1LENESAS Application Note

Renesas RA Family

High Performance with RA8 MCU using Arm® Cortex®-
M85 core with Helium™

Introduction

This application note describes the creation of applications with improved performance with Renesas RA8
MCUs using CM85 core with Helium™. It is intended to highlight the performance advantages of the CM85
core, including low latency operation. Helium™, Arm’s M-Profile vector extension with integer and floating-
point support enables advanced Digital Signal Processing (DSP), Machine Learning (ML) capabilities and
helps accelerate compute-intensive applications such as endpoint Artificial Intelligence (Al), ML.

This application note walks you through all the steps necessary to achieve higher performance, including:

e Application overview

e Application highlights

e Tool configuration

e Application confirmation
Required Resources
Development tools and software

e e?studio version: 2024-01.1 (24.1.1)

e LLVM Embedded Toolchain for Arm v17.0.1

e Renesas Flexible Software Package (FSP) v5.2.0 or later.
Hardware

e Renesas EK-RA8ML1 kit (RA8M1 MCU Group)

Reference Manuals

¢ RA Flexible Software Package Documentation Release v5.2.0
e Renesas RA8M1 Group User's Manual Rev.1.10
¢ EK-RA8M1-v1.0 Schematics

ROLAN7127EU0200 Rev.2.00 Page 1 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Contents

Y o] o] [or= Lo] @ YT 4T 3
2. Arm® Cortex®-M85 Core and Helium™ TeChnologycccoveiiieiieiiie e 3
2 R N 41 K 00T ¢ (=) G Y £ oo = SRS 3
2.2 RENESAS RAB IMCU ...ttt ettt e e e oot e e e e e e s s bbb e e et e e e e e s bbb e e et e e e e e e annbrereeeeeeaaanne 4
2.3 Single INSruction MUIIPIE DAtaA........cciiiiciiiiiiiee i e e e e e s e e e e e e e s s e e e e e e s snnbe e e e e e e e e e snnaneneeeeessananes 5
A o o TN R Y o] o] T (o] SRS 6
3. Helium™ Support in Renesas FSP and LLVM Arm Toolchainccccvveeeiviieeec i, 8
Y N o] o] [Tor=Y o) I] o] [T o 9
4.1 Vector Multiply Accumulate Instruction VIMLA EXamMPIEoooiiiiiiiiiiiiiiiiiie e 11
4.2 Vector Instruction VIMLADAVA EXAMPIE......uuiiiiiieiiiiciiiiiee ettt e et e e e e e e s s snntaae e e s e e e s s nnnnraneeeee s 14
4.3 ARM DSP DOt ProduCt EXAMPIEueeiieiiiiciiiieeee e st ee e e st e e e e e e e s e e e e e e s s st aeeeaeeesnnnnnrnnneeeeean 17
4.4 Performance IMPIrOVEMENT iiiieeeee e s e sseeee e e e e s s st r e e e e e saa bt eeeeeesssantareeeaeeesaanstnneeeeeessaasnnrnnneeeenan 19
4.4.1 Tightly Coupled MemOIY (TCIM) ...ttt e ettt e e e e e st e et e e e e e s s aabbeeeeeaeeesaannbbeeeaaaaeas 19
4.4.2 Improve Performance USING DTCM ...ttt e e et e e e e e e rannbeeeaaae s 22
4.4.3 Improve Performance USING ITCM ...ttt e e et e e e e e e s anbbeeeaaae s 23
4.5 Improve Performance by Utilizing Data CacChec.uuviiiiii i 24
4.6 Using General Purpose (GPT) Timer for Benchmarking.........ccccvvviviieiiiiiciiiece e 26
5. VErY the PrOJECTeiiiiiiiiiiiee s 27
o0 A 11 oL I TSN = o] (= o £ S PES 27
oI U o I oY ox PR 27
LRSI B TV (o= To = U o {01 TN = o] [=Tox S PR 29
5.4 Benchmarking PerfOrManCEcooi ittt e e e ettt e e e e e e e snbbereeeaaeeeaanes 31
5.4.1 VMLA Project HELIUM_VMLA _EK _RABMILccciiiiiiieiiee ettt ettt ettt tee e nnae e 31
5.4.2 VMLAVADA Project HELIUM_VMLADAVA EK_RABMLcoiiiiiiiieciee sttt 32
5.4.3 DSP Dot Product Project HELIUM_DOT_PRODUCT_EK_RA8BML......cccocoviiiiieiieeeer e 33
L T o T od U1 (o] o TR 34
YAV] To] T 1151 (o] Y2 36
RO1AN7127EU0200 Rev.2.00 Page 2 of 36

Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

1. Application Overview

The application projects accompanying this document showcase the performance advantages of the
Renesas RA8 MCU with CM85 core. Helium™ intrinsics and Arm® CMSIS DSP Library functions are
benchmarked to highlight the improvements versus the scalar version of these intrinsics.

It also utilizes Tightly Coupled Memory (TCM) and caches together with Helium™ for further performance
improvement.

2. Arm® Cortex®-M85 Core and Helium™ Technology

Arm® Helium™ technology is the M-profile Vector Extension (MVE) for the Arm® Cortex®-M processor series.
It is part of the ARMv8.1-M architecture and enables developers to realize a performance uplift for DSP and
ML applications. Helium™ technology provides optimized performance using Single Instruction Multiple Data
(SIMD) to perform the same operation simultaneously on multiple data. There are two variants of MVE, the
integer and floating-point variant:

e MVE-I operates on 32-bit, 16-bit, and 8-bit data types, including Q7, Q15, and Q31.
e MVE-F operates on half-precision and single-precision floating-point values.

MVE operations are divided orthogonally in two ways, lanes, and beats.
e Lanes

Lane is a portion of a vector register or operation. The data that is put into a lane is referred to as an
element. Multiple lanes can be executed per beat. There are four beats per vector instruction. The
permitted lane widths, and lane operations per beat, are:

» For a 64-bit lane size, a beat performs half of the lane operation.
» For a 32-bit lane size, a beat performs a one lane operation.
» For a 16-bit lane size, a beat performs a two-lane operation.
» For an 8-bit lane size, a beat performs four lane operations.
e Beats

Beat is a quarter of an MVE vector operation. Because the vector length is 128 bits, one beat of a
vector add instruction equates to computing 32 bits of result data. This is independent of lane width.
For example, if a lane width is 8 bits, then a single beat of a vector add instruction would perform
four 8-bit additions. The number of beats for each tick describes how much of the architectural state
is updated for each architecture tick in the common case. Systems are classified by:

» In asingle-beat system, one beat might occur for each tick.
» In a dual-beat system, two beats might occur for each tick.
» In a quad-beat system, four beats might occur for each tick.

Cortex®-M85 implements a dual-beat system, and it supports overlapping up to two beat-wise MVE
instructions at any time so that an MVE instruction can be issued after another MVE instruction without
additional stall. Refer to Arm® Cortex®-M85 Processor Devices for more information.

2.1 Arm® Cortex®-M85 core
Main features of Arm® Cortex®-M85 core in Renesas RA8 MCU are as follows.
e Maximum operating frequency: up to 480 MHz
e Arm® Cortex®-M85 core
— Revision: (rOp2-00rel0)
— ARMv8.1-M architecture profile
— Armv8-M Security Extension
— Floating Point Unit (FPU) compliant with the ANSI/IEEE Std 754-2008

ROLAN7127EU0200 Rev.2.00 Page 3 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Scalar half, single, and double-precision floating-point operation

— M-profile Vector Extension (MVE)

Integer, half-precision, and single-precision floating-point MVE (MVE-F)

— Helium™ technology is M-profile Vector Extension (MVE)

e Arm® Memory Protection Unit (Arm MPU)
— Protected Memory System Architecture (PMSAv8)
— Secure MPU (MPU_S): 8 regions
— Non-secure MPU (MPU_NS): 8 regions

e SysTick timer

— Embeds two Systick timers: Secure instance (SysTick_S) and Non-secure instance (SysTick_NS)
— Driven by CPUCLK or SYSTICKCLK (MOCOQ/8).

e CoreSight™ ETM-M85

Figure 1 shows the block diagram of Arm® Cortex®-M85 core.

AHBS5 slave+—~ S-AHB

interface

P-AHB
interface

EPPB

Master = interface

Trace
interface

JTAG or
SW

EWIC WIC IDAU _
interface interface interface TCM interface
t
From MCU level
Core
EPPB et Processor level
e = i_IWIC: ITCM DO D1 D2 D3TCM
- I “Fo
interface 1 Ewi C: ‘i
IR J— [T
_IRQ | NVIC | o MAU LT Core EPPB—— | ot
interface T [i SBIST |
| ! : + I i |Controller:
Coprocessor LSuU PIU DBG D-AHB ’ :
interface (o] | DPU | - ,' AHBS
T Core Internal Master
o= System [||| | —t——
| i [
L EPU Regster | | |[BPU{ ITM jr=ry
Clock and e I ne)l APB
Reset OV} _'L[_’?;' =3 5T8] __Debug EPPB
———x__ 1l -== r__ o=
Power | IRAM | | DRAM | :PMC-100: ROM ROM
control ~ | | [[=————- ||| -—-- ' I i S table table
PDRAMS MIU L = -
To CTl W ETB ||
BIU & MBIST I/DITCU '|:—_—_:f|‘
PDCORE I interface (ETM fATBA—— TPIU |
PDDEBUG
AX15 master APB slave L—D-AHB DAP
| |
! !
M-AXI PMC-100 |: Configurable component
interface interface =3

L Opticnal component

{____ Configurable and optional component

Figure 1. Cortex®-M85 Core Block Diagram

2.2 Renesas RA8 MCU

The RA8M1 MCU group incorporates a high-performance Arm® Cortex®-M85 core as shown in the previous
section with Helium™ running up to 480 MHz with the following features.

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 4 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

e Upto 2 MB code flash memory

¢ 1 MB SRAM (128 KB of TCM RAM, 896 KB of user SRAM)

e Octal Serial Peripheral Interface (OSPI)

e Ethernet MAC Controller (ETHERC), USBFS, USBHS, SD/MMC Host Interface
e Analog peripherals

e Security and safety features.

Memuory Bus Arm@ CorfexE-MB5 System
2 MB code flash External DSP FPU PORPVD Clocks
S CSsC MOSCISOSC
12 KB data flash DAL
Reset
SORAM
yEp—— 5 (HMIL) OCO
MFU
1 KB Standby = Mode control PLL1PLL2
SRAM
NWIC
Power control CAC
DMA System timer
Icu Battery backup
DTC
Test and DBG interface
Register write
DMAC = 8 protection
Timers Communication interfaces Human machine interfaces
GPT32x8 SCI=x@ IC =2 13C CEU
GPTIExE
AGT =2 QSPI SDHI x 2 ETHERC
ULPT = 2 SPIx 2 CANFD x 2 USBHS
RTC
SSE=2 USBFS
WDTAWDT
Event link Security Data processing Analog
ELC RSIP-E51A CRC ADC1Z x 2 DAC1Z x 2
DOTF DOC ACMPHS x 2 TSN

Figure 2. Block Diagram of Renesas RA8M1 MCU

2.3 Single Instruction Multiple Data

Most Arm® instructions are Single Instruction Single Data (SISD) instructions. The SISD instruction only
operates on a single data item. It requires multiple instructions to process data items.

ROLAN7127EU0200 Rev.2.00 Page 5 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

The Single Instruction Multiple Data (SIMD), on the other hand, performs the same operation on multiple
items of same data type, concurrently. It means invoking/executing a single, multiple operations are being
performed simultaneously.

Figure 3 shows the operation of VADD.I32 Qd, Qn, Qm instruction that adds the four pairs of 32-bit data
together. Firstly, the four pairs of 32-bit input data are packed into separate lanes in two 128-bit Qn, Qm
registers. Then, each lane in the 15! source register is then added to the corresponding lane in the 2" source
register. The results are stored in the same lane in the destination register Qd.

oUlg 1 2 3 4

Qm

Qd : C

Figure 3. Operation of VADD.I32 Qd, Qn, Qm Instruction

2.4 Helium™ Applications

Digital Signal Processing (DSP) and Machine Learning (ML) are the main target applications for Helium™.
Helium™ offers significant performance increases in these applications. Typically, Helium applications are
created using Helium™ intrinsics.

Helium™ instructions are made available as intrinsic routines through the arm_mve.h in LLVM Embedded
Toolchain for Arm toolchain installation, located in “<e2studio installation
folder>\toolchains\llvm_arm\LLVMEmbeddedToolchainForArm-17.0.1-Windows-x86_64\lib\clang\17\include”.
They give users access to the Helium™ instructions from C and C++ without the need to write assembly
code.

Many functions in CMSIS-DSP and CMSIS-NN libraries have been optimized by Arm to use the Helium™
instructions instead. Renesas FSP supports both libraries, making it easier for users to develop applications
based on these libraries. In the FSP configuration, select Arm DSP Library Source (CMSIS5-DSP version
5.9.0 or later) and Arm NN Library Source (CMSIS-NN version 4.1.0 or later) when generating projects to
add CMSIS-DSP and CMSIS-NN supports to your project.

ROLAN7127EU0200 Rev.2.00 Page 6 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Components Configuration

E B 2%

Component
oo Arm
@ Abstractions
w iy CMSIS
w @ CMSISS
CoreM

0

Generate Project Content

Group by: |Vendor ~ | Filter: | All v

Wersion Description Yariant &

5.9.0+renesas.1.fsp.5.2.0 Arm CMSIS Version 5 - Core (M)

DSP
NN

5.9.0+renesas. 1.fsp.5.2.0 Arm DSP Library Source
4.1.0+fsp.5.2.0 Armn MM Library Source

@ mbed
& Mbed
& PSA
8 AWS
= Intel
= Linaro
= Microsoft
“w o Renesas

w iy BSP
¥ Board
e v
Surmmary | B5P | Clocks | Pins | Interrupts | Event Links Stacks
Figure 4. CMSIS-DSP and CMSIS-NN supports in Renesas FSP
CMSIS-DSP and CMSIS-NN can also be added using Stacks tab in FSP configurator, as shown below.
Stacks Configuration Generate Project Content n &AL
HAL/Common Stacks 4| New Stack >
Threads
= Analog > |
v-(,;;% HAL/Common 42 g_\.opoﬁl_f'l] Port Artificial Intelligence > < Arrn CMSISS NN Library Source
48 g_ioport 10 Port (r_ioport) {rfoport) Audio > 4 Data Collecter (rm_rai_data_collector))
@ Bootloader > & Data Shipper (rm_rai_data_shipper)
Connectivity
I Dsp > I
Graphics >
Input >
Monitering >
Motor >
Networking >
Power >
Security >
Sensor >
Objects Storage >
System >
Timers b
Transfer >
4 Search...
Summary | BSP | Clocks | Pins | Interrupts EventLink;Cnmpnnent; » Legend
Figure 5. Adding CMSIS-DSP and CMSIS-NN Using Stacks Tab in FSP Configurator
RO1AN7127EU0200 Rev.2.00 Page 7 of 36

Apr.05.24

RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

3. Helium™ Support in Renesas FSP and LLVM Arm Toolchain

LLVM Embedded Toolchain for Arm supports Helium™ instructions with the compiler settings. When
generating a RA8ML project using e? studio and Flexible Software Package (FSP), CPU settings and
software settings are pre-optimized for Cortex®-M85 core and the CMSIS Helium™ support. Refer to the
Flexible Software Package Documentation for the steps to create a project for RA MCU.

Renesas RA C/C++ Project —

Device and Tools Selection

Device Selection
Board Description
Evaluation kit for RAZM1 MCU Group

Board: EK-RAZMI ML Visit TBD to get kit user's ranual, quick start guide, errata, design
package, example projects, etc.

FSP Version: |5.2.0 ~

Device: R7FASMIAHECED
Core CMas
Langusge: @ C O C+ Device Details
TrustZone Yes
Pins 224
Processor Cortex-MB3
Toolchains Debugger
GMNU ARM Embedded J-Link ARM w

LLVM Embedded Toolchain for Arm
ARNM Compiler . 12
ARM Cornpiler 6,19

17.0.1 ~

':?:' < Back Finish Cancel

Figure 6. Create an EK-RA8M1 Project using e? studio

The Cortex®-M85 core will be selected in the tool settings, as shown below.

ROLAN7127EU0200 Rev.2.00 Page 8 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

53 Tool Settings| B3 Toolchain | & Build Steps Build Artifact Binary Parsers| €3 Error Parsers

(& CPU ARM family cortex-mas v
(# Optimization
@ Debug Architecture Teclchain default w
@ Warnings Instruction set Thumb (-mthumb) w
83 Library Generator _
) Compiler [] Thumb interwork
By Assembler Endian Little endian (-mlittle-endian) w
B8y Link
D Linker Float ABI FP instructions (hard) v
&3 Objcopy

w 53 Print Size FPU Type Toolchain default e

(# General] :
Unaligned access | Toolchain default W

[] TrustZone (-mcmse)
Other CPU options 42

Figure 7. Example of Tool Settings

Even though, the project settings are pre-optimized for Cortex®-M85, they can be customized if needed.
Macro definitions can be added to select project configurations to enable and disable some portions of the
code in a project. Go to Project->C/C++ Project Settings to change setups for the project if needed.

4. Application Project

™M

There are three projects accompanying this application note. All have the scalar code equivalent to Helium”
functions.

e The Vector Multiply Accumulate (VMLA) and the scalar code equivalent.

e The Vector Multiply Accumulate Add Accumulate Across Vector (VMLADAVA) and the scalar code
equivalent.

e The ARM® DSP Dot Product function and the scalar code equivalent.

The projects are configured in various settings to utilize DTCM, ITCM, and cache to showcase the
performance improvements of Helium technology compared to scalar code.

5 Project Explorer 3
T HELIUM_DOT_PRODUCT_EK_RABMT

s HELIUM_VMLA_EK_RABM1
T HELIUM_VMLADAVA_EK_RASM1T

Figure 8. Application Projects in the Workspace

The available configuration for each project is as follows.

ROLAN7127EU0200 Rev.2.00 Page 9 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Project Configuration HELIUM_VMLA_EK_RASM1 | HELIUM_VMLADAVA_EK_RASM1 | HELIUM_DOT_PRODUCT EK_RASM1
132_SCALAR(w/o Auto Vectorization) v v

132_SCALAR(w/ Auto Vectorization) v v v

132_HELIUM Ve v v
132_HELIUM_DTCM v v v
132_HELIUM_ITCM

Figure 9. Configuration Available in Application Projects

Where 132_SCALAR is for the scalar code, 132_HELIUM is for the Helium code, 132_HELIUM_DTCM is for
the Helium code that utilizes DTCM, and 132_HELIUM_ITCM is for the Helium code placed ITCM.

The optimization level of the projects in this application note are set to "-O2".

3 Tool Settings | &) Toolchain | # Build Steps Build Artifact Binary Parsers| €3 Error Parsers

CPU Optimization Level || Optimize maore (-02) o
by imizati
rgé gpl:mlzatmn Function sections (-ffunction-sections)
LS ebu

% Warn?ngs Data sections (-fdata-sections)

v & Library Generator []Link-time optimizer (-flto)

@ Settings [Mo common uninitialized (-fno-common)
v &3 Compiler [] Perform the loop unrolling optimization (-funroll-loops)
(2 Source [De not expand any functions inline (-fno-inling)
(# Includes . i . .
[Fixit error parser (-fdiagnostics-parseable-fixits)
w BBy Ascembler . L i] .
2 Source Disable optimizations based on the type of expressions (-fno-strict-aliasing]

Figure 10. Compiler Optimization Setting

The _CONFIG_HELIUM_ symbol is preset to select scalar operation, Helium operation, or enable the code
to utilize DTCM and ITCM together with Helium operation.

ROLAN7127EU0200 Rev.2.00 Page 10 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

B3 Tool 5ettings|] Tﬂ-olchainl & Build 5tep5| Build Artifact| Binary Parsers| €9 Error P‘arsers|

(2 cPu Include file directories (-I) 88 8 & &

#5 Optimization
— "8{ProjDirPath}/generate"

b
%‘\% iebug "S{workspace_loc/%{ProjMame}/src}"
(# Warnings "

w B3 Library Generator "Siworkspace_loc:/S${ProjMamel/ra/fsp/inc)”

@ Settings "Sfworkspace_loc/S{ProjMamel/ra/fsp/inc/api}"
v B3 Compiler "S{workspace_loc/MProjMamel/raffsp/inc/instances}”
"Siworkspace_loc/5{ProjMamel/ralarm/CM5I5_3/CM5I5/CorefInclude}”

@ Source

"Yworkspace_loc/$ProjMamel/ra_gen}"

ik -
(% Includes "S{workspace_loc/${ProjName)/ra_cfg/fsp_cfg/bsp}"
~ B3 Assembler "S{workspace_loc/SProjMame)/ra_cfg/fsp_cfg}"

@ Source
@ Includes
w By Linker
(# Source
@ Archives
@ Miscellanecus

@ Other Macro Defines (-0 28 9 =
v & Objcopy RENESAS RA

@ General
~ 3 Print Size
@ General

RA_ORDINAL=1

Figure 11. _CONFIG_HELIUM_ symbol is Used to Select Helium Code and Scalar Code Options

4.1 Vector Multiply Accumulate Instruction VMLA Example

In VMLA instruction, each element in the input vector2 is multiplied by the scalar value. The result is added
to the respective element of input vectorl. The results are stored in the destination register.

The steps of VMLA.S32 Qda, Qn, Rm instruction are shown in the following diagram:

RO1AN7127EU0200 Rev.2.00 Page 11 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Vector2

Scalar value

Result

Figure 12. VMLA Operation

The intrinsic function vmlag_n_s32 in Figure 13 is used to showcase the performance of VMLA.S32 Qda,

Qn, Rm instruction versus the scalar equivalent.

/ /et the timer counter
ts_cycle @ = R_GPT@->GTCNT;
R_GPT@->GTCR = 1; // Start timer

= #if (_CONFIG_HELIUM_ == I32 SCALAR)
/fPerform scalar calculation (Equivalent with the multiply accumulate in:

for (i = @; i<DAT_BUF SIZE; i++)
datal[i] += (data2[i] * scalarval);
//Get the timer counter
ts_cycle_1 = R_GPT@->GTCNT;
= #elif (_CONFIG_HELIUM_ == I32_HELIUM) || (_CONFIG_HELIUM == I32_HELIUM_DTCM]
= #if (_CONFIG_HELIUM_ == I32_HELIUM) || (_CONFIG_HELIUM_ == I32_HELIUM DTCM)

//sine calculating 4 outputs at a time, the loop will be 32/4 = 8 (LOOP_P
2 for (i = @; i<LOOP_NO; i++)

Load 4 data Trom the array
vectorl = vldiq_s32(p_datal);
vector2 = vldlq s32(p_data2);
//Multiply (vector2*scalaryal), add vectorl and store the results
result[i] = vmlagq_n_s32(vectorl, vector2, scalarval);
/{Increase pointers
p_datal += 4;
p data2 t= 4;

//Get the timer counter
ts_cycle_1 = R_GPT@->GTCNT;

%

136

B2888376:
B200837a:
azeaasve:
B2800332:
B2008336:
az2enassa:
B280033e:

154

|2eaason:

153

82800394 :

156

a2e8as9a8:
B288839C:
B20083a0:

158

82600334 :

162

82@883a3:
B28883ac:
B288083ae:
B28863b2
820003b4:

172

B28885b6:

177

828003ba:

R_GPT@->GTCR = 1; // Start timer
str.w r4, [r5, #-28]
movt rG, #3784 3 Bx2208
movw rl, #4948 3 Bx134c
movw r2, #5863 3 Bx13cc
movt rl, #512 3 Bx2ee
movt r2, #512 3 Bx2ee
mov r3, ré

vector2 = vldlg s32(p datad);

vidrw.u32 qa, [r2], #16
vectorl = vldlq s32(p_datal);
vldrw.u32 ql, [ri], #16
result[i] = vmlagq_n_s32(vectorl, vector2, scalarval);
vshl.i3z qe, qa, #1
vadd.i32 q8, g8, ql
vstrb.d q@, [r3], #16

tor (1 = @8; 1<LOOP_NO; 1++)
le 1r, 8x2888399 <hal_entry+124>
ts_cycle_1 = R_GPT@->GTCNT;

movw rl, #2432 3 Bx988
ldr r2, [r5, #@8]

movt rl, #3784 ; Bx22868
movs r4, #a

str r2, [rl, #@]

R_GPT@->GTCR = @; //Stop timer
str.w r4, [r5, #-28]

APP_PRINT("Timer counter cycle: #d \n", ts_cycle 1 - ts_cycle_8);
ldr rl, [rl, #@8]

Figure 13. Example of VMLA Instruction using Intrinsics and Disassembly Code

Figure 14 shows the scalar code equivalent to the Helium code in Figure 13.

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 12 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™
R_GPT@->GTCR = 1; 5tart timer e 138 R_GPT@-3GTCR = 1; Start timer
BIDBBETE: strow rd, [r5, #-28]
= #1f (_COMFIG_HELIUM == I32 SCALAR) P2000870: moww ri, 84896 ; Ox132e
Perform scalar calculation (Equivalen BIO00ETe: mowt rl, #5794 5 BwlI0e
for (1 = @; L<DAT BUF SIZE; f++) B288R332: movt r2, #512 i
: 142 datal[i] 4= (data2[i] * scalarwal):
I datal[i] += (data2[i] * :n:llah-nljzl B2000856: r.w r3, [rZ], 84
- 2200088a : ldr r6, [rl, #a]
ffGet the timer counter B2DREEEC ; add.w r3, r6, r3, lzl m
ts_cycle 1 = R_GPT@->GTCNT; 22000599 str.w r3, [rl1], 24 s
= gelif (CONFIG HELIUM_ == I32 MELTUM) || (v 148 for (i = @; i<DAT_BUF_SIZE; i++)
BIBN0894: le lr, @x2000886 <hal_entry+ll4x

Figure 14. Example of Scalar Code Equivalent of VMLA and Typical Disassembly Code Without Auto
Vectorization

Notes that the LLVM for Arm v17.0.1 supports auto vectorization by default and generates MVE instructions
equivalent to scalar code automatically where applicable.

R_GPT@->GTCR = 1; // Start timer

= #if (CONFIG_HELIUM == I32 SCALAR)
//Perform scalar calculatien (Equivalent with 1

= for (i = @; i<DAT BUF_SIZE; i++)

datal[i] += (data2[i] * scalar'val);l

//Get the timer counter
ts_cycle 1 = R_GPT@->GTCNT;
= #elif (_CONFIG HELIUM_ == I32 HELIUM) || (_CONFIG }

- #if (CONFIG HELIUM_ == I32 HELIUM) || (_CONFIG_HEL
//5ine calculating 4 outputs at a time, the loc

- h -

—— [o 3 e

136 R_GPTB->GTCR = 1; // Start timer
B2888376: str.w r4, [r5, #-28]
B2eeas7a: MmovwW r2, #a
B2e8as7e: movt rl, #3512 ; Bx2ee
B208B852: movt r2, #3784 3 Bx2208
A 142 datal[i] += (data2[i] * scalarval);
» B208B8E6: wvidrw.us2d qe, [rl], #le
B2BER3Ea: vidrw.u32 ql, [r2, #8]
B2RERBEe: wshl.i32 qe, qe, #1
B2BEB392: vadd.i32 q@, ql, ge@
B2BBBE0G: vstrb.8 g@, [r2], #l6
140 for (i = @; i<DAT BUF SIZE; i++)
B2peB39a: le 1r, Bx2088386 <hal_entry+l14:>
145 ts_cycle_1 = R_GPT@-»>GTCNT;

Figure 15. Example of Scalar Code Equivalent of VMLA and Its Vectorization Code Generated by
LLVM for Arm v17.0.1

To disable auto vectorization, add “-fno-vectorize” option to compiler setting as shown in Figure 16.

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 13 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

%3 Tool Settings | 53 Toolchain | # Build Steps Build Artifact Binary Parsers| €3 Error Parsers

(# CPU [] Preprocess only (-E)
(# Optimization [] Compile only (-5)
(# Debug [Verbose (-v)

(2 Warnings

[] Use static analyzer
w 53 Library Generator ¥

(# Settings Language standard |ISG Co9 v|
v & Compiler User defined compiler options & w5 F 5l

Includes %‘ =
w B Ascembler

= c -fna-unrell-locps

* Source .
e -flax-vector-conversions
@ Includes

w BB Linker
(# Seurce
@ Archives
@ Miscellanecus
@ Other
v % Objcopy
@ General
~ B3 Print Size
@ General

Figure 16. Example of Disabling Auto Vectorization Option in LLVM Compiler

4.2 Vector Instruction VMLADAVA Example

The VMLADAVA instruction multiplies the corresponding lanes of two input vectors, then sums these
individual results to a produce a single value.

The steps of VMLADAVA.S32 Rda, Qn, Qm instruction are shown in the following diagram:

ROLAN7127EU0200 Rev.2.00 Page 14 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Qo 32 33 34 35

Ql

RO

RO input

RO output

Figure 17. VMLADAVA Operation

The intrinsic function vmladavaq_s32 in Figure 18 is used to showcase the performance of VMLADAVA. S32
Rda, Qn, Qm instruction versus the scalar equivalent.

#if (_CONFIG_HELIUM_ == I32_HELIUM) || (_CONFIG_HELIUM == I32 HELIUM_DTCM) ~
//5ine calculating 4 outputs at a time, the loop will be 32/4 = 8 (LOOP, 142 R_GPTO->GTCR = 1; // Start timer
for (1 = @; i<LOOP_NO; i++) 020008876 str.w r4, [r5, #-28]
\200887a: movw r2, #5840 ; Bxl13be
//Load 4 data trom the array B2808387e: movw r3, #2388 3 Bx8fc
wvectorl = vldlq_s32(p_datal); B2000382: movt rl, #512 5 Bx208
wvector2 = vldlq_s32(p_data2)}; B200a386: movt r2, #512 5 Bx208
//Perform (vectorl®*vector2), sum 4 multiplicatien results,] then add s B280833a: movt r3, #3784 3 Bx2280
result[i] = wmladavaq_s32(scalarval, wectorl, vector2); a 167 vectorl = wldlg_s32(p_datal);
//Increase pointers » B2@0@3se: wvldrw.u32 q8, [r1], #16
p_datal += 4; 168 vector2 = vldlg_s32(p_data2);
p_data2 += 4; B82000392: vldrw.u32 ql, [r2], #16
¥ 178 result[i] = vmladavaq_s32(scalarval, vectorl, vector2);
[ffGet the timer counter 826863896 movs ré, #2
ts_cycle 1 = R_GPT@->GTCNT; 2000395 : vmlava.s32 ré, qe, ql
#endif B200689C: str.w r6, [r3], #4
164 for (i = @; i<LOOP_NO; i++)
#if (_CONFIG_HELIUM == I32_HELIUM_ITCM) 020008a0: le 1r, ©x200888s <hal_entry+122>

Figure 18. Example of VMLADAVA Instruction using Intrinsics

Figure 19 shows the scalar code equivalent to the Helium™ code in Figure 18.

RO1AN7127EU0200 Rev.2.00 Page 15 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™
e TSI TR T
R_GPTE->GTCR = 1; // Start timer s 143
B2BDBETE:
S#if (_CONFIG MELIUM == 32 SCALAR) B28PRETC:
'/Perform scalar calEJiat:uﬁ (Equivalen A20PREER:
for (i = @; i<DAT_BUF SIZE; i += 4) DIRPR5EL
{ ; . B2B0E3ER:
= fnr(J = @ j{4; j++) A20008Ec;
148
datal[i+f] *= data2[i+1]; 92008800
Lol B
3 for(j = 8; jed; jo4) BIB0RS06:
. B 158
result[i/4] += datal[i+f]; $ @I000895:
DIGDVFIC
result[i/4] += scalarval; 200089
} a2eaagan:
T T INT UL D20D0Ead:
ts_eyecle 1 = R_GPT@->GTCNT; B20088a8:
= gelif (_COMFIG HELIUM_ == I32 HELIUM) || (_ 152
B2eadac:
= #if (_COWFIG_HELIUM_ == T32 HELIUM) || (_COi Q2000808
ff5ine calculating 4 outputs at a time, A2e0aghI
for (i = 8; 1<LOOP_NO; i++) 154
B2eBEEha:
fifLload 4 data from the array a2eeaahE:
vectorl = wldig s32(p datal); 152
vectar2 = wvldlg s32(p data2); a2apaaha:
Jiperfora {vectorl®vectord), sum 4 mu 145
result{i] = wvmladavaq_s32(scalarval, ' P20DERhe
JlIncreaze pointers A28088c8:
p_datal += 4; P2e988ca:
p_data2 += 4; BIRPEICE:
) 156
ffGet the timer counter B2BpE8ce:
ts_cycle 1 = R_GPTO->GTCNT; 22000540
gendif 146
B2eDE544
SMEE 7 CPNETS MEITIM ee TR HELTIM TTAMA Ky

R GPTO->GTCR = 13 // Start timer
str.w rb, |[rE, #-2B]
OV rG, #@
movt ré, WE784 ; Bx2288
movt ri, #512 HEL]
WOV . W ro, #3
movt rl@, #B7e4 HL= i
for{j = 8; j<d; je+)
dls 1r, ro
mov o, ri
mo r5, ré
datal[i+j] *= data2i+j]:
ldr.w rl, [r@], #4
ldr r3, [r5, #a8]
muls rl, r3
str.w rl, [r3], #4
le 1r, 8x280d898 <hal_entry+l3l»
ldr.w r8, [r18, r4]
for{j = @; j<4; j++)
dls 1r, ra
lsrs rS, rd, #2
mov rl, ré
resultfi/a] += datal[i+j];
ldr.w r3, [ri], #4
add r8, r3
for{j = @; j<4; j++)
le lr, Bx28088b4 <hal_entry+l68>
for (i = @; i<DAT_BUF_SIZE; i += 4)
cmp r4, 28
add.w rd, rd4, 84
add.w rb6, r6, #16
add.w 2, r2, %16
resultf[if4] += scalarval;
add.w r@, r@, #2
str.w @, [rle, r5, lsl #£2)

bee.n

for (1 = @; i<DAT BUF_SIZE; i += 4)

2x2000E908 <hal entry+124>

Figure 19. Example of Scalar Code Equivalent of VMLADAVA Instruction and Typical Disassembly

Code without Auto Vectorization

The LLVM for Arm v17.0.1 supports vectorization and generates MVE instructions equivalent to scalar code
automatically as shown in Figure 20.

f/L0eT The Timer counter
ts_cycle_@ = R_GPTE-»GTCNT;

R_GPT@->GTCR =

= #if (_CONFIG _HELIUM ==
//Perform scalar calculation (Equivalent with the WML

1; // Start timer

I32_SCALAR)

= for (i = @; i<DAT_BUF_SIZE; i += 4)

:

= for(j = 8; j<d4; j++)

ADAVA i

datal[i+j] *= data2[i+j];
= for(j = @; j<d; j++)

result[i/4] += datal[i+j];

result[i/4] += scalarval;

//Get the timer counter
ts_cycle 1 = R_GPT@->GTCNT;
- #elif (_CONFIG_HELIUM_ == I32_HELIUM) || (_CONFIG_HELIUM_ == I32

- #if (_CONFIG HELTIUM == I32 HELTIUM) || (CONFIG HELIUM == I32 H
//5ine calculating 4 outputs at a time. the loop will be 32/

142

a2e88876:
B28@887a:
B288887e:
02808882
62808886
B2eea88a:

158

B2ea88e:
82888892
82888896
82888898

154

a2eea89c:

158

B28888a8:

156

B280@8a4:
B2eea8a6:

146

B2e6a8aa:

159

R_GPT®->GTCR = 1; // Start timer

str.w r4, [r5, #-28]

Mo r2, %8

movw r3, #2428 3 Bx97c

movt rl, #5312 3 w288

movt r2, #5784 ; Bx2288

movt r3, #8784 3 Bw2268
datallit+til *= datazl[i+i]:

vldrw.u32 qe, [rl], #l6

vldrw.u32 ql, [r2, #8]

ldr ré, [r3, #8]

vmul.iz2 q2, ql, g®@
result[i/4] += datal[i+j];

vmlava.u32 ré, gl, q@

datal[i+j] *= data2[i+j];
vstrb.8 g2, [r2], #16
result[i/4] += scalarval;
adds ré, #2
str.w re, [r3], #4

for (i = @; i<DAT BUF SIZE; i += 4)
le 1r, ex2eee88e <hal_entry+122:
ts cycle 1 = R GPT@->GTCNT;

Figure 20. Example of Scalar Code Equivalent of VMLADAVA Instruction and Its Vectorization Code

Generated by LLVM for Arm v17.0.1

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 16 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

4.3 ARM DSP Dot Product Example

The dot product example uses the arm_dot_product_f32 function in the Arm DSP library to calculate the dot
product of two input vectors by multiplying element by element and sum them up. The performance of the
Helium version of arm_dot_product_f32 will be compared with its scalar version.

= void arm_dot_prod_f32(
const float32_t * pSrch,
const float32_t * pSrcB,
uint32_t blocksize,
float32_t * result)

T32x4_t wech, vecB;

f32x4_t wvecSum;

uint32_t blkCnt;

float32_t sum = @.@f;
vecsum = vdupg_n_f32(8.8f);

/* Compute 4 outputs at a time */
blkCnt = blockSize »» 2U;
= while (blkCnt > 8U)

{
o C = A[@]* B[@] + A[1]* B[1] + A[2]* B[2] +
* Calculate dot preduct and then store the r
* and advance vector source and destination
VEEA = vldiq(pSrcA);
pSrch += 4;
vecB = vldigq(pSrcB);
psrcB += 4;
vecsum = vfmaqg(vecsum, vechA, vecB);
x Decrement the blockSize loocp counter
blkCnt --;
}
blkCnt = blockSize & 3;
= if (blkCnt > @U)
{
* C = aAlel* Blel + AlL71* BI11 + AT27* BI21 +

B28811e8:
B28@l1lec:

a8

e2eellfe:
628011f4:

94

62601178:

22e811fa:
628011fc:

a8

628811fe:
B2eel2e8:

8l

B2eel1284:
g2eal2e8:
B2e@1268a:
B2eel2ee:
g2eal2la:

esult :

pointer
A a8
»

al

82801215

a4

B28@121c:
G2eal22a:
B2@@1224:
B2e@1226:

le2

B2e@1225:

las

B2@@122c:

1aad

e2eellle:;

1a9

eB2a81232;

1a7

82801236

e@2a81214;

vdup.32 g8, r2

vctp.32 rl
*pDst++ = value;
vpst
vstrwt.32 qe, [re, #8]
}
pop {r7, pe}

arm_dot_prod_f32:
push {r4, r5, r7, 1r}
add r7, sp, #8
blkCnt = blockSize »» 2U;
l=rs r5, r2, #2
vmov.i32 qe, #@
while (blkCnt > @U)
wls 1r, r5, @x2881228 <arm_dot_prod_f32+46>
1sls rd4, r5, #4
vmov.1i32 qe, #8 ; Bx6BEEBREE
add.w ri2, r@, r5, 1sl #4
mowv rs, rl
vech = vldlg(pSrcA);
vldrw.u32 ql, [re], #16
vecB = vldlg(pSrcB);
vidrw.u32 q2, [r5], #16
vecsum = vfmaq(vecsum, vecA, vecB);
vfma. 32 qe, gql, g2
le 1r, 8x2801214 <arm_dot_prod_f32+26>
add rl, rd4
mov ré, rl2
blkCnt = blockSize & 3;
ands.w r2, r2, #3
if (blkCnt > 8U)
beg.n @x2801242 <arm_dot_prod_f32472>
vech = vldlg(pSrch);

axeaaaaana

vidrw.u32 ql, [re, #@]
vecB = vldlg(pSrcB);
vidrw,u32 q2, [rl, #8]

mve_predlé_t p@ = vctp32q(blkCnt);
vctp.32 r2

Figure 21. arm_dot_product_f32 Function with Helium™ Code

Renesas Flexible Software Package FSP supports Arm DSP Library Source for Cortex®-M85 that uses
Helium intrinsics. It will improve performance significantly compared to scalar code. Select Arm DSP Library
Source in Project Configurator to add the DSP source to your project, as shown in Figure 22.

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 17 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Components Configuration

= [+%

Component Version

w 5 Arm
s Abstractions
w e CMSIS
w @ CMSISS
CoreM

Group by: | Vendor w

5.9.0+renesas.1.fsp.5.2.0

Filter: | All

Description

Arm CMSI5 Version 5 - Core (M)

[F)

Generate Project Content

w | Search... |

Variant

[T Dsh

2.9.0+renesas.1.fsp.3.2.0

Arm DSP Library Source

[] NN
s mbed
i Mbed
i PSA
o AWS
= Intel

4.1.0+fsp.5.2.0

= Linaro
o Microsoft
»w = Reneszas

iy BSP
% Common
e HAL Drivers
% Middleware
e Projects

& TES
5, SEGGER

Arm MM Library Source

Summary | B5P | Clocks | Pins | Interrupts | Bvent Links | Stacks | Components

Figure 22. Adding Arm Library DSP Source in FSP Configurator

Click Generate Project Content, the Arm DSP library source will be added to the project.

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 18 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

v =% HELIUM_DOT_PRODUCT_EK_RA8M1 [I132_HELIUM_DTCM]
gff Binaries
[l Includes
v 2 ra
v r_,g? arrm
w = CMSIS 3
w = CMSIS
= Core
v = DSP
= Include
= Privatelnclude
v = Source
= BasicMathFunctions
= BayesFunctions
= CommonTables
= ComplexMathFunctions
= ContrellerFunctions
== DistanceFunctions
= FastMathFunctions
= FilteringFunctions
= InterpolationFunctions
= MatrixFunctions
= CuaternicnMathFunctions
[= StatisticsFunctions
= SupportFunctions
= SVMFunctions
= TransformFunctions
|=| CMakelists.txt
configDsp.cmake
fft.cmake
interpol.cmake
=| LICENSE.txt

= board

Figure 23. Arm Library DSP Source Added in FSP Project

4.4 Performance Improvement

You can utilize Tightly Coupled Memory (TCM) and Cache together with Helium™ to achieve higher
performance. Typically, TCM provides single-cycle access and avoids delays in data access. Critical routines
and data can be placed in TCM areas to ensure faster access. TCM does not use caches.

4.4.1 Tightly Coupled Memory (TCM)

The 128 KB TCM memory in RA8 MCU consists of 64 KB ITCM (Instruction TCM) and 64 KB DTCM (Data
TCM). Note that accessing TCM is not available in CPU Deep Sleep mode, Software Standby mode, and
Deep Software Standby mode.

Figure 24 shows ITCM and DTCM in the Local CPU Subsystem.

ROLAN7127EU0200 Rev.2.00 Page 19 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Local CPU subsystem (CPLUD) l

AHB-AP

Yy

Cortex-MEBS o+

L

TRIU

Y

¥ ki

I-TCM | (D-TCM

M-AXI P-AHB
¥ L
System bus

Figure 24. ITCM and DTCM in Local CPU Subsystem

FSP initializes both ITCM and DTCM areas by default. The linker script has defined sections for ITCM and
DTCM areas, making it easy to utilize in user applications.

Figure 25 and Figure 26 are snapshots of ITCM and DCTM locations in RA8 MCU.

ROLAN7127EU0200 Rev.2.00 Page 20 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

0x1300_A300
0x1300_A100

0x1300_81B4
0x1300_80F0
O0x122F_8000

Ox1200_0000

(x1001_0000
0x1000_0000

0x0300_A300
0x0300_A100

0x0300_81B4
0x0300_80F0
0x022F_8000

0x0200_0000

(0=0001_0000
(0x0000_0000

Reserved area*®

Cn-chip flash (option-setting memany)

Reserved arsza*

Oin~chip flash (Factory Flash)

Reserved area*™

On-chip flash (code flash)
(read only)™*

Reserved area®

ITCM

MNon-
Secure

Reserved area™

On-chip flash (option-seting memeany)

Reserved area*?

On-chip flash (Factory Flash)

Reserved area*?

On-chip flash (code flash)
read only)*

Reserved area*?

ITCM

Mon-

SECUre
callable
for CPU

Secure
for other
bus
masters

Figure 25. Example of ITCM Areas in RA8 MCU

RO1AN7127EU0200 Rev.2.00

Apr.05.24

RENESAS

Page 21 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

0x3001_0000 Reserved area*
0x3000_0000 DTCM .
0x2703_0400 Reserved area

0x2703 0050 On-chip flash (option-setting memaony)

. Reserved area* Non-
0x2700_3000 : coctre
0x2700 0000 On-chip flash (data flash) callable
UxEﬁDG—Ddﬂt] Reserved area*® far CPU

. Standby SRAM
0x2600_0000 S Secure
0x220E_0000 for other
0x2200 0000 On-chip SRAM bus
0x2001_0000 Reserved area* masters
0x2000_0000 DTCM

Reserved area*?
0x1300_A300
Ox1300_A100 Cn-chip flash (option-setting memaony)
0x1300_81B4 Reserved area™
On-chip flash (Factory Flash) Mon-
0x1300_80F0 e ———— secure
0x122F_8000 S EIE
On-chip flash (code flash)
0x1200_0000 (read anky)™
Reserved area™
Ox1001_0000
0x1000_0000 ITCM
Reserved area*?
0x0300_A300 Non-
0x0300_A100 | On-chip flash (option-setting memory) SeCure
Reserved area* callable
0x0300_81B4 : for CPU
0x0300_80F0 On-chip flash (Factory Flash)
0x022F BO00 Reserved area™ Secure
- - for other
On-chi ﬂagh ':‘Ix’d.f’ flash) bus
0x0200_0000 read only) masters
Reserved area*?
0re0001_0000
0x0000_0000 ITc™

Figure 26. Example of DTCM Areas in RA8 MCU

4.4.2 Improve Performance Using DTCM

You can place data in the DTCM section (.dtcm_data) in an FSP-based project using the _attribute
directive, as shown in Figure 27.

#elif (_CONFIG_HELIUM_ == I32_HELIUM_DTCM)

static int32x4 t vectorl;

static int32x4 t vector2;

static int32x4_t _ attribute_ ((section(".dtcm_data"))) result[3];

static int32_t _ attribute_ ((section(".dtcm_data"))) *p_datal;

static int32_t _ attribute_ ((section(".dtcm_data"))) *p_data2;

/{Input Data

static int32_t datal[] _ attribute_ ((section(".dtcm_data"))) _ attribute_ ((aligned(8))) = {@x@, @xl, @x2, @x3, @x4, @x5, @x6, Ox7,
Bx8, 8x9, @xA, @xB, exC, exD, @xgE, exF,
ex18, ex1l, ex12, @x13, exld, exls, exl6, exl7,
@x18, @x19, @x1A, @x1B, @x1C, @xlD, @x1E, @xlF};

static int32_t data2[] _ attribute_ ((section(".dtcm_data"))) _ attribute_ ((aligned(8))) = {@x2@, 8x21, @x22, @x23, @x24, @x25, @x26, 8x27,
Bx28, Bx29, @x2A, Bx2B, 8x2C, ex2D, @x2E, Bx2F,
Bx38, @x31, @x32, Bx33, Bx34, @x35, Bx36, Bx37,
@x38, @x39, Bx3A, @x3B, @x3C, @x3D, @x3E, Bx3F};

#endit

Figure 27. Placing Variables and Data in DTCM Section

ROLAN7127EU0200 Rev.2.00 Page 22 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

The above data placement can be confirmed using the memory map generated by the compiler.

2gBeaaaa 2881598 19& 16 .dtcm_data

26000000 2001690 @ 1 __tz DTCM S = ABSOLUTE (_ DTCM START)
lgoaapea 20881598 a 1 __dtcm_data_start = .

2eeeaaaa 2881699 198 8 Ssre/hal_entry.oi(.dtom_data)
Zgoaapoe 2081598 ae 1 datal

2eeaaace 2881716 4 1 p_datal

2BBaaess 2881718 og 1 dataZ

2BBeales 2881798 4 1 p_data2

2BBealle 288l7a8 ae 1 result

ZgBaaloe 288ls528 a 1 . = ALIGN (8)

lZgaaaloe 286ls52e a 1 __dtcm_data_end = .

20000190 2001520 2 1. = _ dtem data_end

Figure 28. Example of Variables and Data Placed in DTCM Area in Memory Map

4.4.3 Improve Performance Using ITCM

One of the methods to place some portions of the code in the ITCM section (.ittm_data) is using the

attribute directive, as shown in Figure 29.

#if (_CONFIG_HELIUM == I32 HELIUM_ ITCM)
/fPlacing functions in section .itcm_data

void _ attribute_ ((section(".itcm_data"))) itcm_func{veid);

vold item func(wvoid)
1
unsigned int 1i;
//Pointer values for both arrays
int32_t *p_datal = &datall[e];
int32_t *p data2 = Edata2[e];
R_GPTE->GTCR = @; // Stop timer
R_GPT@->GTCNT = @; // Clear counter
//Get the timer counter
ts_cycle @ = R_GPT@->GTCNT;
R_GPTE->GTCR = 1; // Start timer
//5ine calculating 4 outputs at a
for (i = @; 1<LOOP_NO; i++)
1
//Load 4 data from the array
vectorl = wldlg_s32(p _datal);
vector2 = wldlq_s32(p _data2);

time, the

J/Multiply (vector2¥*scalarval), add wector

result[i] =
//Increase
p_datal 4=
p_data2 +=
}

/fGet the timer counter
ts_cycle 1 = R_GPTE@->GTCNT;

wvmlag_n_s32(vectorl, vector2,
pointers

4;

4;

}

//End placing functions in section .itcm data
#endif

loop will be 32/4 = 8 (LOOP_NO)

1 and store the results
scalarval);

Figure 29. Example of Placing a Function in ITCM Section

You can confirm code placement using the .map file generated by the compiler or when debugging the

project.

RO1AN7127EU0200 Rev.2.00

Apr.05.24 RENESAS

Page 23 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™
66 = #if (_CONFIG_HELIUM == I32 HELIUM ITCM)
67 /fPlacing functions in section .itcm_data
! 68 void _attribute_ ((section(".itcm_data"})) itcm_func(void);
69 “wvoid itecm_func(void)
7@ Beepaaa2 {
71 unsigned int 1i;
72 f/Pointer values for both arrays
7> int32_t *p datal = Rdatal[@];
74 int32_t *p data? = Bdata2[®e];
75 GOA8001C R_GPT@->GTCR = @; // Stop timer
76 pepaea24 R_GPTE->GTCNT = @; // Clear counter
77 //Get the timer counter
78 GOGEEEBEE ts_cycle @ = R_GPT@->GTCNT;
79 pepaaai2 R_GPTe->GTCR = 1; // Start timer
b J//5ine calculating 4 outputs at a time, the loop will be 32/4 = 8 (LOOP_NO)
Bl BEEEEESa © for (i = @; 1i<LOOP_NO; i++)
g2 7
83 //Load 4 data from the array
84 BBEBBBLa vectorl = vldilq_s32(p_datal);
85 GPEERA4E vector2 = wvldlg_s32(p_datal);
86 S/Multiply (vector2*scalarval), add wvectorl and store the results
87 opoepade result[i] = vmlag n_s32({vectorl, vector2, scalarval);
83 //Increase pointers
89 p_datal += 4;
9@ p_data? += 4;
91 1
92 //Get the timer counter
93 GEEERASEe ts_cycle 1 = R_GPT@->GTCNT;
94 pepaeacd T
a5 //End placing functions in section .itcm_data
96 #endif
Figure 30. Function Placed in ITCM Section Shown on Debugger
4.5 Improve Performance by Utilizing Data Cache

When a function utilizes long loops, it executes the same code repeatedly. Furthermore, in many
applications, data access may be repeated and sequential. Performance in these scenarios can improve
significantly with cache enabled. Notes that data cache is not enabled in the projects by default.

In FSP, the instruction cache enable is done in a function named Systemlnit in system.c, as shown in Figure

31 and Figure 32.

e

Macro definitions

FEFFELFFEEFFHLFFELFFELLFFEEFFHLLFEFFEL LT FELFFEFFFH LT EFFFLFFEEFF L LFFEFFFHLLFEFFEL L FFELF T L FH IR LR L EELFFELFFHLLF S

/* Mask to select CP bits(@xFegees) */

#define CP_MASK

(BxFU << 28)

* L L iction and LOB extension */
#define CCR_CACHE_ENABLE (@xPARER2E1)

F* Value to write to 0AD register of MPU stack monitor to enable NMI when o stack overflow is detected. */
#define BSP_STACK POINTER_MONITOR NMI_ON_DETECTION {BxASEBU)

Figure 31. Macro Definition to Enable Cache in system.c in FSP

RO1AN7127EU0200 Rev.2.00

Apr.05.24

RENESAS

Page 24 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

e T e

* Initiglize the MCU and the runtime environment.
L R

void SystemInit (wvoid)
{
#if defined(RENESAS CORTEX_M85)

/* Enable the ARM core instruction cache, branch prediction and Low-overhead-branch extension.

i L =2 M and Section D1.2.9 in the ARMvE-M Architecture Reference Manual */
SCB-»CCR = (uint32 t) CCR _CACHE ENABLE;

__DSB();
__ISB();
#endif

/* Enable the ARM core instruction cache, branch prediction and low-ocverhead-branch extension.
* See Section 5.5 of the Cortex-M55 TRM and Section D1.2.9 in the ARMwS-M Architecture Reference Manual */
SCB->CCR = (uint32.t) CCR_CACHE ENABLE;

Figure 32. Code to Enable Instruction Cache in FSP

The application projects have a setting to enable data cache. Add the macro definition

“ DCACHE_ENABLE_=1"in the project option to enable data cache. Even though data cache improves
performance, it can cause concurrency and coherency issues. It is good practice to enable the cache for
application code that has repeated access to the same set of data.

£33 Tool Settings | £53 Toolchain| & Build Steps Build Artifact| Binary Parsers| & Error Parsers|

& Cpu Include file directories (-1) 8883 H
@ Optimization

=5 i i £
rgé &Eb u_g "Sworkspace_loc/S{ProjMame}/src}
(=2 Warnings wn

v 83 Library Generator "Sworkspace_locy/ S ProjMame}/rafspfincy”

@ Settings "Yworkspace_loc:/$ProjMame}/raffspfinc/api}"
v 5 Compiler "S{wu:urkspace_Iu:uc:J’S{Pru:ujName}fraffsp;"inc;"instances}"
"S{workspace_loc:/${ProjMamel/ra/arm/CMSI5_5/CMSI5/Core/Include}”
4 "S{WDFkSpECE_hJC:.-"S{PrD_!NEr‘ﬂE}frE_gEn}"

(=2 Includes "S{workspace_loc:/${ProjName}/ra_cfg/fsp_cfg/bsp}"
~ 33 Assembler "Yworkspace_locy/${ProjMamel/ra_cfg/fsp_cfg}”

@ Source

(# Includes
w 53 Linker

@ Source

@ Archives

(# Miscellaneous

@ Source

(# Other Macro Defines (-0 N BRI
w B8 Objcopy
& Gener) w
~ 53 Print Size - - E
@ General _R& CORE=CME3
_RA_ORDIMAL=1

Figure 33. Example of Data Cache Enable in Application Project

RO1AN7127EU0200 Rev.2.00 Page 25 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Example code to enable and disable data cache are shown in Figure 34 and Figure 35.

#if (_DCACHE _ENABLE_ == DCACHE_ENABLE_YES)

SCB_EnableDCache(
#endif

Enable DCache

Figure 34. Example Code to Enable DCACHE

#if L‘::D‘Cﬁ.CHE_ENﬁ.BLE_ == D‘Cﬁ..CHE_ENﬁ.BLE_YES:I
SCB_DisableDCache(); // Disable Dcache

#endif

Figure 35. Example Code to Disable DCACHE

Another method to enable data cache is using FSP Configurator: BSP->Properties->Settings->MCU
(RA8M1) Family->Cache settings->Data cache, as shown in Figure 36.

Sumrmary Clocks | Pins | Interrupts | Event Links | Stacks | Components

& Properties [%] Problems
EK-RABM1

Settings Froperty
w RTFABMIAHECED
part_nurmber
rom_size_bytes
ram_size_bytes
data_flash_size_bytes
package_style
package_pins
s RABMI
SEFIES
w RAZMIT Family
Security
OF50 register settings
OF51_SEL register settings
OF51 register settings
OF52 register settings
Block Protection Settings (BPS)
Permanent Block Protection Settings (PEPS)
First Stage Bootloader (FSBL)
Clocks
w Cache settings
Data cache
Dual Bank Made
Main Oscillator Wait Time
w RA Common

n
*
ooo

= 8

L

Value 2

R7FASMIAHECED
2064384

017504

12288

BGA

224

Dizabled W

Enabled
‘Disabled

Figure 36. Example of Data Cache Enable using FSP Configurator

4.6 Using General Purpose (GPT) Timer for Benchmarking

In the projects, GPTO timer is used to measure time for performance benchmarking.

RO1AN7127EU0200 Rev.2.00

Apr.05.24 RENESAS

Page 26 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

f/Clear and start timer for benchmarking
R_BSP_MODULE_START(FSP_IP_GPT, @);
R_GPTO->GTCNT = @; // Clear counter
f/Get the timer counter

ts_cycle @ = R_GPT@-»>GTCNT;
R_GPT@->GTCR = 1; // Start timer

#if (_CONFIG_HELIUM_ == I32_SCALAR)
f/Perform scalar calculation (Equivalent with the multiply accumulate instruction)
for (i = @; i<DAT_BUF_SIZE; it++)

datal[i] += (data2[i] * scalarwval);

f/Get the timer counter
ts_cycle 1 = R_GPT@->GTCNT;
#elif (_CONFIG_HELIUM_ == I32_HELIUM) || (_CONFIG_HELIUM_ == I32_HELIUM DTCM) || (_CONFIG_HELIUM_ == I32_HELIUM_ITCM)

#if (CONFIG _HELIUM_ == I32 HELIUM) || (_CONFIG _HELIUM == I32 HELIUM_DTCM)
//5ine calculating 4 outputs at a time, the loop will be 32/4 = 8 (LOOP_NO)
for (i = @; i<LOOP_NO; i++)

1
/fLoad 4 data from the array
vectorl = vldlq_s32(p_datal);
vector2 = vldlg s32(p_data2);

//Multiply (vector2*scalarval), add vectorl and store the results
result[i] = vmlag_n_s32(vectorl, vector2, scalarval);

//Increase pointers

p_datal += 4;

p_data2 += 4;

//Get the timer counter
|ts_cycle 1 = R_GPT@->GTCNT; |

Figure 37. Example of the Timer Code for Benchmarking
5. Verify the Project

5.1 Import The Projects
The software tools required to run the application projects are as follows.

e e?studio version: 2024-01.1 (24.1.1) or later

e LLVM Embedded Toolchain for Arm v17.0.1 or later

¢ Renesas Flexible Software Package (FSP) v5.2.0 or later
e SEGGER RTT Viewer v7.94g or later

Import the projects HELIUM_VMLA_EK_RA8M1.zip, HELIUM_VMLADAVA_EK_RA8M1.zip, and
HELIUM_DOT_PRODUCT_EK_ RA8ML1.zip into your workspace.

5.2 Build Project

There are several configurations in each project. Select a project, then a project configuration you wish to run
before going to the next step.

Build Cenfigurations » Set Active » 1132 HELIUM (Helium Operation)
Manage... 2 132_HELIUM_DTCM (Helium Operation with DTCM)
Source ¥
Build All 3 132_HELIUM_ITCM (Helium Operation with [TCM)
>
O RunAs Clean Al | 4132 SCALAR (Scalar operation)
>
4% Debughs B et 5132_SCALAR_NO_AUTO_VECTORIZATION (Scalar Operation Without Aute Vectarization Option)
Teamn ¥ nOM HanaIer =-DeTault Hanaler

Figure 38. Set Active Build Configuration

Launch configuration.xml, and click “Generate Project Content” to generate project content.

ROLAN7127EU0200 Rev.2.00 Page 27 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

v

Generate Project Content

Board Support Package Configuration

E7 Restore De

Device Selection

Board Detail

FSP version: | 5.2.0 » aar alls
Evaluation kit for RASM1 MCU Group

Board: EK-RASMI - £ Visit TBD to get kit user's manual, quick start guide,
errata, design package, example projects, etc.

Device: R7FAZMTAHECED gn p ge, ple proj

Core: CMES

RTOS: Mo RTOS

< >

Surmnmary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 39. Example of Generating Project Content

Build the active project by selecting Project->Build Project.

Project | Renesas Views Run Renesas A Windc
Open Project
Close Project
Open F5P Configuration

o Build Al Ctrl+ Alt+B
Build Configuration! 5, 14 proiect | ¥
Build Project T G+
Build Working 5et *

Clean...

Build Automatically

Build Targets *
C/C++ Index »
Update All Dependencies Alt+D

Change Device

Change Toclchain Version

W C/C++ Project Settings Ctrl+Alt+P
Properties

Figure 40. Build the Active Project

ROLAN7127EU0200 Rev.2.00 Page 28 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

5.3 Download and Run Project

The EK-RA8ML kit has a few switch settings that must be configured before running the projects associated
with this application note. These switches must be returned to the default settings per the EK-RA8M1 user
manual. In addition to these switch settings, the board also contains a USB debug port and connectors to
access the J-Link® programming interface.

Table 1. Switch settings for EK-RA8M1

Switch Setting
J8 Jumper on pins 1-2
J9 Open

Connect J10 on EK-RA8ML1 kit to USB port on your PC, open and start SEGGER RTT Viewer with the below
settings.

Connection to J-Link

@) USE] serial Mo
() TCRIP
() Exizting Session

Specify Target Device

| RYFASM1AH b il

|:| Force go on connect

Script file (optional)

Target Interface & Speed
SWD | 40000 kHz -

RTT Contral Black
() Auto Detection () Address (®) Search Range

Enter one or more address range(s) the RTT Contral block can be loc
Syntax: <RangeStart [Hex] > <RangeSize=[, <RangelStart [Hex] =
Example: 0x 10000000 0x 1000, 0x2000000 0x 1000

0x22000000 0x 20000 |

Figure 41. SEGGER RTT Viewer

Choose the Debug Configuration you wish to run. Make sure it points to the correct .elf file.

ROLAN7127EU0200 Rev.2.00 Page 29 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

&8

Create, manage, and run configurations

Pl | S X | E v MNarme: | HELIUM_VMLA_EK_RASMI Helium_DTCM Debug_Flat
|t':'PE filter text | m %5 Debugger| = Startup | [C] Commen B Source
[c HELIUM_VMLA_EK_RASM1 Helium_DTCM Debug_Flat | Project:
|e# HELIUM_VMLA_EK_RASM1T Helium_[TCM Debug_Flat
[£7 HELIUM_VMLA_EK_RASM1 Helium Debug_Flat | HELIUM_VMLA_EK_RABM1
[©7 HELIUM_VMLA_EK_RABM1 Scalar Debug_Flat C/C++ Application:

[E7 HELIUM_VMLA_EK_RABM1 Scalar Ne Aute Vectorization Debug_Flat
A HELIUM_VMLADAVA_EK_RABM1 Helium Debug_Flat
| HELIUM_VMLADAVA_EK_RAZM1 Heliurn DTCM Debug_Flat

|| 132_HELIUM_DTCM/HELIUM_VMLA_EK_RASM1.elf |

FIRE

Figure 42. Start Running the Project
The operation results will be printed on SEGGER RTT Viewer, as shown in Figure 43.

All Terminals Terminal 0 Terminal 1 Terminal 2 Terminal &

VMLA-Helium Operation on RABM1 with DTCM Utilized
Timer counter cycle: 16

result[e]:
result[1l

o

"
GO B0 md =] =] =] T

oo

rE:ult[
result[:
result[1!

" |x||_||_||_||_||_||_||_||_||_|

5 |_. [SR U R = N Y R W 5 [N Y
&

=
+ o+ o
L s W s W s W |
[l =l

WODI s OhoW s L

rP'ult[l
result[2e]:
result[2:
result[
result[

R N R e el e L I s R s L | .F.

[R Y O SO o W T S T Ve T 31

]
1
2]
]
1
]
6]
7]
1
1
1
1

B

4
B
B
Q
5
8
1
s 1
1
1
1
1
1
1
1
1
1
s 1
: 1
1

result[3e]:
result[31]:

Figure 43. A Helium Operation with DTCM Utilized

ROLAN7127EU0200 Rev.2.00 Page 30 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

5.4 Benchmarking Performance

Use the “Timer counter cycle” printed on SEGGER RTT Viewer for performance benchmarking. It shows how

many GPTO counter cycles have elapsed since the function was executed.

All Terminals Terminal 0 Terminal 1 Terminal 2 Terminal &

WVMLA-Helium Operation on RABM1 with DTCM Utilized
Timer counter cycle: 16
Fesult|e]: oH

result[1]:
result[2]:
result[3]:
result[4]:

Figure 44. Example of Timer Counter Cycle on RTT Viewer

5.4.1 VMLA Project HELIUM_VMLA_EK_RA8M1
The performances of the function vmlag_n_s32 in various configurations are as follows.

Performance Increase
Project Configuration Timer cycle | (vs132_SCALAR_NO_AUTO_VECTORIZATION) %
132 SCALAR_NO_AUTO VECTORIZATION 241
132 SCALAR 142 69.72
132 HELIUM 138 74.64
132 HELIUM_DTCM 16 1406.25
132 HELIUM_ITCM 136 77.21

Figure 45. Performance Data w/o Data Cache Enable

Performance w/o Data Cache Enable

132_HELIUM _ITCM e

32_HELIUM_DTCM

132_HELILIM

]
132 SCALAR [y
]

32_SCALAR_NO_AUTO_VECTORIZATION

0 200 400 600 800 1000 1200

Performance Increase m Timer cycle
fws [32_SCALAR_NO_AUTO VECTORIZATION) %

1400 1600

Figure 46. Performance Chart w/o Data Cache Enable

ROLAN7127EU0200 Rev.2.00
Apr.05.24 RENESAS

Page 31 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Below are the performances of the vmlag_n_s32 function with data cache enabled in various configurations.

To enable data cache in the project, follows steps in section 4.5, build and download it.

Performance Increase
Project Configuration Timer cycle | (vs 132_SCALAR_NO_AUTO_VECTORIZATION) %
132_SCALAR_NO_AUTO_VECTORIZATION
{w/o data cache enable) 241
132_SCALAR_NO_AUTO_VECTORIZATION
{w/ data cache enable) 58 315.52
132_SCALAR 43 391.84
132_HELIUM 51 372.55
132_HELIUM_DTCM 14 1621.43
132_HELIUM_ITCM 43 391.84
Figure 47. Performance Data w/ Data Cache Enable
5.4.2 VMLAVADA Project HELIUM_VMLADAVA_EK_RA8M1
The performances of the function vmladavaq_s32 in various configurations are as follows.
Performance Increase
Project Configuration Timer cycle | (vs132_SCALAR_NO_AUTO_VECTORIZATION) %
132_SCALAR_NO_AUTO _VECTORIZATION 426
132_SCALAR 174 144,83
132_HELIUM 133 206.47
132_HELIUM_DTCM 14 2942.86
132_HELIUM_ITCM 135 215.56

Figure 48. Performance Data w/o Data Cache Enable

Performance w/o Data Cache Enable

132_HELIUM _ITCI |
132_HELIUM_DTCM |
132_HELIUM
- ||
132_SCALAR B

132_SCALAR_NO_AUTO_VECTORIZATION -

0 500 1000 1500 2000

Performance Increase m Timer cycle

(vs132_SCALAR_NO_AUTO VECTORIZATION) %

Figure 49. Performance Chart w/o Data Cache Enable

ROLAN7127EU0200 Rev.2.00
Apr.05.24 RENESAS

Page 32 of 36

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Below are the performances of the vmladavaq_s32 function with data cache enabled in various
configurations. To enable data cache in the project, follows steps in section 4.5, build and download it.

Performance Increase (vs
Project Configuration Timer cycle |132_SCALAR_NO_AUTO_VECTORIZATION) %
132_SCALAR_NO_AUTO_VECTORIZATION
{w/o data cache enable) 426
132_SCALAR_NO_AUTO_VECTORIZATION
{w/ data cache enable) 103 313.59
132_SCALAR 61 598.36
132_HELIUM 43 890.70
132_HELIUM_DTCM 14 2942.86
132_HELIUM_ITCM 46 826.09

Figure 50. Performance Data w/ Data Cache Enable

5.4.3 DSP Dot Product Project HELIUM_DOT_PRODUCT_EK_RA8M1

The performances of the ARM DSP Dot Product arm_dot_prod_f32 function in various configurations are as
follows.

Project Configuration Timer cycle |Performance Increase (vs 132 SCALAR) %
132_SCALAR 265

132_HELIUM 153 73.20
132_HELIUM_DTCM 95 178.95

Figure 51. Performance Data w/o Data Cache Enable

Performance w/o Data Cache Enable

132_HELIUM_DTCM

132_HELIUM

132_SCALAR

0 50 100 150 200 250 300

B Performance Increase (vs [32_SCALAR) % ETimer cycle

Figure 52. Performance Chart w/o Data Cache Enable

Below are the performances of the ARM Dot Product arm_dot_prod_f32 function with data cache enabled in
various configurations. To enable data cache in the project, follows steps in section 4.5, build and download
it.

ROLAN7127EU0200 Rev.2.00 Page 33 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Project Configuration Timer cycle |Performance Increase (vs 132 SCALAR) %

132 SCALAR {w/o data cache enable) 265

132_SCALAR 43 440.82
132_HELIUM 26 919.23
132_HELIUM_DTCM 17 1458.82

Figure 53. Performance Data w/ Data Cache Enable

6. Conclusion

The Renesas RA8 MCU with Arm® Cortex®-M85 supports significant scalar performance uplift. Furthermore,
the Tightly Coupled Memory (TCM) support in Renesas FSP makes it easier to utilize Helium intrinsics and
TCM for further improvement.

ROLAN7127EU0200 Rev.2.00 Page 34 of 36
Apr.05.24 RENESAS

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with
Helium™

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

RA Product Information www.renesas.com/ra

RA Product Support Forum www.renesas.com/ra/forum

RA Flexible Software Package www.renesas.com/FSP

Renesas Support www.renesas.com/support

RO1AN7127EU0200 Rev.2.00 Page 35 of 36

Apr.05.24 RENESAS

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family High Performance with RA8 MCU using Arm® Cortex®-M85 core with

Helium™

Revision History

Description
Rev. Date Page Summary
1.00 Aug.11.23 - Initial version
2.00 Apr.05.24 - Support LLVM for Arm

RO1AN7127EU0200 Rev.2.00
Apr.05.24

RENESAS

Page 36 of 36

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or 1/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Vix (Min.).
Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quiality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
Www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Application Overview
	2. Arm® Cortex®-M85 Core and Helium™ Technology
	2.1 Arm® Cortex®-M85 core
	2.2 Renesas RA8 MCU
	2.3 Single Instruction Multiple Data
	2.4 Helium™ Applications

	3. Helium™ Support in Renesas FSP and LLVM Arm Toolchain
	4. Application Project
	4.1 Vector Multiply Accumulate Instruction VMLA Example
	4.2 Vector Instruction VMLADAVA Example
	4.3 ARM DSP Dot Product Example
	4.4 Performance Improvement
	4.4.1 Tightly Coupled Memory (TCM)
	4.4.2 Improve Performance Using DTCM
	4.4.3 Improve Performance Using ITCM

	4.5 Improve Performance by Utilizing Data Cache
	4.6 Using General Purpose (GPT) Timer for Benchmarking

	5. Verify the Project
	5.1 Import The Projects
	5.2 Build Project
	5.3 Download and Run Project
	5.4 Benchmarking Performance
	5.4.1 VMLA Project HELIUM_VMLA_EK_RA8M1
	5.4.2 VMLAVADA Project HELIUM_VMLADAVA_EK_RA8M1
	5.4.3 DSP Dot Product Project HELIUM_DOT_PRODUCT_EK_RA8M1

	6. Conclusion
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

