
 アプリケーションノート

R01AN8014JJ0103 Rev.1.03 Page 1 of 100
Oct.29.25

RAファミリ

概要
今日、自動電子制御システムが多くの多様なアプリケーションに拡大し続けているため、信頼性と安全性

の要件は、システム設計においてますます増大する要素になりつつあります。

たとえば、家電製品向けの IEC60730 安全規格を導入するには、製造業者が製品の安全で信頼性の高い動

作を保証する自動電子制御を設計する必要があります。

IEC60730 規格は製品設計のすべての側面をカバーしていますが、Annex H はマイクロコントローラベー

スの制御システムの設計にとって非常に重要です。これにより、自動電子制御用の 3 つのソフトウェア分類

が提供されます。

1. クラス A： 装置の安全性に寄与することを意図したものではない制御機能
 例：部屋のサーモスタット、湿度制御、照明制御、タイマ、スイッチ

2. クラス B： 装置の安全でない操作を防止するための制御機能
 例：洗濯機のサーマルカットオフおよびドアロック

3. クラス C： 特別な危険を防止するための制御機能
 例：自動バーナー制御と閉動作のためのサーマルカットアウト

このアプリケーションノートでは、柔軟なサンプルソフトウェアルーチンを使用して、IEC60730 クラス

C 安全規格への準拠を支援する方法のガイドラインを示します。これらのルーチンは VDE Test and
Certification Institute GmbH によって認定されており、テスト証明書のコピーは、このアプリケーションノ

ートのダウンロードパッケージで入手できます。

提供されるソフトウェアルーチンは、リセット後およびプログラムの実行中に使用されます。このドキュ

メントとそれに付随するサンプルコードは、これを行う方法の例を提供します。

R01AN8014JJ0103
Rev.1.03

Oct.29.25
RA MCUのためのIEC60730/60335セルフテスト･ライブラリ

(Class-C)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 2 of 100
Oct.29.25

ターゲット
 デバイス：

 ルネサス RA ファミリ MCU（Arm® Cortex®-M33）※シリーズとグループは下記表 a を参照

 開発環境：

 GNU-GCC ARM Embedded Toolchain13.2.1.arm-13-7 / Renesas e2studio 2025-04.1 (25.4.1)

本書において「RA MCU」と表記している場合は、以下の製品のことを指します。

表 a. RA ファミリ MCU セルフテスト機能リスト

CPU コア Arm® Cortex®-
M33

Arm® Cortex®-
M33

シリーズ RA6 RA4
グループ RA6M4 RA4M3

テ
ス
ト

機
能

 CPU 〇 〇
ROM 〇 〇
RAM 〇 〇
クロック 〇 〇
独立ウォッチドッグタイマ (IWDT) 〇 〇

Arm® TrustZone® への対応について
本セルフテストライブラリは、Arm® TrustZone® におけるセキュア領域で実行されることを前提としてお

り、RA Project Generator (※) の "Flat Project" で作成したサンプルプログラムを用いて、動作を確認してい

ます。

※RA Project Generator の詳細は、RA FSP (Flexible Software Package) のドキュメントを参照くださ

い。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 3 of 100
Oct.29.25

セルフテストライブラリの概要
セルフテストライブラリは、命令デコード、CPU レジスタ、内部メモリ、ウォッチドッグ・タイマおよ

びシステム・クロックを対象とする監視関数で構成されます。

以降で説明するように、異常監視処理には監視を行う各モジュールのアプリケーション・プログラム・イ

ンタフェース（API）が用意されています。各関数は用途に応じて使用します。

セルフテストライブラリ関数は、IEC60730Class-C に準じてモジュール別に分かれています。異常監視

処理は、各テスト関数を順番に選択してスタンドアロンで実行することができます。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 4 of 100
Oct.29.25

RA4 並びに RA6 シリーズ(Arm® Cortex®-M33 搭載)のセルフテストライブラリには以下の主なセルフ

テストを実施する関数があります。

• 命令デコード

Arm Cortex-M33 の該当する命令に対して仕様に沿って正常に動作するかを検証します。

IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.5 equivalence class test を参照してくださ

い。

• CPU レジスタ

「表 1 1 CPU Test target 」に記載された CPU レジスタをテストします。

内部データ・パスは、以上のレジスタの正常動作テストの中で検証します。

IEC 60730-1:2013+A1:2015+A2:2020 Annex H - Table H.11.12.7 1.CPU を参照してください。

• 不変メモリ

MCU の内部 Flash メモリをテストします。

IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.19.4.2 CRC – double word を参照してくださ

い。

• 可変メモリ

内部 SRAM をテストします。

RAM テストでは、WALKPAT アルゴリズムと Extended March C-アルゴリズムを使用します。

IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H.2.19.7 walkpat memory test を参照してくだ

さい。

• システム・クロック

基準クロック・ソースを元にしてシステム・クロックの動作および周波数をテストします（この

テストには内部または外部の独立した基準クロックが必要です）。

IEC Reference - IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.1 Frequency
monitoring を参照してください。

• CPU／プログラムカウンタ

プログラムが規定時間内でシーケンスを実行してることを確認するために、CPU とは独立したク

ロックで動作する内蔵ウォッチドッグ・タイマを用いて確認しています。

IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.3 time-slot and logical monitoring を参

照してください。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 5 of 100
Oct.29.25

目次

1. テスト.. 6
1.1 CPU ... 6
1.1.1 CPU レジスタテストと CPU 命令テスト .. 6
1.1.2 テストエラー ... 19
1.1.3 CPU ソフトウェア API .. 20
1.2 ROM .. 57
1.2.1 CRC32 アルゴリズム .. 57
1.2.2 マルチチェックサム(Multi Checksum) .. 57
1.2.3 CRC ソフトウェア API .. 58
1.3 RAM ... 62
1.3.1 RAM ブロックの定義(RAM Block Configuration) .. 62
1.3.2 予約領域について(Reserved Area) ... 63
1.3.3 RAM テストアルゴリズム ... 65
1.3.4 RAM ソフトウェア API ... 68
1.4 クロック .. 73
1.4.1 CAC によるメインクロック周波数の監視 .. 73
1.4.2 メインクロックの発振停止検出 .. 73
1.4.3 CLock ソフトウェア API ... 74
1.5 独立ウォッチドッグタイマ（IWDT） ... 76
1.5.1 IWDT ソフトウェア API .. 77

2. 使用例(Example Usage) .. 80
2.1 CPU ... 81
2.1.1 電源投入時(Power-On) .. 81
2.1.2 定期的(Periodic) .. 81
2.1.3 CPU テストの事前準備 ... 81
2.2 ROM .. 83
2.2.1 事前の参照用 CRC 計算(Reference CRC Value Calculation in Advance) .. 83
2.2.2 マルチチェックサム対応設定 .. 90
2.2.3 電源投入時(Power-On) .. 91
2.2.4 定期的(Periodic) .. 91
2.3 RAM ... 92
2.3.1 電源投入時(Power-On) .. 92
2.3.2 定期的(Periodic) .. 92
2.4 クロック .. 93
2.5 独立ウォッチドッグタイマ（IWDT） ... 95
2.5.1 OFS0 レジスタの設定例（IWDT 関連） ... 95
2.5.2 NMI 割込みコールバック関数の登録と記述例 .. 97

ウェブサイトとサポート ... 99

参考文書：Reference Documents ... 99

改訂記録 ... 100

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 6 of 100
Oct.29.25

1. テスト

1.1 CPU
CPU テストの目的は、CPU コアからランダムな永続的な障害を検出することです。
CPU テストの主な機能は以下のとおりです。

• CPU命令テスト(CPU instruction test)
• CPUレジスタテスト(CPU register test)

1.1.1 CPU レジスタテストと CPU 命令テスト
本セルフテストライブラリで実施する CPU テストの各テスト概要について表 1-16 に記載しております。
各テストを実行することで関連するレジスタや命令コードをテストし、その 実行結果を確認することで

CPU の故障を検出できます。

テスト対象(概要)は下記の表 1-1 にリストされている CPU 命令とレジスタです。

表 1-1 CPU Test target (Overview)
Test target Arm® Cortex®-M33(CM33)

Instruction Profile ARMv8-M
Mainline

Instruction set Cortex-M33
Instruction Set

DSP SIMD only

FPU Single and double
 precision instructions

Register General purpose registers R0 – R12 ✓

Stack Pointer SP(R13) ✓

Link Register LR(R14) ✓

Program Counter PC(R15) ✓

Single-precision Floating-point Registers S0 – S31 ✓

Floating-point Status Control Register FPSCR ✓

Application Program Status Register APSR ✓

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 7 of 100
Oct.29.25

下記の表 1-2～表 1-3 は Armv8-M レジスタの一覧とテスト対応状況を示します。

なお、各レジスタの詳細内容は“Arm®v8-M Architecture Reference Manual”(参考文書[2])を参照くださ

い。

[表記]

✓ : テスト対象

(空白) : テスト対象外

N/A : 利用不可

表 1-2 Armv8-M Registers Tested/Not Tested by CPU Test (1 of 2)

No. Component Register Description Tested by
CPU test

1 Special and

general-purpose

registers

APSR Application Program Status Register ✓

BASEPRI Base Priority Mask Register

CONTROL Control Register

EPSR Execution Program Status Register

FAULTMASK Fault Mask Register

FPSCR Floating-point Status and Control Register ✓

IPSR Interrupt Program Status Register

LO_BRANCH_INFO Loop and branch tracking information N/A

LR(R14) Link Register ✓

MSPLIM Main Stack Pointer Limit Register

PC(R15) Program Counter ✓

PRIMASK Exception Mask Register

PSPLIM Process Stack Pointer Limit Register

Rn (R0 - R12) General-Purpose Register n ✓

SP (R13) Current Stack Pointer Register ✓

SP Stack Pointer (Non-secure)

S0 – S31 Single-precision Floating-point Registers ✓

VPR
Vector Predication Status and Control

Register
N/A

XPSR Combined Program Status Registers

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 8 of 100
Oct.29.25

表 1-3 Armv8-M Registers Tested/Not Tested by CPU Test (2 of 2)

No. Component Register
Tested by

CPU test

2 Payloads All registers

3 Instrumentation Macrocell All registers

4 Data Watchpoint and Trace All registers

5 Flash Patch and Breakpoint All registers

6 Performance Monitoring Unit All registers N/A

7 Reliability, Availability and Serviceability Extension Fault Status Register
(Registers starting at address 0xE0005000) All registers N/A

8 Implementation Control Block All registers

9 SysTick Timer All registers

10 Nested Vectored Interrupt Controller All registers

11 System Control Block All registers

12 Memory Protection Unit All registers

13 Security Attribution Unit All registers

14 Debug Control Block All registers

15 Software Interrupt Generation All registers

16 Reliability, Availability and Serviceability Extension Fault Status Register
(Registers starting at address 0xE000EF04) All registers

17 Floating-Point Extension All registers

18 Cache Maintenance Operations All registers

19 Debug Identification Block All registers

20 Implementation Control Block (NS alias) All registers

21 SysTick Timer (NS alias) All registers

22 Nested Vectored Interrupt Controller (NS alias) All registers

23 System Control Block (NS alias) All registers

24 Memory Protection Unit (NS alias) All registers

25 Debug Control Block (NS alias) All registers

26 Software Interrupt Generation (NS alias) All registers

27
Reliability, Availability and Serviceability Extension Fault Status Register

(NS Alias)
All registers

28 Floating-Point Extension (NS alias) All registers

29 Cache Maintenance Operations (NS alias) All registers

30 Debug Identification Block (NS alias) All registers

31 Trace Port Interface Unit All registers

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 9 of 100
Oct.29.25

下記の表 1-4 ～表 1-13 は Armv8-M の命令一覧とテスト対応状況を示します。
なお、各命令の詳細内容は“Arm® Cortex®-M33 Devices Generic User Guide” (参考文書[1])を参照ください。

主な目的は、個々の命令をテストすることではなく、CPU コアのハードウェア障害を検出することであ

ることに注意してください。

 [表記]

✓ ： テスト対象

(空白) ：テスト対象外

N/A ： 適用外です。

* ：テストは行われていませんが、他の命令との組み合わせで障害が検出されています（対象命令

のニーモニックは他の命令エンコーディングによってテストされ（「Arm®v8-M アーキテクチャリファレン

スマニュアル」を参照）、対象命令の命令エンコーディングは他の命令によってテストされます）。

主な目的は、個々の命令をテストすることではなく、CPU コアのランダムな永続的な障害を検出するこ

とです。

表 1-4 Armv8-M Instructions Tested/Not Tested by CPU Test (1 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

1 ADC (immediate) * 21 BIC (immediate) *

2 ADC (register) ✓ 22 BIC (register) ✓

3 ADD (SP plus immediate) ✓ 23 BKPT

4 ADD (SP plus register) * 24 BL ✓

5 ADD (immediate) * 25 BLX, BLXNS ✓

6 ADD (immediate, to PC) * 26 BX, BXNS ✓

7 ADD (register) ✓ 27 CBNZ, CBZ ✓

8 ADR ✓ 28 CDP, CDP2

9 AND (immediate) * 29 CINC N/A

10 AND (register) ✓ 30 CINV N/A

11 ASR (immediate) ✓ 31 CLREX ✓

12 ASR (register) * 32 CLRM N/A

13 ASRL (immediate) N/A 33 CLZ ✓

14 ASRL (register) N/A 34 CMN (immediate) *

15 ASRS (immediate) * 35 CMN (register) ✓

16 ASRS (register) ✓ 36 CMP (immediate) *

17 B ✓ 37 CMP (register) ✓

18 BF, BFX, BFL, BFLX, BFCSEL N/A 38 CNEG N/A

19 BFC ✓ 39 CPS

20 BFI ✓ 40 CSDB N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 10 of 100
Oct.29.25

表 1-5 Armv8-M Instructions Tested/Not Tested by CPU Test (2 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

41 CSEL N/A 71 LDC, LDC2 (literal) N/A

42 CSET N/A 72 LDM, LDMIA, LDMFD ✓

43 CSETM N/A 73 LDMDB, LDMEA ✓

44 CSINC N/A 74 LDR (immediate) ✓

45 CSINV N/A 75 LDR (literal) *

46 CSNEG N/A 76 LDR (register) ✓

47 CX1 N/A 77 LDRB (immediate) ✓

48 CX1D N/A 78 LDRB (literal) *

49 CX2 N/A 79 LDRB (register) *

50 CX2D N/A 80 LDRBT ✓

51 CX3 N/A 81 LDRD (immediate) ✓

52 CX3D N/A 82 LDRD (literal) *

53 DBG 83 LDREX ✓

54 DMB 84 LDREXB ✓

55 DSB 85 LDREXH ✓

56 EOR (immediate) * 86 LDRH (immediate) ✓

57 EOR (register) ✓ 87 LDRH (literal) ✓

58 ESB N/A 88 LDRH (register) *

59 FLDMDBX, FLDMIAX 89 LDRHT ✓

60 FSTMDBX, FSTMIAX 90 LDRSB (immediate) *

61 ISB 91 LDRSB (literal) ✓

62 IT ✓ 92 LDRSB (register) ✓

63 LCTP N/A 93 LDRSBT ✓

64 LDA ✓ 94 LDRSH (immediate) ✓

65 LDAB ✓ 95 LDRSH (literal) *

66 LDAEX ✓ 96 LDRSH (register) ✓

67 LDAEXB ✓ 97 LDRSHT ✓

68 LDAEXH ✓ 98 LDRT ✓

69 LDAH ✓ 99 LE, LETP N/A

70 LDC, LDC2 (immediate) N/A 100 LSL (immediate) ✓

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 11 of 100
Oct.29.25

表 1-6 Armv8-M Instructions Tested/Not Tested by CPU Test (3 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

101 LSL (register) * 131 PKHBT, PKHTB ✓

102 LSLL (immediate) N/A 132 PLD (literal)

103 LSLL (register) N/A 133 PLD, PLDW (immediate)

104 LSLS (immediate) * 134 PLD, PLDW (register)

105 LSLS (register) ✓ 135 PLI (immediate, literal)

106 LSR (immediate) ✓ 136 PLI (register)

107 LSR (register) * 137 POP (multiple registers) ✓

108 LSRL (immediate) N/A 138 POP (single register) ✓

109 LSRS (immediate) * 139 PSSBB N/A

110 LSRS (register) ✓ 140 PUSH (multiple registers) ✓

111 MCR, MCR2 141 PUSH (single register) ✓

112 MCRR, MCRR2 142 QADD ✓

113 MLA ✓ 143 QADD16 ✓

114 MLS ✓ 144 QADD8 ✓

115 MOV (immediate) ✓ 145 QASX ✓

116 MOV (register) * 146 QDADD ✓

117 MOV, MOVS
(register-shifted register)

* 147 QDSUB ✓

118 MOVT ✓ 148 QSAX ✓

119 MRC, MRC2 149 QSUB ✓

120 MRRC, MRRC2 150 QSUB16 ✓

121 MRS ✓ 151 QSUB8 ✓

122 MSR (register) ✓ 152 RBIT ✓

123 MUL ✓ 153 REV ✓

124 MVN (immediate) * 154 REV16 ✓

125 MVN (register) ✓ 155 REVSH ✓

126 NOP 156 ROR (immediate) ✓

127 ORN (immediate) * 157 ROR (register) *

128 ORN (register) ✓ 158 RORS (immediate) *

129 ORR (immediate) * 159 RORS (register) ✓

130 ORR (register) ✓ 160 RRX ✓

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 12 of 100
Oct.29.25

表 1-7 Armv8-M Instructions Tested/Not Tested by CPU Test (4 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

161 RRXS ✓ 191 SMUAD, SMUADX ✓

162 RSB (immediate) ✓ 192 SMULBB, SMULBT, SMULTB,
SMULTT

✓

163 RSB (register) * 193 SMULL ✓

164 SADD16 ✓ 194 SMULWB, SMULWT ✓

165 SADD8 ✓ 195 SMUSD, SMUSDX ✓

166 SASX ✓ 196 SQRSHR (register) N/A

167 SBC (immediate) * 197 SQRSHRL (register) N/A

168 SBC (register) ✓ 198 SQSHL (immediate) N/A

169 SBFX ✓ 199 SQSHLL (immediate) N/A

170 SDIV ✓ 200 SRSHR (immediate) N/A

171 SEL ✓ 201 SRSHRL (immediate) N/A

172 SEV 202 SSAT ✓

173 SG 203 SSAT16 ✓

174 SHADD16 ✓ 204 SSAX ✓

175 SHADD8 ✓ 205 SSBB N/A

176 SHASX ✓ 206 SSUB16 ✓

177 SHSAX ✓ 207 SSUB8 ✓

178 SHSUB16 ✓ 208 STC, STC2 N/A

179 SHSUB8 ✓ 209 STL ✓

180 SMLABB, SMLABT, SMLATB,
SMLATT

✓ 210 STLB ✓

181 SMLAD, SMLADX ✓ 211 STLEX ✓

182 SMLAL ✓ 212 STLEXB ✓

183 SMLALBB, SMLALBT,
SMLALTB, SMLALTT

✓ 213 STLEXH ✓

184 SMLALD, SMLALDX ✓ 214 STLH ✓

185 SMLAWB, SMLAWT ✓ 215 STM, STMIA, STMEA ✓

186 SMLSD, SMLSDX ✓ 216 STMDB, STMFD ✓

187 SMLSLD, SMLSLDX ✓ 217 STR (immediate) ✓

188 SMMLA, SMMLAR ✓ 218 STR (register) ✓

189 SMMLS, SMMLSR ✓ 219 STRB (immediate) ✓

190 SMMUL, SMMULR ✓ 220 STRB (register) ✓

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 13 of 100
Oct.29.25

表 1-8 Armv8-M Instructions Tested/Not Tested by CPU Test (5 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

221 STRBT ✓ 251 UBFX ✓

222 STRD (immediate) ✓ 252 UDF

223 STREX ✓ 253 UDIV ✓

224 STREXB ✓ 254 UHADD16 ✓

225 STREXH ✓ 255 UHADD8 ✓

226 STRH (immediate) ✓ 256 UHASX ✓

227 STRH (register) ✓ 257 UHSAX ✓

228 STRHT ✓ 258 UHSUB16 ✓

229 STRT ✓ 259 UHSUB8 ✓

230 SUB (SP minus immediate) ✓ 260 UMAAL ✓

231 SUB (SP minus register) * 261 UMLAL ✓

232 SUB (immediate) ✓ 262 UMULL ✓

233 SUB (immediate, from PC) * 263 UQADD16 ✓

234 SUB (register) * 264 UQADD8 ✓

235 SVC 265 UQASX ✓

236 SXTAB ✓ 266 UQRSHL (register) N/A

237 SXTAB16 ✓ 267 UQRSHLL (register) N/A

238 SXTAH ✓ 268 UQSAX ✓

239 SXTB ✓ 269 UQSHL (immediate) N/A

240 SXTB16 ✓ 270 UQSHLL (immediate) N/A

241 SXTH ✓ 271 UQSUB16 ✓

242 TBB, TBH ✓ 272 UQSUB8 ✓

243 TEQ (immediate) * 273 URSHR (immediate) N/A

244 TEQ (register) ✓ 274 URSHRL (immediate) N/A

245 TST (immediate) * 275 USAD8 ✓

246 TST (register) ✓ 276 USADA8 ✓

247 TT, TTT, TTA, TTAT 277 USAT ✓

248 UADD16 ✓ 278 USAT16 ✓

249 UADD8 ✓ 279 USAX ✓

250 UASX ✓ 280 USUB16 ✓

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 14 of 100
Oct.29.25

表 1-9 Armv8-M Instructions Tested/Not Tested by CPU Test (6 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

281 USUB8 ✓ 301 VAND N/A

282 UXTAB ✓ 302 VBIC (immediate) N/A

283 UXTAB16 ✓ 303 VBIC (register) N/A

284 UXTAH ✓ 304 VBRSR N/A

285 UXTB ✓ 305 VCADD (floating-point) N/A

286 UXTB16 ✓ 306 VCADD N/A

287 UXTH ✓ 307 VCLS N/A

288 VABAV N/A 308 VCLZ N/A

289 VABD (floating-point) N/A 309 VCMLA (floating-point) N/A

290 VABD N/A 310 VCMP (floating-point) N/A

291 VABS (floating-point) N/A 311 VCMP (vector) N/A

292 VABS (vector) N/A 312 VCMP ✓

293 VABS ✓ 313 VCMPE ✓

294 VADC N/A 314 VCMUL (floating-point) N/A

295 VADD (floating-point) N/A 315 VCTP N/A

296 VADD (vector) N/A 316 VCVT (between double-precision
and single-precision)

N/A

297 VADD ✓ 317 VCVT (between floating-point
and fixed-point) (vector)

N/A

298 VADDLV N/A 318 VCVT (between floating-point
and fixed-point)

✓

299 VADDV N/A 319 VCVT (between floating-point
and integer)

N/A

300 VAND (immediate) N/A 320 VCVT (between single and half-
precision floating-point)

N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 15 of 100
Oct.29.25

表 1-10 Armv8-M Instructions Tested/Not Tested by CPU Test (7 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

321 VCVT (floating-point to integer) ✓ 346 VFNMA ✓

322 VCVT (from floating-point to integer) N/A 347 VFNMS ✓

323 VCVT (integer to floating-point) ✓ 348 VHADD N/A

324 VCVTA ✓ 349 VHCADD N/A

325 VCVTB 350 VHSUB N/A

326 VCVTM ✓ 351 VIDUP, VIWDUP N/A

327 VCVTN ✓ 352 VINS N/A

328 VCVTP ✓ 353 VLD2 N/A

329 VCVTR ✓ 354 VLD4 N/A

330 VCVTT 355 VLDM ✓

331 VCX1 (vector) N/A 356 VLDR (System Register) N/A

332 VCX1 N/A 357 VLDR ✓

333 VCX2 (vector) N/A 358 VLDRB, VLDRH, VLDRW N/A

334 VCX2 N/A 359 VLDRB, VLDRH, VLDRW,
VLDRD (vector)

N/A

335 VCX3 (vector) N/A 360 VLLDM

336 VCX3 N/A 361 VLSTM

337 VDDUP, VDWDUP N/A 362 VMAX, VMAXA N/A

338 VDIV ✓ 363 VMAXNM ✓

339 VDUP N/A 364 VMAXNM, VMAXNMA
(floating-point)

N/A

340 VEOR N/A 365 VMAXNMV, VMAXNMAV
(floating-point)

N/A

341 VFMA (vector by scalar plus vector,
floating-point)

N/A 366 VMAXV, VMAXAV N/A

342 VFMA ✓ 367 VMIN, VMINA N/A

343 VFMA, VFMS (floating-point) N/A 368 VMINNM ✓

344 VFMAS (vector by vector plus scalar,
floating-point)

N/A 369 VMINNM, VMINNMA (floating-
point)

N/A

345 VFMS ✓ 370 VMINNMV, VMINNMAV
(floating-point)

N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 16 of 100
Oct.29.25

表 1-11 Armv8-M Instructions Tested/Not Tested by CPU Test (8 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

371 VMINV, VMINAV N/A 386 VMOV (general-purpose register
to vector lane)

N/A

372 VMLA (vector by scalar plus vector) N/A 387
VMOV (half of doubleword
register to single general-purpose
register)

N/A

373 VMLA ✓ 388 VMOV (immediate) (vector) N/A

374 VMLADAV N/A 389 VMOV (immediate) ✓

375 VMLALDAV N/A 390 VMOV (register) (vector) N/A

376 VMLALV N/A 391 VMOV (register) ✓

377 VMLAS (vector by vector plus scalar) N/A 392
VMOV (single general-purpose
register to half of doubleword
register)

N/A

378 VMLAV N/A 393 VMOV (two 32-bit vector lanes to
two general-purpose registers)

N/A

379 VMLS ✓ 394
VMOV (two general-purpose
registers to two 32-bit vector
lanes)

N/A

380 VMLSDAV N/A 395 VMOV (vector lane to general-
purpose register)

N/A

381 VMLSLDAV N/A 396 VMOVL N/A

382 VMOV (between general-purpose
register and half-precision register)

N/A 397 VMOVN N/A

383 VMOV (between general-purpose
register and single-precision register)

✓ 398 VMOVX N/A

384 VMOV (between two general-purpose
registers and a doubleword register)

N/A 399 VMRS ✓

385
VMOV (between two general-purpose
registers and two single-precision
registers)

✓ 400 VMSR ✓

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 17 of 100
Oct.29.25

表 1-12 Armv8-M Instructions Tested/Not Tested by CPU Test (9 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

401 VMUL (floating-point) N/A 431 VQDMLSDH, VQRDMLSDH N/A

402 VMUL (vector) N/A 432 VQDMULH, VQRDMULH N/A

403 VMUL ✓ 433 VQDMULL N/A

404 VMULH, VRMULH N/A 434 VQMOVN N/A

405 VMULL (integer) N/A 435 VQMOVUN N/A

406 VMULL (polynomial) N/A 436 VQNEG N/A

407 VMVN (immediate) N/A 437 VQRSHL N/A

408 VMVN (register) N/A 438 VQRSHRN N/A

409 VNEG (floating-point) N/A 439 VQRSHRUN N/A

410 VNEG (vector) N/A 440 VQSHL, VQSHLU N/A

411 VNEG ✓ 441 VQSHRN N/A

412 VNMLA ✓ 442 VQSHRUN N/A

413 VNMLS ✓ 443 VQSUB N/A

414 VNMUL ✓ 444 VREV16 N/A

415 VORN (immediate) N/A 445 VREV32 N/A

416 VORN N/A 446 VREV64 N/A

417 VORR (immediate) N/A 447 VRHADD N/A

418 VORR N/A 448 VRINT (floating-point) N/A

419 VPNOT N/A 449 VRINTA ✓

420 VPOP ✓ 450 VRINTM ✓

421 VPSEL N/A 451 VRINTN ✓

422 VPST N/A 452 VRINTP ✓

423 VPT (floating-point) N/A 453 VRINTR ✓

424 VPT N/A 454 VRINTX ✓

425 VPUSH ✓ 455 VRINTZ ✓

426 VQABS N/A 456 VRMLALDAVH N/A

427 VQADD N/A 457 VRMLALVH N/A

428 VQDMLADH, VQRDMLADH N/A 458 VRMLSLDAVH N/A

429 VQDMLAH, VQRDMLAH
(vector by scalar plus vector)

N/A 459 VRSHL N/A

430 VQDMLASH, VQRDMLASH
(vector by vector plus scalar)

N/A 460 VRSHR N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 18 of 100
Oct.29.25

表 1-13 Armv8-M Instructions Tested/Not Tested by CPU Test (10 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

461 VRSHRN N/A 474 VST4 N/A

462 VSBC N/A 475 VSTM ✓

463 VSCCLRM N/A 476 VSTR (System Register) N/A

464 VSEL ✓ 477 VSTR ✓

465 VSHL N/A 478 VSTRB, VSTRH, VSTRW N/A

466 VSHLC N/A 479 VSTRB, VSTRH, VSTRW, VSTRD (vector) N/A

467 VSHLL N/A 480 VSUB (floating-point) N/A

468 VSHR N/A 481 VSUB (vector) N/A

469 VSHRN N/A 482 VSUB ✓

470 VSLI N/A 483 WFE

471 VSQRT ✓ 484 WFI

472 VSRI N/A 485 WLS, DLS, WLSTP, DLSTP N/A

473 VST2 N/A 486 YIELD

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 19 of 100
Oct.29.25

1.1.2 テストエラー
エラーが検出された場合、CPU テストは下記の関数にジャンプします。
このエラー処理関数は閉ループ処理になっているため、return してはいけません。
すべてのテスト関数は、C 関数呼び出し後のレジスタ保存の規則に従います。したがって、ユーザはこれ

らの関数を通常の C 関数のように呼び出すことができ、事前にレジスタ値を保存するいかなる責任もありま

せん。

extern void CPU_Test_ErrorHandler(void);

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 20 of 100
Oct.29.25

1.1.3 CPU ソフトウェア API
CPU テストに関連するソフトウェア API ソースファイルは表 1-14 の通りです。
CPU テスト API を実行すると、関連する CPU レジスタや命令コードがテストされます。
引数に出力された実行結果を確認することで、CPU 障害を検出できます。

コードをコンパイルする前に CPU テストを構成します。表 1-15 及び表 1-16 に CPU テスト構成のディレ

クティブと各 CPU テストを示します。
詳細については”2.1.3 CPU テストの事前準備”を参照ください。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 21 of 100
Oct.29.25

表 1-14 CPU ソフトウェア API ソースファイル

ファイル名 備考
r_cpu_diag_config.h CPU テストディレクティブの定義

cpu_test.c CPU テスト実装部

r_cpu_diag_0.asm
r_cpu_diag_1.asm
r_cpu_diag_2.asm
r_cpu_diag_3.asm
r_cpu_diag_4_1.asm
r_cpu_diag_4_2.asm
r_cpu_diag_5.asm
r_cpu_diag_6.asm
r_cpu_diag_7_1.asm
r_cpu_diag_7_2.asm
r_cpu_diag_7_3.asm
r_cpu_diag_8.asm
r_cpu_diag_9.asm
r_cpu_diag_10.asm
r_cpu_diag_11.asm
r_cpu_diag_12.asm
r_cpu_diag_13.asm
r_cpu_diag_14_1.asm
r_cpu_diag_14_2.asm
r_cpu_diag_15_1.asm
r_cpu_diag_15_2.asm
r_cpu_diag_15_3.asm
r_cpu_diag_15_4.asm
r_cpu_diag_15_5.asm
r_cpu_diag_15_6.asm
r_cpu_diag_16.asm

CPU テストコア機能の定義

注：
一部のテストは、
r_cpu_diag_7_1.asm、
r_cpu_diag_7_2.asm
などの複数のファイルで構成されていること

に注意してください。

r_cpu_diag_0.h
r_cpu_diag_1.h
r_cpu_diag_2.h
r_cpu_diag_3.h
r_cpu_diag_4_1.h
r_cpu_diag_4_2.h
r_cpu_diag_5.h
r_cpu_diag_6.h
r_cpu_diag_7_1.h
r_cpu_diag_7_2.h
r_cpu_diag_7_3.h
r_cpu_diag_8.h
r_cpu_diag_9.h
r_cpu_diag_10.h
r_cpu_diag_11.h
r_cpu_diag_12.h
r_cpu_diag_13.h
r_cpu_diag_14_1.h
r_cpu_diag_14_2.h
r_cpu_diag_15_1.h
r_cpu_diag_15_2.h
r_cpu_diag_15_3.h
r_cpu_diag_15_4.h

CPU テストコア機能の宣言

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 22 of 100
Oct.29.25

r_cpu_diag_15_5.h
r_cpu_diag_15_6.h
r_cpu_diag_16.h
r_cpu_diag.c CPU テスト API 関数の定義
r_cpu_diag.h CPU テスト API 関数の宣言

r_cpu_diag.inc アセンブラマクロの定義

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 23 of 100
Oct.29.25

表 1-15 Directives for Software Configuration for CPU Test
ディレクテブ名 説明

BUILD_R_CPU_DIAG_0 “1”に設定すると、CPU テスト関数：R_CPU_Diag0 が構築されます。

BUILD_R_CPU_DIAG_1 “1”に設定すると、CPUテスト関数：R_CPU_Diag1が構築されます。
BUILD_R_CPU_DIAG_2 “1”に設定すると、CPUテスト関数：R_CPU_Diag2が構築されます。
BUILD_R_CPU_DIAG_3 “1”に設定すると、CPUテスト関数：R_CPU_Diag3が構築されます。
BUILD_R_CPU_DIAG_4_1 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag4_1が構築されます。
BUILD_R_CPU_DIAG_4_2 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag4_2が構築されます。
BUILD_R_CPU_DIAG_5 “1”に設定すると、CPUテスト関数：R_CPU_Diag5が構築されます。
BUILD_R_CPU_DIAG_6 “1”に設定すると、CPUテスト関数：R_CPU_Diag6が構築されます。
BUILD_R_CPU_DIAG_7_1 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag7_1が構築されます。
BUILD_R_CPU_DIAG_7_2 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag7_2が構築されます。
BUILD_R_CPU_DIAG_7_3 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag7_3が構築されます。
BUILD_R_CPU_DIAG_8 “1”に設定すると、CPUテスト関数：R_CPU_Diag8が構築されます。
BUILD_R_CPU_DIAG_9 “1”に設定すると、CPUテスト関数：R_CPU_Diag9が構築されます。
BUILD_R_CPU_DIAG_10 “1”に設定すると、CPUテスト関数：R_CPU_Diag10が構築されます。
BUILD_R_CPU_DIAG_11 “1”に設定すると、CPUテスト関数：R_CPU_Diag11が構築されます。
BUILD_R_CPU_DIAG_12 “1”に設定すると、CPUテスト関数：R_CPU_Diag12が構築されます。
BUILD_R_CPU_DIAG_13 “1”に設定すると、CPUテスト関数：R_CPU_Diag13が構築されます。
BUILD_R_CPU_DIAG_14_1 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag14_1が構築されます。
BUILD_R_CPU_DIAG_14_2 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag14_2が構築されます。
BUILD_R_CPU_DIAG_15_1 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag15_1が構築されます。
BUILD_R_CPU_DIAG_15_2 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag15_2が構築されます。
BUILD_R_CPU_DIAG_15_3 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag15_3が構築されます。
BUILD_R_CPU_DIAG_15_4 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag15_4が構築されます。
BUILD_R_CPU_DIAG_15_5 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag15_5が構築されます。
BUILD_R_CPU_DIAG_15_6 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag15_6が構築されます。
BUILD_R_CPU_DIAG_16 *1 “1”に設定すると、CPUテスト関数：R_CPU_Diag16が構築されます。

 【注】： 表 1-16 参照
一部のテストには、BUILD_R_CPU_DIAG_7_1、BUILD_R_CPU_DIAG_7_2 などの複数のディレクティブがあることに注意

してください。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 24 of 100
Oct.29.25

表 1-16 CPU Test Target
Test No index

*1
Function name
*2

Objective of the Test
(テストの目的)

0 0 R_CPU_Diag0 Four basic arithmetic operations (add, sub, mul and div)
4 つの基本的な算術演算（add、sub、mul、および div）

1 1 R_CPU_Diag1 Sign/Zero extension operations
Sign/Zero extension 操作(※SXTA and UXTA 命令)

2 2 R_CPU_Diag2 Branch, logical, comparison and conditional operations
分岐、論理、比較、および条件付き操作(※ADR 命令)

3 3 R_CPU_Diag3 Bit manipulation and data transfer operations
ビット操作とデータ転送

4 4
5

R_CPU_Diag4_1
R_CPU_Diag4_2

Memory access (Load/Store) without exclusive operations
排他的でないメモリアクセス（ロード/ストア）

5 6 R_CPU_Diag5 Memory access (Load/Store) with exclusive and privileged operations
排他的および特権付きのメモリアクセス（ロード/ストア）

6 7 R_CPU_Diag6 System related operations
システム関連

7 8
9
10

R_CPU_Diag7_1
R_CPU_Diag7_2
R_CPU_Diag7_3

Registers R0 - R12, MSP(R13), LR(R14), and APSR diagnostic
operations
R0-R12, SP(R13), LR(R14), APSR 各レジスタ

8 11 R_CPU_Diag8 Multiply-accumulate and multiply-subtract operations (MAC and MSB)
積和演算と乗算減算演算（MAC および MSB）

9 12 R_CPU_Diag9 Combined arithmetic operations
結合された算術演算

10 13 R_CPU_Diag10 Saturating and rounding operations
飽和および丸め操作

11 14 R_CPU_Diag11 Floating-point four basic arithmetic, absolute value and comparison
operations
浮動小数点 4 つの基本的な算術演算、絶対値演算、および比較演算

12 15 R_CPU_Diag12 Floating-point multiply-accumulate and multiply-subtract operation
浮動小数点の積和演算と乗算-減算演算

13 16 R_CPU_Diag13 Floating-point rounding and data type conversion
浮動小数点の丸めとデータ型変換

14 17
18

R_CPU_Diag14_1
R_CPU_Diag14_2

Floating-point memory access and data transfer diagnostic operations
浮動小数点メモリアクセスとデータ転送

15 19
20
21
22
23
24

R_CPU_Diag15_1

R_CPU_Diag15_2

R_CPU_Diag15_3

R_CPU_Diag15_4

R_CPU_Diag15_5

R_CPU_Diag15_6

Registers S0 - S31 and FPSCR
S0 – S31, FPSCR 各レジスタ

16 25 R_CPU_Diag16 CPU register test using WALKPAT algorithm
WALKPAT アルゴリズムを使用した CPU レジスタテスト

 【注】 1. 複数のインデックスにまたがる場合は、すべてのインデックスでテストが必要です。
2. 各関数をコード生成するためのソフトウエア構成ディレクティブについては表 1-15 を参照。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 25 of 100
Oct.29.25

■ cpu_test.c ファイル

Syntax

void CPU_Test_ClassC(void)

Description
次の順序で CPU テストを実行します。

1. 現在のスタックミットレジスタを退避します。
SaveMspPt = __get_MSPLIM();
SavePspPt = __get_PSPLIM();

2. CPU スタックポインタ監視機能を無効にします。
__set_MSPLIM(0);
__set_PSPLIM(0);

3. パラメータを渡し、関数 R_CPU_Diag を呼び出します。

4. 引数「result」の値を確認します。

5. 結果が OK の場合、上記 3.へ戻ります。(次のテストを実施)。
定義された全ての CPU テストが完了したら下記 6 へ。
なお、エラーが検出された場合、外部関数 CPU_Test_ErrorHandler が呼び出されます。
詳細については、個々のテストを参照してください。

6. 上記 1 で退避した CPU スタックポインタリミットレジスタを復帰します。

7. CPU_Test_PC

8. 全てのテストが実施されたなら関数を終了します。
実施されたなかった場合は外部関数 CPU_Test_ErrorHandler が呼び出されます。

Input Parameters
NONE N/A

Output Parameters

const uint32_t forceFail
強制 FAIL オプション
“1”に固定(0 以外は、無効のため)
※強制 FAIL にしたい場合、”0”固定に変更してください。

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 26 of 100
Oct.29.25

Syntax

void CPU_Test_PC(void)

Description

この関数は、プログラムカウンタ（PC）レジスタをテストします。
これにより、PC が確実に動作していることを確認します。
この関数は、関数が実際に実行されたことを確認できるように、指定されたパラメータの反転値を返しま

す。この戻り値が正しいかどうかがチェックされます。
エラーが検出された場合、外部関数 CPU_Test_ErrorHandler が呼び出されます。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 27 of 100
Oct.29.25

■ r_cpu_diag.c ファイル

Syntax

void R_CPU_Diag(uint32_t index, const uint32_t forceFail, int32_t *result)

Description
引数 index を使用して、CPU テスト番号に該当するテスト関数を実行します。

引数 index とテスト番号、該当テスト関数については表 1-16 を参照してください。

1. “resultTemp”に初期値を設定します。

テスト関数を実行すると、テスト結果が「resultTemp」に保存されます。

2. 引数 Index の値が有効がどうかをチェックします。
無効の場合、テスト結果に FAIL(=0)を設定して終了します。

3. 引数 index の値に従い、該当する CPU テストのテスト関数を実行します。

4. 結果を*result へ設定し、処理を終了します。

Input Parameters

uint32_t index CPU テスト番号(表 1-16 参照)
引数の値が無効な場合は FAIL を返します。

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 28 of 100
Oct.29.25

Syntax

static void norm_null(const uint32_t forceFail, int32_t *result)

Description

この関数は、ディレクティブでコンパイルから除外された CPU テスト関数のダミー関数です。

テスト結果を PASS に設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的に FAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 29 of 100
Oct.29.25

■ r_cpu_diag_0.asm ファイル

Syntax

void R_CPU_Diag0(const uint32_t forceFail, int32_t *result)

Description
1. Addition instructions test

ADCS(register), ADDS (register), SADD16, SADD8, UADD16, UADD8, SHADD16, SHADD8
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2 Subtraction instructions test
SBCS (register), SUBS (immediate), RSBS (immediate), SSUB16, SSUB8, USUB16, USUB8,
SHSUB16, SHSUB8
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3 Multiplication instructions test
MULS, SMULL, SMULWB, SMMULR, SMULTB, UMULL
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

4 Division instructions test
SDIV, UDIV
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

5 Addition and subtraction for stack pointer test
SUB (SP minus immediate), ADD (SP plus immediate), SUB.W (SP minus immediate),
ADD.W (SP plus immediate)
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 30 of 100
Oct.29.25

■ r_cpu_diag_1.asm ファイル

Syntax

void R_CPU_Diag1(const uint32_t forceFail, int32_t *result)

Description
1 Sign extension

SXTAB T1, SXTAB16 T1, SXTAH T1, SXTB T1, SXTB16 T1, SXTH T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2 Zero extension
UXTAB T1, UXTAB16 T1, UXTAH T1, UXTB T1, UXTB16 T1, UXTH T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的に FAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 31 of 100
Oct.29.25

■ r_cpu_diag_2.asm ファイル

Syntax

void R_CPU_Diag2(const uint32_t forceFail, int32_t *result)

Description
1 Branch

ADR T1, ADR T3, BEQ T1, B T2, BL T1, BLX T1, BX T1, CBZ T1, IT EQ T1, TBB T1, TBH T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2 Logical test
TEQ T1, TST T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3 Logical operation
ANDS T1, ORRS T1, ORNS T1, EORS T1, MVNS T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

4 Comparison
CMN T1, CMP T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 32 of 100
Oct.29.25

■ r_cpu_diag_3.asm ファイル

Syntax

void R_CPU_Diag3(const uint32_t forceFail, int32_t *result)

Description
1 Bit manipulation

ASR (immediate) T3, ASRS (register) T1, BFC T1, BFI T1, BICS (register) T1,
LSL (immediate) T3, LSLS (register) T1, LSR (immediate) T3, LSRS (register) T1,
ROR (immediate) T3, RORS (register) T1, RRX T3, RRXS T3, CLZ T1, RBIT T1,
SBFX T1, UBFX T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2 Data manipulation
REV T1, REV16 T1, REVSH T1, SEL T1, PKHBT T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3 Data transfer
MOVS (immediate) T1, MOVT T1, MRS T1, MSR (register) T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 33 of 100
Oct.29.25

■ r_cpu_diag_4_1.asm

Syntax

void R_CPU_Diag4_1(const uint32_t forceFail, int32_t *result)

Description
1 LDR and STR

LDR (immediate) T2, STR (immediate) T2 ,
LDR (immediate) T3, STR (immediate) T3 ,
LDR (immediate) T4, STR (immediate) T4, (post-indexed) ,
LDR (immediate) T4, STR (immediate) T4, (negative immediate) ,
LDR (immediate) T4, STR (immediate) T4, (pre-indexed) ,
LDR (register) T2, STR (register) T2
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2 LDRH and STRH
LDRH (immediate) T1, STRH (immediate) T1 ,
LDRSH (register) T1, STRH (register) T1 ,
LDRSH (immediate) T1, STRH (immediate) T2 ,
LDRSH (immediate) T2, STRH (immediate) T3, (post-indexed) ,
LDRSH (immediate) T2, STRH (immediate) T3, (negative immediate) ,
LDRSH (immediate) T2, STRH (immediate) T3, (pre-indexed) ,
LDRSH (register) T2, STRH (register) T2
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3 LDRB and STRB
LDRSB (register) T1, STRB (register) T1 ,
LDRB (immediate) T1, STRB (immediate) T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 34 of 100
Oct.29.25

■ r_cpu_diag_4_2.asm ファイル

Syntax

void R_CPU_Diag4_2(const uint32_t forceFail, int32_t *result)

Description
4 LDRD and STRD

LDRD (immediate) T1, STRD (immediate) T1, (post-indexed) ,
LDRD (immediate) T1, STRD (immediate) T1, (immediate) ,
LDRD (immediate) T1, STRD (immediate) T1, (pre-indexed)
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

5 LDM and STM
LDM and STM ,
LDM T3, STMDB T2 ,
LDM T2, STM T2 ,
LDMDB T1, STM T2
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

6 LDA and STL
LDA T1, STL T1 ,
LDAH T1, STLH T1 ,
LDAB T1, STLB T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

7 LDRH / LDRSB (literal)
LDRH (literal) T1 ,
LDRSB (literal) T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 35 of 100
Oct.29.25

■ r_cpu_diag_5.asm ファイル

Syntax

void R_CPU_Diag5(const uint32_t forceFail, int32_t *result)

Description
1. LDAEX and STLEX

LDAEX T1, STLEX T1 ,
LDAEXH T1, STLEXH T1 ,
LDAEXB T1, STLEXB T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. LDREX and STREX
LDREX T1, STREX T1 ,
LDREXH T1, STREXH T1 ,
LDREXB T1, STREXB T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3. LDRT and STRT
LDRT T1, STRT T1 ,
LDRHT T1, STRHT T1 ,
LDRSHT T1, STRHT T1 ,
LDRBT T1, STRBT T1 ,
LDRSBT T1, STRBT T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 36 of 100
Oct.29.25

■ r_cpu_diag_6.asm ファイル

Syntax

void R_CPU_Diag6(const uint32_t forceFail, int32_t *result)

Description
1 PUSH and POP

R4, R5, R6, R7, R8, R9 を使用して PUSH 命令後に POP 命令を実行し
R4 と R7、R5 と R8、R6 と R9 の各レジスタで期待値との一致を確認する。

2 Other (miscelaneous) operations
CLREX T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 37 of 100
Oct.29.25

■ r_cpu_diag_7_1.asm ファイル

Syntax

void R_CPU_Diag7_1(const uint32_t forceFail, int32_t *result)

Description
1. Detecting “0” fixed fault for status and control registers

(ステータスおよび制御レジスタの「0」固定障害の検出)
R4, R5 を使用して APSR レジスタの該当ビットへ”1”を書き込み後、読み出しを実行し
R4 と R5 の各レジスタと期待値との一致を確認する。("0”固定になっていないことの確認)

2. Detecting “1” fixed fault for status and control registers
(ステータスおよび制御レジスタの「1」固定障害の検出)
R4, R5 を使用して APSR レジスタの該当ビットへ”0”を書き込み後、読み出しを実行し
R4 と R5 の各レジスタと期待値との一致を確認する。("1”固定になっていないことの確認)

3. Detecting “0” fixed fault for general purpose registers
(汎用レジスタの「0」固定障害の検出)
R0～R12、LR(R14)へ ALL”1”を書き込み後、読み出しを実行し
R0～R12、LR(R14)の各レジスタと期待値との一致を確認する。("0”固定になっていないことの確認)

4. Detecting “1” fixed fault for general purpose registers
(汎用レジスタの「1」固定障害の検出)
R0～R12、LR(R14)へ ALL”0”を書き込み後、読み出しを実行し
R0～R12、LR(R14)の各レジスタと期待値との一致を確認する。("1”固定になっていないことの確認)

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 38 of 100
Oct.29.25

■ r_cpu_diag_7_2.asm ファイル

Syntax

void R_CPU_Diag7_2(const uint32_t forceFail, int32_t *result)

Description
5. Detecting coupling fault for general purpose registers between any two bits : 任意の 2 ビット間

の汎用レジスタの結合障害の検出
R0-R12, R14 レジスタに次のテストを実施します
－Nearest neighbor coupling(Test pattern : 0x55555555)
－Next nearest neighbor coupling(Test pattern : 0x33333333)
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0f)
－8-fold neighbor coupling(Test pattern : 0x00ff00ff)
－16-fold neighbor coupling(Test pattern : 0x0000ffff)

手順は、以下の通り
(1) 上記の各テストパターンを R0 に設定し、R1 へ書き込み、R0 と一致確認する。
(2) 一致すれば書き込み対象レジスタを R2 から R14 まで順に実施する。
(3) 上記の各テストパターンを R14 に設定し、R0 へ書き込み、R0 と一致確認する。
(4) 一致すれば次のテストパターンを実施する。
(5) 全て終了すれば下記のテストへ移行する。

6. Detecting coupling fault for general purpose registers between any two registers : 任意の 2 つ

のレジスタ間の汎用レジスタの結合障害の検出)
－R7、R8、R9、R10、R11、R12、LR（R14）結合障害の検出
－R0、R1、R2、R3、R4、R5、R6 の結合障害の検出
手順は、以下の通り
(1) R0～R6 に各々テストパターンを設定し、R0 を R7 へ、R1 を R8 へ、…、R6 を R14 へ書き込

み、
(2) R0 と R7、R1 と R8、…、R6 と R14 の値の一致を各々確認する。
(3) R7～R14 に各々テストパターンを設定し、R8 を R0 へ、R9 を R1 へ、…、R7 を R6 へ書き込

み、
(4) R8 と R0、R9 と R1、…、R7 と R6 の値の一致を各々確認する。
テストを終了する。

なお、R13(SP)は本テストでは対象外です。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 39 of 100
Oct.29.25

■ r_cpu_diag_7_3.asm ファイル

Syntax

void R_CPU_Diag7_3(const uint32_t forceFail, int32_t *result)

Description
7. Detecting "0" fixed fault for MSP(R13) : MSP（R13）の「0」固定障害の検出

R5 を使用して SP(R13)レジスタへ”0xfffffffc”を書き込み後、読み出しを実行し
R5 と SP(R13)を期待値との一致を確認する。("0”固定になっていないことの確認)

8. Detecting "1" fixed fault for MSP(R13) : MSP（R13）の「1」固定障害の検出

R5 を使用して SP(R13)レジスタへ”0x00000000”を書き込み後、読み出しを実行し
R5 と SP(R13)を期待値との一致を確認する。("1”固定になっていないことの確認)

9. Detecting coupling fault for MSP(R13) between any two bits : 任意の 2 ビット間の MSP（R13）

の結合障害の検出
R13(SP)に次のテストを実施します
－Nearest neighbor coupling(Test pattern : 0x55555554)
－Next nearest neighbor coupling(Test pattern : 0x33333330)
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0c)
－8-fold neighbor coupling(Test pattern : 0x00ff00fc)
－16-fold neighbor coupling(Test pattern : 0x0000fffc)
手順は、以下の通り
(1) 上記の各テストパターンを R5 に設定し、R13(SP)へ書き込み、R5 と一致確認する。
(2) 一致すれば次のテストパターンを実施する。
(3) 全て終了すれば下記のテストへ移行する。

10. Detecting coupling fault between MSP(R13) to other general purpose registers : MSP（R13）

と他の汎用レジスタ間の結合障害の検出
－SP(R13)、R2 カップリング障害の検出
－SP(R13)、R3 カップリング障害の検出
手順は、以下の通り
(1) R6, R7 に各々テストパターンを設定し、R6 を SP(R13)へ、R7 を R2 へ書き込み、
(2) R6 と SP(R13)、R7 と R2 の値の一致を各々確認する。
(3) R6, R7 に各々テストパターンを設定し、R7 を SP(R13)へ、R6 を R3 へ書き込み、
(4) R7 と SP(R13)、R6 と R3 の値の一致を各々確認する。
テストを終了する。

なお、R13(SP)の bit0,1 は”0”固定です。
期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 40 of 100
Oct.29.25

■ r_cpu_diag_8.asm ファイル

Syntax

void R_CPU_Diag8(const uint32_t forceFail, int32_t *result)

Description
1. Multiply accumulate (MAC)

MLA T1, SMLAL T1, SMLALBB T1, SMLALD T1, UMAAL T1, UMLAL T1, SMMLA T1, SMLADX T1,
SMLATT T1, SMLAWB T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. Multiply subtract (MSB)

MLS T1, SMLSLD T1, SMMLSR T1, SMLSD T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 41 of 100
Oct.29.25

■ r_cpu_diag_9.asm ファイル

Syntax

void R_CPU_Diag9(const uint32_t forceFail, int32_t *result)

Description
1. Addition and subtraction

SASX T1, SSAX T1, UASX T1, USAX T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. Addition and halving

UHADD16 T1, UHADD8 T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3. Subtraction and halving

UHSUB16 T1, UHSUB8 T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

4. Addition, subtraction and halving

SHASX T1, SHSAX T1, UHASX T1, UHSAX T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

5. Dual multiplication

SMUAD T1, SMUSDX T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

6. Absolute difference

USAD8 T1, USADA8 T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 42 of 100
Oct.29.25

■ r_cpu_diag_10.asm ファイル

Syntax

void R_CPU_Diag10(const uint32_t forceFail, int32_t *result)

Description
1. Saturating

SSAT T1, SSAT16 T1, USAT T1, USAT16 T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. Saturate addition

QADD T1, QADD16 T1, QADD8 T1, UQADD16 T1, UQADD8 T1, QDADD T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3. Saturate subtraction

QSUB T1, QSUB16 T1, QSUB8 T1, QDSUB T1, UQSUB16 T1, UQSUB8 T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

4. Saturate addition and subtraction

QASX T1, QSAX T1, UQASX T1, UQSAX T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 43 of 100
Oct.29.25

■ r_cpu_diag_11.asm ファイル

Syntax

void R_CPU_Diag11(const uint32_t forceFail, int32_t *result)

Description
1. Four basic arithmetic instructions test

VADD T2, VSUB T2, VMUL T2, VNMUL T2, VDIV T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. Absolute, compare, negative, minimum and maximum instructions test

VABS T2, VCMP T1, VCMPE T1, VNEG T2, VMAXNM T2, VMINNM T2
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3. Conditional select instructions test

VSELGE T1, VSELGT T1, VSELEQ T1, VSELVS T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的に FAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 44 of 100
Oct.29.25

■ r_cpu_diag_12.asm ファイル

Syntax

void R_CPU_Diag12(const uint32_t forceFail, int32_t *result)

Description
1. Multiply accumulate (MAC)

VMLA T2, VNMLA T1, VFMA T2, VFNMA T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. Multiply subtract (MSB)

VMLS T2, VNMLS T1, VFMS T2, VFNMS T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

3. Square root

VSQRT (minus) T1, VSQRT (zero) T1, VSQRT (plus) T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 45 of 100
Oct.29.25

■ r_cpu_diag_13.asm ファイル

Syntax

void R_CPU_Diag13(const uint32_t forceFail, int32_t *result)

Description
1. Floating-point rounding

VRINTA T1, VRINTM T1, VRINTN T1, VRINTP T1, VRINTR (RN mode) T1, VRINTR (RP mode) T1
VRINTR (RM mode) T1, VRINTR (RZ mode) T1, VRINTX T1, VRINTZ T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

2. Floating-point conversion

VCVT (between float and fix) F32 to S32, T1 <fbits = 31>,
VCVT (between float and fix) F32 to U32, T1<fbits = 16>,
VCVT (between float and fix) S32 to F32, T1<fbits = 24>,
VCVT (between float and fix) U32 to F32, T1<fbits = 8>,
VCVT (float to int) F32 to S32, T1,
VCVT (float to int) F32 to U32, T1,
VCVT (int to float), T1,
VCVTA T1, VCVTM T1, VCVTN T1, VCVTP T1, VCVTP T1
の各命令を実行して local signatur、global signature の期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 46 of 100
Oct.29.25

■ r_cpu_diag_14_1.asm ファイル

Syntax

void R_CPU_Diag14_1(const uint32_t forceFail, int32_t *result)

Description
1. VPOP T2 and VPUSH T2

以下のテストを実施します。
－Verify VPOP after VPUSH using single register
手順は次の通りです。
1. R4、R5 レジスタに値を設定し、S1、S0 レジスタへデータを書き込み
2. VPUSH 命令で S1 レジスタをスタックへ退避を実施
3. VPOP 命令で S0 レジスタへスタックから復帰を実施
4. R5 と R4 を介して S0 と S1 レジスタの期待値との一致を確認。
－Verify VPOP after VPUSH using multiple registers
手順は次の通りです。
1. S4～S7 と S0～S4 にデータを設定
2. VPUSH 命令で S4～S7 レジスタをスタックへ退避を実施
3. VPOP 命令で S0～S4 レジスタへスタックから復帰を実施
4. R4-R7 を介して S0 と S4、S1 と S5、S2 と S6、S3 と S7 の各レジスタで期待値との一致を確

認

2. VLDR/VLDM T2 and VSTR/VSTM T2

以下のテストを実施します。
－Verify VLDR after VSTR using single register
手順は次の通りです。
1. S1、S0 レジスタへデータを書き込み
2. VSTR 命令で S1 レジスタをスタックへストアを実施
3. VLDR 命令で S0 レジスタへスタックからロードを実施
4. R4,R5 を介して S0、S1 レジスタの期待値との一致を確認
－Verify VLDM after VSTM using multiple registers
手順は次の通りです。
1. S4～S7 と S0～S4 にデータを設定
2. VSTM 命令で S4～S7 レジスタをスタックへストアを実施
3. VLDR 命令で S0～S4 レジスタへスタックからロードを実施
4. R4-R7 を介して S0 と S4、S1 と S5、S2 と S6、S3 と S7 の各レジスタで期待値との一致を確

認

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 47 of 100
Oct.29.25

■ r_cpu_diag_14_2.asm ファイル

Syntax

void R_CPU_Diag14_2(const uint32_t forceFail, int32_t *result)

Description
3. VMOV

以下のテストを実施します。
－VMOV (general-purpose register to single-precision register)
手順は次の通りです。
1. S0, R4 にそれぞれデータを設定
2. “VMOV S0, R4”を実施
3. R5 を介して S0 と R4 の各レジスタで期待値との一致を確認
－VMOV (single-precision register to general-purpose register)
手順は次の通りです。
1. S0(= R5), R4 にそれぞれデータを設定
2. “VMOV R4, S0”を実施
3. R5 を介して S0 と R4 の各レジスタで期待値との一致を確認
－VMOV (two general-purpose register to two single-precision register)
手順は次の通りです。
1. S0, S1, R5, R4 にそれぞれデータを設定
2. “VMOV S0, S1, R4, R5”を実施
3. R6 を介して S0 と R4、S1 と R5 の各レジスタで期待値との一致を確認
－VMOV (two single-precision register to two general-purpose register)
手順は次の通りです。
1. S0(=R6), S1(=R7)にそれぞれデータを設定
2. “VMOV R4, R5, S0, S1”を実施
3. R6, R7 を介して S0 と R4、S1 と R5 の各レジスタで期待値との一致を確認
－VMOV (an immediate constant into the destination floating-point register)
手順は次の通りです。
1. S0(=R6), R4 にそれぞれデータを設定(R4 には下記 2.の期待値：#9 の浮動小数点形式を設定)
2. “VMOV.F32 S0, #9”を実施
3. R5 を介して S0 と R4 の各レジスタで期待値との一致を確認
－VMOV (a single-precision register to another single-precision register)
手順は次の通りです。
1. S0(=R6), S1(=R4)にそれぞれデータを設定
2. “VMOV.F32 S0, S1”を実施
3. R5, R4 を介して S0 と S1 の各レジスタで期待値との一致を確認

4. VMRS

以下のテストを実施します。
－VMRS (FPSCR to general-purpose register with {FPSCR N, Z, C, V} = {1, 1, 1, 1})
手順は次の通りです。
1. R4, R5(=FPSCR)にそれぞれデータを設定

({FPSCR N, Z, C, V} = {1, 1, 1, 1}となる設定値)
2. "VMRS R4, FPSCR"を実行
3. R4, R5 を介して R5 と FPSCR の各レジスタで期待値との一致を確認

－VMRS (FPSCR to general-purpose register with {FPSCR N, Z, C, V} = {0, 0, 0, 0})
手順は次の通りです。
1. R4, R5(=FPSCR)にそれぞれデータを設定

({FPSCR N, Z, C, V} = {0, 0, 0, 0}となる設定値)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 48 of 100
Oct.29.25

2. "VMRS R4, FPSCR"を実行
3. R4, R5 を介して R5 と FPSCR の各レジスタで期待値との一致を確認

－VMRS (FPSCR to APSR with {FPSCR N, Z, C, V} = {1, 1, 1, 1})
手順は次の通りです。
1. R4(=APSR), R5(=FPSCR)にそれぞれデータを設定

({FPSCR N, Z, C, V} = {1, 1, 1, 1}となる設定値)
2. "VMRS APSR_nzcv, FPSCR"を実行
3. R4, R5 を介して APSR と FPSCR の各レジスタで期待値との一致を確認

* APSR と FPSCR の N, Z, C, V フラグの値を一致確認

－VMRS (FPSCR to APSR with {FPSCR N, Z, C, V} = {0, 0, 0, 0})
手順は次の通りです。
1. R4(=APSR), R5(=FPSCR)にそれぞれデータを設定

({FPSCR N, Z, C, V} = {0, 0, 0, 0}となる設定値)
2. "VMRS APSR_nzcv, FPSCR"を実行
3. R4, R5 を介して APSR と FPSCR の各レジスタで期待値との一致を確認

* APSR と FPSCR の N, Z, C, V フラグの値を一致確認

5. VMSR

以下のテストを実施します。
－VMSR (general-purpose register to FPSCR with {APSR N, Z, C, V} = {1, 1, 1, 1})
手順は次の通りです。
1. R5(= FPSCR), R4 にそれぞれデータを設定

({FPSCR N, Z, C, V} = {1, 1, 1, 1}となる設定値)
2. "VMSR FPSCR, R4"を実行
3. R5 と R4 介して、R5 と R4 が一致することを確認

* FPSCR の N, Z, C, V フラグの値を一致確認

－VMSR (general-purpose register to FPSCR with {FPSCR N, Z, C, V} = {0, 0, 0, 0})
手順は次の通りです。
1. R5(= FPSCR), R4 にそれぞれデータを設定

({FPSCR N, Z, C, V} = {0, 0, 0, 0}となる設定値)
2. "VMSR FPSCR, R4"を実行
3. R5 と R4 を比較し、R5 と R4 が一致することを確認

* FPSCR の N, Z, C, V フラグの値を一致確認

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail

強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters

int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 49 of 100
Oct.29.25

■ r_cpu_diag_15_1.asm ファイル

Syntax

void R_CPU_Diag15_1(const uint32_t forceFail, int32_t *result)

Description
1. Detecting “0” fixed fault for FPU status and control registers : FPU ステータスおよび制御レジス

タの「0」固定障害の検出
R7, R8 を使用して FPSCR レジスタの該当ビットへ”1”を書き込み後(0xf7c0009f)、読み出しを実行

し期待値との一致を確認する。("0”固定になっていないことの確認)

2. Detecting “1” fixed fault for FPU status and control registers : FPU ステータスおよび制御レジス

タの「1」固定障害の検出
R7, R8 を使用して FPSCR レジスタの該当ビットへ”0”を書き込み後(0x00000000)、読み出しを実行

し期待値との一致を確認する。("1”固定になっていないことの確認)

3. Detecting “0” fixed fault for FPU data registers : 単精度レジスタの「0」固定障害の検出

R7, R8 を使用して単精度レジスタ(S0-S31)の各レジスタ毎に”0xffffffff”を書き込み後、読み出しを実

行し期待値との一致を確認する。("0”固定になっていないことの確認)

4. Detecting “1” fixed fault for FPU data registers: 単精度レジスタの「1」固定障害の検出

R7, R8 を使用して単精度レジスタ(S0-S31)へ各レジスタ毎に”0x00000000”を書き込み後、読み出し

を実行し期待値との一致を確認する。("0”固定になっていないことの確認)

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 50 of 100
Oct.29.25

■ r_cpu_diag_15_2.asm ファイル

Syntax

void R_CPU_Diag15_2(const uint32_t forceFail, int32_t *result)

Description
5. Detecting coupling fault for single-precision registers between any two bits : 任意の 2 ビット間

の単精度レジスタの結合障害の検出
以下のテストを実施します。
－Nearest neighbor coupling(Test pattern : 0x55555555)
－Next nearest neighbor coupling(Test pattern : 0x33333333)
手順は次の通りです。
1. R7 に上記の各テストパターンを設定
2. R7、R8 を使用して単精度レジスタ(S0-S31)の各レジスタ毎にテストパターンを書き込み後、
3. 読み出しを実施
4. R7 と R8 の各レジスタと期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 51 of 100
Oct.29.25

■ r_cpu_diag_15_3.asm ファイル

Syntax

void R_CPU_Diag15_3(const uint32_t forceFail, int32_t *result)

Description
6. Detecting coupling fault for general purpose registers between any two bits : 任意の 2 ビット間

の単精度レジスタの結合障害の検出

以下のテストを実施します。
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0f)
－8-fold neighbor coupling(Test pattern : 0x00ff00ff)
手順は次の通りです。
1. R7 に上記の各テストパターンを設定
2. R7、R8 を使用して単精度レジスタ(S0-S31)の各レジスタ毎にテストパターンを書き込み後、
3. 読み出しを実施
4. R7 と R8 の各レジスタと期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 52 of 100
Oct.29.25

■ r_cpu_diag_15_4.asm ファイル

Syntax

void R_CPU_Diag15_4(const uint32_t forceFail, int32_t *result)

Description
7. Detecting coupling fault for general purpose registers between any two bits : 任意の 2 ビット間

の単精度レジスタの結合障害の検出

以下のテストを実施します。
－16-fold neighbor coupling(Test pattern : 0x0000ffff)
手順は次の通りです。
1. R7 に上記の各テストパターンを設定
2. R7、R8 を使用して単精度レジスタ(S0-S31)の各レジスタ毎にテストパターンを書き込み後、
3. 読み出しを実施
4. R7 と R8 の各レジスタと期待値との一致を確認する。

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 53 of 100
Oct.29.25

■ r_cpu_diag_15_5.asm ファイル

Syntax

void R_CPU_Diag15_5(const uint32_t forceFail, int32_t *result)

Description
8. Detecting coupling fault for FPU data registers between any two registers : 任意の 2 つのレジス

タ間の単精度レジスタの結合障害の検出
以下のテストを実施します。
－Detecting S16, S17, S18, S19, S20, S21, S22, S23 coupling fault (Using A's pattern)

[A’s pattern]

R4 = 0x55555555
R5 = 0xAAAAAAAA
R6 = 0x00000000
R7 = 0xFFFFFFFF
R8 = 0x33333333
R9 = 0xCCCCCCCC
R10 = 0x5555AAAA
R11 = 0xAAAA5555

手順は次の通りです。
1. R4～R11 に各々テストパターンを設定し、R4 を S0 へ、R5 を S1 へ、…、R11 を S7 へ転送
2. S0 を S16 へ、S1 を S17 へ、…、S7 を S23 へ転送
3. S16～S23 を R12 を介して読み出し、転送元 R4～R11 と期待値との一致を確認
－Detecting S24, S25, S26, S27, S28, S29, S30, S31 coupling fault(Using B's pattern)

[B’s pattern]

R4 = 0xFFFF0000
R5 = 0x0000FFFF
R6 = 0x3333CCCC
R7 = 0xCCCC3333
R8 = 0xFFAA5533
R9 = 0x3355AAFF
R10 = 0xFEDCBA98
R11 = 0x76543210

手順は次の通りです。
1. R4～R11 に各々テストパターンを設定し、R4 を S9 へ、R5 を S10 へ、…、R11 を S8 へ転送
2. S9 を S24 へ、S10 を S25 へ、…、S8 を S31 へ転送
3. S24～S31 を R12 を介して読み出し、転送元 R4～R11 と期待値との一致を確認

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 54 of 100
Oct.29.25

■ r_cpu_diag_15_6.asm ファイル

Syntax

void R_CPU_Diag15_6(const uint32_t forceFail, int32_t *result)

Description
9. Detecting coupling fault for FPU data registers between any two registers : 任意の 2 つのレジス

タ間の単精度レジスタの結合障害の検出

以下のテストを実施します。
－Detecting S0, S1, S2, S3, S4, S5, S6, S7 coupling fault (Using C's pattern)

[C’s pattern]

R4 = 0x44444444
R5 = 0x99999999
R6 = 0x00000000
R7 = 0xFFFFFFFF
R8 = 0x22222222
R9 = 0xBBBBBBBB
R10 = 0x4444BBBB
R11 = 0xBBBB4444

手順は次の通りです。
1. R4～R11 に各々テストパターンを設定し、R4 を S18 へ、…、R9 を S23 へ、R10 を S16 へ、
2. R11 を S17 へ転送
3. S18 を S0 へ、…、S23 を S5 へ、S16 を S6 へ、S17 を S7 へ転送
4. S0～S7 を R12 を介して読み出し、転送元 R4～R11 と期待値との一致を確認

－Detecting S8, S9, S10, S11, S12, S13, S14, S15 coupling fault(Using D's pattern)

[D’s pattern]

R4 = 0xEEEE1111
R5 = 0x1111EEEE
R6 = 0x2222DDDD
R7 = 0xDDDD2222
R8 = 0xEEBB6622
R9 = 0x2266BBEE
R10 = 0xBA98FEDC
R11 = 0x32107654

手順は次の通りです。
1. R4～R11 に各々テストパターンを設定し、R4 を S27 へ、…、R8 を S31 へ、R9 を S24 へ、
2. R10 を S25 へ、R11 を S26 へ転送
3. S27 を S8 へ、…、S31 を S12 へ、S24 を S13 へ、S25 を S14 へ、S26 を S15 へ転送
4. S8～S15 を R12 を介して読み出し、転送元 R4～R11 と期待値との一致を確認

期待値と一致の場合は PASS(0x0001)、不一致の場合は FAIL(0x0000)を” resultTemp”へ設定します。

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 55 of 100
Oct.29.25

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 56 of 100
Oct.29.25

■ r_cpu_diag_16.asm ファイル

Syntax

void R_CPU_Diag16(const uint32_t forceFail, int32_t *result)

Description

汎用レジスタ(R0-12、R14)に対して WALKPAT アルゴリズムによる
CPU レジスタテスト処理を実施します。(アルゴリズムについては、1.3.3(2) WALKPAT 参照)

テスト結果を” resultTemp”へ格納します。(0 : FAIL / 1 : PASS)

使用するテストパターンは以下のとおりです。
◆テストパターン
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters

const uint32_t forceFail
強制 FAIL オプション
0 に設定すると、関数は強制的に失敗します。
0 : 強制的にFAIL
Others : 無効

int32_t *result テスト結果の格納先ポインタ

Output Parameters
int32_t *result テスト結果(0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 57 of 100
Oct.29.25

1.2 ROM
この章では、CRC 演算器を使用した ROM /フラッシュメモリテストについて説明します。
(参照：IEC 60730-1:2013 + A1：2015+A2:2020 Annex H – H2.19.4.2 CRC – Double Word)
CRC は、メモリの内容に基づいて単一ワードまたはチェックサムを生成する不具合/エラー制御方法で

す。

CRC チェックサムは、メッセージビットストリームのビット繰り上がりなし（減算ではなく XOR を使

用）n 次の多項式の係数を表す、長さ n+1 の定義済み（short）ビットストリームによるバイナリ除算の剰

余です。除算の前に、n 個のゼロがメッセージストリームに追加されます。CRC は、バイナリハードウェア

への実装が簡単で数学的にも分析しやすいため、よく使用されます。

ROM テストは、ROM 内容の CRC 値を予め生成して保存することで実現できます。ROM セルフテスト

では、同じ CRC アルゴリズムを用いて新たに CRC 値を生成し、保存しておいた CRC 値と比較します。こ

の手法は、すべての 1 ビットエラーと高い割合のマルチビットエラーを認識します。

他の CRC ジェネレータによって事前に生成された CRC 値と比較する場合、基本的な CRC アルゴリズム

が同じであっても、計算結果が同一にならない要因がいくつかあるため注意が必要です。たとえば、データ

をアルゴリズムに供給する順序、使用されるルックアップテーブルで想定されるビット順序、あるいは実際

の CRC 値のビットに必要な順序の組み合わせ等です。システムがビッグエンディアンとリトルエンディア

ンの両方に対応する場合も問題になります。また、一部のデバッガは ROM 上でのソフトウェアブレイクを

実現するものがあり、その場合はデバッグ中に ROM の内容が書き換えられてしまう可能性があります。

参照用 CRC 値の計算方法は、使用するツールチェーンで異なります。詳しい手順は、2. 使用例の 2.2
ROM を参照ください。

1.2.1 CRC32 アルゴリズム
RA MCU には、CRC32 アルゴリズムのサポートが可能な CRC（巡回冗長検査）演算器が内蔵されていま

す。テストソフトウェアは、32 ビット CRC32 を生成するように CRC 演算器を設定します。

• 多項式 = 0x04C11DB7 (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1)
• 幅 = 32 bit
• 初期値 = 0xFFFFFFFF
• h’FFFFFFFF との XOR 演算結果が CRC に出力される

1.2.2 マルチチェックサム(Multi Checksum)
ROM テストでは、テスト対象の ROM 領域を図 1-1 Code FLASH block diagram on ROM test 図 1-1 の

ように 128K バイトに分割し、CRC を計算して特定の領域に格納します 。

なお、 :本サンプルソフトでは コードフラッシュメモリ 1MB 製品のため、ビルド時に 0xFFFE0～
0xFFFFF のアドレスに格納します。

また、セルフテストライブラリでは、128K バイトごとに処理を分割し、CRC 演算処理後、上記特定領域

に保存された CRC 値との一致確認を行い、ROM テスト結果を判定します。

サンプルプロジェクトの「RA_SelfTests.c」を編集することで、分割処理の有効設定を変更することがで

きます。（詳細は 2.2.2 マルチチェックサム対応設定を参照ください。）

サンプルプロジェクトでは、チェックサム格納領域を除くコード FLASH 領域をテスト対象としていま

す。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 58 of 100
Oct.29.25

図 1-1 Code FLASH block diagram on ROM test

1.2.3 CRC ソフトウェア API
このセクションの関数は、CRC 値を計算し、ROM に格納されている値と比較してその正確性を検証する

ために使用されます。

すべてのソースは ANSI C で記述されます。renesas.h ヘッダファイルには、RA MCU のレジスタ定義が

含まれます。

表 1-17 CRC ソフトウェア API ソースファイル

ファイル名
crc.h ROM テスト API 関数の定義
crc_verify.h ROM テスト API 関数の定義
crc.c ROM テスト実装部
CRC_Verify.c ROM テスト実装部

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 59 of 100
Oct.29.25

■ CRC_Verify.c ファイル

Syntax

bool_t CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description

この関数は、参照 CRC が格納されているアドレスを提供することにより、新しい CRC 値を参照 CRC と

比較します。

Input Parameters
const uint32_t ui32_NewCRCValue 計算された新しい CRC 値
const uint32_t ui32_AddrRefCRC 32 ビット参照 CRC 値が格納されるアドレス

Output Parameters
NONE N/A

Return Values
bool_t 1 : True = テストパス、0 : False = テスト失敗

■ crc.c ファイル

Syntax

void CRC_Init(void)

Description

CRC モジュールを初期化します。この関数は、他の CRC 関数を呼び出す前に呼び出す必要があります。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 60 of 100
Oct.29.25

Syntax

uint32_t CRC_Calculate(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description

この関数は、単一の指定されたメモリ領域の CRC を計算します。

Input Parameters
const uint32_t* pui32_Data テストするメモリの開始を指すポインタ

uint32_t ui32_Length ロングワード単位のデータの長さ

Output Parameters
NONE N/A

Return Values
Uint32_t 計算された CRC32 値

以下の関数は、メモリ領域を単純に開始アドレスと長さで指定できない場合に使用されます。それらは範

囲/セクションにメモリ領域を追加する方法を提供します。これは、関数 CRC_Calculate が 1 回の関数呼び

出しで時間がかかり過ぎる場合にも使用できます。

■ crc.c ファイル

Syntax

void CRC_Start(void)

Description

データの受信を開始するためのモジュールを準備します。関数 CRC_AddRange を使用する前にこれを 1
回呼び出します。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 61 of 100
Oct.29.25

Syntax

void CRC_AddRange(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description

複数のアドレス範囲で構成されるデータの CRC を計算する場合は、CRC_Calculate ではなくこの関数を

使用します。最初に CRC_Start を呼び出し、次に必要なアドレス範囲ごとに CRC_AddRange を呼び出

し、その後 CRC_Result を呼び出して CRC 値を取得します。

Input Parameters
const uint32_t* pui32_Data テストするメモリ範囲の先頭を指すポインタ

uint32_t ui32_Length ロングワード単位のデータの長さ

Output Parameters
NONE N/A

Return Values
NONE N/A

Syntax

uint32_t CRC_Result(void)

Description

CRC データ出力レジスタ(CRCDOR)からの読み出し値をビット反転した値を戻り値として返します。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
uint32_t 計算された CRC32 の値(CRCDOR の反転値)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 62 of 100
Oct.29.25

1.3 RAM
この章では、RAM テストと使用する 2 つのテストアルゴリズムついて説明します。

RAM テストの目的は、MCU 内蔵 SRAM からランダムな永続的な障害を検出することです。

RAM テストの主な機能は次のとおりです。

• スタックを含むメモリ全体のチェック。

• テストのブロックごとの実装

• 2つのテストアルゴリズムをサポート（Extend March-C-、WALKPAT）

• 2つのテストタイプ（破壊/非破壊テスト）をサポートします

1.3.1 RAM ブロックの定義(RAM Block Configuration)

RAM テストのターゲットは、RAM 領域の RAM ブロックです。

テスト対象の RAM 領域と RAM ブロックは、表 1-20 で説明されているディレクティブによって構成され

ます。

図 1-2 は、RAM 領域 0 が n ブロックでどのように分割されるかを示しています。ディレクティブはイタ

リックで示されています。

図 1-2 RAM Block Configuration (example)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 63 of 100
Oct.29.25

1.3.2 予約領域について(Reserved Area)
RAM テストでは、ユーザーは次の予約領域を RAM ブロックに割り当てる必要があります。

1. RAM テスト用バッファ (RramBuffer)

非破壊検査では、テスト対象の RAM ブロックのデータ値が一時的にこのバッファに保存されます。

ユーザーは、このバッファー用に特定の RAM ブロックを予約する必要があります。

2. テスト結果変数 (RramResult1）

3. テスト結果変数 (RramResult2)

テスト結果変数は、2 つの異なる RAM ブロックに割り当てられます。テスト結果の 2 つのコピーを 2 つ

の異なるブロックに許可することにより、いずれかの変数を障害のあるブロックに格納できない場合でも、

障害を検出できます。

予約領域は、このソフトウェアで事前定義されています。

具体的には「fsp_ra6m4.ld」、「RA_SelfTests.c」、「r_ram_diag_config.h」の各ファイルで予約領域の

関連項目（データ保存バッファ、結果変数）を定義します。

本サンプルソフトにおける各定義箇所の該当部分を下記に記載します。

◆「fsp_ra6m4.ld(or fsp_ra4m3.ld)」ファイル内の該当定義部分(青字)

具体的な変更手順としては、自動生成される”fsp_gen.ld”を複製し上記の青部分を追加し、”fsp_ra6m4.ld” or
“fsp_ra4m3.ld”として保存します。

/***** RAM memory section allocations ******/

/* ram initialized from flash */

__ram_from_flash$$:

{

 __ram_from_flash$$Base = .;__ram_from_flash$$Load = LOADADDR(__ram_from_flash$$);

/* RAM BUFFER for RAM Test */

 . = ALIGN(4);

 __RramBuffer_start = .;

 KEEP(*(RAM_TEST_BUFFER*))

 __RramBuffer_stop = .;

/* */

 /* section.ram.from_flash */

 *(.ram_from_flash)

 /* section.ram.code_from_flash */

 *(.ram_code_from_flash)

 (.data)

 *(vtable)

 __ram_from_flash$$Limit = .;

}> RAM AT > FLASH

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 64 of 100
Oct.29.25

◆「RA_Self Tests.c」ファイル内の該当定義部分(青字)

◆「r_ram_diag_config.h」ファイル内の該当定義部分(青字)

ビルド後に生成される MAP ファイルで「予約領域」の位置を確認できます。

◆生成された MAP ファイル(「RA6M4.map(or RA4M3.map)」)の該当箇所。

【注】 配置されるアドレスは、ご使用になる ld ファイルの定義内容により異なります。

/*Number of bytes to test each time the RAM periodic test is run.*//*NOTE: The periodic RAM test requires a safe
buffer of the same size as the test size.*/

/*NOTE: The periodic RAM test requires a safe buffer of the same size as the test size.*/

#define RAM_TEST_BUFFER_SIZE RAM_BUFFER_SIZE

/*The periodic RAM (including Stack) tests requires a buffer

. Locate it in its own section after(higher address than) the stacks.*/

volatile uint32_t RramBuffer[RAM_TEST_BUFFER_SIZE] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RAM_Test_dummy1[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RramResult1 __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RAM_Test_dummy2[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RramResult2 __attribute__((section("RAM_TEST_BUFFER")));

/* RAM test buffer size (Expressed in double words) */

/* Note: Set the maximum RAM block size of all RAM areas */

#define RAM_BUFFER_SIZE (BUTSize0)

.ram_test_flash$$

 0x20000000 0x318 load address 0x0000004c

 0x20000000 __ram_from_flash$$Base = .

 0x0000004c __ram_from_flash$$Load = LOADADDR (__ram_from_flash$$)

 0x20000000 . = ALIGN (0x4)

 0x20000000 __RramBuffer_start = .

 (RAM_TEST_BUFFER)

 RAM_TEST_BUFFER

 0x20000000 0x300 ./SelfTestLib/src/RA_SelfTests.o

 0x20000000 RramBuffer

 0x20000100 RAM_Test_dummy1

 0x200001fc RramResult1

 0x20000200 RAM_Test_dummy2

 0x200002fc RramResult2

 0x20000300 __RramBuffer_stop = .

RAM Buffer for temporarilly saved data : RamBuffer[]

result variables : RramResult1

result variables : RramResult2

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 65 of 100
Oct.29.25

1.3.3 RAM テストアルゴリズム
(1) Extended March C-

「Extended March C-」は、RAM テストに使用される March-C のテストアルゴリズムの 1 つです。

アルゴリズムを以下の図 1-3 に示します。

{⇕(w0);⇑(r0,w1,r1);⇑(r1,w0);⇓(r0,w1);⇓(r1,w0);⇕(r0)}

Notatio {}: Seaquence ⇑ : increasing addressing

 () : March element ⇓ : decreasing addressing

 wx : write x ⇕ : either ⇑ or ⇓

 rx : read x

図 1-3 Extended March C- Algorithm

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 66 of 100
Oct.29.25

(2) WALKPAT

WALKPAT（Walking Pattern の略）は、RAM テストに使用されるテストアルゴリズムの 1 つです。アル

ゴリズムを以下の図 1-4 に示します。

Write 0 in all cells;
For i=0 to n-1
{
complement cell[i];
 For j=0 to n-1, j != i

{
 read cell[j];
}
read cell[i];
complement cell[i];

}
Write 1 in all cells;
For i=0 to n-1
{
 complement cell[i];
 For j=0 to n-1, j != i
 {
 read cell[j];
 }
 read cell[i];
 complement cell[i];

}

図 1-4 WALKPAT Algorithm

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 67 of 100
Oct.29.25

(3) アルゴリズムの特性

表 1-18 に、RAM テストで使用できる 2 つのテストアルゴリズムの特性を示します。

表 1-18 RAM テストアルゴリズムの特性 (RAM Test Algorithm Characteristics)

Fault models and complexity Extended March C- WALKPAT
Address Faults (AF) ✓ ✓

Stuck At faults (SAF) ✓ ✓

Transactional Faults (TF) ✓ ✓

Coupling Faults (CF) ✓ ✓

Stuck-Open Faults (SOF) ✓ N/A

Data Retention Faults (DRF) ✓ N/A

Sense Amplifier Recovery Faults (SARF) N/A ✓

Dynamic cross links ✓ ✓

Complexity 11n 2n2

n = the number of addressing cells of the memory(メモリのアドレス指定セルの数)

以下のアルゴリズムの説明は、1 ビットのワードメモリに関連していますが、m ビットのメモリにも適用

できます。m ビットメモリは、次の方法で決定される回数だけ各アルゴリズムを繰り返すことで処理できま

す。

⌈log2 𝑚𝑚⌉ + 1

このソフトウェアでは m = 32 ビットなので、アルゴリズムは 6 回繰り返され、次の 6 つの異なるパター

ンが適用されます。

#1: 00000000000000000000000000000000
#2: 00000000000000001111111111111111
#3: 00000000111111110000000011111111
#4: 00001111000011110000111100001111
#5: 00110011001100110011001100110011
#6: 01010101010101010101010101010101

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 68 of 100
Oct.29.25

1.3.4 RAM ソフトウェア API
RAM テストに関連するソフトウェア API ソースファイルは表 1-19 の通りです。

RAM Test API を実行すると、RAM 領域の指定された 1 つの RAM ブロックがテストされます。

RAM 障害は、引数に出力された実行結果を確認することで検出できます。

コードをコンパイルする前に、テスト対象の RAM ブロックと予約領域を変更する必要があります（1.3.2
を参照）。表 1-20 に、構成のディレクティブを示します。ディレクティブは r_ram_diag_config.h にありま

す。

表 1-19 RAM ソフトウェア API ソースファイル

ファイル名
r_ram_diag_config.h RAM テストディレクティブの定義

r_ram_diag_config.inc RAM テストの実行パターンの定義

r_ram_diag.c RAM テスト API 関数の定義

r_ram_diag.h RAM テスト API 関数の宣言

r_ram_marchc.asm Extended March C-アルゴリズム関数の定義

r_ram_marchc.h Extended March C-アルゴリズム関数の宣言

r_ram_walpat.asm WALKPAT アルゴリズム関数の定義

r_ram_walpat.h WALKPAT アルゴリズム関数の宣言

表 1-20 Directives for Software Configuration for RAM Test

ディレクティブ名
NUMBER_OF_AREA テスト対象のRAM領域の数（1〜8）。

以下の場合を除き、1に設定してください。
― テスト中の複数のRAM領域が散発的な割り当てである
― テスト中のRAMブロックが複数あり、各ブロックサイズが同じでは

ない
startAddressN *1

テスト中のRAM領域への開始アドレス

MUTSizeN *1

テスト対象のRAM領域のサイズ（N）（ダブルワード）

numberOfBUTN *1

テスト中のRAMブロックの数。

BUTSizeN *1 テスト対象のRAMブロックのサイズ（N）（ダブルワード）
BUTSizeN = MUTSizeN / numberOfBUTNによって計算

RAM_BUFFER_SIZE テスト中のバッファ（RramBuffer）のサイズ（ダブルワード）
*1 : N = 0 ～ (NUMBER_OF_AREA – 1)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 69 of 100
Oct.29.25

■ r_ram_diag.c ファイル

Syntax

void R_RAM_Diag(uint32_t area, uint32_t index, uint32_t algorithm, uint32_t destructive)

Description
この関数は RAM を検証します。
テスト結果は、結果変数(RramResult1, RramResult2)の戻り値で確認できます。

If Test result is PASS :
RramResult1 = 1 and RramResult2 = 1

If Test result is FAIL :
Other than above

次の順序で RAM テストを実行します。

1. 引数 area, index より RAM ブロックが有効なエリアかをチェックします。
2. マクロ関数(R_RAM_BLK_SADR, R_RAM_BLK_EADR)を使用して、テスト対象の RAM ブロック

の開始アドレスと終了アドレスを算出します。
(sAdr、eAdr に算出した開始アドレス、終了アドレスを保存します。)

3. 引数 algorithm により該当するアルゴリズムの関数を呼び出します。
・Extended March C-の場合(algorithm = RAM_ALG_MARCHC)：R_RAM_Diag_MarchC()関数
・WALKPAT の場合(algorithm = RAM_ALG_WALPAT)：R_RAM_Diag_Walpat()関数

【注】 引数”destructive”によりデータの破壊テスト又は非破壊テストか選択されます。
(破壊テストの場合、テスト後に RAM ブロックは「0」にクリアされます。)

4. 呼び出された関数に戻ります。

Input Parameters
uint32_t area RAM 領域番号

ディレクティブ”NUMBER_OF_AREA”の値よりも小さくする必要があ

ります。
値が無効な場合は 0（FAIL）を返します。

uint32_t index “area”に設定された RAM エリアの RAM ブロックインデックス
RAM ブロックインデックスは 0 から始まります。
ディレクティブ”numberOfBUTN”(表 1-20 を参照)よりも小さくする必要

があります。
値が無効な場合は 0（FAIL）を返します。

uint32_t algorithm アルゴリズムを指定します。
0 (RAM_ALG_MARCHC) ： Extended March C-
1 (RAM_ALG_WALPAT) ： WALKPAT
※値が 0 以外の場合は”WALKPAT”

uint32_t destructive メモリテストの種類を指定します
0 ：:データ非破壊テスト
1 ： データ破壊テスト

※無効な値が設定された場合、非破壊検査。

破壊テスト後、RAM ブロックは 0 にクリアされます。
注意：
テストタイプに関係なく、バッファ付きのブロックの場合、RAM ブロ

ックは常に 0 にクリアされます。
Output Parameters
NONE N/A

Return Values

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 70 of 100
Oct.29.25

NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 71 of 100
Oct.29.25

■ r_ram_marchc.asm ファイル

Syntax

void R_RAM_Diag_MarchC(uint32_t start, uint32_t end, uint32_t destructive)

Description

引数 start、end で指定された RAM ブロックに対して Extended March C-アルゴリズムによる
RAM テスト処理を実施します。(アルゴリズムについては、1.3.3(1)参照)
非破壊テストの場合、指定された RamBuffer 領域へテスト領域の現在データを退避します。

テスト結果を以下へ格納します。

- RramResult1 (0 : FAIL / 1 : PASS)

- RramResult2 (0 : FAIL / 1 : PASS)

使用するテストパターンは以下のとおりです。(“r_ramdiag_config.inc”を参照)
◆テストパターン
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters

uint32_t start テスト対象ブロックの開始アドレス

uint32_t end テスト対象ブロックの最終アドレス

uint32_t destructive
メモリテストの種類を指定します
0：データ非破壊テスト
1：データ破壊テスト

Output Parameters

RramResult1 0 : FAIL / 1 : PASS

RramResult2 0 : FAIL / 1 : PASS

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 72 of 100
Oct.29.25

■ r_ram_walpat.asm ファイル

Syntax

void R_RAM_Diag_walpat(uint32_t start, uint32_t end, uint32_t destructive)

Description

引数 start、end で指定された RAM ブロックに対して WALKPAT アルゴリズムによる
RAM テスト処理を実施します。(アルゴリズムについては、1.3.3(2)参照)
非破壊テストの場合、指定された RamBuffer 領域へテスト領域の現在データを退避します。

テスト結果を以下へ格納します。

- RramResult1 (0 : FAIL / 1 : PASS)

- RramResult2 (0 : FAIL / 1 : PASS)

使用するテストパターンは以下のとおりです。(“r_ramdiag_config.inc”を参照)
◆テストパターン
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters

uint32_t start テスト対象ブロックの開始アドレス

uint32_t end テスト対象ブロックの最終アドレス

uint32_t destructive
メモリテストの種類を指定します
0：データ非破壊テスト
1：データ破壊テスト

Output Parameters
RramResult1 0 : FAIL / 1 : PASS

RramResult2 0 : FAIL / 1 : PASS

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 73 of 100
Oct.29.25

1.4 クロック
RA MCUは、クロック周波数精度測定回路（CAC）を備えています。CACは基準クロックで生成した時間

内のターゲットクロックのパルスを数え、そのパルス数が許容範囲外の場合、割り込み要求を発生します。
また、メインクロック発振器には、発振停止検出回路を備えています。

1.4.1 CAC によるメインクロック周波数の監視
メイン、SUB_CLOCK、HOCO、MOCO、LOCO、IWDTCLK、PCLKB のいずれか、または外部クロック

CACREF 端子入力を基準クロックソースとして使用できます。

1. 参照クロックを必ず選択してください（ref_clock 入力パラメータを使用）
2. ターゲットおよび基準クロックの周波数を Hz で提供してください。

メインクロックの周波数が実行時に構成された範囲から外れると、周波数エラー割り込みとオーバフロー

割り込みの 2 種類の割り込みが生成されます。このモジュールのユーザは、これらの 2 種類の割り込みを有

効にして処理する必要があります。割り込みのアクティブ化の例については、2.4 章を参照してください。

許容周波数範囲は、以下を使用して調整できます。

/*Percentage tolerance of main clock allowed before an error is reported.*/
#define CLOCK_TOLERANCE_PERCENT 10

内部のクロックを参照クロックに使用する場合、CAC 回路の参照クロック分周比（CACR2 レジスタの

RCDS[1:0]）は、テスト関数内で 1/128 に固定されています。ご留意下さい。

ターゲットクロックの分周比（CACR1 レジスタの TCSS[1:0]）は、入力パラメータに基づき、テスト関

数内で計算により 1/1, 1/4, 1/8, 1/32 から選択されます。ただし、どの分周比を選んでも、計算結果が 16 ビ

ット幅の「CAC 上限/下限設定レジスタ」で設定可能な範囲内に収まらない場合はエラーとなります。

1.4.2 メインクロックの発振停止検出

RA MCU のメインクロック発振器には発振停止検出回路があります。メインクロックが停止すると、ノン

マスカブル割り込み（NMI）が生成され、自動的に中速オンチップオシレータ（MOCO）に切り替わりま

す。

ClockMonitor_Init 関数では、メインクロック発振器コントロールレジスタ（MOSCCR）のメインクロッ

ク発振器停止ビット（MOSTP）が 0（メインクロック発振器動作）の場合、以下のように発振停止検出を

有効にし、NMI を許可します。

 発振停止検出コントロールレジスタ（OSTDCR）

 発振停止検出機能有効ビット（OSTDE） ：有効
 発振停止検出割込み許可ビット（OSTDIE） ：許可

 ICU ノンマスカブル割り込みイネーブルレジスタ（NMIER）

 発振停止検出割込み許可ビット（OSTEN） ：許可

発振停止で NMI が発生した場合、ユーザは NMI 割り込みを処理し、NMISR.OSTST ビット（発振停止検

出割り込みステータスフラグ）をチェックする必要があります。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 74 of 100
Oct.29.25

1.4.3 CLock ソフトウェア API
Clock テストに関連するソフトウェア API ソースファイルは表 1-21 の通りです。

表 1-21 Clock ソースファイル

ファイル名
clock_monitor.h Clock テスト API 関数の宣言
clock_monitor.c Clock テスト実装部

テストモジュールは、renesas.h ヘッダファイルを使用してペリフェラルレジスタにアクセスします。

■ clock_monitor.c ファイル

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
 clock_source_t ref_clock,
 uint32_t target_clock_frequency,
 uint32_t ref_clock_frequency,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description
1. CAC モジュールを使用して、ref_clock 入力パラメータで選択した内部クロックを基準クロックとし

て、target_clock 入力パラメータで選択したターゲットクロックの監視を開始します。
2. 発振停止検出を有効にし、検出された場合に生成される NMI を構成します。

Input Parameters
clock_source_t target_clock ・CAC が監視するターゲットクロック。

・クロックは、メインクロック、サブクロック、HOCO ク

ロック、MOCO クロック、LOCO クロック、IWDTCLK
クロック、および PCLKB クロックのいずれかです。

clock_source_t ref_clock ・ターゲットクロック監視のために使用する基準クロッ

ク。
・クロックはメインクロック、サブクロック、HOCO クロ

ック、MOCO クロック、LOCO クロック、IWDTCLK ク

ロック、または PCLKB クロック、のいずれかです。
uint32_t target_clock_frequency ターゲットクロック周波数（単位：Hz）
uint32_t ref_clock_frequency 基準クロック周波数（単位：Hz）
CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

ターゲットクロックが許容範囲外の場合、またはこの関数

で入力パラメータから正しく CAC 回路を構成できなかった

場合に呼び出される関数

Output Parameters
NONE N/A

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 75 of 100
Oct.29.25

Syntax

extern void cac_ferrf_isr(void)

Description

CAC 周波数エラー割り込みハンドラ。
ClockMonitor_Init 関数で登録されたコールバック関数を呼び出します。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

Syntax

extern void cac_ovff_isr(void)

Description

CAC オーバフローエラー割り込みハンドラ。
ClockMonitor_Init 関数で登録されたコールバック関数を呼び出します。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

Syntax

bool_t CAC_Err_Detect_Test(void)

Description

電源投入時に CAC 機能による周波数エラー検出とオーバフローエラー検出による割り込みが正常に動作

していることを確認します。
一定時間内(ソフトウエアループによるカウント)に各割り込み発生が確認できた場合、”TRUE”を返しま

す。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
bool_t 1 : TRUE = PASS(各割り込み発生を確認)、0 : FALSE = FAIL(確認できず)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 76 of 100
Oct.29.25

1.5 独立ウォッチドッグタイマ（IWDT）
ウォッチドッグタイマは、異常なプログラムの実行を検出するために使用されます。プログラムが期待ど

おりに実行されていない場合、ソフトウェアによるウォッチドッグタイマ更新が必要なタイミングで行われ

ないため、エラーを検出します。

これには、RA MCU の独立ウォッチドッグタイマ（IWDT）モジュールが使用されます。ウィンドウ機能

が含まれているため、指定した時間の直前ではなく、指定したウィンドウ内で更新を行う必要があります。

エラーが検出された場合、内部リセットまたはノンマスカブル割り込み（NMI）を生成するように構成でき

ます。

IWDT のすべての構成は、「オプション設定メモリ」内のオプション機能選択レジスタ 0（OFS0）で行い

ます（構成の例については、2.5 章を参照）。オプション設定メモリとは、リセット後のマイコンの状態を

選択するために利用可能な一連のレジスタのことで、コードフラッシュの領域に配置されます。

IWDT がリセットを引き起こしたかどうかを判断するために、リセット後に使用する関数が提供されてい

ます。

テストモジュールは、renesas.h ヘッダファイルを使用してペリフェラルレジスタにアクセスします。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 77 of 100
Oct.29.25

1.5.1 IWDT ソフトウェア API
IWDT テストに関連するソフトウェア API ソースファイルは表 1-22 の通りです。

表 1-22 独立ウォッチドッグタイマソースファイル

ファイル名
iwdt.h IWDT テスト API 関数の宣言
iwdt.c IWDT テスト実装部

Syntax

void IWDT_Init (void)

Description

独立ウォッチドッグタイマを初期化します。この関数を呼び出した後は、ウォッチドッグタイマエラーを

防ぐために、IWDT_kick 関数を正しい時間に呼び出す必要があります。
【注】 ：割り込みを生成するように構成されている場合、これはノンマスカブル割り込み（NMI）にな

ります。これは NMISR.IWDTST フラグをチェックするユーザコードで処理する必要があります。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

Syntax

void IWDT_Kick(void)

Description

ウォッチドッグタイマのカウントをリフレッシュします。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 78 of 100
Oct.29.25

Syntax

bool_t IWDT_DidReset(void)

Description

IWDT がタイムアウトしたか、正しく更新されなかった場合は True を返します

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
bool_t IWDT がタイムアウトしたか、正しく更新されなかった場合は True、それ以外

の場合は False

Syntax

bool_t IWDT_Err_Detect_Test(void)

Description

電源投入時に IWDT 機能のカウンタアンダーフロー検出による割り込みが正常に動作していることを確認

します。
一定時間内(ソフトウエアループによるカウント)に IWDT アンダーフローによる NMI 割り込み発生が確認

できた場合、”TREU”を返します。
f_IWDT_ERROR_TEST を”1”に設定し、一定時間内に f_IWDT_ERROR_TEST が”0”になったことで判定

します。
なお、NMI_Handler_callback()内で IWDT アンダーフロー／リフレッシュエラー割り込みステータスフラ

グが”1”の場合に f_IWDT_ERROR_TEST を”0”に設定する処理をユーザーで作成する必要があります。
詳細は、”2.5 独立ウォッチドッグタイマ（IWDT）”を参照ください。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
bool_t 1 : TRUE = PASS(NMI 割り込み発生を確認)、0 : FALSE = FAIL(確認できず)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 79 of 100
Oct.29.25

Syntax

bool_t IWDT_Err_Test_Judge(void)

Description

電源投入時の IWDT エラーテストでのカウンタアンダーフロー検出に因るものか、それ以外の要因か確認

します。
IWDT エラーテストでの IWDT アンダーフローによる NMI 割り込み発生が確認できた場合、”TRUE”を

返し、f_IWDT_ERROR_TEST を”0”に設定し、IWDT アンダーフローフラグをクリアします。
上記以外の場合、”FALSE”を返します。
なお、NMI_Handler_callback()内でこの関数をコールする必要があります。
詳細は、”2.5.2 NMI 割込みコールバック関数の登録と記述例”を参照ください。

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
bool_t IWDT エラーテストによる場合は”True”、それ以外の場合は”False”

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 80 of 100
Oct.29.25

2. 使用例(Example Usage)
このセクションでは、アプリケーションソフトウェアにセルフテストライブラリを適用する方法に関す

る、いくつかの有用な提案をユーザに提供します。
セルフテストは次の 2 つのパターンに分けられます。

(a) 電源投入時のテスト

リセット後に一度実行されるテストです。これらはできるだけ早く実行する必要がありますが、特に

起動時間が重要な場合は、すべてのテストを実行する前に初期化コードを実行して、たとえばより高速

なメインクロックを選択できるようにすることもできます。

(b) 定期的なテスト

通常のプログラム操作を通じて定期的に実行されるテストです。このドキュメントでは、特定のテス

トを実行する頻度を判断することはできません。定期的なテストのスケジューリング方法は、アプリケ

ーションの構造に応じてユーザが決定します。

以降のセクションでは、各テストの使用例を示します。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 81 of 100
Oct.29.25

2.1 CPU
いずれかの CPU テストで障害が検出されると、CPU_Test_ErrorHandler と呼ばれるユーザ指定の関数が

呼び出されます。CPU のエラーは非常に深刻なので、この機能の目的は、ソフトウェアの実行に依存しな

い安全な状態にできるだけ早く到達することです。

2.1.1 電源投入時(Power-On)

CPU テストは、リセット後できるだけ早く実行する必要があります。

関数 CPU_Test_ClassC を使用して、CPU テストを自動的に実行できます。

2.1.2 定期的(Periodic)

CPU を定期的にテストするには、電源投入テストと同様に、CPU_Test_ClassC 関数を使用します。

定期的に呼び出すことで CPU テストを自動的に実行できます。

また、1 回の関数呼び出しで実行されるテストをユーザは”r_cpu_diag_config.h”により選択できます。

2.1.3 CPU テストの事前準備
次に CPU テストの準備について説明します。
コードをコンパイルする前に、ディレクティブの設定により CPU テストを構成します。
ディレクティブと各 CPU テストの関係については、表 1-15 を参照してください。
ディレクティブは、どのテストをコンパイルに含めるか、または除外するかを定義するために使用されま

す。
ディレクティブは、r_cpu_diag_config.h ファイルに記載されています。
サンプルソフトは、すべての CPU テストをビルドするように設定されています。
ディレクティブを "0"（テストから除外される）に設定すると、norm_null()という空の関数が実行されま

す。

例えば、CPU コアが CM33 で FPU を使用していない場合、FPU 関連のテストを CPU Test のコンパイル

から除外することができます。(表 1-15 の「BUILD_R_CPU_DIAG_11」から

「BUILD_R_CPU_DIAG_15_6」までのディレクティブに「0」を設定）

次のページでは、CPU テストを構成するディレクティブの設定箇所を示します。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 82 of 100
Oct.29.25

◆「r_cpu_diag_config.h」ファイル内の該当定義部分(青字)

以下の設定箇所で”1”を設定するとテスト実施対象、”0”を設定するとテスト実施対象外となります。

/***

* Macro definitions

***/

/* ==== Define build options ==== */

#define BUILD_R_CPU_DIAG_0 (1)

#define BUILD_R_CPU_DIAG_1 (1)

#define BUILD_R_CPU_DIAG_2 (1)

#define BUILD_R_CPU_DIAG_3 (1)

#define BUILD_R_CPU_DIAG_4_1 (1)

#define BUILD_R_CPU_DIAG_4_2 (1)

#define BUILD_R_CPU_DIAG_5 (1)

#define BUILD_R_CPU_DIAG_6 (1)

#define BUILD_R_CPU_DIAG_7_1 (1)

#define BUILD_R_CPU_DIAG_7_2 (1)

#define BUILD_R_CPU_DIAG_7_3 (1)

#define BUILD_R_CPU_DIAG_8 (1)

#define BUILD_R_CPU_DIAG_9 (1)

#define BUILD_R_CPU_DIAG_10 (1)

#define BUILD_R_CPU_DIAG_11 (1)

#define BUILD_R_CPU_DIAG_12 (1)

#define BUILD_R_CPU_DIAG_13 (1)

#define BUILD_R_CPU_DIAG_14_1 (1)

#define BUILD_R_CPU_DIAG_14_2 (1)

#define BUILD_R_CPU_DIAG_15_1 (1)

#define BUILD_R_CPU_DIAG_15_2 (1)

#define BUILD_R_CPU_DIAG_15_3 (1)

#define BUILD_R_CPU_DIAG_15_4 (1)

#define BUILD_R_CPU_DIAG_15_5 (1)

#define BUILD_R_CPU_DIAG_15_6 (1)

#define BUILD_R_CPU_DIAG_16 (1)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 83 of 100
Oct.29.25

2.2 ROM
ROM テストでは、テスト対象範囲の計算された CRC 値と、事前に保存されている参照 CRC 値を比較し

ます。(32 ビット CRC32 多項式は「CRC-32」を使用します)

CRC 演算器とソフトウエアによる比較処理により「99.6% coverage of all information errors」を実現しま

す。

参照 CRC 値は、CRC 計算に含まれない ROM 領域に格納する必要があります。参照 CRC 値の計算方法

は、開発環境によって異なります。

また、本サンプルソフトでは ROM テストの処理負荷軽減のため分割処理を行っており、Multi Checksum
に対応しております。

RA MCU 内蔵の CRC モジュールは、CRC_Init 関数を呼び出して、使用する前に初期化する必要がありま

す。分割して処理する場合は分割処理の初回のみ初期化してください。

2.2.1 事前の参照用 CRC 計算(Reference CRC Value Calculation in Advance)

GNU ツールには CRC の計算機能が付属しないため、以下に紹介する SRecord ツール（注）を使用して

参照 CRC 値を計算します。ユーザは、このツールを利用して、予め参照用の CRC 値を ROM に書き込んで

おき、セルフテストではこの値とテストで計算した値を比較します。

注：SRecord は、SourceForge のオープンソースプロジェクトです。詳細は下記を参照ください。
 SRecord Web Site (SRecord v1.65)

http://srecord.sourceforge.net/

 CRC Checksum Generation with “SRecord” Tools for GNU and Eclips

https://sourceforge.net/projects/srecord/files/srecord-win32/1.65/

ダウンロードしたファイルを解凍すると、

” \srecord-1.65.0-win64.zip\srecord-1.65.0-win64\bin”に以下のプログラムが展開されます。

図 2-1 SRecord ツールの内容

CRC 計算で使用するツール

http://srecord.sourceforge.net/
http://srecord.sourceforge.net/
https://sourceforge.net/projects/srecord/files/srecord-win32/1.65/

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 84 of 100
Oct.29.25

プロジェクト及び SRecord ツールのフォルダ構成例を以下に示します。

図 2-2 フォルダ構成例

SRecord ツール実行ファイルと関連

dll ファイル

セルフテストのソース

Project フォルダ
ビルド変数 ${ProjDirPath} が示す場所

SRecord ツール用コマンドファイル
(ROM=1MB 時の multi checksum 対応用)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 85 of 100
Oct.29.25

◆プロジェクトでの設定

e2studio の「Project」⇒「Properties」を開き、「ビルド後のステップ」で、objcopy コマンドを使って、

生成された*.elf ファイルから S レコードファイルを生成します。

なお、ここでは変換後のファイル名を Original.srec とします。このファイルが、SRecord ツールの入力に

なります。

↓

図 2-3 S レコードファイルの出力と SRecord ツールの起動(RA6M4 プロジェクトでの設定例)

Command(s): 欄に記述
（記入例を参照）

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 86 of 100
Oct.29.25

図 2-4 における「ビルドステップ(Build Steps)」タブの「ビルド後のステップ(Post-build steps)」では、

以下のように記述します。＊()は e2studio 英語版時

■「ビルド後のステップ(Post-build steps)」の Command(s):欄の記入例（改行せず 1 行に書きま

す）

[分割処理が有効時(DIV_AREA=1)] ※この設定でご使用ください。

arm-none-eabi-objcopy -O srec "${ProjName}.elf" "Original.srec" & ${ProjDirPath}/../../srec/srec_cat
@${ProjDirPath}/../../srec/CRCcalcCmd1MB_128KB_div.txt

上記 1 行目の"&"の前までが S レコードファイルの生成、2 行目の書式「srec_cat @コマンドファイル」

が、srec_cat ツールの起動 になります。

コマンドファイルとして

「CRCcalcCmd1MB_128KB_div.txt 」(分割処理が有効時)

の記述例を以下に示します。

なお、分割処理の設定については”2.2.2 マルチチェックサム対応設定”を参照ください。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 87 of 100
Oct.29.25

■ CRCcalcCmd1MB_128KB_div.txt ファイルの内容（例）

CRC calculate
Original.srec # Read srec file
-fill 0xFF 0x00000 0x100000 # 1MB ROM fill by 0xFF

-crop 0xE0000 0xFFFE0 # CRC calculate area (Test area 0xE0000 - 0xFFFE0 : 128KB - 32bye) for debug
-STM32-le 0x0FFFFC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFFC.
-crop 0xFFFFC 0x100000 # Keep CRC area(0xFFFFC - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xC0000 0xE0000 # CRC calculate area (Test area 0xC0000 - 0xDFFFF : 128KB) for debug
-STM32-le 0x0FFFF8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFF8.
-crop 0xFFFD8 0x100000 # Keep CRC area(0xFFFD8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xA0000 0xC0000 # CRC calculate area (Test area 0xA0000 - 0xBFFFF : 128KB) for debug
-STM32-le 0x0FFFF4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFF4.
-crop 0xFFFD4 0x100000 # Keep CRC area(0xFFFD4 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x80000 0xA0000 # CRC calculate area (Test area 0x80000 - 0x9FFFF : 128KB) for debug
-STM32-le 0x0FFFF0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFF0.
-crop 0xFFFD0 0x100000 # Keep CRC area(0xFFFD0 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x60000 0x80000 # CRC calculate area (Test area 0x60000 - 0x7FFFF : 128KB) for debug
-STM32-le 0x0FFFEC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFEC.
-crop 0xFFFCC 0x100000 # Keep CRC area(0xFFFCC - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x40000 0x60000 # CRC calculate area (Test area 0x40000 - 0x5FFFF : 128KB) for debug
-STM32-le 0x0FFFE8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFE8.
-crop 0xFFFC8 0x100000 # Keep CRC area(0xFFFC8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x20000 0x40000 # CRC calculate area (Test area 0x20000 - 0x3FFFF : 128KB) for debug
-STM32-le 0x0FFFE4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFE4.
-crop 0xFFFC4 0x100000 # Keep CRC area(0xFFFC8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x00000 0x20000 # CRC calculate area (Test area 0x0 - 0x1FFFF : 128KB) for debug
-STM32-le 0x0FFFE0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at

0xFFFE0.
-crop 0xFFFC0 0x100000 # Keep CRC area(0xFFFC0 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x000000 0x0FFFE0 # -fill 0xFF from 0x0 to 0xFFFE0
-Output addcrc.srec # Output of S-record file including CRC value

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 88 of 100
Oct.29.25

デバイスにより ROM の容量が異なる場合は、アドレスの設定はデバイスに合わせて変更してください。

また、デバッグを行う場合、デバッガによってはソフトウェアブレークのために ROM の内容を書き換える

ものがあるので、その場合は演算の対象領域をデバッグ領域以外に設定する必要があります。

以上の操作で、プロジェクトフォルダ下のビルド構成フォルダ内に addcrc.srec（プログラムコードの後

ろに CRC 演算結果を付加した S レコードファイル）が生成されるので、これをターゲットボードにダウン

ロードします。

プロジェクトツリーのトップで右クリックし、”デバッグ” → デバッグ”の構成 を選択します。

図 2-4 プロジェクトのデバッグ構成の選択(RA6M4 プロジェクト選択時)

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 89 of 100
Oct.29.25

デバッグ構成のダイアログが表示されたら、Startup のタブを選び、使用するビルド構成を選択します。

ELF ファイルからはシンボル情報だけを読み出し、addcrc.srec からは CRC 計算値を含むプログラムイメー

ジを読み込むように設定します。

「デバッグ」ボタンを押下すると CRC 演算値がターゲットにダウンロードされます。

図 2-5 ロードイメージとシンボルの設定例

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 90 of 100
Oct.29.25

2.2.2 マルチチェックサム対応設定
1 回の ROM テストで全領域を行うには時間を要します。その対策として以下の設定で処理を分割するこ

とが可能です。

本サンプルソフト付属の”RA_Self Tests.c”を編集し、設定します。デフォルト設定は分割処理が有効で

す。

◆サンプルソフト(for RA6M4)の「RA_SelfTests.c」ファイル内の設定部分(青字)

分割処理の有効、無効を下記で設定します。

事前に計算された CRC 値の参照アドレスを下記で定義します。

上記設定により事前計算されたチェックサムを格納してください。

分割処理が有効(DIV_AREA=1)の場合 ： 0xFFFE0～FFFFF の領域に格納してください。

なお、格納方法については”2.2.1”を参照。

#define DIV_AREA 1 // 0:Not divide 1:Do divide

/*The address where the 32bit reference CRC value will be stored.

 The linker must be configured to generate a CRC value and store it at this
location.*/

#if(DIV_AREA==1)

#define CRC_ADDRESS 0x000FFFE0UL // Flash ROM 1MB(8div * 128KB)

//#define CRC_ADDRESS 0x000BFFC0 // Flash ROM 768KB

//#define CRC_ADDRESS 0x0007FFC0 // Flash ROM 512KB

#else

・・・

#endif

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 91 of 100
Oct.29.25

2.2.3 電源投入時(Power-On)
使用するすべての ROM メモリは、電源投入時にテストする必要があります。

この領域が 1 つの連続したブロックである場合、関数 CRC_Calculate を使用して、計算された CRC 値を

計算して返すことができます。

使用する ROM が 1 つの連続したブロックにない場合は、次の手順を使用する必要があります。

1. CRC_Start を呼び出します。
2. CRC 計算に含めるメモリの各領域に対して CRC_AddRange を呼び出します。
3. CRC_Result を呼び出して、計算された CRC 値を取得します。

計算された CRC 値は、関数 CRC_Verify を使用して、ROM に格納されている参照 CRC 値と比較できま

す。

プロジェクトで使用されるすべての ROM 領域が CRC 計算に含まれるようにするのはユーザの責任で

す。

2.2.4 定期的(Periodic)
ROM が連続していても、CRC_AddRange メソッドを使用して ROM の定期的なテストを行うことをお勧

めします。これにより、CRC 値をセクション単位で計算できるため、単一の関数呼び出しに時間がかかり

すぎることはありません。電源投入テストで指定された手順に従い、各アドレス範囲が十分に小さいことを

確認して、CRC_AddRange の呼び出しに時間がかかりすぎないようにします。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 92 of 100
Oct.29.25

2.3 RAM
テストが必要な RAM の領域は、プロジェクトのメモリマップに応じて大きく変わる可能性があることを

認識することが非常に重要です。

RAM をテストするときは、次の点に注意してください。

1. r_ram_diag.h を include してください。
2. r_ram_diag_config.h のディレクティブを必要に応じて変更してください（表 1-20 を参照）
3. ECC および S キャッシュを無効にしてテストを実施してください。
4. R_RAM_Diag に必要なパラメーター（1.3.4 を参照）を定義し、パラメータを渡し関数 R_RAM_Diag
を呼び出してください。

5. 非破壊テストの場合、バッファ（RramBuffer）を割り当て、保護データが他のブロックに格納される

ように設定してください。

2.3.1 電源投入時(Power-On)
電源投入時は、RAM テストを実施します。
最初に Extended March C-アルゴリズムを使用してテストを実施し、次に WALKPAT アルゴリズムを使用

してテストを実施します。
破壊テストを選択することが可能です。
起動時間が非常に重要な場合は、テストする領域や使用するテストアルゴリズムを限定するなど微調整し

てください。

2.3.2 定期的(Periodic)
すべての定期的なテストは非破壊的でなければなりません。
定期的な RAM テストでは使用アルゴリズムを「Extended March C-」又は「WALKPAT」を選択してテス

トを実施します。(※サンプルプロジェクトでは、「WALKPAT」を選択)
また、テスト対象領域が広い場合、処理時間が長くなりますのででシステムに応じた RAM ブロックの分

割が必要になります。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 93 of 100
Oct.29.25

2.4 クロック
メインクロックの監視は、ClockMonitor_Init 関数の呼び出しで設定されます。

 参考例：
#define TARGET_CLOCK_FREQUENCY_HZ (50000000) // 50 MHz
#define REFERENCE_CLOCK_FREQUENCY_HZ (15000) // 15 kHz

ClockMonitor_Init(PCLKB, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ,

REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop);
/* NOTE: The IWDTCLK clock must be enabled before starting the clock monitoring.*/

ClockMonitor_Init 関数は、メインクロックが構成され、IWDT が有効になるとすぐに呼び出すことができ

ます。IWDT を有効にする方法については、2.5 章を参照してください。

その後、クロック監視はハードウェア（CAC モジュール）によって実行されるため、定期的なテスト中

にソフトウェアで行うべきことは特にありません。

CAC による割り込み生成を有効にするには、割り込みコントローラユニット（ICU）とネスト化ベクタ割

り込みコントローラ（NVIC）の両方を構成する必要があります。

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 94 of 100
Oct.29.25

割り込みコントローラユニット（ICU）では、ICU イベントリンク設定レジスタ（IELSRn）に、CAC 周

波数エラー割り込み、および CAC オーバフローに対応するイベント番号を設定します。

なお、e2 studio で FSP（Flexible Software Package）を利用する場合、ICU の構成は、RA コンフィグレ

ーションエディタの「Interrupts」タブで設定できます。

表 2-1 CAC 関連の IELSRn レジスタの設定

MCU イベント名 IELSRn.IELS[8:0]
RA6M4, RA4M3 CAC_FERRI 0x09E

CAC_OVFI 0x0A0

ネスト化ベクタ割り込みコントローラ（NVIC）の設定は、clock_monitor.c ファイル内の

CAC_Err_Detect_Test()関数で行っています。

ここで、NVIC_SetPriority()と NVIC_EnableIRQ()は FSP が提供する CMSIS 関数、

CAC_FREQUENCY_ERROR_IRQn および CAC_OVERFLOW_IRQn は、FSP が生成した IRQ 番号です。

// CAC関連割込みのNVIC側設定

/* CAC frequency error ISR priority */
NVIC_SetPriority(CAC_FREQUENCY_ERROR_IRQn,0);
/* CAC frequency error ISR enable */
NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);

/* CAC overflow ISR priority */
NVIC_SetPriority(CAC_OVERFLOW_IRQn,0);
/* CAC overflow ISR enable */
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

発振停止を検出すると、NMI 割り込みが発生します。本サンプルソフトでは次の例に示すように NMI 割
り込みコールバック関数(NMI_Handler_callback)内で予め準備したエラー処理関数(”
Clock_Stop_Detection()”)を実行します。

static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 ・・・
 break;
 case BSP_GRP_IRQ_LVD1 :
 case BSP_GRP_IRQ_LVD2 :
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 case BSP_GRP_IRQ_TRUSTZONE :
 ・・・
 break;
 default:
 break;

 }
}

周波数エラ－割り込み関連

NVIC 設定

オーバフローエラー割り込み関

連 NVIC 設定

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 95 of 100
Oct.29.25

2.5 独立ウォッチドッグタイマ（IWDT）
2.5.1 OFS0 レジスタの設定例（IWDT 関連）
独立ウォッチドッグタイマを構成するには、オプション設定メモリの OFS0 レジスタを設定する必要があ

ります。例えば、オプション設定メモリを以下のように設定するとします。

表 2-2 OFS0 レジスタの設定例（IWDT 関連）

項目 OFS0 レジスタの設定値（例）
IWDT スタートモード（IWDTSTRT） 0：リセット後、IWDT は自動的に起動（オートスタートモード）
IWDT タイムアウト期間選択（IWDTTOPS[1:0]） 10b：512 サイクル (0x01FF)
IWDT 専用クロック分周比（IWDTCKS[3:0]） 0010b：16 分周
IWDT ウィンドウ終了位置（IWDTRPES[1:0]） 00b：75%
IWDT ウィンドウ開始位置（IWDTRPSS[1:0]） 11b：100%
IWDT リセット割り込み要求（IWDTRSTIRQS） 0：ノンマスカブル割り込み要求、または割り込み要求を許可
IWDT 停止制御（IWDTSTPCTL） 1：スリープモード、スヌーズモード、またはソフトウェアスタ

ンバイモードの状態にあるとき、カウント停止

e2 studio で FSP (Flexible Software Package) を利用する場合、FSP の「BSP」タブのプロパティで、オ

プション設定メモリの設定ができます。

図 2-6. e2 studio の FSP による OFS0 レジスタ設定例(RA6M4 選択時)

ダブルクリックで開く

ウィンドウ⇒ビューの表示で
BSP のプロパティを開く

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 96 of 100
Oct.29.25

「Generate Project Content」ボタンを押すと、プロパティでの設定内容が、下記ファイルの該当シンボル

の定義に反映されます。

 該当ファイル

 ..\project-name\ra_cfg\fsp_cfg\bsp\bsp_mcu_family_cfg.h

 該当シンボル部分（抜粋）

#define OFS_SEQ1 0xA001A001 | (0 << 1) | (1 << 2)
#define OFS_SEQ2 (2 << 4) | (0 << 8) | (3 << 10)
#define OFS_SEQ3 (0 << 12) | (1 << 14) | (1 << 17)
 ： ：

図 2-7. オプション機能選択レジスタ 0（OFS0）

IWDT の詳細につきましては、RA MCU のハードウェアユーザーズマニュアル「25. 独立ウォッチドッグ

タイマ (IWDT)」を参照ください。

独立ウォッチドッグタイマは、IWDT_Init を呼び出して、リセット後できるだけ早く初期化する必要があ

ります。

/* Setup the Independent WDT. */
IWDT_Init();

この後、ウォッチドッグタイマは、ウォッチドッグタイマがタイムアウトしてリセットが実行されるのを

防ぐために、定期的にリフレッシュする必要があります。ウィンドウ処理を使用する場合、リフレッシュは

単に定期的であるだけでなく、指定されたウィンドウに一致するように時間を調整する必要があります。ウ

ォッチドッグタイマの更新は以下で行います。

/* Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 97 of 100
Oct.29.25

2.5.2 NMI 割込みコールバック関数の登録と記述例
P-ON 起動時に IWDT が正常に動作するかを API 関数：IWDT_Err_Detect_Test()内で確認します。

そのための事前準備として、ユーザは NMI 割り込みのコールバック関数(NMI_Handler_callback)内で

IWDT アンダーフローによる割り込み要因だった場合に”IWDT_Err_Test_Judge()”関数をコールする処理を

準備する必要があります。

ユーザーは、FSP(Flexible Software Package)が提供する BSP API 関数”R_BSP_GroupIrqWrite()”を使用

してコールバックを登録することができます。
これを実施することにより、1 つ以上のグループ割り込みの通知を有効にすることができます。
 NMI 割り込みが発生すると、NMI ハンドラーは割り込みの原因に対して登録されたコールバックがある

かどうかを確認し、登録されている場合は登録されたコールバック関数を呼び出します。

なお詳細は、下記の RA FSP (Flexible Software Package) のドキュメントを参照ください。

Renesas Flexible Software Package (FSP) Documentation
の” MCU Board Support Package” – “◆ R_BSP_GroupIrqWrite()”を参照ください。

注意：
エラー検出時にリセットを実行する(OFS0.IWDTRSTIRQS=1)ようにウォッチドッグタイマが構成されて

いる場合、API 関数：IWDT_Err_Detect_Test()による正常動作確認は実施しないでください。

https://renesas.github.io/fsp/group___b_s_p___m_c_u.html?pos=577,19,4877,22,49264,21,49347,19
https://renesas.github.io/fsp/group___b_s_p___m_c_u.html?pos=577,19,4877,22,49264,21,49347,19

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 98 of 100
Oct.29.25

次に NMI 割り込みコールバック関数(NMI_Handler_callback)の登録及び記述例を記載します。

◎NMI 割り込みコールバック関数の登録

サンプルソフトの”RA_SelfTest.c”にあるコールバック関数登録時の記述例です。ユーザのシステムに合わ

せて登録を実施してください。

for (bsp_grp_irq_t irq = BSP_GRP_IRQ_IWDT_ERROR; irq <= BSP_GRP_IRQ_CACHE_PARITY; irq++){
 R_BSP_GroupIrqWrite(irq , NMI_Handler_callback);
 }

◎NMI 割り込みコールバック関数(NMI_Handler_callback)の IWDT 割り込み要因発生の記述例(青字)

static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 /*Read NMISR register to discover NMI cause.*/
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 if(FALSE == IWDT_Err_Test_Judge())
 {
 Watchdog_Test_Failure();
 }
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 default:
 Error_Detected_Loop(ERROR_NMI_OTHER);

 /*Should not return from an NMI*/
 while(1){;}
 }
}

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 99 of 100
Oct.29.25

ウェブサイトとサポート
RA MCU に関する情報や、ツール、ドキュメントのダウンロード、技術サポートなどは、下記の各ウェブ

サイトを通じて利用できます。

 RA 製品情報： www.renesas.com/ra
 RA FSP (Flexible Software Package)： www.renesas.com/FSP
 RA サポートフォーラム： www.renesas.com/ra/forum
 Renesas サポート： www.renesas.com/support

参考文書：Reference Documents
[1] Arm® Cortex®-M33 Devices Generic User Guide Revision: r1p0

- 2.1.3 Core registers
- Chapter 3:The Cortex®-M33 Instruction Set

[2] Arm®v8-M Architecture Reference Manual

- D1.1 Register index
- C2.4 Alphabetical list of instructions

すべての商標および登録商標はそれぞれの所有者に帰属します。

https://www.renesas.com/ra
https://www.renesas.com/FSP
https://www.renesas.com/ra/forum
https://www.renesas.com/support

RA ファミリ RA MCU のための IEC60730/60335 セルフテスト･ライブラリ (Class-C)

R01AN8014JJ0103 Rev.1.03 Page 100 of 100
Oct.29.25

改訂記録

Rev. 発行日
改訂内容

ページ ポイント
1.00 2025.9.30 － 初版
1.01 2025.10.1 67 「表 1-18 RAM テストアルゴリズムの特性 (RAM Test

Algorithm Characteristics)」に項目追加
83 「2.2 ROM」に追記

1.02 2025.10.16 2 「Arm® TrustZone® への対応について」を追記
1.03 2025.10.29 77 1.5.1 に API 追加

98-99 2.5.2 の説明文とコード記述例修正

製品ご使用上の注意事項
ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテク

ニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保

存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアー

スを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱

いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSI の内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部

リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン

リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入に

より、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」について

の記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっ

ています。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識

されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した

後に切り替えてください。リセット時、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが十分安定

した後、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り

替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、VIL（Max.）か

ら VIH（Min.）までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL（Max.）から VIH

（Min.）までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス（予約領域）のアクセス禁止

リザーブアドレス（予約領域）のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス（予約領

域）があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシ

ュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があ

ります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

© 2025 Renesas Electronics Corporation. All rights reserved.

ご注意書き
1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアお

よびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害

（お客様または第三者いずれに生じた損害も含みます。以下同じです。）に関し、当社は、一切その責任を負いません。
2. 当社製品または本資料に記載された製品デ－タ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許

権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので

はありません。
3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要と

なる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改

変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図

しております。
 標準水準： コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等
 高品質水準： 輸送機器（自動車、電車、船舶等）、交通制御（信号）、大規模通信機器、金融端末基幹システム、各種安全制御装置等
当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のあ

る機器・システム（生命維持装置、人体に埋め込み使用するもの等）、もしくは多大な物的損害を発生させるおそれのある機器・システム（宇宙機

器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等）に使用されることを意図しておらず、これら

の用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その

責任を負いません。
7. あらゆる半導体製品は、外部攻撃からの安全性を 100％保証されているわけではありません。当社ハードウェア／ソフトウェア製品にはセキュリテ

ィ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害（当社製品または当社製品が使用されている

システムに対する不正アクセス・不正使用を含みますが、これに限りません。）から生じる責任を負うものではありません。当社は、当社製品また

は当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為

（「脆弱性問題」といいます。）によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害につ

いて、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア／ソフトウェア製品について、商品性

および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
8. 当社製品をご使用の際は、最新の製品情報（データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導

体デバイスの使用上の一般的な注意事項」等）をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の

範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切

その責任を負いません。
9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする

場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を

行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客

様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を

行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行って

ください。
10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用

を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことに

より生じた損害に関して、当社は、一切その責任を負いません。
11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品お

よび技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、そ

れらの定めるところに従い必要な手続きを行ってください。
12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたしま

す。
13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に

支配する会社をいいます。
注 2. 本資料において使用されている「当社製品」とは、注１において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地 お問合せ窓口
〒135-0061 東京都江東区豊洲 3-2-24（豊洲フォレシア）

www.renesas.com

 弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓

口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の

商標です。すべての商標および登録商標は、それぞれの所有者に帰属

します。

https://www.renesas.com/
http://www.renesas.com/contact/

	1. テスト
	1.1 CPU
	1.1.1 CPUレジスタテストとCPU命令テスト
	1.1.2 テストエラー
	1.1.3 CPUソフトウェアAPI

	1.2 ROM
	1.2.1 CRC32アルゴリズム
	1.2.2 マルチチェックサム(Multi Checksum)
	1.2.3 CRCソフトウェアAPI

	1.3 RAM
	1.3.1 RAMブロックの定義(RAM Block Configuration)
	1.3.2 予約領域について(Reserved Area)
	1.3.3 RAMテストアルゴリズム
	1.3.4 RAMソフトウェアAPI

	1.4 クロック
	1.4.1 CACによるメインクロック周波数の監視
	1.4.2 メインクロックの発振停止検出
	1.4.3 CLockソフトウェアAPI

	1.5 独立ウォッチドッグタイマ（IWDT）
	1.5.1 IWDTソフトウェアAPI

	2. 使用例(Example Usage)
	2.1 CPU
	2.1.1 電源投入時(Power-On)
	2.1.2 定期的(Periodic)
	2.1.3 CPUテストの事前準備

	2.2 ROM
	2.2.1 事前の参照用CRC計算(Reference CRC Value Calculation in Advance)
	2.2.2 マルチチェックサム対応設定
	2.2.3 電源投入時(Power-On)
	2.2.4 定期的(Periodic)

	2.3 RAM
	2.3.1 電源投入時(Power-On)
	2.3.2 定期的(Periodic)

	2.4 クロック
	2.5 独立ウォッチドッグタイマ（IWDT）
	2.5.1 OFS0レジスタの設定例（IWDT関連）
	2.5.2 NMI割込みコールバック関数の登録と記述例

	ウェブサイトとサポート
	参考文書：Reference Documents
	改訂記録

