
REV: Reception mode

 *buf Pointer for transmit buffer

len Transmit/receive data size (0x00 to
0xff)

Variable (global)

Variable name Content
iic_slave Variable for storing slave address
iic_length For transmit and receive size
iic_pointer Pointer for transmission buffer
iic_mode For selecting transmit/receive modes
iic_rw READ/WRITE

Returned value

Type Meaning

unsigned char
Master start failure/start successful
FALSE: Master start failure
TRUE: Master start successful

Function Transmit the start condition and slave address after master setting.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 18 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

Declaration void master_transfer(void)
Outline Master transmit function
Argument None

Variable (global)

Variable name Content
iic_mode For selecting transmit/receive modes
iic_length For transmit and receive size
iic_pointer Transmit buffer pointer

Returned value None
Function Detect arbitration lost, confirming ACK/NACK reception, and transmitting data.

Declaration void master_receive(void)
Outline Master receive function
Argument None

Variable (global)

Variable name Content
iic_mode For selecting transmit/receive modes
iic_length For transmit and receive size
iic_pointer Receive buffer pointer

Returned value None
Function Detecting arbitration lost, transmitting ACK/NACK, and receiving data.

Declaration void slave_receive(void)
Outline Slave receive function
Argument None

Variable (global)

Variable name Content
iic_index For the number of transfers
iic_length For transmit and receive size
iic_pointer Transmit buffer pointer

Returned value None
Function Receive data and transmit ACK/NACK.

Declaration void slave_transfer(void)
Outline Slave transmit function
Argument None

Variable (global)
Variable name Content
iic_index For the number of transfers
iic_pointer Transmit buffer pointer

Returned value None
Function Transmit data and receive ACK/NACK.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 19 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

Declaration void idle_mode(void)
Outline Transmit and receive mode select function
Argument None

Variable (global)
Variable name Content
iic_mode For selecting transmit/receive modes

Returned value None
Function Select transmit mode or receive mode when receiving data.

Declaration unsigned char* select_buffer(unsigned char RW)
Outline Function for obtaining transmit and receive buffer addresses

Argument

Variable name Meaning

RW
Select transmit and receive buffer
0: Slave receive buffer
1: Slave transmit buffer

Variable (global) None

Returned value
Type Meaning
unsigned char* Transmit and receive buffer address

Function Obtain transmit and receive buffer addresses.

Declaration void receive_stop_condition(void)
Outline Stop condition reception state processing function
Argument None

Variable (global)

Variable name Content
iic_mode For selecting transmit/receive modes
iic_length Number of transfers
iic_index For the number of transfers

Returned value None

Function Clear the stop condition detection interrupt request bit and initialize the
transmit/receive mode.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 20 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

Declaration void iic_master_end(unsigned char status)
Outline Master control completion function

Argument

Argument name Meaning

status

Status after master control
0x10: Master transmission completed
0x11: Arbitration lost is detected during
master transmission.
0x12: NACK is received during master
transmission
0x20: Master reception completed
0x21: Arbitration lost is detected during
master reception.
0x22: NACK is received during master
reception

Variable (global) None
Returned value None

Function Carry out the processing after master control is completed.
This application note does not include any processing. Add if the need arises.

Declaration void iic_slave_end(unsigned char status)
Outline Slave control completion function

Argument
Argument name Meaning

status
Status after slave control completed
0x10: Slave transmission completed

Variable (global) None
Returned value None

Function Carry out the processing after slave control is completed.
This application note does not include any processing. Add if the need arises.

Declaration void stop_condition(void)
Outline Stop condition generation function
Argument None
Variable (global) None
Returned value None
Function A stop condition is generated.

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 21 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6 Flowcharts

8.6.1 I2C-bus Initialization Function

iic_ini (unsigned char ini, unsigned char
sub_address)

I2C-bus mode
enabled ?

Yes

End

I2CCR0 register ← 0x00

asm(“pushc FLG”)

No

Initialize I2CCR0 register.

I2CSAR register ← sub_address << 1

I2CCR register ← 0x85

Set the slave address.

φIIC divided by 2,
Standard-mode (divide-by 8),
ACK is sent, ACK clock is generated.

I2CMR register ← 0x0B I2C-bus interface
fIIC: f2n

I2CCR2 register ← 0x01
Timeout detector
φIIC: Set by bits ICK1 and ICK0 in the I2CCR1
register.

I2CCR1 register ← 0x03

I2CSR register ← 0x0F

I2CSSCR register ← 0x98

Recommended value of 4 MHz (11000b)
Interrupt pin: MSDA pin
Polarity: falling edge
Start condition/stop condition generation mode: long mode

I flag ← 0 Disable interrupts.

I2CIC register ← 0x01 Select processor interrupt priority level 1.

iic_mode ← MODE_IDLE Set to idle mode.

iic_index ← 0 Initialize the number of transfers.

ICE bit in the I2CCR0 register ← 1 Enable I2C-bus interface.

I flag ← 0 Disable interrupts.

I2CIC register ← 0x00 Interrupt priority level 0

iic_mode ← MODE_IDLE Set to idle mode.

I2CCR0 register ICE0 bit ← 0

asm(“popc FLG”)

Argument
ini: I2C-bus setting (0: Disabled, 1: Enabled)
sub_address: Slave address (7 bits)

Initialize port
I2C-bus interface output
N-channel open drain output

Stop condition detection interrupt is enabled.
Data reception interrupt is enabled.
φIIC: fIIC divided by 2

Specify the transmit/receive modes:
Slave-receive mode

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 22 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.2 Function for Setting Respective Transmit/Receive Modes

mode_ini (unsigned char ms,
unsigned char sr)

Transmit mode ?

Yes

No

End

Set master transmit data

Master mode ?

Yes

Master start successful ?

TRUE

FALSE

(NG)(OK)

iic_length ← SEND_TIMES

No

Set transmit/
receive data size.

Argument
ms: Select mode (MASTER: Master mode; SLAVE: Slave mode)
sr: Transmit/receive flag (SND: Transmit; REV: Receive)

Note 1. SLAVE_ADD,
 sr, iic_ram, SEND_TIMES

iic_master_start (1)

Start master transmission

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 23 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.3 Master Start Function

iic_master_start (1)

Bus busy ?

Yes

No

result ← FALSE

return (result)

asm (“pushc FLG”)

I flag ← 0

iic_slave ← slave << 1

iic_length ← len

iic_pointer ← buf

Data transmitted ?

iic_mode ← MODE_M_T

iic_rw ← 0

Set master
transmit mode.

Disable interrupts.

iic_rw:
iic_slave b0

iic_mode ← MODE_M_R

iic_rw ← 1

Set master
receive mode.

iic_rw:
iic_slave b0

I2CSR register ← 0xE0 Start condition

Are both bits TRS and MST
in the I2CSR register 1 ?

I2CTRSR register ← iic_slave

asm (“popc FLG”)

result ← TRUE

Yes (TRS is 1, MST is 1)

No

Yes

No

Argument
slave: Transmit slave address
sr: Transmit/receive flag (SND: Transmit, REV: Receive)
*buf: Transmit/receive buffer pointer
len: Transmit/receive size

Note 1. unsigned char slave,
 unsigned char sr,
 unsigned char *buf,
 unsigned char len

Set transmit/receive slave address
(set to b7 to b1).

Set transmit/receive size.

Set transmit/receive buffer pointer.

b7 to b1 in the I2CTRSR register: Transmit slave address
 b0: Read/Write

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 24 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.4 Master Transmit Function

master_transfer (void)

Arbitration lost detected ?

Yes

iic_mode ← MODE_IDLE

Address matched ?

Yes

b0 of the receive data

 is 1 ?

I2CSR register ← 0x4F

End

NACK received ?

No

No

No

Yes (write receive)

No

iic_master_end (0x11)
Complete master control

stop_condition ()
Generate stop condition

Yes

iic_master_end (0x12)
Complete master control

Data transmit completed

iic_length--

stop_condition ()
Generate stop condition

iic_length--

I2CTRSR register
← *iic_pointer

iic_pointer++

Yes

No

iic_master_end (0x10)
Complete master control

Set to idle
mode.

Slave
transmit mode

Write
transmit data.

Increment
transmit buffer
pointer.

idle_mode ()
Select transmit
or receive mode

(read received)

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 25 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.5 Master Receive Function

master_receive (void)

Arbitration lost
detected ?

Yes

iic_mode ← MODE_IDLE

Yes

b0 of the receive
data is 1 ?

I2CSR register ← 0x4F

End

No

No

Yes (write received)

No
(read received)

NACK received ?

Yes

No

Transmit mode ?

Yes

I2CSR register
← 0xAF

I2CTRSR register
← 0xFF

No

Data received ?

I2CTRSR register
← 0xFF

*iic_pointer
← I2CTRSR register

Yes

No

Last bit received ?

iic_length--

Data received ?

ACKD bit in the
I2CCCR register

← 1

ACKD bit in the
I2CCCR register

← 0

Yes

No

iic_pointer++

ACKD bit in the
I2CCCR register ← 0

Yes

No

Transmit
master data

Slave
transmission

Write dummy
data.

ACK is sent. Write dummy
data.

ACK is sent.NACK is sent.

Set to idle
mode.

iic_master_end (0x21)

Complete master control stop_condition ()
Generate stop

condition

stop_condition ()
Generate stop condition

Address
matched ?

(AAS is 1 ?)

iic_master_end (0x20)

Complete master control

iic_master_end (0x22)

Complete master control

idle_mode ()

Select transmit or
receive mode

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 26 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.6 Slave Receive Function

slave_receive (void)

Last bit received ?

Yes

No

First transmission ?

iic_pointer is 0 ?

return
++iic_index

Yes

Yes

No

No

I2CCCR register
ACKD ← 1

*iic_pointer
← I2CTRSR register

++iic_pointer
NACK I2CCCR register

ACKD ← 0

Data received ?

Yes

ACK

No

iic_length--

I2CTRSR register ← 0xFF

iic_pointer ← select_buffer(0)
Obtain the transmit and

receive buffer addresses

End

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 27 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.7 Slave Transmit Function

8.6.8 Transmit and Receive Mode Select Function

slave_transfer (void)

NACK received ?

iic_slave_end (0x10)
Complete slave control

Yes

No

iic_index ← 0

First transmission ?

Fail to obtain the address ?

return

End

Yes

Yes

No

No

++iic_pointer

++iic_index

Initialize
number of
transfers.

iic_pointer ← select_buffer(1)
Obtain the transmit buffer address

I2CTRSR register ← 0xFF

I2CTRSR register ← 0x00

I2CTRSR register ← *iic_pointer

idle_mode(void)

Transmit mode ?

Yes

No

End

iic_mode ← MODE_S_T

slave_transfer()
Transmit slave data

Set to slave
transmit mode. iic_mode ← MODE_S_R Set to slave receive mode.

slave_receive()
Receive slave data

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 28 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.9 Function for Obtaining Transmit and Receive Buffer Addresses

8.6.10 Stop Condition Reception State Processing Function

select_buffer (unsigned char RW)

RW is 1 ? No

return(&sw_buf[0]) return(&sr_buf[0])
Transmit
buffer
address

Receive
buffer
address

Argument
RW: Select the transmit or receive buffer (0: Slave receive buffer; 1: Slave transmit buffer)

Yes

receive_stop_condition (void)

Slave receive mode ?

Yes

No

iic_index ← 0

iic_slave_end (0x20)
Complete slave control

STOP bit in the I2CCR2 register ← 0 No stop condition detect interrupt requested.

Slave receive
completed.

iic_mode ← MODE_IDLE Set to idle mode.

Initialize number of transfers.

I2CCCR2 register ← 0x85

iic_length ← SEND_TIMES

fIIC divided-by-5,
Standard-clock mode (divide-by 8),
ACK is sent, ACK clock is generated.

Set transmit/receive size.

End

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 29 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

8.6.11 I2C-bus Interface Interrupt Handling

i2c_bus_interface (void)

Stop condition detect
 interrupt ?

Yes

No

return

General call detected ?

return

Timeout detected ?

return

Confirm mode

iic_mode =
MODE_M_T

master_transfer()
Transmit master data

master_receive()
Receive master data

slave_transfer()
Transmit slave data

slave_receive()
Receive slave data

iic_mode =
MODE_M_R

iic_mode =
MODE_S_T

iic_mode =
MODE_S_R

iic_mode =
MODE_IDLE

default

End

Yes

No

Yes

No

idle_mode()
Select transmit or

receive mode

receive_stop_condition()
Stop condition reception state processing

R32C/116, 117, 118, 116A, 117A, and 118A Groups

REJ05B1401-0100 Rev.1.00 Page 30 of 30
Aug 2, 2010

Multi-Master I2C-bus Interface

9. Sample Program
A sample program can be downloaded from the Renesas Electronics website.

10. Reference Documents
User’s Manuals
R32C/118 Group User’s Manual: Hardware Rev.1.00
R32C/117 Group User’s Manual: Hardware Rev.1.00
R32C/116 Group User’s Manual: Hardware Rev.1.00
R32C/118A Group User’s Manual: Hardware Rev.1.00
R32C/117A Group User’s Manual: Hardware Rev.1.00
R32C/116A Group User’s Manual: Hardware Rev.1.00
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
R32C/100 Series C Compiler Package V.1.02 C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

A - 1

REVISION HISTORY R32C/116, 117, 118, 116A, 117A, and 118A Groups
 Multi-Master I2C-bus Interface

Rev. Date
Description

Page Summary
1.00 Aug 2, 2010 - First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Abstract
	2. Introduction
	3. Overview
	3.1 General Call
	3.2 Addressing Format
	3.3 I2C-bus Interface Related Pins
	3.4 Selectable Functions

	4. Data Transmit/Receive Example
	4.1 Initial Settings
	4.2 Master Transmission
	4.3 Master Reception
	4.4 Slave Reception
	4.5 Slave Transmission

	5. Arbitration Lost
	6. Interrupts
	7. Notes on I2C-bus Interface
	7.1 Generating a Start Condition

	8. Sample Program
	8.1 Connection Example
	8.2 Operation Conditions
	8.3 Setting Example
	8.4 Operation Example
	8.4.1 Master Transmission and Slave Reception
	8.4.2 Master Reception and Slave Transmission

	8.5 Function Tables
	8.6 Flowcharts
	8.6.1 I2C-bus Initialization Function
	8.6.2 Function for Setting Respective Transmit/Receive Modes
	8.6.3 Master Start Function
	8.6.4 Master Transmit Function
	8.6.5 Master Receive Function
	8.6.6 Slave Receive Function
	8.6.7 Slave Transmit Function
	8.6.8 Transmit and Receive Mode Select Function
	8.6.9 Function for Obtaining Transmit and Receive Buffer Addresses
	8.6.10 Stop Condition Reception State Processing Function
	8.6.11 I2C-bus Interface Interrupt Handling

	9. Sample Program
	10. Reference Documents
	Website and Support
	REVISION HISTORY

