

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.renesas-electoronics.com

HEW Tcl/Tk
Application Note

A
pplication N

ote

Rev.1.00 2003.11

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

HEW Tcl/Tk
Application Note

Rev.1.0

Content

Tcl/Tk Overview in HEW... 4
1, Use of Tcl/Tk ... 5

1-1,Start up of Tcl/Tk ... 5
1-2, Execution method of Tcl/Tk .. 6

2, Basic Programming method in Tcl/Tk .. 9
2-1, Programming method in Tcl ... 9

2-1-1,Basic Grammar .. 9
2-2, Built-in command of Tcl .. 10

2-2-1, Variable.. 10
2-2-2, Array .. 11
2-2-3, Arithmetic operation... 11
2-2-4, Double-quotation marks and Curly brackets ... 13
2-2-5, Assignment of Commands .. 13
2-2-6, Input-Output Format .. 14
2-2-7, Description of Comments .. 14
2-2-8, Procedure.. 15
2-2-9, Control structure command... 16

2-3, Programming methods in Tk .. 19
2-3-1, Basic Grammar ... 19

2-4, Widget in Tk ... 20
2-4-1 Creation of Button .. 20
2-4-2, Creation of Check button... 21
2-4-3, Creation of Radiobutton .. 22
2-4-4, Creation of Label ... 23
2-4-5, Creation of Message ... 24
2-4-6, Creation of Entry ... 25
2-4-7, Creation of Spinbox... 26
2-4-8, Creation of Frame ... 27
2-4-9, Creation of Labelframe.. 28
2-4-10, Allocation of widget to frame/labelframe ... 29
2-4-11, Creation of New Top Level Window... 31
2-4-12, Creation of Menu... 32
2-4-13, Creation of Menu button.. 33

2-4-14, Creation of Scroll bar... 34
2-4-15, Creation of Scale bar to change the variable value .. 35
2-4-16, Creation of Canvas.. 36
2-4-17, Creation of Option menu ... 37
2-4-18, Creation of Pop-up menu .. 38
2-4-19, Creation of Simple dialog .. 39
2-4-20, Creation of Message dialog .. 40
2-4-21, Creation of Exist File Open dialog... 41
2-4-22, Creation of New File Open dialog ... 42
2-4-23, Allocation of widget.. 43

3, Tcl/Tk programming in HEW.. 44
3-1, HEW commands available in Tcl/Tk... 45
3-2, Creation of Control Commands to HEW Simulator .. 46
3-3, Creation of Command to Input Quasi Interrupt to HEW Simulator..................... 47
3-4, Creation of Environment to Control HEW simulation ... 49
3-5, Creation of Environment for Input Control to HEW Simulation 1 52
3-6, Creation of Environment for Input Control to HEW Simulation 2 54
3-7, Creation of Environment for Output Control from HEW simulation 1 59
3-8, Creation of Environment for Output Control from HEW simulation 2 60

Tcl/Tk Overview in HEW
A script language, Tcl/Tk is supported in HEW (High-performance Embedded Workshop)

The targeted version is Tcl/Tk version 8.4.1.

Tcl/Tk is comprised of class member “Tcl” (Tool Command Language) of script language

and “Tk” (Tool Kit), which is used to program graphical user interface. The script language

Tcl/Tk do not need compiling, and the results of execution of the program are reflected

immediately.

Tcl has a grammar, which makes simple programming possible. Tcl is used for an

application of Stand Alone, and can be built in application programs.

Tk makes it possible constructing GUI suits the needs of users promptly.

HEW supports Tcl/Tk. The functions and GUI prepared by default in HEW are usable, and

also GUI environment can be customized to meet the users’ individual needs by

programming in Tcl/Tk.

1, Use of Tcl/Tk
1-1,Start up of Tcl/Tk
This chapter describes how to use Tcl/Tk commands in HEW.

Select “View” – “TCL Tool Kit” from HEW command menu. Console window and GUI

window, which supports programming in Tcl/Tk are started. You can program in Tcl/Tk

using these windows.

Figure: Start up of Tcl/Tk

Console window

You can program in Tcl/Tk and execute it using interpreter on Console window. You can

also load script files made in advance and execute them.

GUI window

The result of execution of the program on Console window is reflected on GUI window.

Toplevel window is prepared in HEW by default. Additionally, you can create GUI window

newly aside from Toplevel window.

GUI window Console window

The windows, which

support programming in

Tcl/Tk, are started

1-2, Execution method of Tcl/Tk
You can execute Tcl/Tk on HEW according to the following 3 methods.

① Interpreter method

You can assign commands of Tcl/Tk on Console window, when you program in

interpreter method. The assigned commands of Tk are reflected on GUI window at the

time of Tcl/Tk Tool Kit is started up.

For example: In case of that a program execution command of HEW

 “go” is assigned on a button.

Figure: Programming in interpreter method

② Execution of loaded script file

You can program in Tcl/Tk using script file in advance, and load the file on console

window. “Select a file to source” window is opened by selecting “File” – “Source” from

command menu of Console window. Specify the Tcl/Tk script file created in advance

after the window is opened.

Figure: Tcl/Tk source file selection

Figure: After source file selection

Programming in the script file is reflected on Console window after source file selection.

~ description in sample.tcl file ~

pack [button .go –command {go} –text {go}]

③ Execution using both of interpreter method and script load method

After loading a script file created in advance, you can add programs to the script file in

interpreter method.

For example: Add reset command of HEW “reset”

Figure: Program addition

Add a command of pack [button .reset –command

{ reset } –text { reset}] on Console window in

interpreter method

pack [button .go –command {go} –text {go}]

Loading of the script file

2, Basic Programming method in Tcl/Tk
2-1, Programming method in Tcl
2-1-1,Basic Grammar
Tcl has very simple grammar. Built-in commands of Tcl and procedures created by user

are used as commands in Tcl programming. You can separate a command and arguments

required for the command with a space, and construct one execution format. You can also

separate them by starting a new line, or with a semicolon in order to describe complicated

execution format.

Basic Grammar 1：List arguments by separating with spaces.

Command arg1 arg2 arg3 …

Basic Grammar 2：Separate with semicolon(;) in case of listing several commands on

one line.

Command arg1 arg2 arg3 …; Command arg1 arg2 arg3 …

Basic Grammar３：Use ¥ sign in case of listing one command in a few lines.

Command arg1 ¥

 arg2 arg3…

Basic Grammar 4： Use # sign in case of describing comments.

Command arg1 #comments

Build-in command of Tcl and procedure created by user are used as commands.

Arg is argument, which is required for built-in command of Tcl and procedures made by user.

2-2, Built-in command of Tcl
This chapter describes built-in commands prepared in Tcl. Built-in commands introduced

in this chapter are minimum necessary for programming.

2-2-1, Variable
Variables in Tcl do not need declaration of the types before using. You can name them as

you want. You can also set a value to the variable, and refer to a value of the variable in Tcl

programming.

Figure: Setting and referring of variable

You can also set string for variable as you want in Tcl

Figure: Assignment of string to variable

set count 100 Set 100 for variable “count”

A value of variable “count” is referred by

inputting set count on Console window.

String can be assigned to variable.

“$var” is used for variable substitution.

2-2-2, Array
Array can be used in Tcl. You can assign variable to each element of an array, and also to

the entire of an array at one time.

Figure: Array

2-2-3, Arithmetic operation
Integer operation, floating-point operation and comparison of inequality can be executed in

Tcl by using expr command. Operators and mathematical functions are prepared in Tcl as

built-in commands.

Figure: Arithmetic operation

expr 100+20 Return the result of 100+20 expr

100/20 Return the result of 100/20

expr 100>20 If the inequality expression evaluates

to true, ”1” is returned, and if it

evaluates to false, “0” is returned.

Random number function and trigonometric can be also

used as arithmetic functions

An assignment statement “set ary(0)” can be

used, in case of assigning a variable to each

element of an array.

An assignment statement “array set a{}” can be

used, in case of assigning variables to the entire

of an array at one time.

The following lists show you operators and functions supported in Tcl, and what they stand

for in Tcl.

List: operators

Signs Meanings

-, +,＾,! Minus sign, Plus sign, complement, negation

*, /, % Multiplication, division, remainder

+, - Addition, subtraction

<<, >> Left-shift, right-shift

<, > comparison in Boolean expression

(left-inequality, right-inequality)

<=, >= comparison in Boolean expression

(greater than or equal to, less than or equal to)

==, != Equal sign, inequality sign in Boolean expression

Eq, ne Equality, inequality in Boolean expression (used in strings)

&, ^ Bitwise AND (AND), bitwise exclusive OR (XOR)

&&, || Logical AND, logical OR

x?y:z conditional

 List: functions

Functions Meanings

Acos, cos, hypot, sinh,

asin(), cosh(), log(),

sqrt(), atan(), exp(),

log10(), tan(), atan2(),

floor(), pow(), tanh(),

ceil(), fmod(), sin()

Mathematical functions

abs(arg) Absolute value

double(arg) Double-precision value

int(arg) Integer value

Rand() Random number value

round(arg) Round value to integer

srand(arg) Initial value of random number

2-2-4, Double-quotation marks and Curly brackets
An enclosed string within double-quotation marks” “or curly brackets {} is treated as one

string in Tcl.

Figure: Double-quotation marks and curly brackets

2-2-5, Assignment of Commands
An enclosed string within square brackets [] is treated as one command in Tcl.

Figure: Assignment to command

Puts command outputs a specified character.

It becomes an error, in case of inputting puts a b

c, since a b c is not treated as one string.

a b c can be treated as one string and output, by

inputting as put “a b c” or puts {a b c}.

An enclosed string within square brackets, [expr 100/20] is treated as

one string in Tcl, and set command outputs “5” as the result.

Additionally, expr 100/20 should be assigned to a command since set

command is being used.

Therefore, the same result is output by executing set command.

In addition, it becomes an error, in case of not enclosing expr 100/20

within square brackets “[]”.

2-2-6, Input-Output Format
Scan command and format command are prepared as I/O command in Tcl. These

commands are equivalent to scanf and printf in ANSI. Additionally, you can define a style

of the format using “%”.

Figure: Input-output format

2-2-7, Description of Comments
In case of describing comments in script files of Tcl, add “#” at the head of a line.

Additionally, you will add “;#” at the head of the comments, in case of inserting comments

into mid-line.

Figure: Description of comments

Scan 3.1415926 “%d.%d” int float is equivalent to scanf in ANSI.

Scan command scans whole part “3” and fractional part

"1415926” of 3.1415926 into int and float variable each.

Additionally, it returns 2 (number of times of input values) as the

result of the execution

format “%d.%d” $int $float is equivalent to printf in ANSI.

The command returns 3.1415926 as the result of an execution.

Descriptions after “#”(at the head of a line) and

“;#”(at the middle of a line) are treated as

comments.

2-2-8, Procedure
In Tcl, a row of commands can be treated as a function of C language. A functions called

“procedure” can be used as a built-in command in Tcl.

Procedure can be created as a function, which gets 0 or more arguments by using proc

command. Defined variables in procedure are treated as local variables, and can be

referred only in the procedure. Moreover, definition of global variable is required in

procedure, in case of referring to global variable in the procedure.

Example of how to create “procedure”

When the sample program is written, procedure add is called, and “600” is returned as

the result of “add 200 300”.

Figure: Creation of procedure

If a description extends to a few lines, a prompt

is replaced with “>” till the last line of the

description (in the sample program, it extends

from “{“ to “}”of procedure add), and data input is

possible.

It becomes an error, in case of referring to

variable count1, count2 in the procedure.

~Sample Program~

set count3 100 ;#Assign 100 to variable count3 as an external variable

proc add{ count1 count2 }{ ;#Accept the argument count1 and count2

 global count3 ;#A global definition is required to refer to count3

 return[expr $count1+$count2+$count3]

#Define a value returned by procedure add

#using return command

}

add 200 300 ;#Use procedure add

2-2-9, Control structure command
Tcl support the essential control structures exist in the other high-level languages.

The control structure commands are while, for, if, if…else, switch, foreach, etc.

① Example of how to use “while”

② Example of how to use “for”

for { set i 0 } { $i < 10 } { incr i } {

 puts [expr $i+$i]

}

Three conditions for “for” sentence are required

to be enclosed each in curly braces ”{}” in Tcl.

(These conditions are described as (A;B;C) in C

language.)

set i 0

while { $i < 10 } {

 puts [expr $i+$i]

 incr i

}

Enclose conditions for while

sentence in curly braces ”{}”.

③ Example of how to use “if…else”

④ Example of how to use “switch”

set val 1

if { $val == “0” } {

 puts 0

} else {

 puts 1

}

set val 1

switch $val {

 0 { puts 0 }

 1 { puts 1 }

 default { put 9 }

}

Enclose commands to be executed

when the conditions are met in

curly braces “{}”.

Enclose conditions for “if” sentence in curly braces “{}”.

⑤ Example of how to use “foreach”

⑥ Continue and break can be used in while, for and foreach sentences.

foreach i { 1 2 3 4 5 } {

 puts $i

}

for { set i 0 } { $i < 10 } { incr i } {

 if { $i == “5” }{

 break ;#Break is usable

 }

puts $i

}

When “i” is equal to 5, break

command is enable, then

bypass for loop

Foreach sentence is repeated as the

same times as the number of strings

enclosed in curly braces “{}” described

right after Foreach.

2-3, Programming methods in Tk
2-3-1, Basic Grammar
Widget (a supported component of GUI in Tk) is defined and allocated on GUI window,

which is newly created by user in Tk programming.

Definition of widget must be described by separating “widget”, “path” and “option” with blank

spaces in grammatical rule of Tk programming.

widget .path –option1 –option2 –option3 …

A path name must be started with period “.”. “.path” command is generated after an

execution of widget command. You can allocate the “.path” command on the newly created

GUI window.

 pack .path

“.path” command can be allocated on GUI window by using pack command, which is used to

allocate “.path” command.

It is possible creating various environments suit the specific needs of users in Tk

programming.

2-4, Widget in Tk
2-4-1 Creation of Button
Button can be created by using button command of Tk.

Figure: Creation of button

In the above sample program, a button named “test” is created. Name of button can be

specified in -text option. A command to be executed when the button is clicked can be

specified in -command option. Therefore, the command enclosed in curly braces “{}” is

executed, and output “Well come!” on Console window, when “test” button is clicked.

button .test –text test –command {puts “Well come!”}

pack .test

“Well come!” is output when the

test button is clicked.

2-4-2, Creation of Check button
Check button can be created by using checkbutton command of Tk.

Figure: Creation of checkbutton

In the above sample program, a button named “test” is created. A name of the button can

be specified in -text option.

Additionally, the initial value “1”is set to the variable “test” by using set command.

set test 1 ;#Set “1” to variable “test” as an initial value.

checkbutton .test –text test

pack .test

Create a check button with path name “.test”,

and set an initial value “1”. By setting the

initial value “1”, the checkbutton is checked by

default setting.

When the checkbutton for “test” is cleared, and

refer to a value of “test” by set command, it

turns to ”0”.

2-4-3, Creation of Radiobutton
Radiokbutton can be created by using radiobutton command of Tk.

Figure: Creation of radiobutton

A -value of checked button is passed to a variable select , which is selected in –variable

option. In the above sample program, because “test1” is selected as variable select when

the radiobutton is created, the radiobutton “test 1” is checked by default setting.

In addition, by naming the variables of multiple radiobuttons specified in –variable option the

same, checkboxes are checked exclusively.

set select test1 ;#Checkbutton for test 1 is checked by default setting

radiobutton .test1 –text test1 –variable select –valu test1

radiobutton .test2 –text test2 –variable select –vale test2

pack .test1

pack .test2

When the radiobutton for test2 is clicked, test2 is

replaced as a selected value in –variable option.

2-4-4, Creation of Label
A single line message can be displayed on GUI window by using label command of Tk.

Figure: Creation of label

A selected string in -text option of label command is displayed on GUI window.

In addition, it is possible displaying a string, which is set to variable test in advance using

–textvariable option.

label .text –text “Well come!”

pack .text

set text “Good bye!”

label .text_var –textvariable text

pack .text_var

2-4-5, Creation of Message
A few lines message can be displayed on GUI window by using message command of Tk.

Figure: Creation of message

A few lines message can be displayed by using message command, although only a single

line message can be displayed by using label command.

In addition, in case of that a command message is too long to input on a line, you can start a

new line using “¥”.

message .message –justify left –text “The message of two or more lines can be

displayed by using the message command of Tk.”

pack .message

2-4-6, Creation of Entry
Output dialog can be created by using entry command of Tk.

Figure: Creation of entry

Input dialog created using entry command can accept a single line string and no more.

The input string is reflected in variable val, which is specified in -textvariable option.

In case of creating an input dialog, which can accept more than a single line string, you can

use text command prepared in Tk. In addition, text command offers you a diversity of

options. By using those options, you can create simple editor also.

set val {Well come!}

entry .text –textvariable val

pack .text

“Well come!” is set as an initial value of variable val by using set

command. Therefore, “Well come!” is displayed by default,

when the input dialog is created.

When “Good bye!” is input in the input dialog, the input string

“Good bye!” is reflected in variable val.

2-4-7, Creation of Spinbox
Spinbox with scroll bar can be created by using spinbox command of Tk

Figure: Ceation of spinbox

You can specify the range of the settable values in the spinbox using –from and –to options

of spinbox command. You can also specify the interval between the values, which is

displayed in the spinbox using –increment option. The specified value is reflected in

variable val specified in –textvariable.

Additionally, in case of selecting “yes” in –wrap option, the value circulates among the range

of the values you specified in –from and –to options. (For example; 0 ~..~ 10 ~ 0 ~..~ 5)

spinbox .cnt –from 1 –to 10 –textvariable var –increment 1 –wrap yes

pack .cnt

The value can be changed using the scroll bar. The

specified value is reflected in variable val specified in

–textvariable.

2-4-8, Creation of Frame
Frame can be created by using frame command of Tk.

Figure: Creation of frame

A newly created GUI window by user can be arranged using frame command. The

allocation method of widget to frames is described in a later chapter.

You can specify the size of a frame in –width and –height options of frame command. You

can also change the shape of a frame in relief option.

frame .frame1 –bd 2 –width 100 –height 20 –relief raised

pack .frame1

frame .frame2 –bd 2 –width 100 –height 20 –relief sunken

pack .frame2

frame .frame3 –bd 2 –width 100 –height 20 –relief flat

pack .frame3

frame .frame4 –bd 2 –width 100 –height 20 –relief ridge

pack .frame4

frame .frame5 –bd2 –width 100 –height 20 –relief solid

pack .frame5

frame .frame6 –bd2 –width 100 –height 20 –relief groove

pack .frame6

2-4-9, Creation of Labelframe
Labelframe can be created using labelframe command of Tk.

Figure: Creation of labelframe

A newly created GUI window by user can be arranged using labelframe command as well as

frame command. The difference of frame command is that you can name the frames using

–text option.

In addition, you can specify the size of a frame in –width and –height options of labelframe

command as well as frame command. You can also specify the shape of a frame in relief

option of labelframe command as well as frame command.

labelframe .frame1 –text label1 –bd 2 –relief groove –width 100 –height 50

labelframe .frame2 –text label2 –bd 2 –relief solid –width 100 –height 50

pack .frame1

pack .frame2

2-4-10, Allocation of widget to frame/labelframe
You can allocate widget of Tk to frame/labelframe created in Chapter 2-4-9,2-4-10.

Figure: Example of widget allocation

In case of allocating widget of Tk to frame or labelframe, the path name is different from

ordinary.

In the above sample program, buttons are allocated to the frame and the labelframe. The

path name of the frame is “.frame1”, and the path name of the labelframe is “.frame2”.

Therefore, the path names of allocated buttons to the frame and the labelframe are specified

as “.frame1.test1” and “.frame2.test2” each. These path names mean that the button

“.test1” is allocated to the frame “.frame1”, and the button “.test2” is allocated to the

labelframe “.frame2”.

Additionally, in case of not using the path names of frame or labelframe but the path name of

frame .frame1 –bd 2 –width 100 –height 20 –relief groove

labelframe .frame2 –text label –bd 2 –width 100 –height 50 –relief solid

pack .frame1

pack .frame2

button .frame1.test1 –text test1 –command { puts “Well come!” }

pack .frame1.test1

button .frame2.test2 –text text2 –command { puts “Good bye!” }

pack .frame2.test2

widget of Tk, widget is allocated outside of the frame or the labelframe.

 button .test1 –text test1 –command { puts “Good bye!” }

 pack .frame.test1

Figure: Example of widget allocation

~Supplementary information~

“.(period)” used in path name of Tcl/Tk shows the route. By allocating frames and

labelframes to the route, the path names in GUI environment shows the layered system

For example:

Path name .top top of GUI environment

 .top.frame1 a path name of frame1 allocated on top

.top.frame2 a path name of frame2 allocated on top

 .top.frame2.subframe a path name of subframe allocated on frame3

labelframe .frame –text label –bd 2 –width 100 –height 50 –relief solid

pack .frame

button .test –text test1 –command { puts “Well come!” }

pack .test

2-4-11, Creation of New Top Level Window
Top level window can be created newly using toplevel command of Tk.

Figure: Creation of top level window

In the above sample program, a window is created newly besides the window prepared in

HEW by default by using toplevel command. The title and size of the new window can be

specified using wm command.

In case of allocating widget of Tk on the new window, the path name must be started with

“.main”.

Additionally, the new window can be deleted by destroy command (destroy .path name).

toplevel .main

wm title .main “TOP LEVEL”

wm geometry .main 200x200+100+100; update

wm maxsize .main 1028 512

wm minsize .main 128 1

A newly created

top level window

2-4-12, Creation of Menu
Tool menu can be specified by using menu command of Tk.

Figure: Creation of tool menu

Pull-down menu can be created on toplevel window using menu command.

menu .menu ;#Specify a path name for menu

.menu add cascade –label file –menu .menu.file

.menu add cascade –label edit –menu .menu.edit

.menu add cascade –label view –menu .menu.view

 #Specify cascades (file, edit, view) add to .menu

menu .menu.file –tearoff no

#When you select “yes” for –tearoff option, the created menu can be

#deleted from the window

.menu.file add command –label exit –command exit

 #Allocate “exit” to menu.file as a submenu

#Define “exit” as a submenu for when ”file” is selected

. configure –menu .menu

2-4-13, Creation of Menu button
Menu button can be created using menubutton command of Tk.

Figure: Creation of menu button

Created menu by menubutton command is the functionally same as one created by menu

command. In case of allocating the menu on tool bar, a frame for the menu bar must be

allocated in advance using frame command.

frame .menutop ;#Use frame command to allocate a frame on the tool bar

pack .menutop –side top –fill x

 #The created window in -slide top is allocated to top

menubutton .menutop.file –text file –menu .menutop.file.menu

 #Allocate .menutop.file.menu as a submenu in –menu option

menubutton .menutop.edit –text edit

menubutton .menutop.view –text view

pack .menutop.file .menutop.edit .menutop.view –side left

 #Allocate the created menubuttons

menu .menutop.file.menu –tearoff 0

 # When selecting “true” in -tearoff option, the created menu can

#be deleted from the window

.menutop.file.menu add command –label exit –command exit

 #Define an a submenu for when ”menutop.file.menu” is selected

2-4-14, Creation of Scroll bar
Scroll bar can be created on windows, etc. using scrollbar command of Tk.

Figure: Creation of scroll bars

In the above sample program, the scroll bars are allocated on the top window. Scroll bar

also can be allocated on frame, etc., by creating a frame in advance and specifying the path

name for the scroll bar at the time of definition and allocation.

scrollbar .scroll_h –orient horizontal ;#Define a horizontal scroll bar

scrollbar .scroll_v –orient vertical ;# Define a vertical scroll bar

pack .scroll_h ;#Allocate the defined scroll bars

pack .scroll_v –side right

labelframe .frame –text label –bd 2 –width 100 –height 50 –relief solid

pack .frame

scrollbar .frame.scroll_v –orient vertical ;#Specify the path name of the frame

pack .frame.scroll_v

2-4-15, Creation of Scale bar to change the variable value
Scale bar to change a value of variable can be created using scale command of Tk.

Figure: Creation of scale bar

You can specify the range of the value on the scale bar using -from and -to options of scale

command. The indicated value on the scale bar is reflected in variable val, which is

specified in -variable option. Additionally, you can specify the interval of indicator scale to

be displayed on the scale bar in –tickinterval option, and also a display value, which is

indicated on the scale bar in –showvale option.

scale .scale –label COUNT –from 0 –to 100 –length 100 ¥

 －variable var –orient horizontal –tickinterval 50 –showvalue true

pack .scale

When the value pointed on the scale bar is

changed, it is reflected in a value of variable

val, which is specified in -variable option.

2-4-16, Creation of Canvas
Canvas with lines, texts and polygons can be created using canvas command of Tk.

Figure: Creation of canvas

canvas .canvas ;#Define a canvas you create

.canvas create oval 10 10 40 40 –fill red –width 3

.canvas create rectangle 50 50 70 70 –fill blue –width 5

pack .canvas ;#Allocate the canvas

2-4-17, Creation of Option menu
Option menu can be created using tk_optionMenu command of Tk.

Figure: Creation of option menu

In the above sample program, variable val and the option menus (“start”, “stop”, “end”) are

specified using tk_option command. Variable val reflects a specified menu among the

three menus.

tk_optionMenu .option var start stop end

pack .option

When the menu is changed,

it is reflected in variable val.

2-4-18, Creation of Pop-up menu
Pop-up menu can be created using tk_popup command of Tk.

Figure: Creation of pop-up menu

In the above sample program, the created “.popupmenu” is defined as a pop-up menu

using tk_popup command. You can specify the location of the pop-up window to be

opened on the window by setting the value for %X and %Y in the following description.

bind . <3> { tk_popup .popupmenu %X %Y }

Therefore the pop-up menu can be opened anywhere on the window.

menu .popupmenu –tearoff no

 #The pop-up menu can be deleted from the window by selecting “yes” for

#–tearoff option

.popupmenu add command –label “open” –accelerator “Ctrl+O”

.popupmenu add command –label “save” –accelerator “Ctrl+S”

.popupmenu add command –label “end” –accelerator “Ctrl+E” –command exit

 #A submenu for when “end” is selected can be specified in –command option

bind . <3> { tk_popup .popupmenu %X %Y }

2-4-19, Creation of Simple dialog
Simple dialog can be created using tk_dialog command of Tk.

Figure: Creation of dialog

You can specify a windows title and a message on a dialog box using tk_dialog command. In

the above sample dialog, the window is titled “Dialog”, and the message is specified as “This

is Dialog!”.

You can also specify names of buttons on the dialog box and their initial values. In the

above sample dialog, the buttons are named “start”, “stop” and “end”, and their initial values

are specified as “0”, “1” and “2” each.

One of the return values “0”, “1” or “2” is returned as the result by clicking one of the buttons.

tk_dialog .dialog Dialog “This is Dialog!” {} 0 start stop end

A return value depends on the clicked button

on the dialog.

start = 0, stop = 1, end = 2

When “stop” is clicked, it returns 1.

2-4-20, Creation of Message dialog
Message dialog can be created using tk_messageBox command of Tk.

Figure: Creation of message dialog

You can create interactive message dialog box by using tk_messageBox command. You

can specify a type of the button in –type option, a title of the button in –title option, and also a

message to be displayed on the dialog in –message option.

tk_messageBox –type OK –title message –icon info –message message

The message dialog promotes users

confirmation toward the message.

2-4-21, Creation of Exist File Open dialog
Dialog to open existing files can be created using tk_getOpenFile command of Tk.

Figure: Creation of file open dialog

You can specify a file type in –filetypes option, and a window title in –title option, when

creating a file open dialog using Tk_getOpenFile command. In the above program, type

variable is selected as the file type in –filetypes option. text [*.txt] is specified as the file

type for type variable by set type{ …} command in advance.

In addition, a storage location of the selected file is returned as the result of Tk_getOpenFile

command.

In the above program, the result is stored in file variable using set command.

set types {

 { “text” { .txt } }

}

set file [tk_getOpenFile –filetypes $types –title open]

When an existing file is selected and opened, the storage

location of the file is reflected in file variable.

2-4-22, Creation of New File Open dialog
Dialog to open and save new file can be created using tk_getSaveFile command of Tk.

Figure: Creation of file save dialog

You can specify a file type in –filetypes option, and a window title in –title option, when

creating a file open dialog using Tk_getSaveFile command.

Additionally, a storage location of the selected file is returned as the result of

Tk_getSaveFile command.

set types {

 { “text” { .txt } }

}

set file [tk_getSaveFile –filetypes $types –title save]

When a new file is selected and saved, a storage location of

the saved file is reflected in file variable.

2-4-23, Allocation of widget
In the previous chapters, the allocation method of widget is described only by using pack

command. However, you can also use place command and grid command to allocate widget

in addition to pack command. The allocation method varies by command, so you can

choose the most appropriate command depending on GUI window you want to create.

Example of widget allocation

Command Example of use of command Allocation example

Lay out widget by direction.

The direction can be set in -side [left, right, top, bottom] option, etc..

pack [button .test –text test –command { go }]

pack

pack [button .test –text test –command { go }]

–side left
Lay out widget by coordinates.

The coordinates can be specified in –x and –y options, and the size can be

specified in –width option.

button .test –text test –command { go }

place .test –x 10 –y 10

place

button .test –text test –command { go }

place .test –x 50 –y 50 –width 100

Lay out widget as grid.

The grid location can be specified in –column and –row options, and the

margin can be specified in –padx and –pady options.

button .test –text test –command { go }

grid .test

grid

button .test –text test –command { go }

grid .test –column 3 –row 4 -padx 3 –pady 5

Options used in the above list are only some of examples among many. You can use more

options. Please refer to Tcl/Tk reference manual, etc., for further information.

3, Tcl/Tk programming in HEW
Tcl/Tk programming in HEW is possible.

Tcl/Tk create development environments, which suit the needs of users by allocating HEW

commands to GUI window (buttons, etc.) created in Tcl/Tk.

Therefore, the allocated commands on GUI window are issued to HEW, and HEW

simulation can be controlled.

The following environments can be created by Tcl/Tk.

・Issue of commands from Tcl/Tk to HEW.

Tcl/Tk issue commands to HEW, and control simulation of HEW.

・Issue of commands from Tcl/Tk to HEW, and accepting data as the results.

Tcl/Tk issue commands to HEW, and accepts the results and display them.

Figure: Linkage between HEW and Tcl/Tk

Issue of commands

Accepting the results

HEW environment Tcl/Tk environment

Issue of commands

3-1, HEW commands available in Tcl/Tk
HEW offers a lot of commands, which is available in command line of HEW. You can use

some of the commands to create a development environment matched to your needs.

A list of HEW commands, which are available in Tcl/Tk can be referred by inputting lis

command on Console window of Tcl/Tk. Please check the meanings of the commands

before using.

Figure: A list of HEW commands on Console window

3-2, Creation of Control Commands to HEW Simulator
GUI window to control HEW simulator can be created in Tcl/Tk.

In the above sample program, the simplest commands for execution of HEW simulation are

allocated on the buttons on GUI window of Tcl/Tk, an environment for controlling HEW

simulator is created.

Figure: Example of execution

In the above sample program, GUI window of Tcl/Tk is created by using lavel command and

button commands of Tcl/Tk. You can specify the message on the window “Simulation”

using label command. You can also specify buttons to be allocated on the window , and

commands to be assigned to the buttons by specifying HEW commands in the curly

brackets of –command option. Therefore, one of the commands “start”, ”reset” or “halt” is

issued depending on clicked button on GUI window. In the above sample program, pack

command is used to allocate the buttons.

~ sample program ~

pack [label .text –text Simulation]

pack [button .start –text start –command { go }

pack [button .reset –text reset –command { reset }

pack [button .stop –text stop –command { halt }

A Command is issued by clicking

one of the buttons “Start”, “reset”

or “stop”.

3-3, Creation of Command to Input Quasi Interrupt to HEW
Simulator

GUI window to input interrupt signals to HEW can be created in Tcl/Tk.

Figure: Example of execution

~ sample program ~

pack [label .text –text Interrupt]

pack [button .irq0 –text “IRQ0 Trigger” ¥

–command { break_cycle 1 all interrupt H'04 11 }

pack [button .irq1 –text “IRQ1 Trigger” ¥

 –command { break_cycle 1 all interrupt H’05 11 }

pack [button .irq2 –text “IRQ2 Trigger” ¥

 –command { break_cycle 1 all interrupt H’06 11 }

pack [button .irq3 –text “IRQ3 Trigger” ¥

 –command { break_cycle 1 all interrupt H’07 11 }

An interrupt generates and jumps to

interrupt vector by clicking one of the

buttons.

In the sample program on the previous page, quasi interrupt function, which is prepared in

HEW is used. By assigning break_cycle command, which generates a quasi interrupt to

the buttons on the GUI window, it is possible generating interrupts anywhere at an execution

of simulation.

BREAK commands are prepared in HEW to generate quasi interrupt.

List of BREAK commands

Commands Example of how commands are used

break_access break_access <start_addr> [< end_addr>] [<mode>]

interrupt <interrupt_type1> <interrupt_type2> [<priority>]

break_cycle break_cycle <cycle> [<count>]

interrupt <interrupt_type1> <interrupt_type2> [<priority>]

break_data break_data <addr> <data> [<size>] [<option>]

interrupt <interrupt_type1> <interrupt_type2> [<priority>]

break_register break_register <register> [<data> <size>] [<option>]

interrupt <interrupt_type1> <interrupt_type2> [<priority>]

break_point break_point <addr> [<count>]

interrupt <interrupt_type1> <interrupt_type2> [<priority>]

These commands must be assigned to buttons before a simulation.

In the sample program on the previous page, break_cycle 1 all …command is assigned on

the buttons. (SH1 is selected as CPU) Therefore, if a button is clicked in the middle of a

simulation, a quasi interrupt generates 1 cycle later from the time when the button is clicked.

3-4, Creation of Environment to Control HEW simulation
One integrated environment is created by creating a script file, which is constructed by the

control commands to HEW simulation.

~ sample program ~

#!/bin/sh

the next line restarts using wish¥

exec tclsh "$0" "$@"

catch {destroy .top}

##

CREATING WIDGETS Window

The false interruption command of HEW is described into the bold letter portion of each

button.

##

toplevel .top

wm title .top "HEW Simulation"

wm geometry .top 230x450+216+109; update

wm maxsize .top 1028 753

wm minsize .top 104 1

##

SETTING COMMAND Button

The arrangement part of each button is specified.

##

button .top.go -command {break_clear;go} -height 0 -pady 0 ¥

 -text {Simulation Go} -width 15

button .top.rego -command {break_clear;reset;go} -height 0 -pady 0 ¥

 -text {Reset Simulation} -width 15

button .top.reset -command {reset} -height 0 -pady 0 ¥

 -text {Reset} -width 15

Definition of a new

top level window

Definition of buttons

If the quasi interrupts from IRQ0 to IRQ5 are generated using the quasi interrupt function in

HEW simulator, setups of the break commands remain in the simulator of HEW. In order to

execute the simulation again, the break commands must be turned off.

In the above sample program, the following commands are assigned on the buttons on GUI

window in addition to the break commands.

button .top.go -command {break_clear;go} -height 0 -pady 0 ¥

 -text {Simulation Go} -width 15

button .top.rego -command {break_clear;reset;go} -height 0 -pady 0 ¥

 -text {Reset Simulation} -width 15

button .top.irq2 -command {break_cycle 1 all Interrupt H'06 11} -pady 0 ¥

 -text {Trigger IRQ2} -width 15

button .top.irq3 -command {break_cycle 1 all Interrupt H'07 11} -pady 0 ¥

 -text {Trigger IRQ3} -width 15

button .top.irq4 -command {break_cycle 1 all Interrupt H'08 11} -pady 0 ¥

 -text {Trigger IRQ4} -width 15

button .top.irq5 -command {break_cycle 1 all Interrupt H'09 11} -pady 0 ¥

 -text {Trigger IRQ5} -width 15

button .top.exit -command exit ¥

 -text {Quit} -width 15

##

SETTING GEOMETRY Button

##

place .top.go -in .top -x 55 -y 15 -anchor nw -bordermode inside

place .top.rego -in .top -x 55 -y 50 -anchor nw -bordermode inside

place .top.reset -in .top -x 55 -y 85 -anchor nw -bordermode inside

place .top.irq0 -in .top -x 55 -y 140 -anchor nw -bordermode inside

place .top.irq1 -in .top -x 55 -y 175 -anchor nw -bordermode inside

place .top.irq2 -in .top -x 55 -y 210 -anchor nw -bordermode inside

place .top.irq3 -in .top -x 55 -y 245 -anchor nw -bordermode inside

place .top.irq4 -in .top -x 55 -y 280 -anchor nw -bordermode inside

place .top.irq5 -in .top -x 55 -y 315 -anchor nw -bordermode inside

place .top.exit -in .top -x 55 -y 400 -anchor nw -bordermode inside

Allocation of buttons

These commands can be assigned by listing them in curly brackets “{}”of -command option

separating each command by a semicolon “;”. When a button is clicked, the listed

commands are issued to HEW starting from the left.

In the sample program on the previous page, break_clear command is issued to HEW to

turn off break_cycle command before an execution of “go” and “reset go” commands.

Therefore, the simulation can be executed again.

Figure: Example of execution

If Trigger IRQ0 is clicked, break_cycle 1 command

is issued in the event point of HEW, and a quasi

interrupt is generated, then jumps to a interrupt

vector.

3-5, Creation of Environment for Input Control to HEW
Simulation 1

An environment for input control to HEW simulator at execution of HEW simulation.

The control environment accepts external input.

~ Sample program ~

#!/bin/sh

Initial setting of an address

set addr ff800030

Initial setting of data

set data 0

The command for an address setup

An address value is stored in Variable addr.

label .l_addr –text ADDRESS

place .l_addr –x 10 –y 10

entry .addr –textvariable addr

place .addr –x 70 –y 10

The command for an data setup.

A data value is stored in Variable data

label .l_data –text DATA

place .l_data –x 10 –y 50

entry .data –textvariable data

place .data –x 70 –y 50

The HEW command is set as a button.

A push on a button sets data to arbitrary addresses.

button .set -command {memory_fill $addr $addr $data} -text {set data}

place .set –x 60 –y 100

Create an entry box for address

input

Create an entry box for data

input

Set a specified address and a data value

using memory_fill command of HEW.

Specify values for variable addr and data by

entry command.

Specify the coordinates of Label

and entry using place command

and allocate them

Set initial values for variable

addr and data

In the sample program on the previous page, one input control environment is created. Any

address and data can be stored in HEW by using an entry box. When an address and

data are entered on GUI window in hexadecimal and “set data” button is clicked, the data is

stored in the specified address of the memory space of HEW.

Data can be stored using memory_fill command. Memory_fill command, which is issued to

HEW can be selected in -command option of button command. Memory_fill command

passes the address and the data values to HEW by referring the variable addr and data

specified in entry command (”$” is used when the data is referred).

Figure: Example of execution

By entering an address and data and clicking “set data” button,

the entered data is stored in the memory space of HEW.

3-6, Creation of Environment for Input Control to HEW
Simulation 2

An environment to set a value in memory space or registers of HEW can be created in

Tcl/Tk.

~ sample program ~

wm geometry . 350x280

DATA

scale .scale -label DATA -from 0 -to 10000 -length 300 -variable var -orient horizontal

-tickinterval 2500 -showvalue true

place .scale -x 0 -y 0

ADDRESS

label .l_addr -text ADDRESS

place .l_addr -x 10 -y 100

entry .addr -textvariable addr

place .addr -x 70 -y 100

DATA size

label .l_size -text SIZE

place .l_size -x 10 -y 140

set select size8

set select_size "BYTE"

radiobutton .size8 -text 8 -variable select -value size8

radiobutton .size16 -text 16 -variable select -value size16

radiobutton .size32 -text 32 -variable select -value size32

place .size8 -x 60 -y 140

place .size16 -x 100 -y 140

place .size32 -x 140 -y 140

Size change of an existing window

Definition of a scale bar for data input

Definition of an entry box for address input

Definition of a radio button for data input

set addr 0

set addr_s 3

set addr_e 3

set var16 0

set var16_tmp 0

Data modify proc

proc set_data { } {

 global var

 global var16

 global var16_tmp

 global select

 set var16_tmp [format %08x $var]

 if { $select == "size8" } {

 set var16 [string range $var16_tmp 6 7]

 } elseif { $select == "size16" } {

 set var16 [string range $var16_tmp 4 7]

 } else {

 set var16 $var16_tmp

 }

｝

Data size proc

proc set_size { } {

 global select_size

 global select

 if { $select == "size8" } {

 set select_size "BYTE"

 } elseif { $select == "size16" } {

 set select_size "WORD"

 } else {

 set select_size "LONG"

 }

}

Specification of initial values for each variable

Definition of a procedure for processing data,

which is stored in HEW by specifying the

data size.

Definition of procedure for generating an

argument (a data size) of a command issued

to HEW by specifying the data size.

Start address proc

proc set_addr_s { } {

 global select

 global addr

 global addr_s

 if { $select == "size8" } {

 set addr_s [expr $addr + 3]

 } elseif { $select == "size16" } {

 set addr_s [expr $addr + 2]

 } else {

 set addr_s [expr $addr + 0]

 }

}

End address proc

proc set_addr_e { } {

 global select

 global addr

 global addr_e

 if { $select == "size8" } {

 set addr_e [expr $addr + 3]

 } elseif { $select == "size16" } {

 set addr_e [expr $addr + 3]

 } else {

 set addr_e [expr $addr + 3]

 }

}

button

label .l_data -text "DATA SET"

place .l_data -x 10 -y 180

button .set -text set -command { set_size;set_addr_s;set_addr_e;set_data;memory_fill

$addr_s $addr_e $var16 $select_size }

place .set -x 90 -y 180

Definition of a procedure for generating an

argument (a start address) of a command

issued to HEW by specifying the data size.

Definition of procedure for generating an

argument (an ending address) of a command

issued to HEW by specifying the data size.

Definition of “set” button

Procedure call command and memory_fill

command are assigned to the button

Figure: Example of execution

H’36 is stored in the lower 8 bit, if you choose SIZE8 and

write 4662 in address 0 by BYTE.

Specification of a data value

The value must be specified in decimal (analog value) in the sample program. When a

“set” button is clicked after entering an address value and specifying data size, the data is

stored in the specified address.

H’36 is stored in the lower 8 bit, if you choose SIZE8 and write 4662 in address 0 by BYTE.

H’1236 is stored in the lower 16 bit, if you choose SIZE16 and write 4662 in address 0 by

WORD.H’00001236 is stored in the 32bit, if you choose SIZE32 and write 4662 in address 0

by LONG.

The sample program is configured with setting of data, address and data size, and “set”

button to set these values to HEW.

In addition, the procedures to process arguments of the data, the start address and the

ending address are defined using proc command. By using these procedures in

–command option of button command, arguments required for setting the data to HEW are

generated at the time of clicking “set” button.

All procedures are configured simply, and they do not treat parameter passing.

The procedures can be referred by defining globally the variables used in Tcl/Tk

programming.

3-7, Creation of Environment for Output Control from HEW
simulation 1

An environment for input control to HEW simulation can be created by creating a simple

script file with commands to HEW. It is because of a one-way command issue from Tcl/Tk

to HEW only. However, under an environment for output control from HEW simulation,

Tcl/Tk cannot accept data directly as the result of an issued command to HEW. The result

must be passed to Tcl/Tk through variable.

Figure: Output control from HEW simulator

A file” tmp.file” to temporarily store the data (the result of the issued command) must be

created in advance. Tcl/Tk accepts the data by referring to information stored in the file.

Extract data from a

file, and use it in Tcl/Tk

HEW environment

Tcl/Tk environment

Issue command to HEW

tmp File

Tcl/Tk cannot accept

the result directly

3-8, Creation of Environment for Output Control from HEW
simulation 2

This chapter describes the procedures for creating an environment for output control from

HEW, which accepts the result of an issued command directly from HEW simulator at an

execution of a simulation. Under this environment, Tcl/Tk can accept value of memory and

register and output them.

~ Sample program ~

set content "Display Address "

destroy .b

button .b -text "Update" -command {

For "log.txt" checking in TEMP directory

 global env

 set dir $env(TEMP)

 set dataFile [open $dir/log.txt {RDWR TRUNC CREAT}]

 close $dataFile

Commandline command to read address 0x00000000

using HEW CommandLine command

 md 0 1

 # md command to an address to refer to here is described.

Read value as Console text is log into "log.txt"

in directory pointed by env. variable TMP

 set dataFile [open $::env(TEMP)/log.txt RDWR]

 set b ""

 seek $dataFile 0 start

 set formatted [format "%08X" 0]

 while {$b!= $formatted} {

 set e [gets $dataFile]

 set d [split $e ""]

 set b ""

 for {set j 0} {$j< 8} {incr j} {append b [lindex $d $j]}

 }

set ar [split $e]

 set content [lindex $ar 2]

 close $dataFile

File open check

Retrieve the data from tmp file

Append command adds a string

[lindex $d $j](lindex command gets

the jth element of d) to a string b.

Figure: Start-up display

puts -nonewline "Content in Address 0x00000000: 0x"

 puts $content

 destroy .labelcontent

 label .labelcontent -text $content

 place .labelcontent -x 90 -y 10

 }

destroy .labelcontent

label .labelcontent -text $content

place .labelcontent -x 90 -y 10

place .b -x 10 -y 10 Allocate a button

Destroy command destroys the previous

result, and output the updated data.

Figure: Example of execution

Set a value

When “Update data” button is clicked

without changing the value, “00” is output.

~ log.txt file ~

00000000 FF

Content in Address 0x00000000: 0x

FF

When “Update data” button is

clicked, the data is updated in

according to the memory.

HEW Tcl/Tk Application Note

Publication Date: Nov. 5, 2003 Rev.1.00

Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Microcomputer Tool Development Department
Renesas Solutions Corp.

© 2003. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

HEW Tcl/Tk

REJ10J1113-0100

Application Note

