

Renesas RA ファミリ

高電圧インバータの IM V/f 制御

要旨

本サンプルプログラムは、RA6T2 CPU ボードとルネサスエレクトロニクス製 三相 AC200V 入力・一般産業向け高電圧インバータ MCI-HV-2-3PH 向けの誘導機 V/f 制御機能アルゴリズムを提供しています。本サンプルプログラムは、RA6T2 CPU ボードとルネサスエレクトロニクス製 三相 AC200V 入力・一般産業向け高電圧インバータ MCI-HV-2-3PH 向けの誘導機 V/f 制御機能アルゴリズムを提供しています。

誘導機の V/f 制御は、オープンループ制御で平易なアルゴリズムであり、詳細なモータパラメータを必要としないことから、最小限の設定のみで運転することが可能です。汎用インバータ等の製品に V/f 制御は組み込まれており、工場・ビル等の一般産業用途で広く使用されています。その中でも主に、ファン・ポンプといった大きな始動トルクを必要としないアプリケーションで用いられています。

本サンプルプログラムでは、以下の V/f 制御の基本的な機能とインバータ制御機能を提供しています。

- ・誘導機 V/f 制御、トルクブースト補償
- ・デッドタイム(電圧誤差)補償、サンプルディレイ補償
- ・突入電流防止抵抗制御用リレー制御機能
- ・過電圧保護、過電流保護、インバータ過熱検知

本アプリケーションノートでは、サンプルプログラムとインバータを組み合わせた使用方法と、設定方法、内部のプログラム仕様を解説し、インバータ開発における弊社 MCU や半導体デバイスの評価にご利用いただけます。図 1-1 に、本サンプルプログラムで使用するハードウェア構成図を示します。

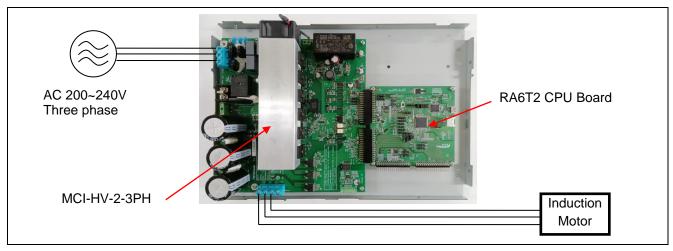


図 1-1 ハードウェア構成図

本アプリケーションノートで提供するサンプルプログラムは評価用途であり、弊社が所望の性能や動作を保証するものではありません。本サンプルプログラムを使用する場合、適切な環境で十分な評価をした上で使用してください。

動作確認デバイス

本アプリケーションノート対象ソフトウェアの動作確認は下記のデバイスで行っています。

RA6T2 (R7FA6T2BD3CFP)

目次

1.	はじめに	5
2.	用語集	7
3.	使用機材・使用ソフトウェア	8
3.1	使用ハードウェアの一覧	8
3.2	使用ソフトウェアの一覧	8
4.	ハードウェア環境構築方法	9
4.1	ハードウェア環境の概要	9
4.2	電源の準備	9
4.3	モータの準備	9
4.4	負荷機の準備	10
4.5	インバータの準備	10
4.6	RA6T2 CPU ボードのセットアップ	10
4.7	配線方法	12
4.8	測定器の利用	12
5.	ソフトウェア環境構築方法	13
6.	運転方法	14
6.1	運転前の注意点	14
6.2	運転までの手順	14
6.3	接続方法	15
6.4	サンプルプログラムの書き込み	16
6.5	RMW の導入方法	16
6.6	Map ファイルの登録更新	17
6.7	RMW の通信設定	17
6.8	RMW の操作に使用する変数	18
6.9	操作方法	19
6.10) モータ停止・遮断方法	22
7.	モータ制御アルゴリズム	23
7.1	誘導機の V/f 制御	23
7.1.1	1 誘導機のトルク発生原理とすべり	23
7.1.2	2 V/f 制御の概要	24
7.2	実装機能の概要	26
7.3	制御ブロック図	26
7.4	速度制御機能	26
7.5	電流制御機能	27
7.6	V/f 制御	27
7.7	トルクブースト補償	28
7.8	弱め界磁	29
7.9	サンプルディレイ補償	30
7.10) 電圧誤差補償	30

7.11	PWM 変調方式	30
8.	ソフトウェア仕様・構成	32
8.1	ソフトウェア仕様	
8.2	ソフトウェア全体構造	
8.3	タスクの説明	
8.4	ファイル・フォルダ構成	
8.5	アプリケーション層	37
8.5.1	機能	37
8.5.2	構造体・変数情報	37
8.5.3	パラメータ調整・設定	38
8.6	システムマネージャ	39
8.6.1	機能	39
8.6.2	モジュール構成図	39
8.7	モータマネージャ・モータ制御モジュール	40
8.7.1	機能	40
8.7.2	モジュール構成図	40
8.7.3	モード管理	42
8.7.4	保護機能	43
8.7.5	API	44
8.7.6		
8.7.7	· · · · · · · · · · · · · · · · · · ·	
8.8	リレーマネージャ・リレー制御モジュール	
8.8.1	*****	
8.8.2		
8.8.3	シーケンス	53
8.8.4		
8.8.5		
8.8.6		
8.8.7	1 1	
8.9	ドライバモジュール	
8.9.1		
8.9.2		
8.9.3		
8.9.4		
8.9.5		
8.9.6	パラメータ調整・設定	60
9.	パラメータの設定	62
9.1	概要	62
9.2	MCU 関連パラメータ	62
9.3	制御機能の設定パラメータの一覧	63
9.4	保護関連パラメータ	
9.5	モータ制御用 PWM キャリア周波数の変更	64
9.6	パルス変調方法の設定	65
9.7	インバータパラメータ	66
9.7.1	概要	66

9.7.2	電流検出ゲイン	67
9.7.3		
9.7.4		
9.8	モータパラメータ	
9.9	電流制御パラメータ	
9.10	速度制御パラメータ	_
9.10		
-	电圧型相差が作順のファース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
0.12	471 III II III II II II II II II II II II	
10.	FSP 設定	73
10.1	FSP の概要	73
10.2	FSP スタック設定	73
10.3	コールバック・割り込み	74
10.4	端子設定	75
10.5	三相 PWM GPT 設定	75
10.6	AGT0 設定(速度制御周期設定)	76
10.7	AGT1 設定(リレー制御周期設定)	77
10.8	ADC 設定	79
10.9	POEG 設定	83
11	評価結果	8.4
	突入電流防止リレー制御の評価	
	モータ制御評価	
	1 加減速特性	
	- 加減医行性	
	2 モータ行注計画	
	CPU 使用率	
11.4	ノログ フムリイ ス・ KAM (実用重	86
12	FAO	87

1. はじめに

本アプリケーションノートはルネサス製マイクロコントローラ(MCU)である RA6T2 を使用し、三相 AC200V 系誘導機を V/f 制御で駆動するサンプルプログラムの使用方法及びソフトウェアの構造・仕様・制 御方法について説明することを目的としています。

ルネサス製インバータ MCI-HV-2-3PH のセットアップ、使用方法、動作確認については、MCI-HV-2-3PH ハードウェアユーザーズマニュアル(R12UZ0170)を参照ください。

サンプルプログラムは、ルネサス製 RA6T2 CPU ボードと、ルネサス製インバータ MCI-HV-2-3PH を用いて、三相 AC200V 系の誘導機である富士電機(株)製 MLU1115D 3.7kW を、V/f 制御でモータ制御することができます。また、モータ制御開発支援ツール「Renesas Motor Workbench」に対応しており MCU の内部データ確認や、モータ制御のユーザインタフェース(UI)として使用可能です。サンプルプログラムのMCU機能割り当てや、制御の割り込み負荷状況などを参照頂くことで、使用する MCU の選定やソフトウェア開発の参考としてご活用ください。

本アプリケーションノートは、本書内で記載している誘導機・インバータ環境で開発・評価を行ったものであり、ユーザの使用する誘導機やインバータ環境で動作することを保証するものではありません。電流センサ自体や、信号経路の基板パターン設計、サンプリング・分解能・フィルタの仕様やモータの負荷特性・個体差により、制御性能に制約が生じる場合があります。ユーザの責任の下で、アルゴリズムの改良や、パラメータのチューニングが必要となります。

本アプリケーションノートで記載している機材・機器については、各機器メーカによる廃盤や改訂等により入手できない場合があります。予めご了承ください。

評価に使用した主な装置・機器

インバータ: ルネサス製 インバータ MCI-HV-2-3PH モータ: 富士電機(株) 製 誘導機 MLU1115D 3.7kW

対象ソフトウェア

本アプリケーションノート対象ソフトウェアを下記に示します。

• RA6T2 MCIHV2 IM LESS VF E2S V100 (IDE: e2 studio)

参考資料

- ・RA6T2 グループ ユーザーズマニュアル ハードウェア編(R01UH0951)
- ・Renesas Motor Workbench ユーザーズマニュアル(R21UZ0004)
- ・MCB-RA6T2 ユーザーズマニュアル (R12UZ0099)
- MCI-HV-2-3PH ハードウェアユーザーズマニュアル (R12UZ0170)

本アプリケーションノートを使用いただく際に、よく確認される内容について、対応する章を以下にまとめています。

表 1-1 確認したい内容と対応章の一覧

確認したい内容	対応する章
必要な機材を確認・選定する	3
電源を選定する	4.2
モータを選定する	4.3
インバータを選定する	4.5
配線を確認する	4.7
サンプルプログラムの開発環境を準備する	5
マイコンにサンプルプログラムを書き込む	6.3、6.4
PC にモータを運転するソフトウェアを導入する	6.5
サンプルプログラムを変更した後、RMW に変更点を反映する	6.6
サンプルプログラムの内部情報を PC 上で確認する	6.8
モータを運転する	6.9
運転中のモータを停止する	6.10
モータ制御アルゴリズムを調べる	7
サンプルプログラムの構造を調べる	8
インバータパラメータを確認、変更する	9.7
モータパラメータを確認、変更する	9.8
モータ制御の PWM キャリア周波数の変更	9.5
マイコンの設定を変更したい	10
よくある質問を確認する	12
トラブルが起きた場合の対応を確認したい	

2. 用語集

本書で使用されている主な用語とその説明を以下に示します。

表 2-1 用語集

用語	説明
IDE	統合開発環境のこと。e² studio 等を指します。
誘導機	誘導電動機のことで、英語表記は Induction Motor(IM)。他に誘導モータ、ACIM とも呼ばれます。本書では三相かご形誘導機を指します。
MC-COM	波形表示用の接続治具・ツールのことを示します。詳細は、以下の URLを参照ください。
	https://www.renesas.com/ja/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/rtk0emxc90s00000bj-mc-com-renesas-flexible-motor-control-communication-board
RMW	Renesas Motor Workbench と呼ばれる、モータ制御に特化した操作ソフトウェアのこと。
rms	交流量を直流相当で表す指標である実効値のこと。√2倍すると、ピーク値となる。電流と電圧に使用される。Vrms は電圧実効値のことを示す。
インバータ母線電圧	インバータ回路に入力される直流電圧のこと。直流中間電圧とも呼ばれる。
電圧位相進み補償	サンプルディレイ補償とも呼ばれます。
エミュレータ	MCU に書き込むための装置のこと。ICE とも呼ばれます。
オープンループ制御	フィードバック信号なく、制御を行う方式です。V/f 制御はオープンループ制御の一種です。
スタック	FSP で生成された、MCU 周辺機能を使用しやすくするドライバモ ジュールのこと。
電気角	モータに流れる出力電流の位相角度のこと。モータの極対数で割ると、 機械角に換算できる。
機械角	モータ軸の回転角度のこと。軸が1分に1回転で 1r/min となります。

3. 使用機材・使用ソフトウェア

3.1 使用ハードウェアの一覧

本サンプルプログラムの評価に使用した機器の一覧を以下に示します。

表 3-1 使用機器一覧

機器	メーカ	型式
RA6T2 CPU ボード	Renesas	RTK0EMA270C00000BJ
		MCU 型式 RA6T2、R7FA6T2BD3CFP
インバータボード	Renesas	MCI-HV-2-3PH
		RTK0EM0000B16030BJ
絶縁型通信ボード MC-COM	Renesas	Renesas Flexible Motor Control Communication Board
		RTK0EMXC90S00000BJ
供試誘導機	富士電機	MLU1115D 3.7kW AC200V 系
AC 電源装置	Chroma ATE	12-kVA 61812
パワーメータ	横河計測	本体 WT1800E-5A6-50A0-HE-D/G5/MTR/PD2
		電流センサ CT200
負荷機・負荷モータ	富士電機	負荷インバータ FRN18.5VG1S-2J
		負荷モータ MVK8185A
トルクメータ・表示器	ユニパルス	トルクメータ UTMⅢ-100Nm
		表示器 TM320

3.2 使用ソフトウェアの一覧

本サンプルプログラムの評価で使用したソフトウェアと、そのバージョンを以下に示します。本サンプルプログラムは、弊社開発環境である e² studio の制限範囲でご利用いただけます。

表 3-2 使用ソフトウェア一覧

メーカ	ソフトウェア	バージョン	備考
Renesas	e ² studio	2024-10	無償版
Renesas	FSP	5.6.0	
Renesas	Renesas Motor Workbench	3.1.2	

4. ハードウェア環境構築方法

4.1 ハードウェア環境の概要

本サンプルプログラムを使用し、誘導機を動かすためのハードウェア環境について説明します。図 4-1 に、 ハードウェア構成例を示します。

電源(4.2) とモータ及び負荷機(4.3 と 4.4)、インバータ(4.5)、RA6T2 CPU ボード及びモニタリング・書き込み装置(4.6)について、詳細を次の項から説明します。

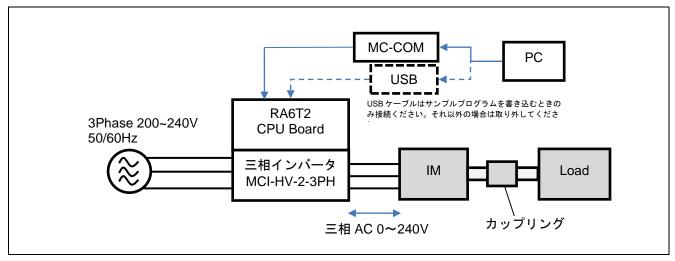


図 4-1 ハードウェア構成例

4.2 電源の準備

本サンプルプログラムで使用する MCI-HV-2-3PH インバータは、三相 AC200-240V 50/60Hz を入力電源として使用できます。インバータに供給する電圧は、使用するモータの誘起電圧や定格条件、最大負荷条件によって変わります。AC200V 系の誘導機を駆動するために、十分な容量の電源を用意する必要があります。ユーザの実験環境や、使用する電源の制約や条件に応じて、電源の種類を適切に選定してください。

本サンプルプログラムでは、定格で 2.2kW、最大で 3.7kW の誘導機を駆動するため、5.4kVA 以上の電源 供給が可能な設備を使用しています。

4.3 モータの準備

インバータとモータの配線を行います。事前に、V/f制御で動かすために必要となる、モータの銘板に記載されているパラメータを確認してください。また必要に応じて、モータの製造メーカにパラメータの情報を得るために問い合わせをしてください。

モータパラメータを変更した場合、インバータパラメータ・V/f 制御のパラメータを、モータに合わせて変更を行います。

- 定格値(電流、電圧、速度)
- 極数

弊社で調査を行った、富士電機(株)製 MLU1115D 3.7kW のモータパラメータを表 4-1 に示します。弊社で独自に測定したものであり、得られるパラメータには測定条件によるばらつきや個体差があります。このパラメータは、正確性や性能を保証するものではありません。

パラメータ 値 備考 一次抵抗 R 0.556Ω 抵抗1相分 慣性モーメント 0.000543kgm² 3.7kW 容量 4 極数 極対数2 定格速度 1465r/min(50Hz 時)、1755r/min(60Hz 時) 100Hz (電気角)、50Hz (機械角) 定格周波数 35r/min(50Hz 時)、45r/min(60Hz 時) 定格すべり 定格電流 15.5A(50Hz 時)、13.5A(60Hz 時) 定格トルク 24.1Nm

表 4-1 MLU1115D 3.7kW のモータパラメータ (一部、弊社独自測定によるもの)

4.4 負荷機の準備

インバータ・モータ制御の評価のためには、出力特性を取得する必要があるため、負荷機が必要です。負荷機はユーザ自身でご用意ください。評価対象のモータに接続するタイプの負荷機を選定し、カップリングを行ってください。この時、トルクと速度を測定可能なトルク・速度計を負荷機のモータとの間に設置し、正確なトルク・速度特性が得られるようにしてください。

本評価においては、インバータの定格である 2.2kW 以上の負荷を安定してかけることが可能な設備を使用しています。また、連続試験を行う場合には、供試機インバータに帰還するように回生動作が可能な負荷試験装置を使用することを推奨します。パウダーブレーキやヒステリシスブレーキを用いた負荷試験装置を使用する場合には、試験装置の発熱などによる連続運転の制約などを確認の上、使用ください。

4.5 インバータの準備

インバータを準備される際に、以下の情報を確認してください。本サンプルプログラムでは、インバータボード MCI-HV-2-3PH に合わせた設定となっています。

本サンプルプログラムに実装された V/f 制御は、電流センサから入力される電流検出値を用いて制御するアルゴリズムを含んでおりません。ユーザが各種補償機能を追加で実装することによってモータ制御性能の改善を実現するためには、センサ自体の性能や、センサから出力される信号の経路となる回路のばらつき・精度が、大きく影響します。インバータの選定や設計には、十分に配慮を行ってください。

- 定格容量(kVA)
- デッドタイム値(µs)
- 電流センサの種類、特性、信号仕様
- 電流センサのゲイン値及びオフセット値、電流と電圧の関係性や信号の直線性の特性データ等
- 電圧センサのゲイン値及びオフセット値、信号の直線性の特性データ等

4.6 RA6T2 CPU ボードのセットアップ

MCI-HV-2-3PH に差し込むことができる、RA6T2 CPU ボード(RTK0EMA270C000000BJ)の装着方法について説明します。MCI-HV-2-3PH の基板側面に、RA6T2 CPU ボードを差 USB し込むことができます。また、サンプルプログラム書込用 USB 端子、MC-COM 用端子が用意されています。

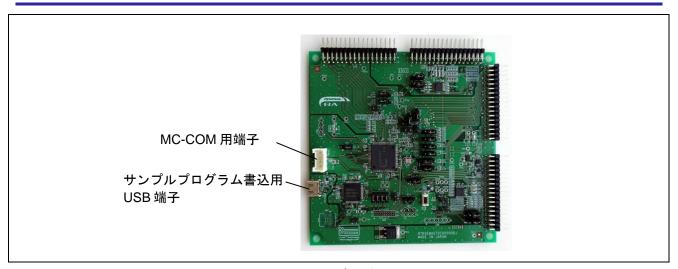


図 4-2 RA6T2 CPU ボードとインタフェース

表 4-2 CPU ボード上のジャンパ設定

ジャンパ	ジャンパ設定	設定の意味
JP1-JP6	-	
JP7	-	
JP8-JP9	-	
JP10	-	
JP11	-	
JP12	1-2pin ショート : モータ運転時	1-2pin ショート : J-Link OB 無効
	1-2pin オープン : サンプルプログラム書 込み時	1-2pin オープン : J-Link OB 有効
JP13	-	
JP14	1-2pin ショート	RA6T2 有効
JP15、JP16	-	
JP17	2-3pin ショート	INV1 エンコーダ A
JP18	2-3pin ショート	INV1 エンコーダ B
JP19	1-2pin ショート	INV1 W 相電圧検出
JP20	1-2pin ショート	INV1 V 相電圧検出
JP21	-	
JP22	-	
JP23-25	1-2pin オープン	1-2pin オープン : 電流検出用 LPF 有効

4.7 配線方法

電源、インバータ、モータの配線方法について説明します。使用する装置によって、端子の名称は異なりますので、必ず装置の取扱説明書を参照して内容・仕様を確認の上、配線作業を行ってください。

図 4-3 に電源~インバータ間の配線例を示します。ここでは、三相 AC200V/50Hz を出力可能な交流電源を用いて、CN1 の R、S、T 端子に接続する例を示しています。図 4-4 にインバータ~モータ間の配線例を示します。モータ配線は、CN6 の UVW 端子に接続します。安全のため、アースを電源入力コネクタ CN1 の FG 端子または CN6 の FG 端子に接続してください。

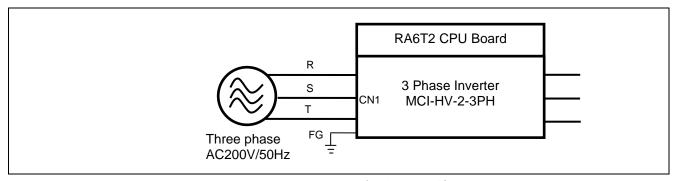


図 4-3 電源~インバータ間の配線

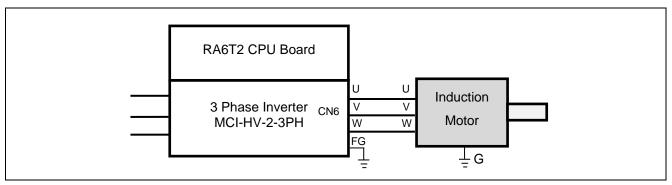


図 4-4 インバータ~モータ間の配線

4.8 測定器の利用

モータの制御性能の評価を行う際には、パワーメータやデジタルマルチメータ、トルクメータ、外付けエンコーダを用意することで、より詳細なインバータ・モータ制御の分析が可能となります。ユーザ環境や、 要求される測定精度、目標性能仕様に合わせて、必要な測定器を検討ください。

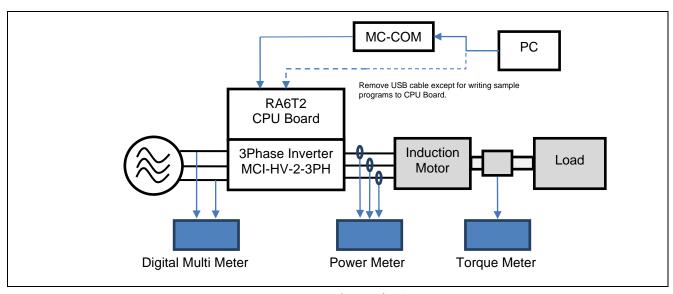


図 4-5 測定器の追加例

5. ソフトウェア環境構築方法

開発には、 e^2 studio を使用します。以下の URL からダウンロードしてください。なお、 e^2 studio と合わせて本サンプルプログラムで使用している FSP の導入も同時に必要となります。

https://www.renesas.com/ja/software-tool/e-studio

FSP と e^2 studio がセットになったインストールが容易なパッケージ版 FSP with e^2 studio でも利用が可能です。FSP のホームページ、または GitHub を参照してください。

https://www.renesas.com/ja/software-tool/flexible-software-package-fsp https://github.com/renesas/fsp/releases

 e^2 studio の詳細な使用方法は、上記 URL でダウンロードが可能な PDF マニュアルや、ビデオを参照してください。

6. 運転方法

6.1 運転前の注意点

モータを動かすにあたって、以下の点にご注意ください。誤った使い方により、感電や機器の故障等を引き起こす場合があります。

- MCI-HV-2-3PH は、産業向けを想定したインバータです。主回路と CPU ボードの間は絶縁されています。外部の機器や装置と信号を接続する場合、信号・電源の絶縁を考慮してください
- サンプルプログラムを CPU ボードに書き込む際、インバータの主回路電源(三相 AC200V)を印加しないでください。CPU ボードへサンプルプログラムを書き込む電源は USB ケーブルを通じて PC から供給するか、MCI-HV-2-3PH の制御電源端子から電源を供給します。
- トレース実行・ブレークポイントを設定した条件でモータ制御しないでください。不意の停止により、 インバータが異常な動作をする場合があります。RMW および MC-COM を使用して、安全機能が正 常に動作する条件下で、デバッグを行ってください。
- モータを運転するときには、CPU ボードの USB コネクタから USB ケーブルを取り外してください。 CPU ボードの USB コネクタは電気的に絶縁されていませんので、インバータ異常時に GND を通じて PC に悪影響や故障を発生させる場合があります。
- MC-COM は信号が絶縁されているため、インバータに AC200V の電圧が引加されてモータ運転中の 場合であっても安全に使用できます。サンプルソフトウェア書き込みのために CPU ボード上の USB コネクタを使用する場合、GND を介して感電事故の恐れや PC へのノイズの侵入、故障発生のリス クがあります。
- いかなる状況であっても、モータやインバータの緊急停止・動力遮断が可能なように、実験設備を構築してください。装置の非常停止ボタンを必ず、操作者のそばに配置してください。
- モータの軸は高速に回転しますので、必ずカップリング部にはガードとなるカバーを取り付けしてください。カップリング等の部品は、回転中に損傷した場合、回転軸の外に飛散する場合があります。
- インバータが停止しても、モータが回転している場合、停止するまで絶対に近づかないでください。 また、評価環境では、インバータとモータの間には、電磁開閉器を設置し、緊急時にはインバータと モータの間を遮断するよう評価環境を構築してください。

6.2 運転までの手順

運転を行うための準備手順は、以下の通りです。

表 6-1 運転を行うまでの手順

手順	手順内容	関連する章
1	インバータボードにあらかじめ、CPU ボードを装着します。	4.6
2	サンプルプログラム、開発環境(e² studio)を使用する PC に導入します。	5
3	PC と、CPU ボードを USB ケーブルで接続し、CPU ボードに 5V の電源を供給します。	6.3
4	サンプルプログラムを、開発環境でビルドします。	6.4
5	ビルドしたサンプルプログラムを CPU ボードに書き込みます。	
6	PC と CPU ボードをつないだケーブルを取り外します。	6.3
7	CPU ボードに MC-COM を接続します。	6.3

8	インバータに AC200V/50Hz の電源を供給します。	4.2
9	PC にインストールされた RMW を用いて、CPU ボードに MC-COM を経由して接続し、正しく接続できることを確認します。	6.5
10	本サンプルプログラムの変数や、センサ情報などが正常に RMW で表示されていることを確認します。	6.7
11	RMW を用いて、モータの運転操作を行います。	6.9
12	モータを停止・遮断します。	6.10

6.3 接続方法

書込み時と、運転操作時で、CPUボードと PC の間で使用する機器が異なるため、ご注意ください。以下に、①書込み時と、②運転操作時についての配線方法を説明します。

① 書込み時

CPU ボードには、書き込み用の専用回路が実装されており、外付けの ICE (InCircuitEmulator) は必要ありません。なお、CPU ボードの USB ポートは電気的に絶縁されていませんので、運転操作時には安全のため USB ケーブルを CPU ボードから必ず取り外してください。

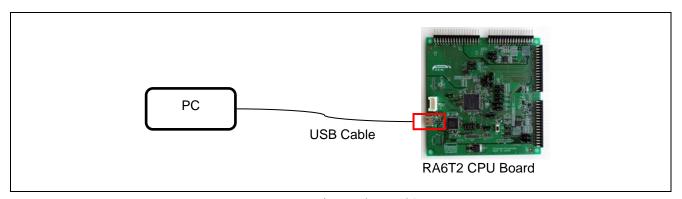


図 6-1 書込み時の配線例

② 運転操作時

MC-COM を用いて、CPU ボードに接続します。PC とは、UART 経由で接続された状態となり、PC からは COM ポートを用いて操作することができます。後述する RMW を用いて、運転操作を行います。MC-COM はインバータと PC の間を電気的に絶縁しますので、高電圧環境下でも、安全にご利用いただけます。

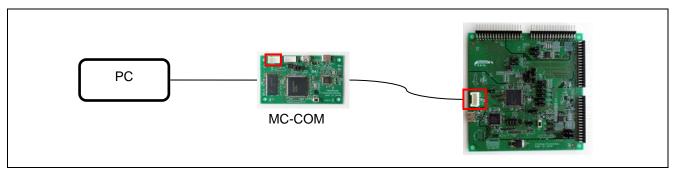


図 6-2 運転操作時の配線例

6.4 サンプルプログラムの書き込み

弊社 WEB サイトからダウンロードしたサンプルプログラムを、 e^2 studio を使用して CPU ボードの MCU に書き込んでください。

プログラムの書き込み方法は e^2 studio の取扱説明書を参照してください。CPU ボード上にはエミュレータに相当する回路があらかじめ組み込まれています。プログラムを書き込むために別売の専用エミュレータを用意する必要はありません。USB ケーブルで CPU ボードと PC を接続することで、 e^2 studio のデバッグ書き込み機能によって、CPU ボードにサンプルプログラムを書くことができます。

6.5 RMW の導入方法

モータ制御開発支援ツール「Renesas Motor Workbench(RMW)」をユーザインタフェース(回転/停止指令、回転速度指令等)として使用します。モータ制御開発支援ツール「Renesas Motor Workbench」は弊社WEBサイトより入手してください。

Renesas Motor Workbench WEB サイト URL:

https://www.renesas.com/ja/software-tool/renesas-motor-workbench

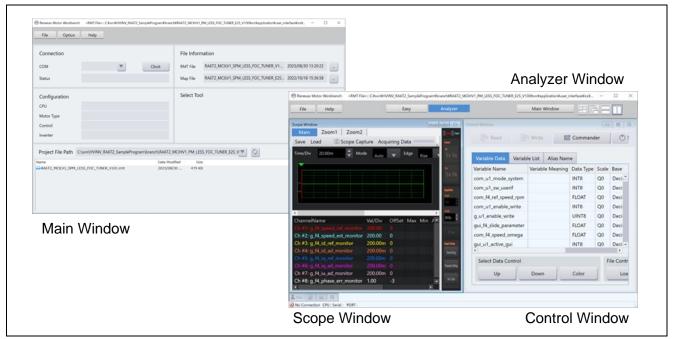


図 6-3 Renesas Motor Workbench 外観

6.6 Map ファイルの登録更新

ユーザがサンプルプログラムの一部を変更してビルドをし直した場合、変数などのアドレス情報が変更される場合があるため、記載された Map ファイルを RMW に登録更新する作業が必要になります。サンプルプログラムの変更を行っていない場合には、Map ファイルの登録更新作業は不要です。

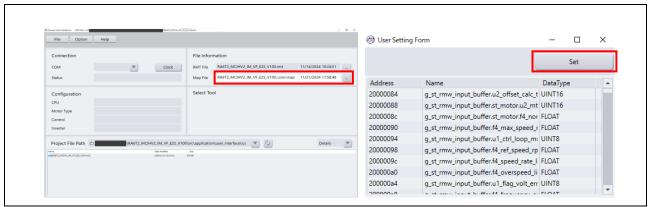


図 6-4 RMW の Map ファイル登録設定個所(左)と反映画面例(右)

6.7 RMW の通信設定

本サンプルプログラムでは、RMW の通信設定を表 6-2 に示すように設定しています。

通信設定が正しい場合でも、CPU ボードの起動状況によっては、通信がうまくいかない場合があります。 その際は、CPU ボードやインバータの制御電源を入れなおすことで改善する場合があります。

設定項目	設定値	設定画面例
ボーレート	921,600[bps]	Baudrate Setting x
		921,600 bps
Clock Setting	8,000,000[Hz]	Clock Setting ×
		8,000,000 Hz

表 6-2 RMW の通信設定

6.8 RMW の操作に使用する変数

本サンプルプログラムで、モータを動かす場合には、RMW を用いて制御します。RMW UI 使用時の入力用変数一覧を表 6-3 に示します。なお、これらの変数への入力値は com_u1_enable_write に 0/1 をトグルして書き込んだ場合にモータモジュール内の対応する変数へ反映され、モータ制御に適用されます。ただし、(*) が付けられた変数は com_u1_enable_write のトグルの有無に関係なく反映されます。

その他のモータ制御に用いるパラメータは、表 6-5 を参照してください。

なお、変数名の接頭辞(u1、f4等)は変数型の省略形となっています。RMWは、変数名の接頭辞を自動認識して型を自動で選択し、Control Windowで変数内部の数値の表示を行います。

Analyzer 機能入力用変数名	型	内容
com_u1_system_mode (*)	uint8_t	ステート管理
		0:モータ停止モード
		1:モータ駆動モード
		3:エラーリセット
com_f4_ref_speed_rpm (*)	float	速度指令値(機械角)[r/min]
com_u1_enable_write	uint8_t	ユーザ入力用変数書き換え許可
		g_u1_enable_write と変数一致で入力データ反映
g_u1_system_mode	uint8_t	システムモード
		0:モータ停止
		1:モータ駆動
		2:エラー
g_u1_enable_write	uint8_t	変数書き換え許可

表 6-3 Analyzer 機能主要入力用変数一覧

次に速度制御の駆動評価を行います。その際に観測することの多い主要な構造体変数の一覧を表 6-4 に示します。Analyzer 機能で波形表示します。変数の値を読み込む際に参考にしてください。

主要変数名	型	内容
g_st_imvf.u2_error_status	uint16_t	エラーステータス。詳細は 6.9 (f)"止まってし
		まった(エラー)場合の処理"を参照
g_st_relay_manager.u2_error_status	uint16_t	エラーステータス(リレーモジュール)。
g_st_cc.f4_vdc_ad	float	インバータ母線電圧値[V]
g_st_cc.f4_iu_ad	float	U 相電流検出値[A]
g_st_cc.f4_iv_ad	float	V 相電流検出値[A]
g_st_cc.f4_iw_ad	float	W 相電流検出値[A]
g_st_cc.f4_vd_ref	float	d 軸電圧指令値[V]
g_st_cc.f4_vq_ref	float	q 軸電圧指令値[V]
g_st_cc.f4_refu	float	U 相電圧指令値[V]
g_st_cc.f4_refv	float	V 相電圧指令値[V]
g_st_cc.f4_refw	float	W 相電圧指令値[V]
g_st_cc.st_rotor_angle.f4_rotor_angle_rad	float	角度指令値(電気角)[rad]
g_st_sc.f4_ref_speed_rad_ctrl	float	速度指令値(機械角)[rad/s]

表 6-4 主要変数一覧

以下に示す com 変数は、RMW からの操作で、モータの定数やパラメータを動的に変更することができます。ただし、電源の入り切りやマイコンのリセットによって、書き込んだ値はクリアされますので、使用時はご注意ください。

表 6-5 com 変数一覧

変数	説明
com_u2_offset_calc_time	電流オフセット値計算時間設定
com_u2_mtr_pp	駆動するモータの極対数
com_f4_nominal_current_rms	駆動するモータの定格電流[Arms]
com_f4_max_speed_rpm	駆動するモータの速度最大値(機械角)[r/min]
com_f4_speed_rate_limit_rpm	速度指令最大増減幅[r/min/s]
	(速度制御時使用、機械角)
com_f4_overspeed_limit_rpm	速度制限値(機械角)[r/min]
com_u1_flag_volt_err_comp_use	電圧誤差補償の設定 0:無効、1:有効
com_f4_frequency_output_max	出力最大周波数[Hz]
com_f4_rated_frequency	モータの定格周波数[Hz]
com_f4_voltage_output_max	出力最大電圧[V]
com_f4_rated_voltage	モータの定格電圧[V]
com_f4_torque_boost	トルクブースト補償量(1%=0.01)

6.9 操作方法

RMW の Analyzer 機能を使用し、モータを操作する例を以下に示します。操作は、RMW 画面上の "Control Window"で行います。"Control Window"の詳細は、「Renesas Motor Workbench ユーザーズマニュアル」を参照してください。

(a) サンプルプログラムの書き込み

CPU ボードには、あらかじめ、サンプルプログラムを書き込んだものとします。書き込み方法は、6.4 で解説しています。

(b) 電源投入

インバータには、あらかじめ、MC-COMを介してご利用の PC と USB 接続した状態とします。インバータに三相 AC200V 50Hz の電源を投入します。投入後、突入電流防止リレーが ON した後、自動的に母線電圧が全波整流された電圧値に安定します。

(c) RMW の起動

ご利用の PC にあらかじめインストールした RMW を起動してください。起動後、CPU ボードが該当する COM ポートを選択し、Analyzer を選択して接続を確立してください。

(d) モータを回転させる

エラーが発生していないかを確認後、以下の操作を行います。

- ① "Read"ボタンを押して"g_st_imvf.f4_vdc_ad"に、約 280V 以上が印加されているのを確認します。
- ② "g_st_imvf.u2_error_status"と"g_st_relay_manager.u2_error_status"が0になっていることを確認します。0以外の場合は後述の(f)に説明されている操作を行い、エラー状態をクリアしてください。
- ③ "com_u1_system_mode"、"com_f4_ref_speed_rpm"の[W?]欄に"チェック"が入っていることを確認します。
- ④ 指令回転速度を"com_f4_ref_speed_rpm"の[Write]欄に入力します。
- ⑤ "com u1_system_mode"の[Write]欄に"1"を入力します。
- ⑥ "Write"ボタンを押します。
- ⑦ モータが回転したことを確認します。

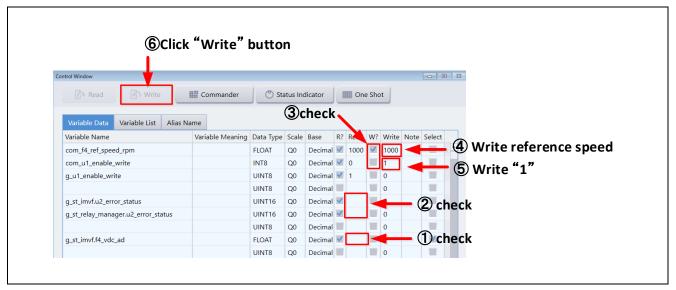


図 6-5 モータ回転の手順

(e) モータを停止させる

以下の操作を行う事で、モータを停止させることができます。

- ① "com_u1_system_mode"の[Write]欄に"0"を入力します。
- ② "Write"ボタンを押します。
- ③ モータが停止したことを確認します。

図 6-6 モータ停止の手順

(f) 止まってしまった (エラー) 場合の処理

以下の操作を行う事で、エラー状態をクリアできます。エラー状態をクリアすると、運転を再開できます。 以下の操作を行わないと、(d)の運転操作ができませんので、ご注意ください。

- ① モータ制御でのエラーについては、表 6-6 と表 6-7 を参照し、"g_st_imvf.u2_error_status"と "g_st_relay_manager.u2_error_status"の値を確認してください。エラー原因への対処を行います。
- ② "com_u1_system_mode"の[Write]欄に"3"を入力します。
- ③ "Write"ボタンを押します。

図 6-7 エラー解除の手順

表 6-6 モータ制御のエラーステータスの説明

値	エラー内容	割り当てられているマクロ名
0x0000	エラーなし	MOTOR_IMVF_ERROR_NONE
0x0001	H/W 過電流エラー	MOTOR_IMVF_ERROR_OVER_CURRENT_HW
0x0002	過電圧エラー	MOTOR_IMVF_ERROR_OVER_VOLTAGE
0x0004	過速度エラー	MOTOR_IMVF_ERROR_OVER_SPEED
0x0008、	予約	-
0x0010、		
0x0020、		
0x0040		
0x0080	低電圧エラー	MOTOR_IMVF_ERROR_LOW_VOLTAGE
0x0100	S/W 過電流エラー	MOTOR_IMVF_ERROR_OVER_CURRENT_SW
0x0200	予約	-
0x0400	リレー制御エラー	MOTOR_IMVF_ERROR_RELAY
Oxffff	未定義エラー	MOTOR_IMVF_ERROR_UNKNOWN

表 6-7 リレー制御のエラーステータスの説明

値	エラー内容	割り当てられているマクロ名
0x0000	エラーなし	RELAY_MANAGER_ERROR_NONE
0x0001、	予約	-
0x0002、		
0x0004、		
0x0008、		
0x0010		
0x0020	過熱エラー	RELAY_MANAGER_ERROR_OVER_HEATING
0xffff	未定義エラー	MOTOR_IMVF_ERROR_UNKNOWN

6.10 モータ停止・遮断方法

運転状態からモータを停止する場合には、以下に示す手順で行ってください。なお、緊急時は、②のAC200Vの供給を最優先に停止させてください。

- ① 6.9(e)のモータ停止手順を行います。
- ② モータの停止を確認したら、電源ブレーカーを操作し、電源の供給を停止します。
- ③ 停止後、感電事故防止の観点から、母線電圧が DC42V 未満に電圧が低下したことを確認するまで、 配線作業やインバータの筐体を開けるなどの操作を行わないでください。

7. モータ制御アルゴリズム

7.1 誘導機の V/f 制御

本章では誘導機に馴染みの無いユーザに向け、7.1.1 にて誘導機のトルク発生原理と誘導機の特徴である すべりについて、7.1.2 にて V/f 制御の概要について説明しています。

7.1.1 誘導機のトルク発生原理とすべり

三相かご形誘導機のトルク発生原理は、フレミング右手の法則とフレミング左手の法則を用いて説明できます。

- ① 誘導機の固定子に三相交流電圧を印可すると、PM モータと同様に回転磁束が発生します
- ② 回転磁束が回転子のかご形導体を横切る際に、フレミング右手の法則に従い、かご形導体に誘起電圧が発生します
- ③ 誘起電圧により、かご形導体に電流(2次電流)が流れます
- ④ 2次電流と回転磁界から、フレミング左手の法則に従い電磁力が発生し、モータが回転します

このとき、誘起電圧は回転磁界とかご形導体の相対運動により生じるため、トルク発生時、回転磁界の回転速度に比べてロータ回転速度は遅くなります。この相対運動を一般的にすべりsと呼び、回転磁界の回転速度(同期速度)を ω 、回転子の回転速度を ω _rとすると、すべり速度を ω _sとすると、以下の式のように計算されます。

すべり
$$S = \frac{\omega - \omega_r}{\omega} = \frac{\omega_s}{\omega}$$

s: すべり、 ω_r :回転子の回転速度、 ω :同期速度、 ω_s :すべり速度

誘導機を定格電圧、定格周波数で駆動した時のトルクとすべりの関係は一般的に図 7-1 のようになります。無負荷では回転子の回転速度が同期速度と等しく、すべりが 0 となります。負荷を印可するとトルクの増加に伴い、すべりも大きくなり、定格トルクまではすべりとトルクの関係が線形に近いことが分かります。このとき、定格負荷印可時においても、すべりは数%であることから、回転子が同期速度に近い速度で回転していることが分かります。

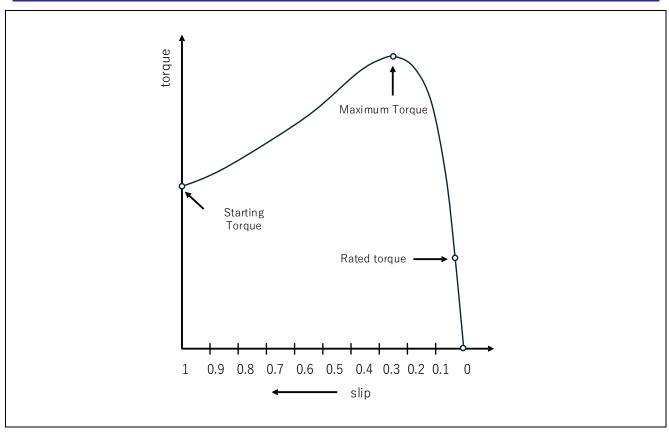


図 7-1 一般的な誘導機のすべりとトルクの関係

7.1.2 V/f 制御の概要

V/f 制御は平均値制御の一種であり、その特性を説明するために等価回路が良く使用されます。誘導機の 等価回路はトランスの等価回路を応用し、図 7-2 のように表すことができます。なお、等価回路は誘導機 1 相分を表すものであるため、出力を計算する際には相数の考慮が必要であることに留意して下さい。

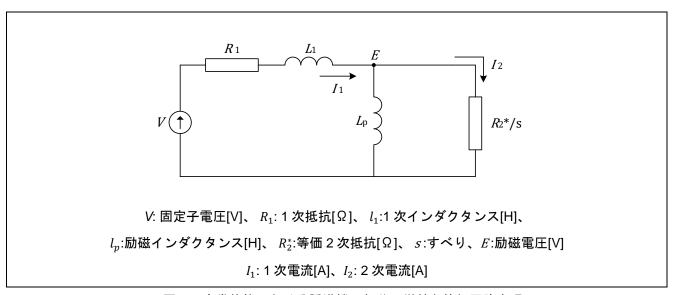


図 7-2 定常状態における誘導機 1 相分の単純な等価回路表現

V/f 制御は、固定子電圧 V とその周波数 f の比が一定となるような制御を指します。ここで、等価回路中の Lp は励磁インダクタンス、つまり、回転磁束の発生に関わるインダクタンス成分を表現しており、一次

巻線抵抗 R1 や 1 次漏れインダクタンス L1 による電圧降下を無視すると、回転磁束は固定子電圧を用いて、以下の式で表されます。

$$\Phi = \frac{E}{2\pi f} \cong \frac{V}{2\pi f}$$

Φ:磁束、E:励磁電圧、V:固定子電圧、f:インバータ出力周波数

上式より、V/f 比を固定することは、磁束Φを一定に制御することを意味していることが分かります。 また、出力トルクは、2次電流と回転磁束が作用することで発生し、以下の式で表されます。

$$T = I_2 \times \Phi \cong \left(\frac{V}{\omega}\right)^2 \frac{\omega_s}{R_2^*} = \frac{\Phi^2 \omega_s}{R_2^*}$$

T:出力トルク、I₂: 2 次電流、Φ:磁束、R₂*:2 次抵抗、ω_s:すべり周波数

式よりトルクはすべり周波数と磁束の2乗に比例し、磁束を一定に制御することで、トルクはすべりに比例することが確認できます。よって、V/f制御では速度指令fに合わせて固定子電圧Vを変更することで、簡単に広い速度範囲で指令に近い速度制御を簡単に行うことが可能となります。

また、V/f の運転下では、図 7-3 のブロック図に示すように、負荷トルクが発生した場合にはモータの回転速度が低下し、すべりが増加します。すべりが増えると、モータはトルクをより多く出力する負帰還の動作が等価的に発生します。よって、V/f 制御はモータの負荷状態を制御しないものの、負荷トルクの変化に対応することが可能です。

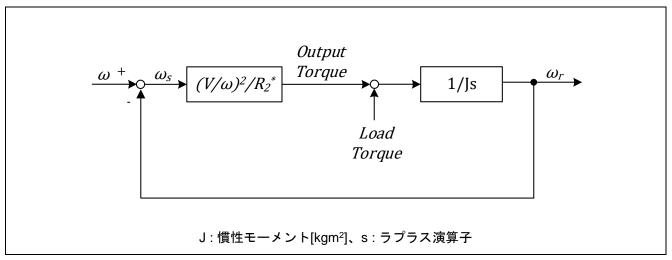


図 7-3 負荷トルクとすべり、回転速度の関係と負帰還動作

7.2 実装機能の概要

本サンプルプログラムのモータ制御アルゴリズムについて説明します。表 7-1 に、モータ制御機能を示します。

表 7-1 本サンプルプログラムのモータ制御機能

機能項目	機能の内容	
制御方式	V/f 制御	
PWM 変調方法	空間ベクトル変調法(正弦波変調も選択可)	
制御モード	速度制御のみ	
補償機能	・電圧誤差補償	
	・サンプルディレイ補償	
	・トルクブースト補償	
	・弱め界磁制御	

7.3 制御ブロック図

V/f 制御の制御システム全体のブロック図の例を図 7-4 に示します。

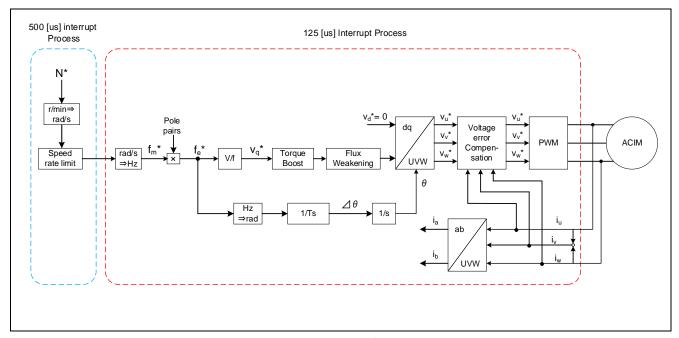


図 7-4 V/f 制御概略ブロック図

7.4 速度制御機能

速度制御機能では、モータの速度指令を作成します。このとき、速度の加減速が制限値に合うように調整を行い、急加減速を抑制します。

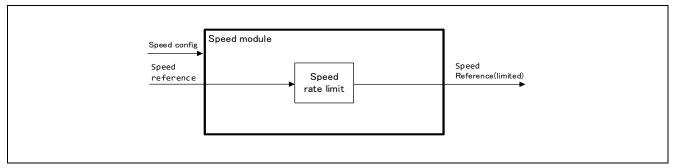


図 7-5 速度制御の機能ブロック図

7.5 電流制御機能

電流制御機能は、入力された周波数指令値から V/f 制御に必要な角度生成と電圧指令生成を行い、PWMとして出力する電圧を演算する機能です。モジュール構成図を図 7-6 に示します。

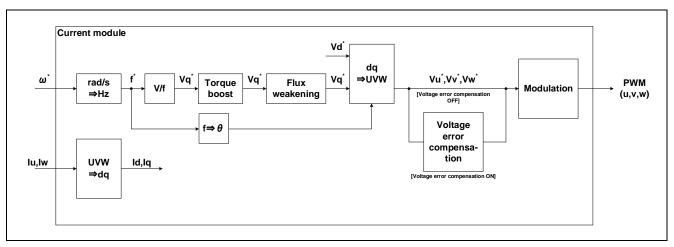


図 7-6 電流制御の機能ブロック図

7.6 V/f 制御

V/f 制御の典型的な処理の流れを示します。V/f 制御が用いられている汎用インバータの制御指令は、通常、電気角周波数指令[Hz]です。しかし、電気角周波数指令では、実際にモータが回転している速度を得るためには、機械角に換算する必要があります。そこで本サンプルプログラムでは、機械角の速度指令[r/min]を入力として、内部で周波数指令[Hz]に変換しています。

$$f_{ref} = \frac{N_{ref}}{60} * P$$

 f_{ref} :周波数指令[Hz]、 N_{ref} :速度指令[r/min]、P:極対数

電流制御ループにおいて、周波数指令から電圧指令と角度指令の2つの信号を生成します。誘導機の制御では、回転子の位置はインバータ内部で生成して制御します。そこで、周波数指令からモータが回転するのに必要な角度を生成します。

電圧指令を求める式を以下に示します。定格周波数と定格電圧は、モータによって一意に決まります。この電圧指令は、7.7で説明するトルクブースト補償を適用し、下限電圧を規定するので、ご注意ください。

$$V_{ref} = \frac{V_{rated}}{f_{rated}} \times f_{ref}$$

 f_{rated} :定格周波数[Hz]、 V_{rated} :定格電圧[Vrms]

角度指令 θ [rad]を求めるには、 Δ θ [rad]を求めて積分する。周波数指令[Hz]を角度生成するサンプリング周期(速度制御周期または電流制御周期。通常は電流制御周期となります)で割ると、 1 サンプリングあたりに進む角度 Δ θ が求まります。

$$\Delta\theta = 2\pi \times \frac{f_{ref}}{T_s}$$

$$\theta = \int \Delta \theta$$

得られた電圧指令値は Vq と読み替え、角度指令値 θ をもとに逆パーク変換(dq 逆変換)を用いて、dq 軸から固定子座標系の α β 軸を求めます。

電圧指令値は、絶対変換を用いているので、Vq*から Vu*、Vv*、Vw*に変換される際に√(2/3)倍されています。この係数は、線間電圧実効値から相電圧ピーク値に換算する係数と同じであり、GPT/MTU に設定するのに使用する相電圧指令値と一致しているため、このまま使用できます。

得られた Vu*、Vv*、Vw*は、通常の PWM インバータ制御同様に母線電圧で除算し、変調率(duty)を求めることができます。

7.7 トルクブースト補償

低速運転時は、誘導機の巻線抵抗による電圧降下の影響が大きくなり、線間電圧で十分な磁束が発生できず、トルクが低下する場合があります。そこで、図 7-7 トルクブースト補償と V/f カーブのように電圧指令値を補償し、低速運転時でもトルクが出せるようにする機能をトルクブースト補償と呼びます。このとき、トルクブースト設定値が大きすぎるとトルクが出せる反面、流れる電流も大きくなるため、0 から 5%を目安に適当な値の設定を行って下さい。

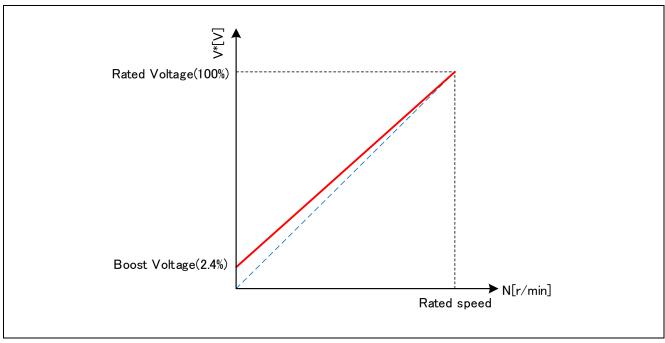


図 7-7 トルクブースト補償と V/f カーブ

7.8 弱め界磁

弱め界磁を行うことで、定格速度より高速な領域でモータを回すことが可能となります。このとき、ロータ回転速度とトルクの積は定格出力に制限されるため、トルクを回転速度に反比例させて制御する必要があります。V/f 制御における本機能の実装方法としては、定格速度より高速な領域で印可電圧を定格電圧に制限することで実現します。

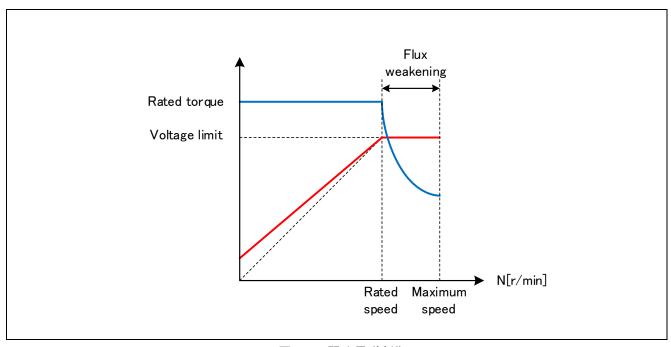


図 7-8 弱め界磁制御

7.9 サンプルディレイ補償

UVW の三相電圧指令を生成する際に、推定した角度から 0.5 制御周期分、進めた角度で二相三相変換を行います。この処理により、制御の安定性を改善することができます。高速回転用途、PWM キャリア周期が低い場合、間引き処理を行います。

指令演算中、モータの回転が進むことで、角度は常にずれが生じます。このずれを指令演算時間が一定であることを利用し、進む角度を前回の角度移動量から補間する機能となります。

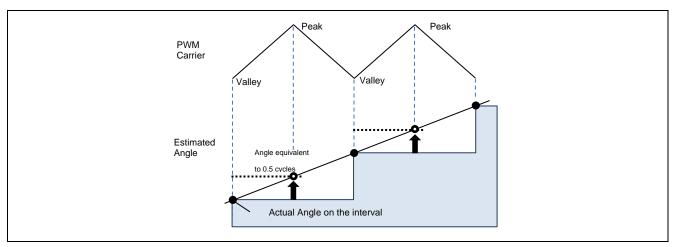


図 7-9 PWM キャリア周期で進む角度量の例

7.10 電圧誤差補償

電圧形 PWM インバータでは、上下アームのスイッチング素子間の短絡を防止するために、上下アーム 2 つの素子が同時にオフとなるデッドタイムを設けています。そのため電圧指令値と実際にモータに印加される電圧には誤差が生じ、制御精度が悪化します。そこでその誤差を低減するため、電圧誤差補償を実装します。

電圧誤差の電流依存性は、電流(向きと大きさ)とデッドタイム、使用するパワー素子のスイッチング特性に依存し、下記のような特性を持ちます。電圧誤差補償では、下記電圧誤差と逆の電圧パターンを電流に応じて電圧指令値に補償します。

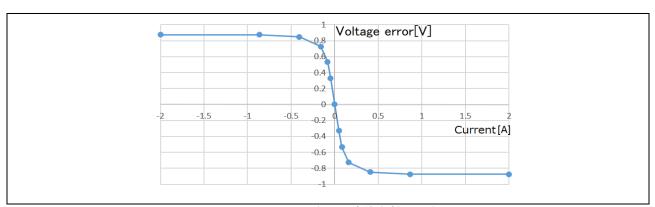


図 7-10 電圧誤差の電流依存性(一例)

7.11 PWM 変調方式

サンプルプログラムでは、モータへの入力電圧はパルス幅変調(PWM)によって生成します。本モジュールでは、PWM Duty 比の算出を行います。また、電圧利用率を上げるために、変調を行った電圧を出力できます。電流制御モジュールの API を通して変調の動作を設定します。本サンプルプログラムでは、2種類のパルス幅変調駆動方式から選択できます。

(a) 正弦波変調(MOD_METHOD_SPWM)

永久磁石同期モータのベクトル制御において、一般的に所望の各相電圧指令値は正弦波状に生成します。 実際にモータに印加される電圧のインバータ母線電圧に対する電圧利用率は、線間電圧換算で最大 86.7[%] となります。正弦波変調法を使用すると電圧利用率が 100%使用できないため、インバータの性能を最大限 に活用できない場合があります。

本変調法では、変調率 m を以下のように定義しています。

$$m = \frac{V}{E}$$

m:変調率 V:指令値電圧 E:インバータ母線電圧

(b) 空間ベクトル変調相当 (MOD_METHOD_SVPWM)

正弦波変調法では、そのまま PWM 生成のための変調波として使用すると、実際にモータに印加される電圧のインバータ母線電圧に対する電圧利用率は線間電圧換算で最大 86.7[%]となります。

そこで、下記式にあるように各相電圧指令値の最大値と最小値の平均値を算出し、それらを各相電圧指令値から減算したものを変調波として使用します。その結果、変調波の最大振幅は $\sqrt{3}/2$ 倍となり、線間電圧はそのままに電圧利用率は 100[%]となります。この方式は空間ベクトル変調と等価の結果が得られます。

$$\begin{pmatrix} V_u' \\ V_v' \\ V_w' \end{pmatrix} = \begin{pmatrix} V_u \\ V_v \\ V_w \end{pmatrix} + \Delta V \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\because \Delta V = -\frac{V_{max} + V_{min}}{2}$$
 , $V_{max} = max\{V_u, V_v, V_w\}$, $V_{min} = min\{V_u, V_v, V_w\}$

V,,, V,,, V,, : U、V、W 相電圧指令値

 V_{u,v'_u

変調率 m を以下のように定義します。

$$m = \frac{V'}{F}$$

m:変調率 V': PWM生成用相電圧指令 E:インバータ母線電圧

8. ソフトウェア仕様・構成

8.1 ソフトウェア仕様

本システムのソフトウェアの基本仕様を以下に示します。

表 8-1 本ソフトウェア基本仕様

項目	内	容	
モータ制御方式	V/f 制御		
モータ制御開始/停止	RMW からの入力		
入力電圧	三相 AC200-240[V] 、50/60 [Hz]		
母線電圧	DC282.8[V](三相 AC200[V]入力時)		
PWM キャリア周波数	モータ制御 8[kHz]、周期 125[µs] (谷割り込み)		
PWM 変調方式	正弦波変調または空間ベクトル変調		
デッドタイム	3.0[µs]		
制御周期	電流制御	125[µs]	
	速度制御	500[µs]	
	リレー制御	1.0[ms]	
速度範囲	CW: 0[r/min] to 1800[r/min]		
	CCW: 0[r/min] to -1800[r/min]		
	(定格周波数 60[Hz]適用時)		
保護停止処理	■ S/W保護機能		
	以下のいずれかの条件の時、モータ制御信	号出力(6本)を非アクティブにします。	
	1. 各相の電流がインバータ定格電流 25.5[A]またはモータ定格電流からの計算値を		
	超過(過電流保護の制限値、電流制御周期で監視)		
	2. 母線電圧が 430[V]を超過(過電圧保護の制限値、電流制御周期で監視)		
	3. 母線電圧が 186[V]未満(低電圧保護の制限値、電流制御周期で監視)		
	4. 回転速度が 1800[rpm]を超過(過速保護の制限値、電流制御周期で監視)		
	5. IGBT 温度異常検知ポートの入力が Low	(電流制御周期で監視)	
	■ H/W保護機能		
	外部からの過電流検出信号(GTETRGD 端子に Low レベルを検出)及び出力短絡を検出した場合、PWM 出力端子をハイインピーダンスにし、かつ、モータ制御信号出力(6 本)を非アクティブにします。		

8.2 ソフトウェア全体構造

ソフトウェアの全体構成を以下に示します。

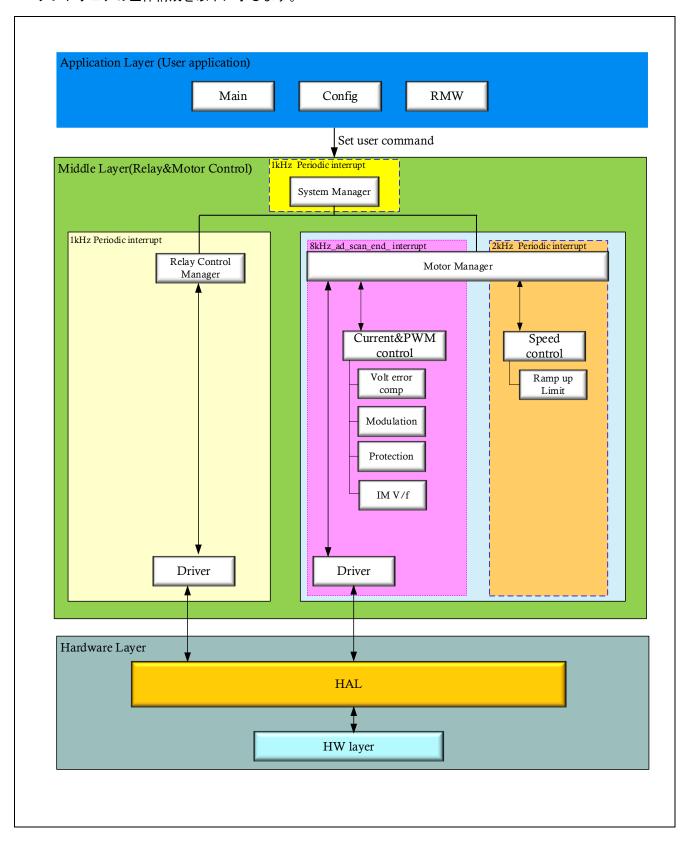


図 8-1 サンプルプログラムの全体構成

8.3 タスクの説明

モータ制御に関わるタスクは、500µs 周期の速度制御と電圧制御(8kHz、125µs)です。

表 8-2 使用する割り込み・タスク

タスク	周辺機能	周期	割り込み関数	説明
500µs 制御割り込み (速度制御)	AGT0	500µs	callback_motor_speed_cyclic _timer	
AD 変換終了割り込み (電流制御)	ADC0	125µs	callback_motor_current_cycli c_adc	ADC 変換完了割り込みで動作します。
1ms 周期割り込み	AGT1	1ms	callback_system_manager_c yclic_timer	
リセット	-		※エラー復帰時に状態遷移処 理の中で実行されます	
POEG 割り込み (H/W 過電流エラー割 り込み)	POEG		callback_system_manager_o vercurrent_poe	POEG のコールバック関数 内では、必ず R_POEG_Reset()をコール してフラグをリセットして ください。割り込み優先度 によっては、その他の処理 が停止する場合がありま す。
RMW 操作	-		r_app_rmw_ui_mainloop	

8.4 ファイル・フォルダ構成

サンプルプログラムのフォルダとファイル構成を以下に示します。

表 8-3 ファイル・フォルダ構成

フォルダ	サブフ	'オルダ	ファイル名	説明	
ra	-	-	FSP ライブラリ、ミドルウェア本 体	フォルダ内編集禁止	
ra_cfg	-		FSP ライブラリ用設定ヘッダ		
ra_gen	-	_	HAL 関連、自動生成ファイル群		
script	-		FSP 用リンカスクリプトファイル		
src	main	_	mtr_interrupt.c/h	アプリケーションメイン処理	
/application			mtr_main.c/h		
	mcu	ra6t2	r_app_mcu_callback.c	MCU 依存コールバック定義	
			r_app_mcu.c/h	MCU 周辺機能関連ラッパ関数定義	
			r_motor_driver_fsp.c	MCU 依存モータモジュール関連ドライバ	
			r_motor_driver_hal.h	HAL 依存モータモジュール関連ドライバ	
			r_relay_driver_fsp.c	MCU 依存リレーモジュール関連ドライバ	
			r_relay_driver_hal.h	HAL 依存リレーモジュール関連ドライバ	
	motor_m	cfg	r_motor_inverter_cfg.h	インバータのコンフィグレーション定義	
	odule	cig	-	制御モジュールのコンフィグレーション定義	
	oddio		r_motor_module_cfg.h	モータのコンフィグレーション定義	
			r_motor_targetmotor_cfg.h		
		current	r_motor_current_api.c/h	電流制御モジュールの API 関数定義	
			r_motor_current_modulation.c/h	変調モジュールの関数定義	
			r_motor_current_vf.c/h	V/f モジュールの関数定義	
			r_motor_current_volt_err_comp.lib/ h	電圧誤差補償モジュール	
			r_motor_current.c/h	電流制御モジュールのローカル関数定義	
		driver	r_motor_driver.c/h	ドライバモジュールの関数定義	
		general	r_motor_common.h	共通定義	
			r_motor_filter.c/h	汎用フィルタ関数定義	
		imvf	r_motor_imvf_action.c	アクション関数定義	
			r_motor_imvf_api.c/h	モータマネージャモジュールの API 関数定義	
			r_motor_imvf_manager.c/h	マネージャモジュールのローカル関数定義	
			r_motor_imvf_protection.c/h	保護機能の関数定義	
			r_motor_imvf_statemachine.c/h	状態遷移関連の関数定義	
		speed	r_motor_speed_api.c/h	速度制御モジュールの API 関数定義	
			r_motor_speed.c/h	速度制御モジュールのローカル関数定義	
	relay_mo	cfg	r_relay_cfg.h	リレー関連コンフィグレーション定義	
	dule	driver	r_relay_driver.c/h	リレー関連ドライバモジュール	
		general	r_relay_common.h	リレー関連共通モジュール	
		systask	r_relay_manager_api.c/h	リレーマネージャモジュール	
		Systask	r_relay_manager.c/h		
	avetem	avetem	r_system_manager_api.c/h	システムマネージャモジュール	
	-	system_ manager			
			r_system_manager.c/h	RMW の通信用ライブラリ	
		ics	ICS2_RA6T2.o/h		
	rface		r_mtr_ics.c/h	RMW の I/F 関数定義	
			convert.bat	MAP ファイル生成バッチ	
			ElfMapConverter.exe	MAP ファイル生成ツール	
			ICS2_RA6T2_Built_in.o	RMW ビルトイン用オブジェクト	
-	-	-	hal_entry.c	起動ルーチンモジュール	
Debug	-	-		ビルド成果物	

FSP を使用することで、周辺機能ドライバを GUI 画面上から簡単に生成することができます。

FSP は、プロジェクトで使用するマイクロコントローラ、周辺機能、端子機能などの設定情報をプロジェクト・ファイル(configuration.xml)に保存しています。本サンプルプログラムの周辺機能設定を確認する場合、 e^2 studio 上の FSP 設定画面を参照してください。FSP で生成したフォルダとファイル構成を以下に示します。

表 8-4 FSP で生成されるフォルダの説明

フォルダ名	フォルダの説明
ra	様々な FSP に関連するモジュール・ライブラリファイルを含みます。自動生成されるため、フォルダ内のファイル・フォルダ構成は変更しないでください。
ra_cfg	FSP ライブラリの設定関連ヘッダファイルを含みます。自動生成されるため、フォルダ内のファイル・フォルダ構成は変更しないでください。
ra_gen	FSP のライブラリと、ユーザーアプリケーションを仲介する HAL(ハードウェア抽象化レイヤー)のファイルを含みます。ユーザが FSP で使用するために設定した値がモジュールとして生成されます。常時自動生成されるため、フォルダ内のファイル・フォルダ構成は変更しないでください。
script	FSP モジュールをリンカに登録するためのスクリプトファイルを含みます。

8.5 アプリケーション層

アプリケーション層はシステムマネージャとユーザインタフェースとなる RMW の管理処理、システムマネージャに対する制御の指令値設定や制御モジュールのパラメータ更新を行っています。サンプルプログラムでは、RMW を使用(RMW UI)して、設定及び処理を行います。また、この UI からモータの駆動/停止や、制御の指令値設定などを行っています。

8.5.1 機能

アプリケーション層で行われる機能一覧を以下に示します。

 機能
 説明

 メイン処理
 ユーザの指令に対してシステムを有効 / 無効に設定します。

 RMW の UI 処理
 RMW の管理、指令値含むパラメータの取得・設定を行います。

 MCU の初期設定
 FSP を用いて MCU の初期設定を行います。キャリブレーションやアプリケーションに合わせた設定も併せて行います。

 FSP との仲介処理
 FSP に設定された、周辺機能に割り付けられたコールバック関数の定義と、システムマネージャを通じて下位のモジュールに受け渡す処理を行います。

表 8-5 アプリケーション層の機能一覧

8.5.2 構造体・変数情報

アプリケーション層でユーザが使用可能な変数一覧は、システムマネージャにて定義・管理されていますが、サンプルソフトウェアの利用の便宜上、RMW の章の表 6-5 に示します。また、RMW を使用してモータモジュールのパラメータを更新するための構造体を用意しており、その構造体メンバを以下に示します。

変数は、RMW から値を設定することで、本アプリケーション層が下記構造体を介して、各制御モジュールの変数に、変更した値が各モジュールの Update 関数を介して反映されます。

構造体	変数	説明
st_rmw_param_buffer_t	u2_offset_calc_time	電流オフセットの検出時間[s]
RMW 変数更新用構造体	st_motor	モータパラメータ用の構造体
	f4_max_speed_rpm	最大速度[r/min](機械角)
	u1_ctrl_loop_mode	制御ループのモード(速度制御)
	f4_ref_speed_rpm	速度指令值[r/min](機械角)
	f4_speed_rate_limit_rpm	速度の変化量制限[r/min/s](機械角)
	f4_overspeed_limit_rpm	速度制限值[r/min](機械角)
	u1_flag_volt_err_comp_use	電圧誤差補償の使用可否設定
	f4_frequency_output_max	最大出力周波数[HZ](電気角)
	f4_rated_frequency	V/f 制御用基底周波数[Hz](電気角)
	f4_voltage_output_max	最大出力電圧[V]
	f4_rated_voltage	V/f 制御用定格電圧[V]
	f4_torque_boost	トルクブースト補償割合[-]

表 8-6 RMW によるパラメータ更新用構造体の変数一覧

8.5.3 パラメータ調整・設定

アプリケーション層で設定できるパラメータは、RMW で使用する com 変数のみです。システムマネージャやモータマネージャ、リレーマネージャで使用するパラメータは、それぞれの章を参照してください。

運転中の変数の設定・更新は、RMW から行ってください。RMW の操作は 6.7 章及び Renesas Motor Workbench ユーザーズマニュアル(r21uz0004)を参照ください。

8.6 システムマネージャ

システムマネージャ(r_system_manager)は、アプリケーション層から与えられる指令値やパラメータ 設定、コールバック通知を元に、モータマネージャとリレーマネージャの指令値設定や制御モジュールのパ ラメータ更新を行っています。

8.6.1 機能

システムマネージャで設定している機能一覧を以下に示します。

表 8-7 システムマネージャの機能一覧

機能	説明
リレー・モータ駆動状態監視と	リレー・モータの駆動状態を監視し、リレー制御側のステータスに応じ
モータ駆動許可及び停止処理	て、モータの駆動許可と停止を行います。
エラー解除処理	リレー制御側およびモータ制御側のエラー発生時のリセット処理を行い
	ます。
アプリケーション層とマネー	アプリケーション層とモータマネージャの中間に位置し、双方の I/F を
ジャ層の I/F	結合します。RMW で入力したパラメータの設定を行います。

8.6.2 モジュール構成図

モジュール構成図を以下に示します。

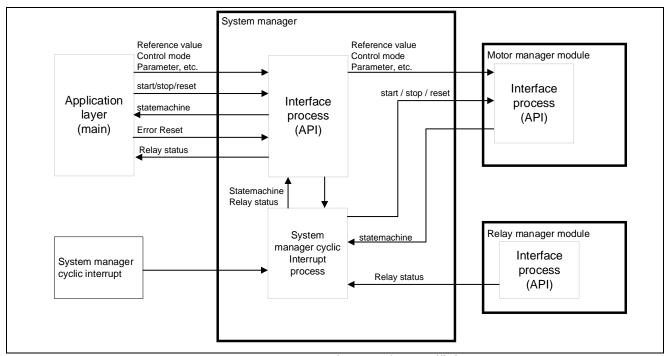


図 8-2 システムマネージャのモジュール構成図

8.7 モータマネージャ・モータ制御モジュール

モータマネージャ(r_motor_imvf_manager)は、各制御モジュール(電流制御モジュール、速度制御モジュール)を適切に使用してモータ制御を行うモジュールです。各モジュールのインタフェースやモータ制御のシステム全体の管理、システム保護などを行っています。

8.7.1 機能

モータマネージャの機能一覧を表 8-8 に示します。また、モータ制御モジュールの機能の一覧を表 8-9 及び表 8-10 に示します。

表 8-8 モータマネージャモジュールの機能一覧

機能	説明
モード管理	ユーザの指令に対してシステムを切り替えてモータを制御します。
保護機能	システム保護機能によりエラー処理を行います。
電流制御周期処理	電流制御周期割り込み時の処理を行います。この処理からエラー判定処理、 RMW 通信関連処理を実行します。
速度制御周期処理	速度制御周期割り込み時の処理を行います。

表 8-9 速度制御モジュールの機能一覧

機能	説明
速度制御	速度指令値に速度指令値制限をかけます。
速度指令設定	速度モジュールに速度指令値を設定します。

表 8-10 電流制御モジュールの機能一覧

機能	説明
電流制御	速度指令値から電圧指令値を演算し、PWM 出力値を設定します。
電流オフセット調整	AD で検出した電流値のオフセット値を計算します。
電圧誤差補償	出力電圧のデッドタイムによる影響を補償します。
順変換、逆変換	ベクトル制御を行うために検出した電流値に対して、座標変換を行います。演算
	結果に対して座標の逆変換を行い元の座標軸に戻します。
PWM 変調	PWM 信号に変調してモータに任意の周波数・電圧を印加します。
V/f 制御	周波数指令値と定格電圧、定格周波数から電圧指令値を作成します。
電圧ベクトル制限	検出した母線電圧から電圧ベクトルを制限します。
トルクブースト機能	低速時のトルク低下を補償するために、電圧指令値の下限を設けます。
弱め界磁制御	定格回転速度以上の領域で定格出力で運転するようにq軸電圧を制限します。
電圧位相進み補償	三相電圧指令値を生成する際に電流制御サイクル分のサンプル遅延を補償します。
	す。

8.7.2 モジュール構成図

モジュール構成図下記に示します。

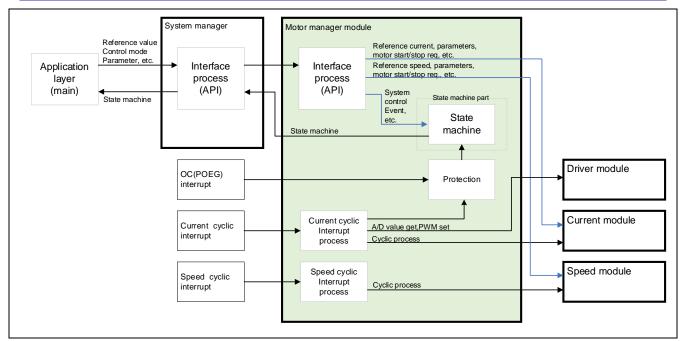


図 8-3 リレーマネージャモジュール構成図

8.7.3 モード管理

本サンプルプログラムにおける状態遷移図を以下に示します。本サンプルプログラムでは、「SYSTEM MODE」と、「RUN MODE」により状態を管理し、「Control Config」は、ソフトウェア内でアクティブになっている制御系を表しています。

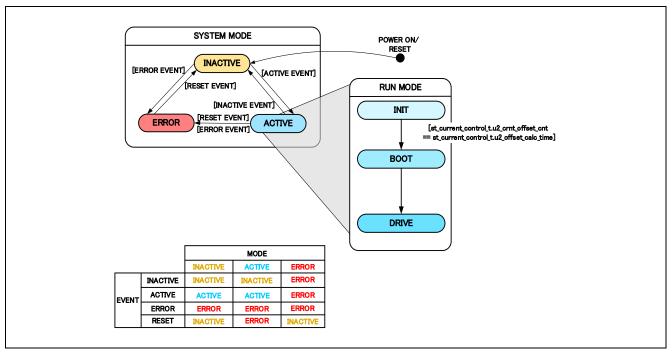


図 8-4 モータ制御ソフトウェアの状態遷移図

(1) SYSTEM MODE

システム動作状態を表します。各イベント(EVENT)の発生により、状態が遷移します。システムの動作状態は、モータ駆動停止(INACTIVE)、モータ駆動(ACTIVE)、異常状態(ERROR)があります。

(2) RUN MODE

モータの制御状態を表します。システムの状態が ACTIVE になると、モータの駆動状態が図 8-4 のように遷移します。

(3) EVENT

各 SYSTEM MODE 中に EVENT が発生すると、その EVENT に従って、システム動作状態が図 8-4 中の表のように遷移します。各 EVENT の発生要因は下記のようになります。

表 8-11 EVENT 一覧

イベント名	発生要因
INACTIVE	ユーザ操作により発生します
ACTIVE	ユーザ操作により発生します
ERROR	システムが異常を検出したときに発生します
RESET	ユーザ操作により発生します

8.7.4 保護機能

本制御プログラムは、以下のエラー状態を持ち、それぞれの場合に緊急停止機能を実装しています。

(1) S/W 保護機能

125[µs]の監視周期で以下のエラーチェックを行います。いずれかの条件の時、モータ制御信号出力を非アクティブにします。

● 過電流エラー

電流制御周期でU相、V相、W相電流を監視し、過電流(過電流リミット値[※]を超過)を検出した時に 緊急停止します(ソフトウェア検出)。過電流リミット値はモータの定格電流 (MOTOR_CFG_NOMINAL_CURRENT_RMS)から自動で計算され、インバータの定格電流 (INVERTER_CFG_CURRENT_LIMIT)を超過する場合は後者が適用されます。

● 過電圧エラー

電流制御周期で母線電圧を監視し、過電圧(過電圧リミット値^{*}を超過)を検出した時に、緊急停止します。過電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

• 低電圧エラー

電流制御周期で母線電圧を監視し、低電圧(低電圧リミット値[※]を下回った場合)を検出した時に緊急停止します。低電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

● 回転速度エラー

電流制御周期で速度を監視し、速度リミット値※を超過した時に緊急停止します。

※保護機能毎のリミット設定値については表 8-1 を参照してください。

(2) POEG 保護機能 (H/W 保護)

外部割り込み(POEG割り込み)の発生により過電流エラーを検知します。検知後は、PWM出力端子をハイインピーダンス状態にします。

8.7.5 API

マネージャモジュールの API 一覧を以下に示します。

表 8-12 API 一覧

API	説明
R_MOTOR_IMVF_Open	本モジュールと使用するモジュールのインスタン
	スを生成します。
R_MOTOR_IMVF_Close	本モジュールをリセット状態にします。
R_MOTOR_IMVF_Reset	モジュールの初期化を行います。
R_MOTOR_IMVF_ParameterUpdate	本モジュールの制御パラメータを更新します。ま
	た、関連するモジュールの制御パラメータ更新を
	行います。
R_MOTOR_IMVF_MotorStart	モータ駆動状態にします。
R_MOTOR_IMVF_MotorStop	モータ停止状態にします。
R_MOTOR_IMVF_MotorReset	システムのエラー状態を解除します。
R_MOTOR_IMVF_ErrorSet	システムにエラー状態を設定します。
R_MOTOR_IMVF_SpeedSet	速度指令値を設定します。
R_MOTOR_IMVF_SpeedGet	速度情報を取得します。
R_MOTOR_IMVF_StatusGet	ステートマシンの状態を取得します。
R_MOTOR_IMVF_ErrorStatusGet	エラー状態を取得します。
R_MOTOR_IMVF_SpeedInterrupt	速度制御を行うための割り込み処理を行います。
R_MOTOR_IMVF_CurrentInterrupt	電流制御を行うための割り込み処理を行います。
R_MOTOR_IMVF_OverCurrentInterrupt	過電流が発生した際の割り込み処理を行います。

表 8-13 電流制御モジュールの API 一覧

API	説明
R_MOTOR_CURRENT_Open	電流制御モジュールのインスタンスを生成します。
R_MOTOR_CURRENT_Close	電流制御モジュールをリセット状態にします。
R_MOTOR_CURRENT_Reset	電流制御モジュールの初期化をします。
R_MOTOR_CURRENT_Run	電流制御モジュールをアクティブ状態にします。
R_MOTOR_CURRENT_ParameterSet	電流制御に使用する変数情報を入力します。
R_MOTOR_CURRENT_ParameterGet	電流制御結果の出力を取得します。
R_MOTOR_CURRENT_ParameterUpdate	電流制御モジュールの制御パラメータを更新します。
R_MOTOR_CURRENT_CurrentCyclic	電流制御を行います。
R_MOTOR_CURRENT_OffsetCalibration	電流検出のオフセット調整を行います。
R_MOTOR_CURRENT_CurrentOffsetRemove	電流検出オフセット値を除いた値を返します。
R_MOTOR_CURRENT_VoltErrCompParamSet	電圧誤差補償パラメータ設定を行います。
R_MOTOR_CURRENT_RotorAngleSet	電流制御モジュールの角度情報を更新します。

表 8-14 速度制御モジュールの API 一覧

API	説明
R_MOTOR_SPEED_Open	速度制御モジュールのインスタンスを生成します。
R_MOTOR_SPEED_Close	速度制御モジュールをリセット状態にします。
R_MOTOR_SPEED_Reset	速度制御モジュールの初期化します。
R_MOTOR_SPEED_Run	速度制御モジュールをアクティブ状態にします。
R_MOTOR_SPEED_ParameterSet	速度制御に使用する変数情報を入力します。
R_MOTOR_SPEED_ParameterGet	速度制御結果の出力を取得します。
R_MOTOR_SPEED_ParameterUpdate	モジュールの制御パラメータを更新します。
R_MOTOR_SPEED_SpdRefSet	速度指令値を設定します。
R_MOTOR_SPEED_SpeedCyclic	速度制御を行います。
R_MOTOR_SPEED_ControlParamSet	速度制御に使用する変数情報をプリセットします。

8.7.6 構造体・変数情報

マネージャモジュールの構造体・変数一覧を表 8-15 に示します。マネージャモジュールは API のインスタンス確保にて、マネージャモジュール用構造体(g_st_imvf)を定義します。電流制御モジュールで使用する構造体・変数一覧を表 8-16 に、速度制御モジュールの構造体・変数一覧を表 8-17 に示します。電流制御モジュールと、速度制御モジュールは API のインスタンス確保にて、電流制御モジュール用構造体(g_st_cc)と、速度モジュール用構造体(g_st_sc)を定義します。

表 8-15 マネージャモジュール用構造体・変数一覧

構造体	変数	説明
st_imvf_control_t	u1_state_speed_ref	速度指令値のステータス
モータマネージャ制御用変数構造体	u1_direction	回転方向
	u1_ctrl_loop_mode	制御モード選択(速度・位置)
	u2_error_status	エラーステータス
	u2_run_mode	動作モード
	f4_vdc_ad	母線電圧(モータ制御周期検出)[V]
	f4_relay_vdc_ad	母線電圧(リレー制御周期検出)[V]
	f4_iu_ad	U 相電流[A]
	f4_iv_ad	V 相電流[A]
	f4_iw_ad	W 相電流[A]
	f4_overcurrent_limit	過電流制限值[A]
	f4_overvoltage_limit	過電圧制限値[V]
	f4_undervoltage_limit	低電圧制限値[V]
	f4_overspeed_limit_rad	過速度制限値[rad/s]
	u1_relay_first_on	起動時リレーON
	st_current_output	電流モジュールの出力用構造体
	st_speed_output	速度モジュールの出力用構造体
	st_stm	ステートマシンの構造体
	st_motor	モータパラメータ構造体
	*p_st_driver	ドライバモジュール制御用変数構造体のアドレス
	*p_st_cc	電流制御モジュール制御用変数構造体のアドレス
	*p_st_sc	速度制御モジュール制御用変数構造体のアドレス
st_imvf_cfg_t	f4_overspeed_limit_rpm	速度制限值[rpm](機械角)
モータマネージャ モジュール制御	f4_ctrl_period	速度制御周期[ms]
パラメータ設定用 構造体	st_motor	モータパラメータ構造体

表 8-16 電流制御モジュール用構造体・変数一覧

構造体	変数	説明
st_current_control_t	u1_active	電流制御モジュールのアクティブ状態
電流制御モジュール用構 造体	u1_flag_volt_err_comp_use	電圧誤差補償機能の有効/無効
	u1_flag_offset_calc	電流オフセット計算のフラグ
	u2_offset_calc_time	電流オフセット調整時の測定時間設定
	u2_crnt_offset_cnt	電流オフセット調整時の測定回数
	f4_ctrl_period	電流制御周期(期間)[s]
	f4_refu	U相指令電圧[V]
	f4_refv	V 相指令電圧[V]
	f4_refw	W 相指令電圧[V]
	f4_vd_ref	d 軸電圧指令値[V]
	f4_vq_ref	q 軸電圧指令値[V]
	f4_id_ad	d 軸電流値[A]
	f4_iq_ad	q 軸電流値[A]
	f4_offset_iu	U相オフセット電流値[A]
	f4_offset_iw	W 相オフセット電流値[A]
	f4_sum_iu_ad	U 相電流合計値[A]
	f4_sum_iw_ad	W 相電流合計値[A]
	f4_vdc_ad	母線電圧検出値[V]
	f4_iu_ad	U 相電流検出値[A]
	f4_iv_ad	V 相電流検出値[A]
	f4_iw_ad	W 相電流検出値[A]
	f4_modu	U相デューティ比
	f4_modv	V相デューティ比
	f4_modw	W相デューティ比
	f4_speed_rad	速度(電気角)[rad/s]
	f4_ref_id_ctrl	d 軸電流指令値[A]
	f4_ref_iq_ctrl	q軸電流指令値[A]
	f4_ref_speed_rad_ctrl	速度指令(機械角)[rad/s]
	f4_va_max	電圧ベクトル最大値[V]
	st_mod	PWM 変調用構造体
	st_volt_comp	電圧誤差補償用構造体
	st_rotor_angle	ロータ情報の構造体
	st_rotor_angle_phasecomp	ロータ情報の構造体(進み補償)
		11/10/2011 (02/11/10/07)

st_current_cfg_t u1 電流制御モジュール制御 パラメータ設定用構造体 f4_ st_	_motor _current_imvf _flag_volt_err_comp_use coffset_calc_time _ctrl_period _current_vf_cfg _motor _flag_offset_calc	モータパラメータ構造体 IM V/f 制御用変数構造体 電圧誤差補償有効/無効 電流オフセットの測定時間[回] 電流制御周期[ms] V/f 制御用コンフィグレーション構造体 モータパラメータ構造体
st_current_cfg_t u1 電流制御モジュール制御 パラメータ設定用構造体 f4_ st_ st_	_flag_volt_err_comp_use _offset_calc_time _ctrl_period _current_vf_cfg _motor	電圧誤差補償有効/無効 電流オフセットの測定時間[回] 電流制御周期[ms] V/f 制御用コンフィグレーション構造体
電流制御モジュール制御 パラメータ設定用構造体 f4_ st_ st_	_offset_calc_time _ctrl_period _current_vf_cfg _motor	電流オフセットの測定時間[回] 電流制御周期[ms] V/f 制御用コンフィグレーション構造体
電流制御モジュール制御 パラメータ設定用構造体 f4_ st_ st_	_ctrl_period _current_vf_cfg _motor	電流制御周期[ms] V/f 制御用コンフィグレーション構造体
st_	_current_vf_cfg _motor	V/f 制御用コンフィグレーション構造体
st_	_motor	
		モータパラメータ構造体
	_flag_offset_calc	
st_current_output_t u1		電流オフセット検出/未検出フラグ
電流制御モジュール出力 「f4_	_modu	U相デューティ比
用構造体 f4_	_modv	V相デューティ比
f4_	_modw	W 相デューティ比
f4_	_neutral_duty	オフセット測定時のデューティ比
f4_	_ref_id_ctrl	d 軸電流指令値
f4_	_speed_rad	推定速度 [rad/s]
st_current_input_t f4_	_iu_ad	U 相電流検出値[A]
 電流制御モジュール入力	_iv_ad	V 相電流検出値[A]
用構造体 f4_	_iw_ad	W 相電流検出値[A]
f4_	_vdc_ad	母線電圧検出値[V]
f4_	_ref_speed_rad_ctrl	速度[rad/s]
st_rotor_angle_t f4_ 電流制御モジュール角度	_rotor_angle_rad	ロータ角度(電気角)[rad]
電流制脚モジュール角及	_sin	Sin 係数、計算回数削減用
f4_	_cos	Cos 係数、計算回数削減用
	_frequency_output_max	最高出力周波数[Hz]
│ V/f 制御用変数構造体	_rated_frequency	定格周波数[Hz]
f4_	_voltage_output_max	最高出力電圧[Vrms]
f4_	_rated_voltage	定格電圧[Vrms]
f4_	_torque_boost	トルクブースト[%]
f4_	_vq_boost	下限リミッタ(トルクブースト補償)
f4_	_ref_speed_freq_ctrl	周波数指令値[Hz]
	_frequency_output_max	最高出力周波数[Hz]
V/f 制御用コンフィグ	_rated_frequency	定格周波数[Hz]
	_voltage_output_max	最高出力電圧[Vrms]
f4_	_rated_voltage	定格電圧[Vrms]
f4_	_torque_boost	トルクブースト[%]

構造体	変数	説明
st_mod_t PWM 変調用構造体	f4_vdc	母線電圧値[V]
PWW 发调用悔迫体	f4_1_div_vdc	母線電圧の逆数
	f4_voltage_error_ratio	電圧誤差率
	f4_max_duty	最大デューティ比
	f4_min_duty	最小デューティ比
	f4_neutral_duty	ニュートラルデュー比(0[V]になるデューティ 比)
st_volt_comp_t 電圧誤差補償用構造体	f4_comp_v[VERR_COMP_A RY_SIZE]	電圧誤差補償の電圧テーブル[V]
	f4_comp_i[VERR_COMP_A RY_SIZE]	電圧誤差補償の電流テーブル[A]
	f4_slope[VERR_COMP_ARY _SIZE+1]	電圧誤差補償の線形補間方程式の傾きテーブル [V/A]
	f4_intcept[VERR_COMP_AR Y_SIZE+1]	電圧誤差補償の線形補間方程式の切片テーブル [V]
	f4_volt_comp_array[3]	UVW 相の電圧誤差補償値[V]
	f4_vdc	母線電圧検出値[V]
	f4_volt_comp_limit	電圧誤差補償値の制限値[V]
	f4_volt_comp_limit_ratio	電圧誤差補償期間リミッタ
	u1_volt_err_comp_enable	電圧誤差補償有効/無効
	u1_volt_comp_use_motor_ty pe	電圧誤差補償三相/二相/未使用

表 8-17 速度制御モジュール用構造体・変数一覧

構造体	変数	説明
st_speed_control_t	u1_active	モジュールの有効/無効選択
速度モジュール用	u1_state_speed_ref	速度指令値を決定するステート管理。本節のマクロに記載するステートを管理します。
構造体 	f4_speed_ctrl_period	速度ループの周期[s]
	f4_ref_speed_rad_ctrl	制御用の速度指令値[rad/s]
	f4_ref_speed_rad	位置制御時の位置モジュール出力の速度指令値 [rad/s]
	f4_ref_speed_rad_manual	速度制御時のユーザの速度指令値設定値[rad/s]
	f4_speed_rad_ctrl	速度制御モジュール内で演算する速度[rad/s]
	f4_speed_rad	入力された速度[rad/s]
	f4_max_speed_rad	最大速度[rad/s]
	f4_speed_rate_limit_rad	速度の変化量の制限値[rad/s]
	f4_id_ref_output	d 軸電流指令値[A]
	f4_iq_ref_output	q 軸電流指令値[A]
	f4_id_ad	d 軸電流値[A]

	f4_iq_ad	q 軸電流値[A]
	st_motor	モータパラメータ構造体
st_speed_cfg_t	f4_max_speed_rpm	最高速度指令值(電気角)[rpm]
	f4_speed_ctrl_period	速度制御周期[s]
	f4_speed_rate_limit_rpm	周期ごとの速度変化のリミット値[rad/s/1step]
	st_motor	モータパラメータ構造体
st_speed_input_t	u1_state_speed_ref	速度指令値制御ステータス
	f4_speed_rad	速度(電気角)[rad/s]
st_speed_output_t	f4_ref_speed_rad_ctrl	速度指令値(電気角)[rad/s]

8.7.7 マクロ定義

マネージャモジュールのマクロ一覧を以下に示します。

表 8-18 マクロ一覧

ファイル名	マクロ名	定義値	備考
r_motor_imvf_api.	MOTOR_LOOP_POSITIO	0	位置制御モード。
h	N		※本サンプルプログラムでは未対応。
	MOTOR_LOOP_SPEED	1	速度制御モード。
	MOTOR_IMVF_ERROR_ NONE	0x0000	エラーステータス。エラーなし状態。
	MOTOR_IMVF_ERROR_ OVER_CURRENT_HW	0x0001	エラーステータス H/W 過電流エラー状 態。
	MOTOR_IMVF_ERROR_ OVER_VOLTAGE	0x0002	エラーステータス。過電圧エラー状態。
	MOTOR_IMVF_ERROR_ OVER_SPEED	0x0004	エラーステータス。過速度エラー状態。
	MOTOR_IMVF_ERROR_L OW_VOLTAGE	0x0080	エラーステータス。低電圧エラー状態。
	MOTOR_IMVF_ERROR_ OVER_CURRENT_SW	0x0100	エラーステータス。S/W 過電流エラー状態。
	MOTOR_IMVF_ERROR_ RELAY	0x0400	エラーステータス。リレー制御異常。
	MOTOR_IMVF_ERROR_ UNKNOWN	0xFFFF	エラーステータス。原因不明な異常。
r_motor_imvf_ma	MOTOR_MODE_INIT	0x00	初期化を行います。動作モード。
nager.h	MOTOR_MODE_BOOT	0x01	駆動準備を行います。動作モード。
	MOTOR_MODE_DRIVE	0x02	モータ駆動状態の動作モード。
r_motor_imvf_stat emachine.h	STATEMACHINE_STATE _STOP	0x00	ステートマシン状態:モータ停止
	STATEMACHINE_STATE _RUN	0x01	ステートマシン状態:モータ回転
	STATEMACHINE_STATE _ERROR	0x02	ステートマシン状態:エラー
	STATEMACHINE_STATE _SIZE	3	ステートマシン(状態用配列)
	STATEMACHINE_EVENT _STOP	0x00	ステートマシン切り替え:モータ停止
	STATEMACHINE_EVENTRUN	0x01	ステートマシン切り替え:モータ起動
	STATEMACHINE_EVENT _ERROR	0x02	ステートマシン切り替え:異常
	STATEMACHINE_EVENT _RESET	0x03	ステートマシン切り替え:異常解除
	STATEMACHINE_EVENT _SIZE	4	ステートマシン(イベント用配列)
	STATEMACHINE_ERRO R_NONE	0x00	ステートマシン用フラグ(エラー無し)
	STATEMACHINE_ERRO R_EVENT_OUT_BOUND	0x01	ステートマシン用フラグ(イベント用配列 が範囲外)
	STATEMACHINE_ERRO	0x02	ステートマシン用フラグ(状態用配列が範

R_STATE_OUT_BOUND		囲外)
STATEMACHINE_ERRO R_ACTION_EXCEPTION	0x04	ステートマシン用フラグ(遷移処理失敗)

8.8 リレーマネージャ・リレー制御モジュール

8.8.1 機能

リレーマネージャ(r_relay_manager)は 1kHz の AGT 割り込みで起動し、母線電圧の検出値に基づいて、 リレーの ON/OFF 制御を行います。以下にリレー制御マネージャが持つ機能を示します。

機能	説明
状態遷移(ステートマシン)処理	リレー駆動・停止・エラー状態の状態遷移を行います。
リレー駆動	母線電圧に応じてリレーの ON/OFF 処理を行います。
リレー制御周期処理	母線電圧監視、ON/OFF 制御処理を行います。
保護機能	IGBT 温度異常検出を行います。

表 8-19 リレー制御マネージャ機能一覧

8.8.2 モジュール構成図

以下に、リレーマネージャの機能ブロックを示します。

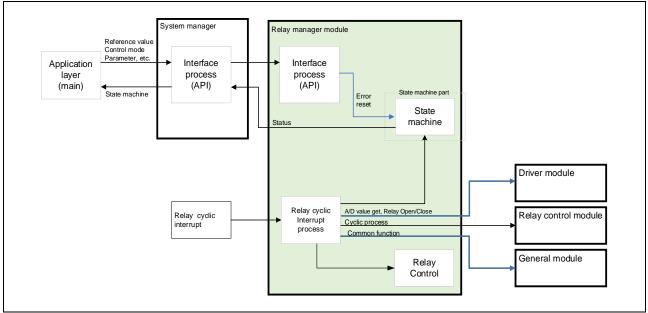


図 8-5 リレーマネージャモジュールの構成図

8.8.3 シーケンス

電源起動時は Idle とします。母線電圧を監視し、下記の動作条件を満たしたとき、リレーを ON/OFF します。リレーが OFF 状態 (Open) から ON 状態 (Close) に遷移するとき 100[ms]間の待機を行い、RelayClose に遷移し、モータ運転を許可します。図 8-6 に状態遷移図を示します。

リレーON

リレーが OFF の状態で、LPF を通した母線電圧が DC230.0[V]以上で、かつ、母線電圧の前回検出値との偏差が ± 5.0 [V]未満の状態が規定時間 100[ms]満たされた後、リレーを ON します(PE01 端子に High を設定し出力)。リレーが ON のときのみ、モータの運転が可能です。

リレーOFF

リレーが OFF の状態で、LPF を通した母線電圧が DC186.0[V]未満の条件を 60[ms]満たす時に ON します (PE01 端子に Low を設定し出力)。 リレーが OFF のとき、モータの運転は許可されません。そのため、モータ回転中にリレーが OFF したときはモータを停止させます。

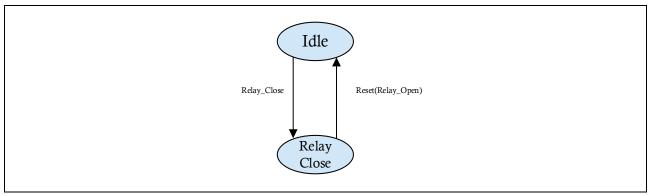


図 8-6 リレー状態遷移図

8.8.4 保護機能

IGBT 温度異常による保護停止の判定・エラー処理を行います。以下の表に記載されている状態が検出されると、PWM ゲート遮断及び INV 駆動停止処理を行います。

表 8-20 保護停止リスト

エラー項目	Pin	検知周期	検知基準	単位	保護動作
IGBT 温度異常	PD07	リレー制御周期	Low ※1	-	

※1) ポートレベルを判定し、エラー発生時は Low となります。

8.8.5 API

リレーマネージャモジュールの API 一覧を以下に示します。

表 8-21 リレーマネージャ API 一覧

API	説明
R_RELAY_MANAGER_Open	本モジュールと使用するモジュールのインスタンスを生成します。
R_RELAY_MANAGER_Close	本モジュールを閉じます
R_RELAY_MANAGER_Reset	本モジュールをリセット状態にします。
R_RELAY_MANAGER_ErrorCancel	システムのエラー状態を解除します。
R_RELAY_MANAGER_StatusGet	内部の状態を取得します。
R_RELAY_MANAGER_Main	リレーマネージャ処理のための割り込み処理を行います。
R_RELAY_MANAGER_CurrentInter rupt	温度異常エラーの監視を行います。

8.8.6 構造体·変数情報

リレーマネージャモジュールの構造体・変数一覧を以下に示します。

表 8-22 リレーマネージャモジュール用構造体・変数一覧

構造体	変数	説明
st_relay_manager_t	u1_relay_ctrl_on_flg	リレーON/OFF 判定用フラグ
リレー制御用変数 構造体	u1_error_cancel_flg	エラー解除要求フラグ
	u2_error_status	エラーステータス
	u2_run_mode	動作モード
	f4_vdc_ad	母線電圧検出値[V]
	f4_vdc_dt	母線電圧偏差[V]
	f4_vdc_ad_lpf	LPF 処理後母線電圧検出値[V]
	f4_vdc_ad_last	LPF 処理後母線電圧前回検出値[V]
	f4_pre_lpf_output	LPF 計算用前回母線電圧検出値[V]
	u1_dt_ct_relay_on	リレーON 判定用カウンタ
	u1_dt_ct_relay_off	リレーOFF 判定用カウンタ
	u1_overheat_detect_level	IGBT 温度異常時の端子レベル
	p_st_relay_driver	リレードライバ制御用変数構造体のアドレス

8.8.7 マクロ定義

リレーマネージャモジュールのマクロ一覧を以下に示します。

表 8-23 リレーマネージャのマクロ一覧

ファイル名	マクロ名	定義値	備考
r_relay_manager.	RELAY_ON_VDC	230.0f	リレーON 判定用母線電圧閾値[V]
	RELAY_ON_DT	5.0f	リレーON 判定用母線電圧偏差[V]
	RELAY_ON_DT_CT	100	リレーON 判定期間[ms]
	RELAY_OFF_VDC	186.0f	リレーOFF 判定用母線電圧閾値[V]
	RELAY_OFF_DT_CT	60	リレーOFF 判定期間[ms]
	RELAY_LPF_K	0.1f	LPF ゲイン
r_relay_manager_ api.h	RELAY_MANAGER_ERRO R_NONE	0x0000	リレー制御用エラー検出状態(異常な し)
	RELAY_MANAGER_ERRO R_AC_OVER_VOLTAGE※	0x0001	リレー制御用エラー検出状態(AC 電圧異常)
	RELAY_MANAGER_ERRO R_BUS_OVER_VOLTAGE ※	0x0002	リレー制御用エラー検出状態(過電圧異 常)
	RELAY_MANAGER_ERRO R_BUS_LOW_VOLTAGE※	0x0004	リレー制御用エラー検出状態(低電圧異常)
	RELAY_MANAGER_ERRO R_OVER_CURRENT_SW%	0x0008	リレー制御用エラー検出状態(過電流異常:S/W 検出)
	RELAY_MANAGER_ERRO R_OVER_CURRENT_HW※	0x0010	リレー制御用エラー検出状態(過電流異常:H/W 検出)
	RELAY_MANAGER_ERRO R_OVER_HEATING	0x0020	リレー制御用エラー検出状態(IGBT 温度 異常)

RELAY_MANAGER_ERRO R_UNKNOWN	0xffff	リレー制御用エラー検出状態(原因不明 な異常)
RELAY_MODE_IDLE	0x00	リレー制御用 RUN モード(IDLE)
RELAY_MODE_RELAY_ON	0x01	リレー制御用 RUN モード(リレーON)
RELAY_MODE_RELAY_ER ROR	0x02	リレー制御用 RUN モード(リレー異常)

※本ソフトでは未使用

8.9 ドライバモジュール

ドライバモジュールは、サンプルプログラムのミドルウェアに相当するマネージャモジュールと MCU のペリフェラル にアクセスするための FSP を接続するインタフェースの役割を持つモジュールです。ドライバモジュールを適切に設定することで、MCU の機能割り当てや使用するボード仕様の差分をモータモジュール/リレーモジュールの変更無く使用することが可能になります。

本章ではモータモジュール/リレーモジュールのドライバ設定について記載しています。

8.9.1 機能

ドライバモジュールの機能一覧を以下に示します。

表 8-24 ドライバモジュールの機能一覧(モータモジュール)

機能	説明
A/D 変換値の取得	FSP の API 関数経由で相電流やインバータボードの母線電圧などの AD 値を取得します。
PWM の duty 設定	FSP の API 関数経由で UVW 相へ出力する PWM Duty 値を設定します。
PWM の開始、停止	FSP の API 関数経由で PWM 出力の開始、停止を制御します。

表 8-25 ドライバモジュールの機能一覧 (リレーモジュール)

機能	説明
A/D 変換値の取得	FSP の API 関数経由でインバータボードの母線電圧などの AD 値を取得します。
リレーON 出力	FSP の API 関数経由でリレーON の出力ポートを設定します。
リレーOFF 出力	FSP の API 関数経由でリレーOFF の出力ポートを設定します。
IGBT 温度異常検出 入力	FSP の API 関数経由で IGBT 温度異常検出ポートからの入力値を取得します。

8.9.2 モジュール構成図

ドライバモジュールのモジュール構成図を以下に示します。

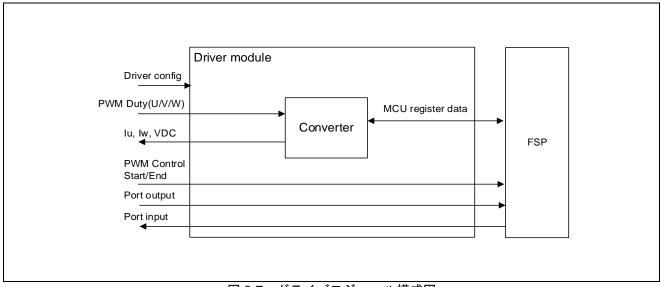


図 8-7 ドライバモジュール構成図

8.9.3 API

ドライバモジュールの API 一覧表と各 API の説明を以下に示します。

表 8-26 ドライバモジュールの API 一覧 (モータモジュール)

API	説明
R_MOTOR_DRIVER_Open	本モジュールのインスタンスを生成します。
R_MOTOR_DRIVER_Close	本モジュールをクローズ状態にします。
R_MOTOR_DRIVER_ParameterUpdate	本モジュール内部で使用する変数情報を入力します。
R_MOTOR_DRIVER_BldcAnalogGet	AD 変換結果を取得します。
R_MOTOR_DRIVER_BldcDutySet	PWM Duty の設定を行います。
R_MOTOR_DRIVER_BldcZeroDutySet	GPTの制御モードを出力 0 に強制固定します。
R_MOTOR_DRIVER_BldcCompareDutySet	GPTの制御モードを PWM モードに変更します。
R_MOTOR_DRIVER_PWMControlStop	PWM 制御を停止します。
R_MOTOR_DRIVER_PWMControlStart	PWM 制御を開始します。

表 8-27 ドライバモジュールの API 一覧 (リレーモジュール)

API	説明
R_RELAY_DRIVER_Open	本モジュールのインスタンスを生成します。
R_RELAY_DRIVER_Close	本モジュールをクローズ状態にします。
R_RELAY_DRIVER_Reset	本モジュールをリセット状態にします。
R_RELAY_DRIVER_ParameterUpdate	本モジュール内部で使用する変数情報を入力します。
R_RELAY_DRIVER_AnalogGet	AD 変換結果を取得します。
R_RELAY_DRIVER_RelayOn	リレーON に制御します。
R_RELAY_DRIVER_RelayOff	リレーOFFに制御します。
R_RELAY_DRIVER_OverheatCheck	IGBT 温度異常の確認を行います。

8.9.4 コンフィグレーション情報

Mar.31.25

ドライバモジュールのコンフィグレーション情報一覧を以下に示します。使用する機能や各種パラメータを設定して ください。

表 8-28 コンフィグレーション情報一覧(モータモジュール)

ファイル名	マクロ名	設定	説明
r_motor_modul	DRIVER_CFG_FUNC_PWM_OU	R_Config_MOTOR_StartTimerCtrl	PWM 出力許可関数設定
e_cfg.h	TPUT_START	(FSPの API 中継関数) *1	
	DRIVER_CFG_FUNC_PWM_OU TPUT_STOP	R_Config_MOTOR_StopTimerCtrl (FSPの API 中継関数) *1	PWM 出力禁 止関数設定
	DRIVER_CFG_FUNC_ADC_DA	R_Config_MOTOR_AdcGetConvVal	AD 変換結果
	TA_GET*2	(FSPの API 中継関数) *1	取得関数設定
	DRIVER_CFG_FUNC_DUTY_S	R_Config_MOTOR_UpdDuty	Duty Cycle 設
	ET*2	(FSPの API 中継関数)*1	定関数設定

	DRIVER_CFG_FUNC_ZERO_D	R_Config_MOTOR_UpdZeroDuty	出力 0 固定
	UTY_SET	(FSPの API 中継関数)*1	設定関数設定
	DRIVER_CFG_FUNC_COMPAR	R_Config_MOTOR_UpdCompareDut	出力を PWM
	E_DUTY_SET	y(FSPのAPI中継関数)*1	に戻す設定
r_motor_invert	INVERTER_CFG_ADC_REF_V	3.3f	AD 変換基準
er_cfg.h	OLTAGE		電圧設定
r_motor_modul	MOTOR_MCU_CFG_ADC_OFF	0x7FF	AD オフセット
e_cfg.h	SET		値設定

【注】1.設定値に記載した関数については、FSP 設定の章を参照してください。 2.本ソフトでは未使用

表 8-29 コンフィグレーション情報一覧(リレーモジュール)

ファイル名	マクロ名	設定	説明
r_relay_cfg.h	RELAY_DRIVER_CFG_FUNC_A DC_DATA_GET	R_Config_RELAY_AdcGetConvVal (FSPの API 中継関数) *1	AD 変換結果 取得関数設定
	RELAY_DRIVER_CFG_FUNC_ RELAY_ON	R_Config_RELAY_RelayOn (FSPの API 中継関数) *1	リレー 出 カ ポート ON 設 定
	RELAY_DRIVER_CFG_FUNC_ RELAY_OFF	R_Config_RELAY_RelayOff (FSPの API 中継関数) *1	リレー 出力 ポート OFF 設 定
	RELAY_DRIVER_CFG_FUNC_ OVERHEAT_CHECK	R_Config_RELAY_OverheatCheck (FSPのAPI中継関数)*1	IGBT 温度異 常状態取得
	RELAY_CFG_ADC_REF_VOLT AGE	3.3f	AD 変換基準 電圧設定
	RELAY_CFG_BUS_VOLTAGE_ GAIN	297.879f	電圧ゲイン設定
	RELAY_CFG_BUS_VOLTAGE_ OFFSET	2047.0f	AD 変換 0V 電 圧検出
	RELAY_MCU_CFG_AD12BIT_D ATA	4095.0f	AD 変換最大 電圧検出
	RELAY_CFG_BUS_VOLTAGE_ OFFSET	0x7FF	AD オフセット 値設定
	RELAY_OVERHEAT_DETECT_ LEVEL	RELAY_LOW	IGBT 温度異常検出

【注】 1. 設定値に記載した関数については、FSP設定の章を参照してください。

8.9.5 構造体・変数情報

ドライバモジュールで使用する構造体一覧を以下に示します。ドライバモジュールは API のインスタンス確保にて、ドライバモジュール用構造体 (g_st_driver) および $g_st_driver)$ を定義します。

表 8-30 構造体・変数一覧(モータモジュール)

構造体	変数	説明
st_motor_driver_t	*ADCDataGet	FSP の中継関数へのポインタ
		(AD 変換結果取得関数を設定)
ドライバモジュール用構	*BLDCDutySet	FSP の中継関数へのポインタ
造体		(PWM 出力許可関数を設定)
	*BLDCZeroDutySet*1	FSP の中継関数へのポインタ
		(下アーム出力を0に設定)
	*BLDCCompareDutySet*1	FSP の中継関数へのポインタ

		(比較用 Duty 出力に設定)
	*PWMOutputStop	FSP の中継関数へのポインタ
		(PWM 出力禁止関数を設定)
	*PWMOutputStart	FSP の中継関数へのポインタ
		(Duty Cycle 設定関数を設定)
	f4_ad_crnt_per_digit	電流 AD 変換用スケール
	f4_ad_vdc_per_digit	電圧 AD 変換用スケール
	f4_pwm_period_cnt	PWM カウンター周期のカウント数(Duty 設定用情報)
	f4_pwm_dead_time_cnt	デッドタイムのカウント数(Duty 設定用情報)
	s2_bus_volt_offset	母線電圧検出調整用オフセット
st_motor_driver_cfg_t	*ADCDataGet	FSP の中継関数へのポインタ
 ドライバモジュール制御	*BLDCDutySet	FSP の中継関数へのポインタ
パラメータ設定用構造体	*PWMOutputStop	FSP の中継関数へのポインタ
	*PWMOutputStart	FSP の中継関数へのポインタ
	f4_shunt_ohm	シャント抵抗値[Ω] (f4_ad_crnt_per_digit 計算用)
	f4_volt_gain	電圧変換ゲイン係数(f4_ad_vdc_per_digit 計算用)
	f4_crnt_amp_gain	電流変換ゲイン係数(f4_ad_crnt_per_digit 計算用)
	f4_pwm_period_cnt	PWM カウンター周期のカウント数(Duty 設定用情報)
	f4_pwm_dead_time_cnt	デッドタイムのカウント数(Duty 設定用情報)
	s2_bus_volt_offset	母線電圧検出調整用オフセット

【注】1.本ソフトでは未使用

表 8-31 リレー制御モジュール用構造体・変数一覧(リレーモジュール)

構造体	変数	説明
st_relay_driver_t	f4_ad_vdc_per_digit	電圧 A/D 変換用スケール
	s2_bus_volt_offset	母線電圧オフセット
st_relay_driver_cfg_t	f4_bus_volt_gain	母線電圧ゲイン
	s2_bus_volt_offset	母線電圧オフセット
st_relay_adc_t	u2_vdc_ad	母線電圧(A/D からの変換値)

8.9.6 パラメータ調整・設定

ドライバモジュールでは、制御パラメータ設定(R_MOTOR_DRIVER_ParameterUpdate)から入力されたパラメータを使用して、モータモジュールと FSP との関連付け、データ変換を行います。ドライバモジュール制御パラメータ設定用構造体(st_motor_driver_cfg_t)を使って入力します。サンプルプログラムでは、コンフィグレーションとして定義されているものをパラメータ設定値として使用しています。設定内容を表 8-32 に示します。

リレーモジュールについては、R_MOTOR_DRIVER_ParameterUpdate をR_RELAY_DRIVER_ParameterUpdate に、st_motor_driver_cfg_t を st_relay_driver_cfg_t に読み換えてください。

表 8-32 サンプルプログラム設定例 (モータモジュール)

変数名	マクロ名	ファイル名
*ADCDataGet	DRIVER_CFG_FUNC_ADC_DATA_GET	r_motor_module_cfg.h
*BLDCDutySet	DRIVER_CFG_FUNC_DUTY_SET	
*BLDCZeroDutySet*1	DRIVER_CFG_FUNC_ZERO_DUTY_SET	
*BLDCCompareDutySet*1	DRIVER_CFG_FUNC_COMPARE_DUTY_SET	
*PWMOutputStop	DRIVER_CFG_FUNC_PWM_OUTPUT_STOP	
*PWMOutputStart	DRIVER_CFG_FUNC_PWM_OUTPUT_START	
f4_shunt_ohm	INVERTER_CFG_SHUNT_RESIST	r_motor_inverter_cfg.h
f4_volt_gain	INVERTER_CFG_VOLTAGE_GAIN	
f4_crnt_amp_gain	INVERTER_CFG_CURRENT_AMP_GAIN	
s2_bus_volt_offset	INVERTER_CFG_BUS_VOLTAGE_OFFSET	
f4_pwm_period_cnt	MOTOR_COMMON_CARRIER_SET_BASE	r_motor_module_cfg.h
f4_pwm_dead_time_cnt	MOTOR_COMMON_DEADTIME_SET	

【注】1.本ソフトでは未使用

表 8-33 サンプルプログラム設定例 (リレーモジュール)

変数名	マクロ名	ファイル名
*ADCDataGet	RELAY_DRIVER_CFG_FUNC_ADC_DATA_GET	r_relay_cfg.h
*RelayOn	RELAY_DRIVER_CFG_FUNC_RELAY_ON	
*RelayOff	RELAY_DRIVER_CFG_FUNC_RELAY_OFF	
*OverheatCheck	RELAY_DRIVER_CFG_FUNC_OVERHEAT_CHECK	
f4_bus_volt_gain	RELAY_CFG_BUS_VOLTAGE_GAIN	
s2_bus_volt_offset	RELAY_CFG_BUS_VOLTAGE_OFFSET	

9. パラメータの設定

9.1 概要

本サンプルプログラムでは、パラメータは以下のヘッダファイル内でマクロ定義されています。マクロ定義されたパラメータは、起動時の初期化ルーチンで、各機能モジュールで管理される変数・構造体に設定され、各々の処理に使用されます。

一部のパラメータは、RMW等から動的に変更が可能です。変更を行った場合には、パラメータアップデートの関数をコールし、反映させる必要があります。詳細は、各機能モジュールの説明を参照してください。

マクロ名	説明
r_motor_module_cfg.h	モータ制御に関するパラメータの初期値を定義しています。
r_motor_inverter_cfg.h	インバータに関するパラメータの初期値を定義しています。
r_motor_targetmotor_cfg.h	モータに関するパラメータの初期値を定義しています。
r_relay_cfg.h	突入電流防止抵抗リレーに関するパラメータの初期値を定義しています。

表 9-1 パラメータ設定ファイルの一覧

9.2 MCU 関連パラメータ

MCUの周辺機能に関連するパラメーター覧を表 9-2 に示します。FSP を用いてマイコンのペリフェラル設定を変更した場合、これらのパラメータで該当する個所は変更を行う必要があります。

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	MOTOR_MCU_CFG_PWM_TIM ER_FREQ	120.0f	PWM のタイマ周波数[MHz]
	MOTOR_MCU_CFG_CARRIER_ FREQ	8.0f	キャリア周波数[kHz]
	MOTOR_MCU_CFG_INTR_DEC IMATION	0	キャリア割り込みの間引き回数
	MOTOR_MCU_CFG_AD_FREQ	60.0f	ADC の動作周波数[MHz]
	MOTOR_MCU_CFG_AD_SAMP LING_CYCLE	2.0*(7.25+63.0	ADC のサンプリング周期 [cycle]
	MOTOR_MCU_CFG_AD12BIT_ DATA	4095.0f	ADC の分解能
	MOTOR_MCU_CFG_ADC_OFF SET	0x7FF	ADC のオフセット値

表 9-2 MCU 関連パラメータの一覧

9.3 制御機能の設定パラメータの一覧

モータ制御プログラムに備わっている機能の有効無効を設定するパラメータを、表 9-3、表 9-4、表 9-5に示します。モータ制御の内部で使用される、モータ定数や設定に関する項目は、後述します。

表 9-3 動作パラメータの一覧(全般)

ファイル名	マクロ名	設定値	説明
r_motor_module_c	MOTOR_TYPE_BLDC	-	デフォルトのまま使用くださ
fg.h			い。
	MOTOR_COMMON_CFG_LOO	MOTOR_LOO	デフォルトのまま使用くださ
	P_MODE	P_SPEED	い。
	MOTOR_COMMON_CFG_OVE	2.0f	過電流のリミット係数
	RCURRENT_MARGIN_MULT		
	MOTOR_COMMON_CFG_IA_M	MTR_SQRT_3	過電流リミット値計算用係
	AX_CALC_MULT		数。
			√3を設定してください。
	MOTOR_MCU_CFG_TFU_OPTI	MTR_ENABLE	TFU 専用関数処理の設定。自
	MIZE		動的に ENABLE となります。

表 9-4 動作パラメータの一覧 (速度制御関連)

ファイル名	マクロ名	設定値	説明
r_motor_module_c fg.h	SPEED_CFG_CTRL_PERIOD	0.0005f	速度制御周期[s]の設定。 0.5ms とするため、0.0005f を設定してください。

表 9-5 動作パラメータの一覧 (電流制御関連)

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	CURRENT_CFG_VOLT_ERR_C OMP	MTR_ENABLE	電圧誤差補償機能の有効・無 効設定です。MTR_ENABLE を設定してください。
	CURRENT_CFG_MODULATION _METHOD	MOD_METHO D_SVPWM	9.6 を参照してください。 通常、 MOD_METHOD_SVPWM を 設定してください。
	CURRENT_CFG_OFFSET_CAL C_TIME	512.0f	電流オフセットの測定時間設 定。

9.4 保護関連パラメータ

モータを運転する際に、安全性を担保するための保護機能のパラメータを以下に示します。

表 9-6 モータパラメータ、インバータパラメータ設定

ファイル名	マクロ名	設定値	説明
r_motor_inverter _cfg.h	INVERTER_CFG_CURRENT_LIM IT	25.5f	インバータボードの過電流の 制限値[A]
	INVERTER_CFG_OVERVOLTAG E_LIMIT	430.0f	過電圧制限[V]
	INVERTER_CFG_UNDERVOLTA GE_LIMIT	186.0f	低電圧制限[V]

INVERTER_CFG_CURRENT_LIMIT

インバータが出力可能な最大の電流値から、安全マージンをとった電流値を設定します。

INVERTER_CFG_OVERVOLTAGE_LIMIT

過電圧保護が動作する電圧を設定します。インバータ母線電圧が、設定した電圧超となると、エラーとなり、モータの動作が停止します。使用する電源環境に合わせて設定してください。

INVERTER_CFG_UNDERVOLTAGE_LIMIT

低電圧保護が動作する電圧を設定します。インバータ母線電圧が、設定した電圧未満となると、エラーとなり、モータの動作が停止します。使用する電源環境に合わせて設定してください。

9.5 モータ制御用 PWM キャリア周波数の変更

モータ制御用 PWM キャリア周波数は、FSP による設定と、r_motor_module_cfg.h で定義されている MOTOR_MCU_CFG_CARRIER_FREQ の定数で設定されています。PWM キャリア周波数を変更した場合、表 9-7 に示す変更箇所を修正してください。PWM キャリア周波数の設定値に合わせて、パラメータの調整が必要となるパラメータがあります。

本サンプルプログラムのモータ制御におけるデフォルト PWM キャリア周波数は、8.0kHz です。

表 9-7 PWM キャリア周波数を変更した場合に変更を行う個所

項目	変更箇所
デッドタイム値	9.7 インバータパラメータを参照
キャリア周波数	・FSP のモータ設定で PWM キャリア周波数を設定
	・9.2 に記載の MOTOR_MCU_CFG_CARRIER_FREQ
モータ制御関連	・電流制御パラメータ
	・V/f 制御パラメータ

9.6 パルス変調方法の設定

本サンプルプログラムでは、パルス幅変調駆動方式を2種類から設定することができます。デフォルトは空間ベクトルPWM(MOD_METHOD_SVPWM)となります。変調機能のコンフィグ情報一覧を表 9-8 に示します。

パルス幅変調駆動方式を、正弦波 PWM に変更した場合、電圧利用率が 86%に制約され、モータに適切な電圧が出力できず、所望の電圧を得るにはインバータ母線電圧を高く設定する必要があります。空間ベクトル PWM を使用した場合、電圧利用率はインバータ母線電圧に対して 100%利用できます。

表 9-8 コンフィグレーション情報一覧

ファイル名	マクロ名	設定値	説明
r_motor_module_	CURRENT_CFG_MODULATION_M	(MOD_METH	パルス幅変調駆動方式
cfg.h	ETHOD	OD_SVPWM)	

表 9-9 パルス幅変調駆動方式の設定項目

パルス幅変調駆動方式の設定項目	値	パルス幅変調駆動方式
MOD_METHOD_SPWM	0	正弦波 PWM
MOD_METHOD_SVPWM	1	空間ベクトル PWM

パルス変調には、以下の設定項目があります。通常は、デフォルト値のままでご使用ください。

表 9-10 マクロ一覧

ファイル名	マクロ名	設定値	説明
r_motor_current_ modulation.h	MOD_DEFAULT_MAX_DUTY	1.0f	最大 PWM デューティ比。通常 は 1.0f のままとしてください。
	MOD_VDC_TO_VAMAX_MULT	0.6124f	インバータ母線電圧で出力可能 な最大電圧を得るための変換係 数
	MOD_SVPWM_MULT	1.155f	空間ベクトル PWM を使用した 場合のみ。空間ベクトル PWM 係数

9.7 インバータパラメータ

9.7.1 概要

サンプルプログラムを使用する際に、インバータの情報を正しく設定する必要があります。サンプルプログラムで設定されているインバータパラメータを表 9-11 に示します。

ファイル名 マクロ名 設定値 説明 r_motor_inverter INVERTER_CFG_SHUNT_RESIST 1.0f シャント抵抗値[Ω]。ホール _cfg.h CT 使用時は 1.0 を設定。 INVERTER_CFG_DEADTIME 3.0f デッドタイム[µs] 電圧検出用係数 INVERTER_CFG_VOLTAGE_GAIN 297.879f INVERTER CFG CURRENT AMP -0.05333f 電流検出用アンプのゲイン GAIN INVERTER_CFG_INPUT_V 282.8f 入力電圧[V] INVERTER_CFG_ADC_REF_VOLTA 3.3f MCU のアナログ電源電圧 INVERTER CFG BUS VOLTAGE 2047.0f 母線電圧検出調整用オフ **OFFSET** セット INVERTER_CFG_COMP_V0 1.35744f 電圧誤差補償用係数[V] INVERTER_CFG_COMP_V1 2.71488f 電圧誤差補償用係数[V] INVERTER CFG COMP V2 4.07232f 電圧誤差補償用係数[V] INVERTER CFG COMP V3 5.42976f 電圧誤差補償用係数[V] INVERTER CFG COMP V4 6.7872f 電圧誤差補償用係数[V] INVERTER_CFG_COMP_I0 0.21f 電圧誤差補償用係数[A] INVERTER_CFG_COMP_I1 0.42f 電圧誤差補償用係数[A] INVERTER_CFG_COMP_I2 0.66f 電圧誤差補償用係数[A] INVERTER_CFG_COMP_I3 0.90f電圧誤差補償用係数[A] INVERTER CFG COMP 14 電圧誤差補償用係数[A] 1.50f

表 9-11 インバータパラメータ設定

INVERTER_CFG_DEADTIME

インバータの仕様書・設計書に記載された、デッドタイム時間を μ s(マイクロ秒)単位で指定してください。MCI-HV-2-3PH インバータでは、3.0 μ s が指定されています。

INVERTER_CFG_INPUT_V

三相 AC200V からインバータ内の全波整流回路を通じて整流した DC 電圧値 282.8V をデフォルトとしています。

INVERTER_CFG_ADC_REF_VOLTAGE

MCU のアナログ電圧を指定します。RA6T2 CPU ボードは 3.3V となります。

INVERTER_CFG_COMP_Vx INVERTER_CFG_COMP_Ix

9.7.4を参照してください。

9.7.2 電流検出ゲイン

MCI-HV-2-3PH インバータでは、表 9-12 に示すように、電流の大きさによって、ADC に入力される電圧値が規定されています。

本サンプルプログラムで、電流の検出ゲインを設定するには、INVERTER_CFG_CURRENT_AMP_GAIN と、INVERTER CFG SHUNT RESISTを使用します。

INVERTER_CFG_ADC_REF_VOLTAGE

RA6T2 では、ADC 基準電圧が 3.3V となっているため、3.3 を指定してください。

INVERTER_CFG_SHUNT_RESIST

シャント抵抗で使用している抵抗値を設定します。MCI-HV-2-3PH のような 1kW 以上の中容量以上のインバータにおいては、シャント抵抗を使わずにホール CT を使用するケースがあります。ホール CT を使用する場合は、1.0 を指定してください。

INVERTER_CFG_CURRENT_AMP_GAIN

ADC で入力する電圧 1V あたり、何 A に相当するかを求める係数を設定します。0-3.3V で±30.94A (Peak to Peak で 61.88A) の換算となっている MCI-HV-2-3PH の仕様では、61.88A/3.3V=18.75A/V となり、1V あたり 18.75A となります。MCI-HV-2-3PH ではホール CT 使用のためシャント抵抗値の項に 1.0 を設定すると、ゲインは(1/1.0)*(1/18.75)= 0.05333 となります。

以上より、INVERTER_CFG_CURRENT_AMP_GAIN には、-0.05333 を設定します。

$$INVERTER_CFG_CURRENT_AMP_GAIN = \frac{1}{INVERTER_CFG_SHUNT_RESIST[\Omega]} imes \frac{1}{1V$$
あたりの電流値 $[A/V]$

表 9-12 MCI-HV-2-3PH の電流信号仕様

三相出力電流値	ADC 入力電圧値	ADC 変換値
-30.94A	3.3V	4095
0A	1.65V	2047
+30.94A	0.0V	0

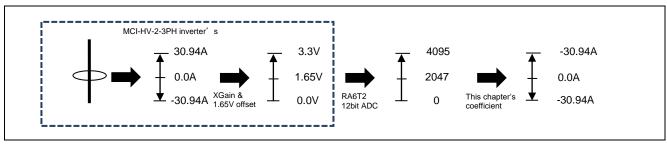


図 9-1 電流検出の計算の流れ

9.7.3 電圧検出ゲイン

電圧検出ゲインは、INVERTER_CFG_VOLTAGE_GAIN で設定します。

ADC で入力する電圧 1V あたり、インバータ母線電圧で何 V に相当するかを求める係数を設定します。 MCI-HV-2-3PH では ADC に入力される電圧 1.65V~3.3V で母線電圧 0V~491.5V を検出します。この場合は、491.5/(3.3-1.65)= 297.879 となるため、INVERTER_CFG_VOLTAGE_GAIN には、297.879 を設定します。

INVERTER_CFG_VOLTAGE_GAIN =
$$\frac{\textit{インバータ母線電圧の基準}}{\textit{基準となるときのADC入力電圧}} = \frac{491.5}{3.3-1.65} = 297.879$$

表 9-13 MCI-HV-2-3PH のインバータ母線電圧信号仕様

インバータ母線電圧値	ADC 入力電圧値	ADC 変換値
0.0V	1.65V	0
491.5V	3.3V	4095

9.7.4 電圧誤差補償パラメータ

電圧誤差補償の機能の使用及び設定方法について説明します。以下の3点の設定が必要となります。

① デッドタイム値の選定

インバータに使用されているパワー半導体の特性により、デッドタイム値は決定されます。Si-IGBT を使用している場合、概ね 2-3µs 前後が使用されます。FSP のモータ設定に入力場所が用意されていますので、選定したデッドタイム値を反映させてください。

② 電圧誤差機能有効フラグの設定

電流制御モジュールの制御パラメータ設定(R_MOTOR_CURRENT_ParameterUpdate)呼び出し時に、電圧誤差補償機能の有効/無効使用有無フラグ(u1_flag_volt_err_comp_use)を MTR_FLG_SET に設定することで機能が有効になります。無効にする場合は、上記フラグを MTR_FLG_CLR に設定してください。

③ 電圧補償テーブルの設定

実機のインバータで、電流を流したスイッチング試験を行うか、デッドタイムとキャリア周期の関係から求まるデッドタイム分の電圧誤差値を用いて、電圧補償テーブルを作成します。スイッチング試験で得られた電流と電圧の関係が求めると、より効果的な電圧補償テーブルに設定可能な値が得られます。

また、補償電圧値のリミットは以下の式で計算できます。

補償電圧リミット = (キャリア周期 [kHz] × デッドタイム時間 [μs] ÷ 1000)× 母線電圧値

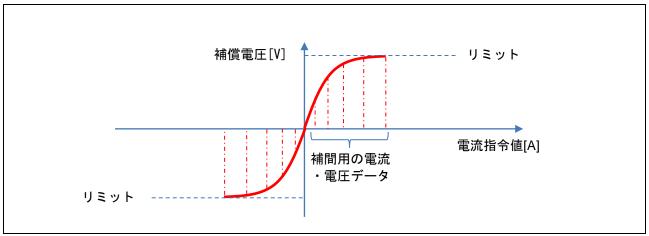


図 9-2 補償電圧値とリミット、電流指令値の関係

	キャリア周期	8kHz
	lu	ΔVu
0	0.00f	0.00f
1	0.21f	1.35744f
2	0.42f	2.71488f
3	0.66f	4.07232f
4	0.90f	5.42976f
5	1.50f	6.7872f

表 9-14 キャリア周期と補間用の電流・電圧データ

9.8 モータパラメータ

V/f 制御では、モータの抵抗やインダクタンス等のパラメータを使用しません。本サンプルプログラムを使用する際には、使用するモータの仕様書や銘板を確認の上、以下の表のパラメータを設定して下さい。

ファイル名	マクロ名	設定値	説明
r_motor_targetm otor_cfg.h	MOTOR_CFG_POLE_PAIRS	2	極対数
otol_org.ii	MOTOR_CFG_NOMINAL_CURREN T_RMS	15.5f	定格電流 [A]
	MOTOR_CFG_MAX_SPEED_RPM	1800.0f	最大速度 [r/min]

表 9-15 モータパラメータ設定

MOTOR_CFG_POLE_PAIRS

モータの極対数を設定します。極対数は、極数を 1/2 した値となります。

MOTOR_CFG_NOMINAL_CURRENT_RMS

モータの定格電流(実効値)を設定してください。単位はアンペアです。モータの銘板または仕様書に記載されています。

MOTOR_CFG_MAX_SPEED_RPM

モータの最大速度を設定して下さい。モータの銘板や仕様書に記載の定格周波数の中で、大きい方の値を 元に設定してください。

9.9 電流制御パラメータ

電流制御パラメータを、表 9-16 に示します。V/f 制御では通常、電流制御は使用されませんが、電流検出や関連した処理を使用しているため、便宜上、電流制御パラメータを定義しています。モータのパラメータや PWM キャリア周波数、所望の電流応答性能によって、電流制御のパラメータを算出します。

表 9-16 に示す電流制御パラメータのマクロは、起動時に内部の変数に設定・反映されますが、起動後に調整が必要な場合には、RMW から調整することが可能なパラメータが、用意されています。表 6-5 を参照してください。すべてのパラメータを変更できるものではありませんので、ご注意ください。

表 9-16 電流制御パラメータの一覧

ファイル名	マクロ名	設定値	説明
r_motor_module _cfg.h	CURRENT_CFG_OFFSET_CALC_ TIME	512.0f	電流オフセットの測定時間設定

CURRENT CFG OFFSET CALC TIME

起動時に、電流検出のオフセットを測定するときに、オフセット値の測定回数を指定します。通常はデフォルトのままでご利用ください。

9.10 速度制御パラメータ

速度制御系のパラメータを、表 9-17に示します。設定した値が初期値となり、システム起動時に適用されます。表 9-17に示す速度制御パラメータのマクロは、起動時に内部の変数に設定・反映されますが、起動後に調整が必要な場合には、RMW から調整することが可能なパラメータが用意されています。表 6-5 を参照してください。RMW 上で、すべての速度制御パラメータを変更できるものではありませんので、ご注意ください。

表 9-17 速度制御パラメータの一覧

ファイル名	マクロ名	設定値	説明
r_motor_module _cfg.h	SPEED_CFG_CTRL_PERIOD	0.0005f	制御周期設定[s]
_5.59.11	SPEED_CFG_SPEED_LIMIT_RPM	1800.0f	速度制限値[r/min](機械角)
	SPEED_CFG_RATE_LIMIT_RPM	500.0f	加速度制限[r/min/s]

SPEED CFG CTRL PERIOD

0.0005s(0.5ms) としてください。変更する場合には、10.6 の AGT0 タイマ設定値を変更し、速度制御 周期を変更することとなります。

SPEED_CFG_RATE_LIMIT_RPM

速度指令値を設定した時に、速度が上昇するスピード(加速度)を設定します。値を大きくすると、早く速度が上昇します。100を指定した時、1秒当たり100r/min、上昇します。停止から2000r/minまで20秒で到達します。

9.11 電圧位相進み補償パラメータ

電流検出タイミングを基準として、実際に PWM が出力されるタイミングまで角度を進ませるための補償値です。本サンプルプログラム及びインバータ構成では、0.5 サンプル進ませることで、PWM 出力タイミングを一致させることができます。

表 9-18 コンフィグレーション情報一覧

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	CURRENT_CFG_PERI OD_MAG_VALUE	0.5f	進み補償を行います。サンプル数を設定します。0.5を設定してください。

9.12 V/f 制御パラメータ

V/f 制御で使用するパラメータを設定します。モータを変更した場合には、このパラメータも変更する必要があります。

表 9-19 V/f 制御の設定パラメータ

ファイル名	マクロ名	設定値	説明
r_motor_module_ cfg.h	CURRENT_CFG_IMVF_FREQUEN CY_OUTPUT_MAX	60.0f	出力可能な最高速度(電気角周波 数)に相当します。
	CURRENT_CFG_IMVF_RATED_F REQUENCY	50.0f	V/f 制御に使用する定格周波数(基 底周波数)
	CURRENT_CFG_IMVF_VOLTAGE _OUTPUT_MAX	200.0f	出力可能な最大電圧
	CURRENT_CFG_IMVF_RATED_V OLTAGE	200.0f	V/f 制御に使用する定格電圧に相当 します
	CURRENT_CFG_IMVF_TORQUE_ BOOST	0.024f	トルクブースト補償値

CURRENT_CFG_IMVF_FREQUENCY_OUTPUT_MAX

出力できる最高周波数を設定します。この周波数は、極数を用いて回転速度に換算でき、その速度はインバータが出力可能な最高速度と等価となります。

CURRENT_CFG_IMVF_RATED_FREQUENCY

定格周波数[Hz]を設定します。制御対象の誘導機の銘板に記載されています。

CURRENT_CFG_IMVF_VOLTAGE_OUTPUT_MAX

インバータが出力可能な最大電圧[Vrms]を指定します。

CURRENT_CFG_IMVF_RATED_VOLTAGE

定格速度出力時に出力する定格電圧[Vrms]を設定します。制御対象の誘導機の銘板に記載されています。

CURRENT_CFG_IMVF_TORQUE_BOOST

低速運転時に誘導機の巻線抵抗による電圧降下によって、運転が不安定になる現象を抑制する必要があります。そこで電圧降下分を補償することを目的に、最低出力電圧となるトルクブースト補償値[%]を設定します。設定単位としては、1.00fが 100%となります。補償値は、定格電圧値を 100%と定義したときの相対値を設定します。通常、0~5%が設定されます。

10. FSP 設定

10.1 FSP の概要

本サンプルプログラムのソフトウェアアーキテクチャを図 10-1 に示します。FSP は、ADC や GPT、SCI などの MCU 固有のレジスタ設定や割り込みの管理を行います。ハードウェア抽象化レイヤー(HAL)の機能と、ファイルシステムや通信用プロトコルスタックといった、ミドルウェアの機能を包含したソフトウェアパッケージとなっています。

本サンプルプログラムでは、FSPの代表的な機能のうち、タイマやADC、GPIOなどのMCUの周辺機能におけるレジスタ設定や割り込みを抽象化した機能のみを使用しています。モータ制御ならびにリレー制御機能は、アプリケーション層に実装しており、ユーザが自由にモータ制御アルゴリズムやシーケンス等のソフトウェアの変更を行える設計となっています。

FSPでは、本サンプルプログラムに類似した「モータミドルウェア」が標準で提供されていますが、本サンプルプログラムとの間にソフトウェア内部構造・関数・パラメータ等のインタフェース互換性は有しておりませんのでご注意ください。

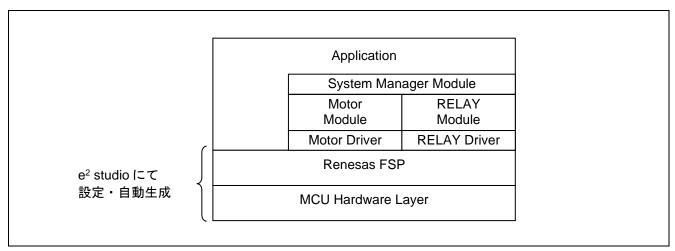


図 10-1 本サンプルプログラムのソフトウェアアーキテクチャ

10.2 FSP スタック設定

FSPでは、周辺機能ごとに機能モジュールを提供しており、「スタック」と呼称しています。本サンプルプログラムで使用する FSP スタックと機能割り当てを表 10-1 に示します。

FSPの Stack Configuration を開いた場合やスタック内部のプロパティを変更した場合、ra_gen フォルダ内の hal_data.c/h 等のファイルが自動生成されます。Generate Project Content を行った場合には、ra フォルダ内の FSP 関連モジュールが自動生成・更新されます。

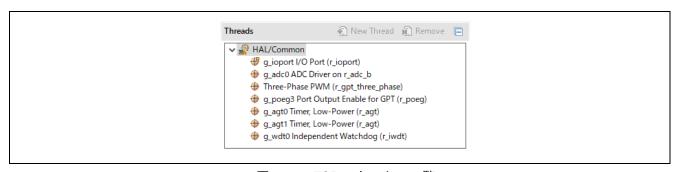


図 10-2 FSP スタックの一覧

表 10-1 FSP スタックと機能割り当て

機能	FSP スタック
三相 PWM 出力	Three-Phase PWM (r_gpt_three_phase)
モータ用 A/D 変換処理	g_adc0 ADC Driver on r_adc_b
(UVW 相出力電流、母線電圧検出)	(adc0、sub group0)
使用ポートの設定	g_ioport I/O Port (r_ioport)
速度制御割り込みタイマ (0.5ms 周期)	g_agt0 Timer、Low-Power(r_agt)
リレー制御割り込みタイマ(1ms 周期)	g_agt1 Timer、Low-Power(r_agt)
過電流検出	g_poeg3 Port Output Enable for GPT (r_poeg)
独立ウォッチドッグタイマ	g_wdt0_Independent_Watchdog(r_iwdt)

10.3 コールバック・割り込み

FSPでは、割り込み処理として呼ばれる関数をコールバック関数として定義します。割り込み一覧を表 10-2 に示します。

ここに示したコールバック関数は、src/application/mcu/ra6t2/r_app_mcu_callback.c に実体が置かれています。

表 10-2 割り込み一覧

FSP スタック	コールバック関数	説明
g_adc0	callback_motor_current_cyclic_adc()	モータ用電流制御周期(8kHz)のコールバック関数内でマスクしています。
poeg	callback_poe_overcurrent()	POEG のコールバック関数内では、必ず R_POEG_Reset()をコールしてフラグをリセットしてください。割り込み優先度によっては、その他の処理が停止する場合があります。
agt0	callback_motor_speed_cyclic_timer()	速度制御周期(2kHz)
agt1	callback_system_manager_cyclic_timer()	システムマネージャ制御周期(1kHz)

10.4 端子設定

端子のインタフェース情報を以下に示します。

機 能	端子名	周辺機能	機能割付	備考
U相電流測定	PA04	S12AD	AN004	
V 相電流測定	PA02	S12AD	AN002	
W 相電流測定	PA00	S12AD	AN000	
母線電圧測定	PA06	S12AD	AN006	
IGBT 温度異常	PD07	GPIO	-	Low で異常
過電流検出時の PWM 緊急停止入力	PC13	POEG	GTETRGD	Low で異常
PWM 出力(Up)	PB04	GPT	GTIOC4A	Active High
PWM 出力(Un)	PB05	GPT	GTIOC4B	Active High
PWM 出力(V _p)	PB06	GPT	GTIOC5A	Active High
PWM 出力 (Vn)	PB07	GPT	GTIOC5B	Active High
PWM 出力(Wp)	PB08	GPT	GTIOC6A	Active High
PWM 出力 (W _n)	PB09	GPT	GTIOC6B	Active High
突入電流防止リレー制御	PE01	GPIO	-	

表 10-3 端子インタフェース

10.5 三相 PWM GPT 設定

モータ制御に使用します。モードは、FSP 上で設定可能な「三角波 PWM モード 1 (谷 32 ビット転送)」となっています。FSP 5.6.0 においては、相補モードはサポートされておらず、選択ができませんので、ご注意ください。

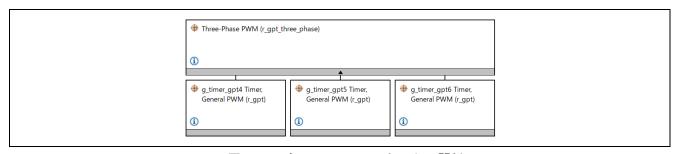


図 10-3 三相 PWM GPT スタックの関係

表 10-4 Three-Phase PWM 設定

機能および設定項目		設定	
	Name	g_three_pha	ise0
	Mode	Triangle-Wave Sy	ymmetric
	Period	125	
	Period Unit	Microsecon	ids
General	GPT U-Channel	4	
	GPT V-Channel	5	
	GPT W-Channel	6	
	Callback Channel	U-Channe	el
	Buffer Mode	Single Buff	er
	GTIOCA Stop Level	Pin Level L	ow

	GTIOCB Stop Level		Pin Level High
	DeadTime	Dead Time Count Up	360
Extra		(Raw Counts)	
Features		Dead Time Count Down	360
		(Raw Counts)	

表 10-5 U相 GPT 設定

機能および設定項目		設定	
Module	Module General Name		g_timer_gpt4
g_timer_gpt4 timer	その他項目は、Three-Phase PWM 設定から自動設		定されるため省略
Pins		GTIOC4A	PB04
FILIS		GTIOC4B	PB05

表 10-6 V相 GPT 設定

機能および設定項目		設定	
Module	General Name		g_timer_gpt5
g_timer_gpt5 timer	その他項目は、	その他項目は、Three-Phase PWM 設定から自動設	
Pins		GTIOC5A	PB06
FILIS		GTIOC5B	PB07

表 10-7 W 相 GPT 設定

機能および設定項目		設定	
Module	General Name		g_timer_gpt6
g_timer_gpt6 timer	その他項目は、	その他項目は、Three-Phase PWM 設定から自動設	
Pins		GTIOC6A	PB08
FIIIS		GTIOC6B	PB09

10.6 AGTO 設定(速度制御周期設定)

0.5ms 周期の速度制御周期は、AGT を用いて割り込み周期を設定します。以下に AGT の設定例を示します。

図 10-4 AGT0 のスタック

表 10-8 AGTO (速度制御周期) の設定

機能および設定項目		設定	
	Name		g_agt0
General	Counter Bit Width		AGT 32-bit
	Channel		0

	Mode	Periodic
	Period	500
	Period Unit	Microseconds
	Count Source	PCLKB
	Duty Cycle Percent	50
Output	AGTOA Output	Disabled
Output	AGTOB Output	Disabled
	AGTO Output	Disabled
	Measurement Mode	Measure Disabled
Innut	Input Filter	No Filter
Input	Enable Pin	Enable Pin Not Used
	Trigger Edge	Trigger Edge Rising
	Callback	callback_motor_speed_cyclic_timer
Interrupts	Underflow Interrupt	Priority 9
	Priority	
	AGTEED	<unavailable></unavailable>
	AGTIO0	<unavailable></unavailable>
Pins	AGTO0	<unavailable></unavailable>
	AGTOA0	<unavailable></unavailable>
	AGTOB0	<unavailable></unavailable>

10.7 AGT1 設定 (リレー制御周期設定)

1ms 周期のシステムマネージャの制御周期を設定します。

図 10-5 AGT1 の設定

表 10-9 AGT1 (リレー制御周期) の設定

機能および設定項目		設定
	Name	g_agt1
	Counter Bit Width	AGT 32-bit
	Channel	1
General	Mode	Periodic
	Period	1
	Period Unit	Milliseconds
	Count Source	PCLKB
	Duty Cycle Percent	50
Output	AGTOA Output	Disabled
Output	AGTOB Output	Disabled
	AGTO Output	Disabled
	Measurement Mode	Measure Disabled
l.a.a4	Input Filter	No Filter
Input	Enable Pin	Enable Pin Not Used
	Trigger Edge	Trigger Edge Rising

	Callback	callback_system_manager_cyclic_timer
Interrupts	Underflow Interrupt	Priority 10
	Priority	
	AGTEED	<unavailable></unavailable>
	AGTIO0	<unavailable></unavailable>
Pins	AGTO0	<unavailable></unavailable>
	AGTOA0	<unavailable></unavailable>
	AGTOB0	<unavailable></unavailable>

10.8 ADC 設定

MCU 内蔵の 12bit AD コンバータを用いて、UVW 相出力電流とインバータ母線電圧を測定します。割り当てチャンネルと、検出タイミングを、表 10-10 に示します。

MCUの起動直後に行われる ADC の初期設定では、必ずキャリブレーション完了待ちの処理を行います。 キャリブレーションが完了せずに、ADC のスキャンを開始すると ADC 検出値が不正な値となり、動作に支 障をきたす場合があります。キャリブレーション完了には、おおよそ数 ms 程度の時間がかかります。

モータ電流を検出は GPT のキャリア用カウンタの谷の条件(ダウンカウント条件で 0 に到達でコンペアマッチし、トリガを発生)で電流を取得するように設定しています。

機能	割当チャンネル	変換開始トリガ
インバータ母線電圧測定	adc0 ch.6	ダウンカウントで 0 に到達時
U 相電流測定	adc0 ch.4	
V 相電流測定	adc0 ch.2	
W相電流測定	adc0 ch.0	

表 10-10 ADC のチャンネルと検出タイミング設定

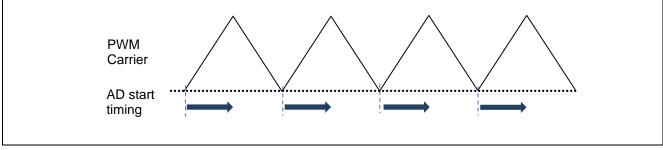


図 10-6 AD 検出開始タイミング(谷割り込み)

機能および設力			設定
	Operation/ADC0	Conversion Method	SAR Mode
		Scan Mode	Single Scan
	Operation/ADC1	Conversion Method	SAR Mode
		Scan Mode	Single Scan
	ADC Successive	ADC0	6
	Approximation Time	ADC1	6
	Synchronous	Enable for ADC 0	Disable
	Operation	Enable for ADC 1	Disable
		Synchronous Operation	100
General		Period Cycle	
	Calibration /	Sampling Time	10
	A/D Calibration	Conversion Time	6
	Calibration / Sample	Sampling Time	25
	and Hold Calibration	Hold Time	3
	Sampling State Table	Entry 0	10
		Entry 1	4
		Entry 2	24
		Entry 3~15	95
	Name		g_adc0

表 10-11 ADC の設定

Clock	Divider		Div /1
Configuration	Source		PCLKC
	Limiter Clip Priority		全て Disabled
	Conversion Error		全て Disabled
	Priority		± C Disabled
	Overflow Priority		全て Disabled
	Calibration End		Priority 12
Interrupts	Priority		,
	Scan End Priority	Group 0	Priority 5
		Group 1	Disabled
		Group 2~8	Disabled
	FIFO Priorities		全て Disabled
	Callback		callback_motor_current_cyclic_adc
Digital Filter			未使用(デフォルト)
	Enable Unit	Unit 0	
		Unit 1	
		Unit 2	otag
		Unit4	
Sample and		Unit5	
Hold		Unit 6	
	Analog Channels 0-5	Sampling Time	60
		Hold Time	3
	Analog Channels 6-11	Sampling Time	95
		Hold Time	5
Programmable Gain Amplifier			未使用(デフォルト)
User Offset Table			未使用(デフォルト)
User Gain Table			未使用(デフォルト)
Limiter Clipping			未使用(デフォルト)
	Virtual Channel 0	Scan Group	Scan Group 0
		Channel Select	AN000
		Sampling State Table ID	Sampling State Entry 0
		Channel Gain Table	Disabled
		Channel Offset Table	Disabled
		Add/Average Mode	Disabled
		Add/Average Count	1-time conversion
			(Normal Conversion)
		Limit Clip Table ID	Disabled
Virtual Channels		Conversion Data Format Select	12-bit Data Format
		Digital Filter Selection	Disabled
	Virtual Channel 1	Scan Group	Scan Group 0
		Channel Select	AN002
		Sampling State Table ID	Sampling State Entry 0
		Channel Gain Table	Disabled
		Channel Offset Table	Disabled
		Add/Average Mode	Disabled
		Add/Average Count	1-time conversion
			(Normal Conversion)

		Limit Clip Ta	able ID	Disabled
			Data Format	12-bit Data Format
		Select		
		Digital Filter		Disabled
	Virtual Channel 2	Scan Group)	Scan Group 0
		Channel Se	lect	AN004
		Sampling S	tate Table ID	Sampling State Entry 0
		Channel Ga	in Table	Disabled
		Channel Of	fset Table	Disabled
		Add/Averag	e Mode	Disabled
		Add/Averag	e Count	1-time conversion
				(Normal Conversion)
		Limit Clip Ta	able ID	Disabled
			Data Format	12-bit Data Format
		Digital Filter	Selection	Disabled
	Virtual Channel 3~4	_ : g.::::::::::::::::::::::::::::::::::		未使用
	Virtual Channel 5	Scan Group)	Scan Group 1
	Tittaai Oilailiioi O	Channel Se		AN006
			tate Table ID	Sampling State Entry 0
		Channel Ga		Disabled
		Channel Of		Disabled
		Add/Averag		Disabled
		Add/Averag		1-time conversion
		/\dd//\vciag	C Oddin	(Normal Conversion)
		Limit Clip Ta	ahle ID	Disabled
			Data Format	12-bit Data Format
		Select	Data i omiat	12 St. Bata i Simat
		Digital Filter	Selection	Disabled
	Virtual Channel 6~36			未使用
	Scan Group 0	Self Diagnosis	Voltage Selection	Self-Diagnosis Mode Disabled
		External	External Trigger	
		Trigger	Input 0	
		Enable	(ADTRG0)	
			Enable	
		External	External Trigger	
		Trigger	Input 1 (ADTRG1)	
		Enable	(ADTRG1) Enable	
		ELC Trigge		│ │ 未使用
			GPT Channel 0	
Scan Groups		GPT Trigger Enable	Request A	
		GPT Trigger	GPT Channel 1	
		Enable	Request A	
		GPT Trigger	GPT Channel 2	
		Enable	Request A	
		GPT Trigger	GPT Channel 3	
		Enable	Request A	
		GPT Trigger	GPT Channel 4	\square
		Enable	Request A	
		GPT Trigger	GPT Channel 5~9	未使用
		Enable	Request A/B	Fachla
		Enable		Enable

	Converter S	election	ADC 0
	Start Trigger Delay		0
	Scan End In	terrupt Enable	Enable
	Limit Clip Interrupt Enable		Disable
	FIFO Enable		Disable
	FIFO Interru	ıpt Enable	Disable
		pt Generation	0
	Level	•	
Scan Group 1	Self	Voltage Selection	Self-Diagnosis Mode Disabled
	Diagnosis		
	External	External Trigger	
	Trigger	Input 0	
	Enable	(ADTRG0)	
		Enable	
	External	External Trigger	
	Trigger	Input 1 (ADTRG1)	
	Enable	Enable	
	ELC Trigger		未使用
		GPT Channel 0	
	GPT Trigger Enable	Request A	
	GPT Trigger	GPT Channel 1	
	Enable	Request A	
	GPT Trigger	GPT Channel 2	
	Enable	Request A	
	GPT Trigger	GPT Channel 3	
	Enable	Request A	
	GPT Trigger	GPT Channel 4	\square
	Enable	Request A	
	GPT Trigger	GPT Channel 5~9	未使用
	Enable	Request A/B	
	Enable		Enable
	Converter S		ADC 1
	Start Trigge		0
		terrupt Enable	Enable
		terrupt Enable	Disable
	FIFO Enable		Disable
	FIFO Interru	•	Disable
		pt Generation	0
	Level		
Scan Group 2~8			未使用

10.9 POEG 設定

POEG は、モータ制御用インバータの回路で異常が発生した場合に、制御中の PWM ゲート信号を速やかに High-Z に切り替える MCU の機能です。POEG のあああで設定が可能な、POEG 設定を下記表 10-12 に示します。出力ピン設定はインバータ仕様によって異なるため、使用するインバータの信号仕様を確認してください。

表 10-12 POEG 設定

	機能および設定項	設定	
	Trigger	GTETRG Pin	\square
		GPT Output Level	
		Oscillation Stop	
		ACMPHS0	
General		ACMPHS1	
		ACMPHS2	
		ACMPHS3	
	Name		g_poeg3
	Channel		3
loout	GTETRG Polarity		Active Low
Input	GTETRG Noise Filter		PCLKB/32
Interrupte	Callback		callback_poe_overcurrent
Interrupts	Interrupt Priority		Priority 0 (highest)

11. 評価結果

本サンプルソフトを用いた評価結果を示します。

11.1 突入電流防止リレー制御の評価

入力電圧を上昇させた際に、リレーON 判定用母線電圧閾値である 230[V]を超過すると、リレー制御が切り替わることを Renesas Motor Workbench で確認しています。リレーON はインバータボード上の LED5 の点灯でも確認できます。

図 11-1 突入電流防止リレー制御の波形

11.2 モータ制御評価

本サンプルソフトを用いて三相 200V 系の 3.7kW 誘導機を駆動した際の評価結果を示します。

11.2.1 加減速特性

無負荷条件で 0[rpm]から最高速度 1800[rpm]までの加速させた際の波形を以下に示します。V/f 制御により速度指令値に比例して q 軸電圧指令値が上昇し、また、1500[rpm]から 1800[rpm]の弱め界磁領域では電圧が制限されていることが確認できます。本データ取得時の入力電圧には 240V を使用しています。

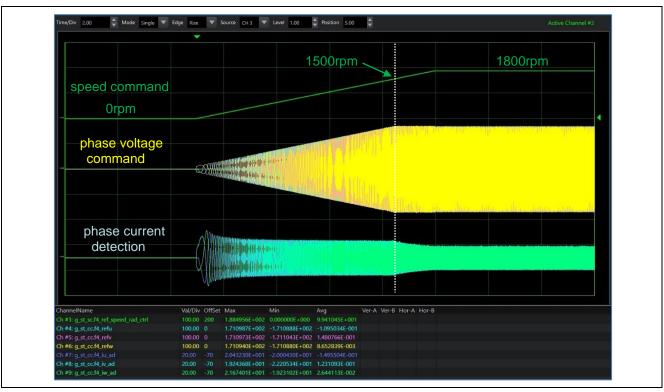


図 11-2 無負荷加速時の波形

11.2.2 モータ特性評価

負荷運転時のモータ特性の評価結果を以下に示します。本データ取得時には入力電圧 200V を使用しています。

速度指令 値 [rpm]	定格電圧 [Vrms]	負荷率 [%]	相電流 [Arms]	軸回転速度 [※] [rpm]
	50 200	0	6.99	1500
		25	7.73	1491
50		50	10.1	1481
		75 [*]	13.2	1470
		100 [*]	17.2	1457

表 11-1 3.7kW 誘導機特性評価結果

※MCI-HV-2-3PH は定格出力 2.2kW のため、負荷率 100[%]、75[%]のデータは短時間運転で取得した 参考値となります。

11.3 CPU 使用率

各制御周期の CPU 処理時間と負荷率を以下に示します。

表 11-2 制御ループと CPU 負荷率

制御ループ種類	制御周期	処理時間	CPU 負荷率
リレー制御ループ	1ms	2.0us	0.2%
モータ制御・電流制御ループ	125 µs (間引き 0 回)	14.96 µs	11.968%
モータ制御・速度制御ループ	500 μs	1.14 µs	0.228%

11.4 プログラムサイズ・RAM 使用量

本サンプルプログラムでのプログラムサイズ (ROM) と、RAM 使用量は以下の通りです。コンパイラの最適化設定において、最適化レベル2 (-O2) に設定しています。

表 11-3 プログラムサイズと RAM 使用量

プログラムサイズ(ROM)	25024 [Bytes]
RAM 使用量	3040 [Bytes]
スタック解析結果の最大値	160 [Bytes]
スタックサイズの IDE 環境の設定値	1024 [Bytes]

12. FAQ

代表的な現象と、その解決例を以下に示す。

表 12-1 現象と解決例の一覧

現象	解決例
FSP のバージョンが異なる というエラーが出ました	本サンプルプログラムで指定された e ² studio と FSP のバージョンが異なる 環境で、プロジェクトを開いた場合、FSP のバージョンが異なる旨の表示の エラーが表示されます。弊社ウェブサイトから、本サンプルプログラムで指 定したバージョンの FSP 環境をご利用 PC に導入ください。
	FSPのバージョンが異なる場合、API等の仕様が変更されている場合があり、ユーザの修正が必要となる場合があります。また、実行結果や挙動が変わる可能性があります。FSPのバージョンが異なる環境で動かした場合、サポートが行えませんのでご注意ください。
運転を開始してもモータを 始動できません	制御しているモータに対して、負荷が大きい場合・イナーシャが大きい場合は、始動トルクが不十分となり、始動に失敗する場合があります。負荷に対してモータ容量が適切か、V/f 制御以外の始動方法とするかの見直しを検討してください。
起動直後に ADC で検出した 値がずれている	RA6T2 に搭載されている周辺機能 ADC_B は、起動時やリセット時等に自己校正を行う必要があります。このため、起動時の ADC の初期設定で、キャリブレーション完了待ちの処理を省略した場合、ADC で検出した値が不正となる場合があります。起動時の処理で、ADC のキャリブレーション完了待ちの処理を必ず実装してください。
低速で回転しません	V/f 制御では、運転可能範囲が定格速度の 1/10 程度と狭く、始動トルクが小さい用途向けです。よって、特に低速運転時は特性が悪化する場合があります。制御アルゴリズムを V/f 制御以外のもので検討が必要な場合があります。
加速時間(速度制限率)を 短くすると運転できなくな る	加速時間を短くすると、加速に必要なトルクが過大となるため、イナーシャによっては加速できずに運転できなくなる場合があります。イナーシャに応じて、加速時間を選定するか、加速トルクが十分に出力可能な容量の大きなインバータを使用してください。
急減速すると、母線電圧が 増大する	減速した場合、回生が発生するため母線電圧が上昇します。回生抵抗を取り 付けて母線電圧の上昇を抑えるか、減速時間を長く設定してください。
速度を上げると電流が歪む	V/f 比が正しくない場合や、入力電圧が低い場合、母線電圧が低下した場合、急加速・急減速した場合、電流波形が歪む場合があります。
負荷をかけると速度が低下 する	V/f 制御は、速度指令値と実際の軸の回転速度は原理的に一致しません。これは、すべりによるものです。定格負荷状態では、定格すべりの速度分、回転速度が低下します。
	定格すべりと回転速度が大きく乖離する場合、V/f 比が正しくない場合や、インバータやモータの最大負荷を超える運転条件の場合、すべりが増大して 速度が低下する場合があります。すべりが最大点を超えた場合、運転制御不 能となりモータが停止します。
急負荷をかけると、過電流 エラーとなる	V/f 制御は、急激な負荷変動に追従することができません。別の制御方式の 検討が必要な場合があります。

改訂記録

		改訂内容		
Rev.	発行日	ページ	ポイント	
1.0	2025/3/31	-	新規発行	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS製品の取り扱いの際は静電気防止を心がけてください。CMOS製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS製品を実装したボードについても同様の扱いをしてください。

2. 雷源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、Vil (Max.) から Vil (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、Vil (Max.) から Vil (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行います。にあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に 支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/