To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

>
©
j=A
=
Q

=
o

-]

Z
O

—+
@

HEW Tcl/Tk

Application Note

Renesas Electronics
WWW.renesas -electoronics.com ReV. 1 00 20031 1

10.

11.

12.

13.

Notes regarding these materials

This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of Renesas or any third party with respect to the information in
this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in
light of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
With the exception of products specified by Renesas as suitable for automobile applications, Renesas
products are not designed, manufactured or tested for applications or otherwise in systems the failure or
malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
especially high quality and reliability such as safety systems, or equipment or systems for transportation and
traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
transmission. If you are considering the use of our products for such purposes, please contact a Renesas
sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(2) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
You should use the products described herein within the range specified by Renesas, especially with respect
to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other applicable measures. Among others, since the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
system manufactured by you.
In case Renesas products listed in this document are detached from the products to which the Renesas
products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
high. You should implement safety measures so that Renesas products may not be easily detached from your
products. Renesas shall have no liability for damages arising out of such detachment.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

HEW Tcl/Tk
Application Note

Content

TCH/TK OVerview inN HEWooooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee ettt 4
I U ST o) o I 5
1-2,Start Up Of TCHTK oo 5
1-2, Execution Method Of TCH/TKu.iiieiiee it e e e e 6
2, Basic Programming method in TCI/TK ..., 9
2-1, Programming Method iN TCluuiiiiiiiiiie e 9
2-1-1,BASIC GIAMMATeiiieieiitie ettt ettt et e st e e et e e ss e e e sbe e e ssbeesbeeesabeeeneeesbneesnneennneeans 9
2-2, BUilt-in cOmMMAaNd OF TCl....euniiiiiiie e eans 10
2-2-1, VAIIADIE. ...t 10
W A N 1 - |V PSPPSR 11

W e I AN 1110 0 T=Y (o] 0 T=T = 11 o] o USRI 11
2-2-4, Double-quotation marks and Curly bracketsS...........cccovveeeeiiiiiciiieeee e, 13
2-2-5, Assignment of COMMANASc.covuiiiiieiiiccee e e e e 13
2-2-6, INPUL-OULPUL FOIMAL......ciiiiiiiiiiee et e e e e e e e e as e e e eeaeees 14
2-2-7, Description Of COMMENTScooi i e e e e e e e s e snrraaeeeeeas 14
2-2-8, PTOCEAUIEeei ittt ettt etttk b ettt e s bt e sa e e et et e s br e e s bn e e snneeenneenneas 15
2-2-9, Control StruCture COMMEANGcocuiiiiiieiiii et saneas 16
2-3, Programming Methods iN TK.........ueiiiiiiiiiii e 19
2-3-1, BASIC GIAMMAcciiiiiiiieiiie ettt ettt et e s e s b e e sab e e e abe e e snn e e e nbneesnneesnneas 19
2-4, WAL IN TK oo 20
2-4-1 Creation Of BUITOMNccouiiiiiieiiie ettt e e 20
2-4-2, Creation of Check BULION..........c.eoiiiii e s 21
2-4-3, Creation of RAGIODULIONcooiiiiiiiiiie s 22
2-4-4, Creation Of Label.......cccuiiiiiiiiie e 23
2-4-5, Creation Of MESSATEuuuiiii it e st e e e s e s e e e e e s e et a e e e e e e e s e sanraaaeeeaeas 24
2-4-6, Creation OF ENEIY ... e e e e e e e e s e rre e e e e e e s 25
2-4-7, Creation Of SPINDOXuuiiiiii e e e s e e e e e s e rraeeaeees 26
2-4-8, Creation Of FramME@cuiiiiiiiieesiee ettt b e s 27
2-4-9, Creation Of LabelfTamie........ccooiioiiiiiie e 28
2-4-10, Allocation of widget to frame/labelframecccoccciiiiii e, 29
2-4-11, Creation of New Top Level WINAOW...........cueeiiiieiiiiiiiiiiee e 31
2-4-12, Creation Of MEMNU........cuiiiiieiiie ettt b e b e e neneennneas 32

2-4-13, Creation Of MENU DULION.........oiiiiiiiee e e e ee e eeeaeees 33

2-4-14, Creation Of SCrOll DAr.........cuuiiiiiiiieee e e e e e r e e e e e aees 34

2-4-15, Creation of Scale bar to change the variable valuecccccvieiiiiiiiiiieeneeenn, 35
2-4-16, Creation Of CANVAS.......ccoouiiiiieiiie ettt sb e snne e s be e e srreesaneeesnneas 36
2-4-17, Creation of OPtioN MENUcc.uiiiiiiie e e e e e e e e e e e s e raarraaeeeaeas 37
2-4-18, Creation of POP-UP MENUc.uuiiiiiii ettt e e sbrre e e e e e s aee e e e 38
2-4-19, Creation of SIMple dialogcccvuiiiiiei e e 39
2-4-20, Creation of Message dialoguueeieeiiiiiiiiiiieiie e e 40
2-4-21, Creation of Exist File Open dialog..........ccccuvviiiiie i 41
2-4-22, Creation of New File Open dialogcociiiiiiiie e 42
2-4-23, AlloCation Of WIAQET......uuiiiii e e e e e e s s areaae s 43
3, Tcl/Tk programming in HEW..........cooiiiiiiiiic e 44
3-1, HEW commands available in TCHTK ... e 45
3-2, Creation of Control Commands to HEW Simulator............cccccceeeiiiiiiiiiiineneeeen, 46
3-3, Creation of Command to Input Quasi Interrupt to HEW Simulator..................... 47
3-4, Creation of Environment to Control HEW simulationccccccvviviiniiinninnn. 49
3-5, Creation of Environment for Input Control to HEW Simulation 1 52
3-6, Creation of Environment for Input Control to HEW Simulation 2 54
3-7, Creation of Environment for Output Control from HEW simulation 1................. 59

3-8, Creation of Environment for Output Control from HEW simulation 2.................. 60

Tcl/Tk Overview in HEW

A script language, Tcl/Tk is supported in HEW (High-performance Embedded Workshop)

The targeted version is Tcl/Tk version 8.4.1.

Tcl/Tk is comprised of class member “Tcl” (Tool Command Language) of script language
and “Tk” (Tool Kit), which is used to program graphical user interface. The script language
Tcl/Tk do not need compiling, and the results of execution of the program are reflected

immediately.

Tcl has a grammar, which makes simple programming possible. Tcl is used for an
application of Stand Alone, and can be built in application programs.

Tk makes it possible constructing GUI suits the needs of users promptly.

HEW supports Tcl/Tk. The functions and GUI prepared by default in HEW are usable, and
also GUI environment can be customized to meet the users’ individual needs by

programming in Tcl/Tk.

1, Use of Tcl/Tk
1-1,Start up of Tcl/Tk

This chapter describes how to use Tcl/Tk commands in HEW.
Select “View” — “TCL Tool Kit” from HEW command menu. Console window and GUI

window, which supports programming in Tcl/Tk are started. You can program in Tcl/Tk

using these windows.

Fsample - High—perlor manes Embeiddod Workshop

Eile Edn QU Proict Optens fusd Memory Took Window Heb

Dk F A - & BN B E|mw "il—L|". M OH ¥ m
| Donneaire ot 08 |/ 8 X [[oie Bl P

L AL -l

I T

8] whes

:_.L] e I

(5] esmples

L&l sbrie

(] weetible
= 28 Deperahs: me

] shekhs Die B Lok

K] stackscth X

9] veethy (HER3) 1 X

~ e [@T =] Console window GUI window
Honrectsd

;l:lmmclrd.

:

Ot TOL Tonpburl mwrwbom = =y

Figure: Start up of Tcl/Tk

Console window
You can program in Tcl/Tk and execute it using interpreter on Console window. You can

also load script files made in advance and execute them.

GUI window
The result of execution of the program on Console window is reflected on GUI window.

Toplevel window is prepared in HEW by default. Additionally, you can create GUI window

newly aside from Toplevel window.

1-2, Execution method of Tcl/Tk

You can execute Tcl/Tk on HEW according to the following 3 methods.

Interpreter method

You can assign commands of Tcl/Tk on Console window, when you program in

interpreter method. The assigned commands of Tk are reflected on GUI window at the
time of Tcl/Tk Tool Kit is started up.

M Conenln

File Edit Hel
(HERZ) 1
(HEW3) 2

¥ pack [betton .80 ~command [g0] -text (0]l
L

For example: In case of that a program execution command of HEW

“go” is assigned on a button.

Figure: Programming in interpreter method

Execution of loaded script file

You can program in Tcl/Tk using script file in advance, and load the file on console
window. “Select a file to source” window is opened by selecting “File” — “Source” from
command menu of Console window. Specify the Tcl/Tk script file created in advance
after the window is opened.

M Conenlo

Hiude Consuls
Clear Console
Exn
Selec |lis 32 soarc
Lt o [e = =
Y e
_..."j -
i Flarrn Fremain
P L Dorussem
| ,} Ead Pl
Do
i+ r-_u---u
L,]
b, Bl Fimr Ll
o e
Pl il hiet EEET -l Lax

Figure: Tcl/Tk source file selection

M Coneoln r' "i"|||'§
Fils [dit Help .

H
(HER3I) 1 %

qo

~ description in sample.tcl file ~
pack [button .go —command {go} —text {go}]

Figure: After source file selection

Programming in the script file is reflected on Console window after source file selection.

Execution using both of interpreter method and script load method
After loading a script file created in advance, you can add programs to the script file in

interpreter method.

M Coneole r' l'h"'ﬁ

[ile Edit Help

H
(HER3) 1 %

= CEX

pack [button .go —command {go} —text {go}]
Loading of the script file

M Conenln

Bl

?IfH]] | ¥ pack [button .reset -command [reset] -text [reset]]
(TelTk) 2 X |

go
reset |

Add a command of pack [button .reset —command

{ reset } —text { reset}] on Console window in

interpreter method

For example: Add reset command of HEW “reset”

Figure: Program addition

2, Basic Programming method in Tcl/Tk

2-1, Programming method in Tcl
2-1-1,Basic Grammar
Tcl has very simple grammar. Built-in commands of Tcl and procedures created by user

are used as commands in Tcl programming. You can separate a command and arguments
required for the command with a space, and construct one execution format. You can also
separate them by starting a new line, or with a semicolon in order to describe complicated

execution format.

Basic Grammar 1 List arguments by separating with spaces.

Command argl arg2 arg3 ...

Basic Grammar 2 Separate with semicolon(;) in case of listing several commands on
one line.
Command argl arg2 arg3 ...; Command argl arg2 arg3 ...

Basic Grammar Use ¥ sign in case of listing one command in a few lines.
Command argl ¥
arg2 arg3...

Basic Grammar 4 Use # sign in case of describing comments.

Command argl #comments

Build-in command of Tcl and procedure created by user are used as commands.

Arg is argument, which is required for built-in command of Tcl and procedures made by user.

2-2, Built-in command of Tcl

This chapter describes built-in commands prepared in Tcl. Built-in commands introduced
in this chapter are minimum necessary for programming.

2-2-1, Variable

Variables in Tcl do not need declaration of the types before using. You can name them as
you want. You can also set a value to the variable, and refer to a value of the variable in Tcl
programming.

| RenTTET

(TelTk) 1 E z=t count 100
100

(TcITk) 2 ¥ ==t count
100

(TelTk) 3 ¥ set count 50
Al

(TelTk) 4 ¥ st colnt

a0

(TelTk) 5 ¥

set count 100 Set 100 for variable “count”

A value of variable “count” is referred by

inputting set count on Console window.

Figure: Setting and referring of variable

You can also set string for variable as you want in Tcl

|Fnr- B Helo

F "
II:H%) 1 X ==t charl “abodeis”

abodafs

(HEW:) 2 X ==t charl

abedel

(HEWZ) & % set dhar? "o
s

(HEWZ) 4 ¥ set char?

W

(HEWE) 5 % <ot charl chard
YZ

(HEY2) B 3 =i charl

VT
(HEWa) 7%

String can be assigned to variable.

“$var” is used for variable substitution.

Figure: Assignment of string to variable

2-2-2, Array
Array can be used in Tcl. You can assign variable to each element of an array, and also to
the entire of an array at one time.

(HEWZ) 1 X =et aryll) a

(HEW3) 2 % ==t arv(1) b

| | H “ ”

THEW) 3 % set aml() c An assignment statement “set ary(0)” can be
(HEWS) 4 % parray @ used, in case of assigning a variable to each
aryil) = a

By = ¥ element of an array.

(HEWE) 5 % a

An assignment statement “array set a{}” can be

used, in case of assigning variables to the entire

e
-

of an array at one time.

MO

(HEW2) 7 %1

4 |

Figure: Array

2-2-3, Arithmetic operation

Integer operation, floating-point operation and comparison of inequality can be executed in
Tcl by using expr command. Operators and mathematical functions are prepared in Tcl as
built-in commands.

| ReCTTET

(TelTk) T ¥ expr 100420
120 -
ﬁTcIThj 2 ¥ erpr 10,/20
e

[TcIT) 3 % emr 100520
1

(TelTk) 4 % emr 100420
L]
(TelTk) 5 X eor
0, 1355401 8504]
(TelTk) & 8 expr sinll)
0541470924308

(TelTk) 7 %

)

Farg

expr 100+20 Return the result of 100+20 expr
100/20 Return the result of 100/20
expr 100>20 If the inequality expression evaluates

to true, "1" is returned, and if it

evaluates to false, “0”is returned.
Random number function and trigonometric can be also

used as arithmetic functions

Figure: Arithmetic operation

The following lists show you operators and functions supported in Tcl, and what they stand

for in Tcl.
List: operators
Signs Meanings
-+) Minus sign, Plus sign, complement, negation
* [, % Multiplication, division, remainder
+, - Addition, subtraction
<<, >> Left-shift, right-shift
<, > comparison in Boolean expression
(left-inequality, right-inequality)
<=, >= comparison in Boolean expression
(greater than or equal to, less than or equal to)
==, I= Equal sign, inequality sign in Boolean expression
Eq, ne Equality, inequality in Boolean expression (used in strings)
&, N Bitwise AND (AND), bitwise exclusive OR (XOR)
&&, || Logical AND, logical OR
xX?y:z conditional
List: functions
Functions Meanings

Acos, cos, hypot, sinh,

asin(), cosh(), log(),
sqrt(), atan(), exp(),
log10(), tan(), atan2(),
floor(), pow(), tanh(),

ceil(), fmod(), sin()

Mathematical functions

abs(arg)

Absolute value

double(arg) Double-precision value
int(arg) Integer value

Rand() Random number value
round(arg) Round value to integer

srand(arg)

Initial value of random number

2-2-4, Double-quotation marks and Curly brackets
An enclosed string within double-quotation marks” “or curly brackets {} is treated as one

string in Tcl.

e El Hee

(TcITk) 1 ¥ ptsabc
bad argument "o i should be Tnonewl ine”
(TelTk) 2 $ outs "a b e”
abc

(TelTk) 3 % euls [a b el
abe

(TcITk) 4 X

Puts command outputs a specified character.
It becomes an error, in case of inputting puts a b
C, since a b c is not treated as one string.

a b c can be treated as one string and output, by

inputting as put “a b ¢” or puts {a b c}.

4 |

Figure: Double-quotation marks and curly brackets

2-2-5, Assignment of Commands
An enclosed string within square brackets [] is treated as one command in Tcl.

Eie Edl Help

¥ .
(HEWZ) 1 8 set cosmard [exer 100720]

4

(HEWE) 0 % cot commoesd

5

(HEY2) 3 % ==l command] exer 100720

wrong 3 args: should be set varlane TrewValue?

(HEW:Y 4 ¥

An enclosed string within square brackets, [expr 100/20] is treated as
one string in Tcl, and set command outputs “5” as the result.
Additionally, expr 100/20 should be assigned to a command since set
command is being used.

Therefore, the same result is output by executing set command.

In addition, it becomes an error, in case of not enclosing expr 100/20

within square brackets “[]".

Figure: Assignment to command

2-2-6, Input-Output Format

Scan command and format command are prepared as I/O command in Tcl.

commands are equivalent to scanf and printf in ANSI.
of the format using “%".

These

Additionally, you can define a style

W Copeodn

Fie Eil el

7
i1
(TcITk) 1 ¥ sca

(eI # ¥ set Tk
o

$.141598 “Ed e int float

(TelTk) 3 X ==t Flcal
1415526

(TclTk) & X fonmat
3. 1415876

(TelTh) 5 %

“Ed.¥d” Sint $¥loat

result of the execution

Scan 3.1415926 “%d.%d" int float is equivalent to scanf in ANSI.
Scan command scans whole part “3” and fractional part
"1415926” of 3.1415926 into int and float variable each.

Additionally, it returns 2 (number of times of input values) as the

format “%d.%d” $int $float is equivalent to printf in ANSL
The command returns 3.1415926 as the result of an execution.

Figure: Input-output format

2-2-7, Description of Comments

In case of describing comments in script files of Tcl, add “#” at the head of a line.

Additionally, you will add “;#" at the head of the comments, in case of inserting comments

into mid-line.

Descriptions after “#"(at the head of a line) and
“#’(at the middle of a line) are treated as
comments.

Figure: Description of comments

2-2-8, Procedure
In Tcl, a row of commands can be treated as a function of C language. A functions called

“procedure” can be used as a built-in command in Tcl.

Procedure can be created as a function, which gets 0 or more arguments by using proc
command. Defined variables in procedure are treated as local variables, and can be
referred only in the procedure. Moreover, definition of global variable is required in

procedure, in case of referring to global variable in the procedure.

Example of how to create “procedure”

~Sample Program~
set count3 100 ;#Assign 100 to variable count3 as an external variable

proc add{ countl count2 }{ ;#Accept the argument countl and count2
global count3 ;#A global definition is required to refer to count3
return[expr $countl+$count2+$count3]
#Define a value returned by procedure add
#using return command

}
add 200 300 ;#Use procedure add

When the sample program is written, procedure add is called, and “600” is returned as
the result of “add 200 300".

[B tob
‘.‘T;I:-LI 1 & set courtd 100
100
(TelTk) 2 % eroc add [court] court?] 1
» alobal countd))
> retur : fcount 1 +doount 2+ 3countd] o]
CTME 32 add 200 200 If a description extends to a few lines, a prompt
Lot . . e .
(TelTk] 4 % ==t count] is replaced with “>" till the last line of the
an't read “eount 171 me such variable
{TclTk) 5 ¥ set count? ioti i i
Caflh) & Rt ommid. description (in the sample program, it extends
(Telfl) 6 T = itd e wyn H H
ol — from “{* to “}"of procedure add), and data input is
(TeiT) 7 £ .

possible.

|

It becomes an error, in case of referring to

variable countl, count2 in the procedure.

Figure: Creation of procedure

2-2-9, Control structure command
Tcl support the essential control structures exist in the other high-level languages.
The control structure commands are while, for, if, if...else, switch, foreach, etc.

Example of how to use “while”

setiO
while { $i < 10 }{
puts [expr $i+S$i]

incr i

Enclose conditions for while

sentence in curly braces "{}".

Example of how to use “for”

for{seti0}{$i<10}{incri}{
puts [expr $i+$i |

Three conditions for “for” sentence are required
to be enclosed each in curly braces "{}" in Tcl.

(These conditions are described as (A;B;C) in C

language.)

Example of how to use “if...else”

setval 1

if { $val ==“0" } {
puts O

} else {

puts 1

Enclose conditions for “if” sentence in curly braces “{}"

Example of how to use “switch”

setval 1

switch $val {
O{puts0}
1{puts1}
default { put 9}

Enclose commands to be executed
when the conditions are met in

curly braces “{}".

Example of how to use “foreach”

foreachi{12345}{
puts $i

Foreach sentence is repeated as the
same times as the number of strings

enclosed in curly braces “{}" described

— right after Foreach.

Continue and break can be used in while, for and foreach sentences.

for {seti0}{$i<10}{incri}{

if { $i =="5"

break #Break is usable
}
puts $i

w221 When “i” is equal to 5, break
command is enable, then

bypass for loop

2-3, Programming methods in Tk

2-3-1, Basic Grammar

Widget (a supported component of GUI in Tk) is defined and allocated on GUI window,
which is newly created by user in Tk programming.

Definition of widget must be described by separating “widget”, “path” and “option” with blank

spaces in grammatical rule of Tk programming.
widget .path —option1 —option2 —option3 ...
A path name must be started with period “.”. *“.path” command is generated after an
execution of widget command. You can allocate the “.path” command on the newly created
GUI window.
pack .path
“.path” command can be allocated on GUI window by using pack command, which is used to

allocate “.path” command.

It is possible creating various environments suit the specific needs of users in Tk

programming.

2-4, Widget in Tk
2-4-1 Creation of Button

Button can be created by using button command of Tk.

button .test —text test —.command {puts “Well come!"}
pack .test

W G e

[de fdr |l
3 -

(TelTk) 1 8 butlon lest -text lest -command [culz "Hel| come!”]
et

test

W Copeodn

Fie Bl Hel

(TcITk) 1 ¥ bution .test -text test -command [puts Well come!l”]

test

“Well come!” is output when the
test button is clicked.

4 |

Figure: Creation of button

In the above sample program, a button named “test” is created. Name of button can be
specified in -text option. A command to be executed when the button is clicked can be
specified in -command option. Therefore, the command enclosed in curly braces “{}" is
executed, and output “Well come!” on Console window, when “test” button is clicked.

2-4-2, Creation of Check button
Check button can be created by using checkbutton command of Tk.

settest 1 #Set “1” to variable “test” as an initial value.
checkbutton .test —text test

pack .test
_L"E Edit Hals
(HEW) | % zet test 1
1
(HEW:) 2 % checd r o best —text FEEE
JSest
Iﬂ'l'v 3 ¥ pack | test
iH"I'I'-'..- 4 % == test I_; fesh
(HEWE) 5 % ==t test
i}
(HEW:) 6 2

Create a check button with path name *“.test”,

and set an initial value “1”. By setting the

initial value “1”, the checkbutton is checked by

default settingI

When the checkbutton for “test” is cleared, and
refer to a value of “test” by set command, it

turns to "0".

Figure: Creation of checkbutton

In the above sample program, a button named “test” is created. A name of the button can
be specified in -text option.

Additionally, the initial value “1”is set to the variable “test” by using set command.

2-4-3, Creation of Radiobutton
Radiokbutton can be created by using radiobutton command of Tk.

set select testl ;#Checkbutton for test 1 is checked by default setting
radiobutton .testl —text testl —variable select —valu testl

radiobutton .test2 —text test2 —variable select —vale test2

pack .testl
pack .test2

W G i

(HEW3) 2 X radiobud forn fest] —fext fest] -variable selecf -valus fesil

(HEW3) 3 ¥ radichutton .test? -text test? -variable saleck -wvalue tect?

o test]
" test2

" testl

* lest?

When the radiobutton for test2 is clicked, test2 is

replaced as a selected value in —variable option.

Figure: Creation of radiobutton

A -value of checked button is passed to a variable select , which is selected in —variable
option. In the above sample program, because “testl” is selected as variable select when
the radiobutton is created, the radiobutton “test 1” is checked by default setting.

In addition, by naming the variables of multiple radiobuttons specified in —variable option the

same, checkboxes are checked exclusively.

2-4-4, Creation of Label
A single line message can be displayed on GUI window by using label command of Tk.

label .text —text “Well come!”

pack .text

set text “Good bye!”
label .text_var —textvariable text

pack .text_var

W Carvien b
[de fdn sl

(HEW3) 1 % lsbel bext -text "Well come!”

L bt

(HEW3) 2 % cack .text

(HEW3) 3 % ==t test "Good byel”

[)

(HEW3) 4 % label . text_var -lestvariable Dl
Jeat_war

(HEW3) § X pack . tewt_var

(HEW3) B X

el comel

Good byel

4 |

Figure: Creation of label

A selected string in -text option of label command is displayed on GUI window.
In addition, it is possible displaying a string, which is set to variable test in advance using

—textvariable option.

2-4-5, Creation of Message

A few lines message can be displayed on GUI window by using message command of Tk.

message .message —justify left —text “The message of two or more lines can be
displayed by using the message command of Tk.”
pack .message

Pl [de Heip
- -

]

{canple) 1 E message .mescage -justify left ~text “The messaze of iwo
res can be disploed by using the messags commard of Tk,

L IR e

(zamole) 2 £ ¢

(samele) 3 %]

The mezzage of bwo
ar mare linez can be
dizplayed by using
the meszage
cammand of Tk.

Figure: Creation of message

A few lines message can be displayed by using message command, although only a single
line message can be displayed by using label command.

In addition, in case of that a command message is too long to input on a line, you can start a
new line using “¥".

2-4-6, Creation of Entry
Output dialog can be created by using entry command of Tk.

set val {Well come!}

entry .text —textvariable val

pack .text

W Carinls
Fée (i Hebp

|

(HEWZ) 1 X =ot val [Bell cone!]

Wel | comel

(HEW3) 2 B endrw texd -textvariable wal
St

(HEW3) 3 ¥ pack et

(HEW3) 4 % =i W&l
Werl | comal

(HEWZ) 5 % ==t wal
Gioeed b

(HEW2) 6 % |

Good byel

“Well come!” is set as an initial value of variable val by using set
command. Therefore, “Well come!” is displayed by default,
when the input dialog is created.

When “Good bye!” is input in the input dialog, the input string

“Good bye!” is reflected in variable val.

Figure: Creation of entry

Input dialog created using entry command can accept a single line string and no more.
The input string is reflected in variable val, which is specified in -textvariable option.

In case of creating an input dialog, which can accept more than a single line string, you can
use text command prepared in Tk. In addition, text command offers you a diversity of

options. By using those options, you can create simple editor also.

2-4-7, Creation of Spinbox

Spinbox with scroll bar can be created by using spinbox command of Tk

spinbox .cnt —from 1 —to 10 —textvariable var —increment 1 —wrap yes

pack .cnt
. Conenln
Fie Edi Help
¥ .
(HEWZ) | X spirbox .ont ~from | -to 10 -fe<tvariable var -ircreserdt 1 -wrap ves
Lot
(FEW3) 2 % pa
(HEWZ) 3 X =t var
1
(HEW3) 4 % == \aF
&
(HEWE) 5 %

The value can be changed using the scroll bar. The
~| specified value is reflected in variable val specified in
—textvariable.

Figure: Ceation of spinbox

You can specify the range of the settable values in the spinbox using —from and —to options
of spinbox command. You can also specify the interval between the values, which is
displayed in the spinbox using —increment option. The specified value is reflected in
variable val specified in —textvariable.

Additionally, in case of selecting “yes” in —wrap option, the value circulates among the range
of the values you specified in —from and —to options. (For example; 0~.~10~0~..~5)

2-4-8, Creation of Frame
Frame can be created by using frame command of Tk.

frame .framel —bd 2 —width 100 —height 20 —relief raised
pack .framel

frame .frame2 —bd 2 —width 100 —height 20 —relief sunken
pack .frame2

frame .frame3 —bd 2 —width 100 —height 20 —relief flat
pack .frame3

frame .frame4 —bd 2 —width 100 —height 20 —relief ridge
pack .frame4

frame .frame5 —bd2 —width 100 —height 20 —relief solid
pack .frame5

frame .frame6 —bd2 —width 100 —height 20 —relief groove

pack .frame6

2 -width 100 -height 20 -reflief raised

width 100 -beight 20 -relief s

wt . framed -bd 2

:I"F“":: 5 X {ramwe . Trameed ~Bd 2 ~width 100 ~kaight 20 -relief flat

=td 2 =michth 100 -baight 20 -relief rides

hosbd 2 =wiclth 100 -haight 20 -relief solid

ame framefl -bd ¥ -widbh 100 -keight A -rel igl groove

4 |

Figure: Creation of frame

A newly created GUI window by user can be arranged using frame command.

allocation method of widget to frames is described in a later chapter.

You can specify the size of a frame in —width and —height options of frame command.

can also change the shape of a frame in relief option.

The

You

2-4-9, Creation of Labelframe
Labelframe can be created using labelframe command of Tk.

labelframe .framel —text labell —bd 2 —relief groove —width 100 —height 50
labelframe .frame2 —text label2 —bd 2 —relief solid —width 100 —height 50

pack .framel

pack .frame2

W G i

Fée [dn Hebp

o

]

(HEWZ) 1 X labelframe .framel -text label] -bd 2 -relief grooved
width 100 -height 50

s franel

(HEWE) 2 X labelframe .framed -text label? -bd @ -relief solid ¥

» =width 100 -h=ight 50

N rane?

(HEWZ) 3 % pack | f ram

(HEWE) 4 % pack .frame!

(HEW:) 5 % |

labelz

Figure: Creation of labelframe

4 |

A newly created GUI window by user can be arranged using labelframe command as well as
frame command. The difference of frame command is that you can name the frames using

—text option.

In addition, you can specify the size of a frame in —width and —height options of labelframe
command as well as frame command. You can also specify the shape of a frame in relief

option of labelframe command as well as frame command.

2-4-10, Allocation of widget to frame/labelframe
You can allocate widget of Tk to frame/labelframe created in Chapter 2-4-9,2-4-10.

frame .framel —bd 2 —width 100 —height 20 —relief groove
labelframe .frame2 —text label —bd 2 —width 100 —height 50 —relief solid
pack .framel

pack .frame2

button .framel.testl —text testl —command { puts “Well come!” }
pack .framel.testl
button .frame2.test2 —text text2 —command { puts “Good bye!” }
pack .frame2.test2

W Cameala

B Edn Help

o

]
(HEW:) 1 X frame .framel <bd 7 -midih 100 <keight 20 -relist groowe

f rame]

(HEW3) 2 X labelframe .frame? -text |abel -bd 2 -width 100 -height X ¥
b o-ralief wolid

.frame?

(HE¥3) 3 ¥ pac
(HEWE) 4 ¥ pach Ty
(HEW:) & % button .framel,test] <text test] -cosmard [ootz Well comel™]
framel test]

(HEW3) & % pack .framel.test] B o
(HEW3) 7 % bubton . frame? best? —text fest? —commard | outs ood bye!™)
frame? test?
(HEWZ) 8 % pach
Wal | come!
oo byel
(HEW:) & & |

Figure: Example of widget allocation

In case of allocating widget of Tk to frame or labelframe, the path name is different from
ordinary.

In the above sample program, buttons are allocated to the frame and the labelframe. The
path name of the frame is “.framel”, and the path name of the labelframe is “.frame2”.
Therefore, the path names of allocated buttons to the frame and the labelframe are specified
as “.framel.testl” and “.frame2.test2” each. These path names mean that the button
“.testl” is allocated to the frame “.framel”, and the button “.test2” is allocated to the
labelframe “.frame2".

Additionally, in case of not using the path names of frame or labelframe but the path name of

widget of Tk, widget is allocated outside of the frame or the labelframe.

labelframe .frame —text label —bd 2 —width 100 —height 50 —relief solid

pack .frame

button .test —text testl —command { puts “Well come!” }

pack .test

W G e
[de fdr |l

' A
(HEW3) 1 % labelfrane .frame -text label -bd 2 -widih 100 -height 50 ¥

* =ralief salid
{ rame

(HEM:) 3 % bt lory . best —bext test] -command [euls Nel| come!”

el | =ome!
{HEW3) 6 %]

4 |

Figure: Example of widget allocation

~Supplementary information~
“.(period)” used in path name of Tcl/Tk shows the route. By allocating frames and

labelframes to the route, the path names in GUI environment shows the layered system

For example:

Path name .top top of GUI environment
.top.framel a path name of framel allocated on top
.top.frame2 a path name of frame2 allocated on top

.top.frame2.subframe a path name of subframe allocated on frame3

2-4-11, Creation of New Top Level Window
Top level window can be created newly using toplevel command of Tk.

toplevel .main

wm title .main “TOP LEVEL"

wm geometry .main 200x200+100+100; update
wm maxsize .main 1028 512

wm minsize .main 128 1

W Carvin e

e Ldr [l

T =
(samole) 1 % foolevel main

mman

(sample) 2 % wm title .main "TOP LEVEL™

(zample) 3 X wm poometry main 200eB00+100+100; update

{ganelel 4 ¥ v macsize omain 1028 B12

(zamola) 5 X v mingize main 128 1

(zamole) B %]

BX

I TOP LEVEL |Zl |E| E'

| KX

A newly created

top level window

Figure: Creation of top level window

In the above sample program, a window is created newly besides the window prepared in
HEW by default by using toplevel command. The title and size of the new window can be
specified using wm command.

In case of allocating widget of Tk on the new window, the path name must be started with
“.main”.

Additionally, the new window can be deleted by destroy command (destroy .path name).

2-4-12, Creation of Menu
Tool menu can be specified by using menu command of Tk.

menu .menu ;#Specify a path name for menu
.menu add cascade —label file -menu .menu.file
.menu add cascade —label edit —-menu .menu.edit
.menu add cascade —label view —menu .menu.view
#Specify cascades (file, edit, view) add to .menu
menu .menu.file —tearoff no
#When you select “yes” for —tearoff option, the created menu can be
#deleted from the window
.menu.file add command —label exit —.command exit
#Allocate “exit” to menu.file as a submenu
#Define “exit” as a submenu for when "file” is selected

. configure —menu .menu

W G e

'|—
&
B
%
T
o

{
8

Tl e

i) add cascade -labdl file “merw .merw.file
. 3dd g ~labeal adit =meru meru.edit
eru add cascade -labe| view -merw merw,view
g merns. T ile -teralf mo

bR R L]

Jmeril.tile add command =label avit -command =
+ l"\ﬁl'. BUTE “Iefnd vl

T
-4
Bl O B AT e 3

R

edit view

4 |

Figure: Creation of tool menu

Pull-down menu can be created on toplevel window using menu command.

2-4-13, Creation of Menu button
Menu button can be created using menubutton command of Tk.

frame .menutop ;#Use frame command to allocate a frame on the tool bar
pack .menutop —side top —fill x
#The created window in -slide top is allocated to top
menubutton .menutop.file —text file —-menu .menutop.file.menu
#Allocate .menutop.file.menu as a submenu in —menu option
menubutton .menutop.edit —text edit
menubutton .menutop.view —text view
pack .menutop.file .menutop.edit .menutop.view —side left
#Allocate the created menubuttons
menu .menutop.file.menu —tearoff 0
When selecting “true” in -tearoff option, the created menu can
#be deleted from the window
.menutop.file.menu add command —label exit —command exit

#Define an a submenu for when "menutop.file.menu” is selected

{samolel 1 % frame | merubop

Ll op

(zamole) 2 & pack .merudoe ~side top ~Fill x

(zample) 2 % merabidton menitop.file =text file <perw meratop File.mery
smeratop file

{smole) 4 L
merutop, edit
{zamelel B X mercbitton onenotop.view =tewt wiew

+merul o vien

(zample) 6 £ pack .mertoo. {ile perutop,edit meruloo, view =side |eft
isamole) 7 & merw merwton. file.mery ~tearoff O

cmerutop. f i le.meru

(sanple) 8 % . perutop, file.nenu add command - label axil -command ¢
(sample) 9 L]

o Jmerastop, edil -text edil

edit wiew

4 |

Figure: Creation of menu button

Created menu by menubutton command is the functionally same as one created by menu
command. In case of allocating the menu on tool bar, a frame for the menu bar must be
allocated in advance using frame command.

2-4-14, Creation of Scroll bar

Scroll bar can be created on windows, etc. using scrollbar command of Tk.

scrollbar .scroll_h —orient horizontal ;#Define a horizontal scroll bar

Define a vertical scroll bar
#Allocate the defined scroll bars

scrollbar .scroll_v —orient vertical

pack .scroll_h
pack .scroll_v —side right

W Carrien b
[de fdr |l

'

(samole) 1 ¥ screl lbar .
Jeerall_h
(samole) 2 ¥ =scro
serall_v

geral |_k -arient horizontal

|bar .scroll_v =orient wertical

{ e) rall_v -zide right

{zamo|e)

4 |

Figure: Creation of scroll bars

In the above sample program, the scroll bars are allocated on the top window. Scroll bar
also can be allocated on frame, etc., by creating a frame in advance and specifying the path

name for the scroll bar at the time of definition and allocation.

labelframe .frame —text label —bd 2 —width 100 —height 50 —relief solid

pack .frame

scrollbar .frame.scroll_v —orient vertical ;#Specify the path name of the frame

pack .frame.scroll_v

2-4-15, Creation of Scale bar to change the variable value
Scale bar to change a value of variable can be created using scale command of Tk.

scale .scale —label COUNT —from 0 —to 100 —length 100 ¥

variable var —orient horizontal —tickinterval 50 —showvalue true
pack .scale

Ml [de belp

R -
{canple) 1 ¥ scale .scale -fabel COUNT ~from O <to 100 - lenath 100 ¥

* -variable var -orient horizontal -Lickirderval 50 -showaalus true

JEcale

(zamole) 2 £ pad =l

(zamele) 3 X et var

1]

(zamele) 4 I =zt var

|0
{zample) B 3

When the value pointed on the scale bar is

changed, it is reflected in a value of variable

val, which is specified in -variable option.

Figure: Creation of scale bar

You can specify the range of the value on the scale bar using -from and -to options of scale
command. The indicated value on the scale bar is reflected in variable val, which is
specified in -variable option. Additionally, you can specify the interval of indicator scale to
be displayed on the scale bar in —tickinterval option, and also a display value, which is
indicated on the scale bar in —showvale option.

2-4-16, Creation of Canvas
Canvas with lines, texts and polygons can be created using canvas command of Tk.

canvas .canvas ;#Define a canvas you create
.canvas create oval 10 10 40 40 —fill red —width 3
.canvas create rectangle 50 50 70 70 —fill blue —width 5

pack .canvas ;#Allocate the canvas

W G i

Ele [l el

£l &
H

(zameled | X carwas .canvas
- CANWAS
(sameled 2 ¥ .carvas create oval 10 10 40 40 -Fill red -midih 3

e

(zamolel 3 ras create rectangle 50 50 70 70 <fill blue -width 5

(zamole) 4
(zamplel 5

e

O

4 |

Figure: Creation of canvas

2-4-17, Creation of Option menu
Option menu can be created using tk_optionMenu command of Tk.

tk_optionMenu .option var start stop end

pack .option

W Camin b
Ele il e

(HEWZ) 1 X th_ cotiordlera (oot ion var start stop end
Lot o, mer

(HEW3) 2 % pack ,oolior

(HEW3) 3 % set Gaar

start

(HEW3) 4 % ==f var

=t op

(HEWE) 5 % ==t var

rid

(HEWZ) 6 & |

When the menu is changed,
it is reflected in variable val.

Figure: Creation of option menu

In the above sample program, variable val and the option menus (“start”, “stop”, “end”) are
specified using tk_option command. Variable val reflects a specified menu among the

three menus.

2-4-18, Creation of Pop-up menu

Pop-up menu can be created using tk_popup command of Tk.

menu .popupmenu —tearoff no

#The pop-up menu can be deleted from the window by selecting “yes” for
#—tearoff option

.popupmenu add command —label “open” —accelerator “Ctrl+O”
.popupmenu add command —label “save” —accelerator “Ctrl+S”
.popupmenu add command —label “end” —accelerator “Ctrl+E” —command exit

#A submenu for when “end” is selected can be specified in —command option
bind . <3> { tk_popup .popupmenu %X %Y }

. Copenin

Ede Edl Hele

¥ .
(samoled 1 & mer .popupseny -tearoff ro

 PORLEErL

(zmple) 7 § _pocpner add commard - label "ocen” ~accelerator Ciel+0”

{cample) 3 E .popuemers add commard -label “ocen” -accelerator Cirl+d”

(zample) 4 % . posener add commard -label "ed” -accsleralor Tlel=y™ Y

» =commard @il

(sample) 5 X bind . <3¢ [t

pope | poeuemery K6 KY |

(zarele) 6 %)

open Citr+0
open Cirl+s
end Giri+i

4|

Figure: Creation of pop-up menu

In the above sample program, the created “.popupmenu” is defined as a pop-up menu
using tk_popup command. You can specify the location of the pop-up window to be
opened on the window by setting the value for %X and %Y in the following description.

bind . <3> { tk_popup .popupmenu %X %Y }
Therefore the pop-up menu can be opened anywhere on the window.

2-4-19, Creation of Simple dialog
Simple dialog can be created using tk_dialog command of Tk.

tk_dialog .dialog Dialog “This is Dialog!” {} O start stop end

B Edn Help

o

¥
(HEWS) 1 % th_dialog .dialog Dialeg “This is Dialog!™ {] O start

Dialoe

A return value depends on the clicked button

on the dialog. This iz Dialog!

start=0,stop=1,end =2

ﬂup| end|

When “stop” is clicked, it returns 1.

Figure: Creation of dialog

You can specify a windows title and a message on a dialog box using tk_dialog command. In
the above sample dialog, the window is titled “Dialog”, and the message is specified as “This
is Dialog!”.

You can also specify names of buttons on the dialog box and their initial values. In the
above sample dialog, the buttons are named “start”, “stop” and “end”, and their initial values
are specified as “0”, “1” and “2” each.

One of the return values “0”, “1” or “2” is returned as the result by clicking one of the buttons.

2-4-20, Creation of Message dialog
Message dialog can be created using tk_messageBox command of Tk.

tk_messageBox —type OK —title message —icon info —-message message

(samole) 1 ¥ thomessamebon -tyee ok -title messase -icon info -messase messase

B meszage EJ

L]
\!.’) IMEesE3Ee

The message dialog promotes users

confirmation toward the message.

Fle [de leip *
i

{canple) 1 E th_mescagefion ~type ok ~title mescage -icon info -mescage meccage

(zamole) 2 2]

EEX

4l

Figure: Creation of message dialog

You can create interactive message dialog box by using tk_messageBox command. You
can specify a type of the button in —type option, a title of the button in —title option, and also a

message to be displayed on the dialog in —message option.

2-4-21, Creation of Exist File Open dialog
Dialog to open existing files can be created using tk_getOpenFile command of Tk.

set types {
{“text” { .txt }}

}

set file [tk_getOpenFile —filetypes $types —title open]

Fi= it Helg

H

{admin} 1 % s=et &
> { "Em=E"™ {.Ext)
L]

{ "text™ {.b&b})

[admin) ¥ % sel F
et e st sampl
{admin 3 % set §
Ci/REndEestsanpl
{admin} & %

wpes |
1

Elp [th gebhpsnFile -Flletypes SEypes —-title open]
efDocumsnt ERT . ERT

e

efDocument bkt . Ext

+ B of -

__fpen

o |

location of the file is reflected in file variable.

When an existing file is selected and opened, the storage

You can specify a file type in —filetypes option, and a window title in —title option, when

creating a file open dialog using Tk_getOpenFile command.

variable is selected as the fi

Figure: Creation of file open dialog

le type in —filetypes option.

type for type variable by set type{ ...} command in advance.

In addition, a storage location of the selected file is returned as the result of Tk_getOpenFile

command.

In the above program, type

text [*.txt] is specified as the file

In the above program, the result is stored in file variable using set command.

2-4-22, Creation of New File Open dialog
Dialog to open and save new file can be created using tk_getSaveFile command of Tk.

set types {
{“text” { .txt}}

}

set file [tk_getSaveFile —filetypes $types —title save]

Pl Edt Help
0 -
{admin) 1 % set types

¥ " EeRt” {.tRL} }
>}

{"text™ {.txt} }

{admin) 2 % set file [tk getSaverile -filetypes Stuwpes -title save]
Cr/Hewd/ftestsamples/Document tut txt

(admin) 3 % set File

oz fHewd3 et sample /Document Bk _Ext

{anming & % |
EP ey — - =&
3 __:llul:-a:.h
M Flaceni
Doomen
(@
Lasbizm
nr-'p-:m
49
b Conpula
b
L . E i -'.- i
rﬂvp. e Ll
Levw i pa Tomd |

When a new file is selected and saved, a storage location of

the saved file is reflected in file variable.

Figure: Creation of file save dialog

You can specify a file type in —filetypes option, and a window title in —title option, when

creating a file open dialog using Tk_getSaveFile command.

Additionally, a storage location of the selected file is returned as the result of

Tk_getSaveFile command.

2-4-23, Allocation of widget
In the previous chapters, the allocation method of widget is described only by using pack

command. However, you can also use place command and grid command to allocate widget

in addition to pack command. The allocation method varies by command, so you can

choose the most appropriate command depending on GUI window you want to create.

Example of widget allocation

Command

Example of use of command

Allocation example

pack

Lay out widget by direction.

The direction can be set in -side [left, right, top, bottom] option, etc..

pack [button .test —text test —.command { go }]

pack [button .test —text test —.command { go }]

—side left

place

Lay out widget by coordinates.

The coordinates can be specified in —x and —y options, and the size can be

specified in —width option.

button .test —text test —command { go }

place .test —x 10 —y 10

test

button .test —text test —command { go }
place .test —x 50 —y 50 —width 100

test

grid

Lay out widget as grid.

The grid location can be specified in —column and —row options, and the

margin can be specified in —padx and —pady options.

button .test —text test —command { go }

grid .test

button .test —text test —command { go }

grid .test —column 3 —row 4 -padx 3 —pady 5

test

Options used in the above list are only some of examples among many. You can use more

options. Please refer to Tcl/Tk reference manual, etc., for further information.

3, Tcl/Tk programming in HEW

Tcl/Tk programming in HEW is possible.
Tcl/Tk create development environments, which suit the needs of users by allocating HEW
commands to GUI window (buttons, etc.) created in Tcl/Tk.
Therefore, the allocated commands on GUI window are issued to HEW, and HEW
simulation can be controlled.
The following environments can be created by Tcl/Tk.

Issue of commands from Tcl/Tk to HEW.

Tcl/Tk issue commands to HEW, and control simulation of HEW.

Issue of commands from Tcl/Tk to HEW, and accepting data as the results.

Tcl/Tk issue commands to HEW, and accepts the results and display them.

Tcl/Tk environment HEW environment

BB g Bt e B B S S
el fE e imn: =" -

Issue of commands |

LT

Issue of commands

4— T RE (e, bRl

Accepting the results

Figure: Linkage between HEW and Tcl/Tk

3-1, HEW commands available in Tcl/Tk

HEW offers a lot of commands, which is available in command line of HEW. You can use

some of the commands to create a development environment matched to your needs.

A list of HEW commands, which are available in Tcl/Tk can be referred by inputting lis

command on Console window of Tcl/Tk. Please check the meanings of the commands

before using.

Pl [de Heip

il

(HEWI) 1 % |is
i

| (£
v
tr
=]
ed
Fr
|

Lt

v

=

for

ol kel mw

er

bd
simulator_trace_clear
simulat ar_mode
&la

e ol sl
Joreak_cause

Trace_Filler

Trace Stat izl ic

Trace_Save

Traca

prof i le_save

profile_dizelay

profile

cowerage_|oad

O e

coverase diselay

COMErARS, Fanges

CONErARE

p_clock_rate

liner

el _che law

break_resister

break_data

similator_trace_clear

&=m et mode
slalux gimul ator_stat

break_cause -

Figure: A list of HEW commands on Console window

3-2, Creation of Control Commands to HEW Simulator
GUI window to control HEW simulator can be created in Tcl/Tk.

~ sample program ~

pack [label .text —text Simulation]

pack [button .start —text start —.command { go }
pack [button .reset —text reset —command { reset }

pack [button .stop —text stop —command { halt }

In the above sample program, the simplest commands for execution of HEW simulation are

allocated on the buttons on GUI window of Tcl/Tk, an environment for controling HEW

simulator is created.

i wmmple - Hatpmi et s w | i Wk phy — fommgie 1]

L =
T J— =1 .
e -
A s e
Tocr

il

o] Bl Edn Helo

.ﬂm F a
.-‘.'i...::., (eampla) 1% pack [label besd -test Simalation]) .

[} sviieite (e le) 2 % pack [button .starl -lext starl -comasd [20]]
R (gaple) 3 % pack [b r . resel —text resel -conmard [reset]]

ﬂ:',' (garple) 4 5 pu [button .stop -text stop —comsmnd [halt]]

A et (zample) 5 &

A Command is issued by clicking Simulation

1= one of the buttons “Start”, “reset”

or “stop”.

Figure: Example of execution

In the above sample program, GUI window of Tcl/Tk is created by using lavel command and
button commands of Tcl/Tk. You can specify the message on the window “Simulation”
using label command. You can also specify buttons to be allocated on the window , and
commands to be assigned to the buttons by specifying HEW commands in the curly

n oo

brackets of —.command option. Therefore, one of the commands “start”, "reset” or “halt” is
issued depending on clicked button on GUI window. In the above sample program, pack

command is used to allocate the buttons.

3-3, Creation of Command to Input Quasi Interrupt to HEW

Simulator
GUI window to input interrupt signals to HEW can be created in Tcl/Tk.

~ sample program ~
pack [label .text —text Interrupt]
pack [button .irg0 —text “IRQO Trigger” ¥

—command { break_cycle 1 all interrupt H'04 11 }
pack [button .irgl —text “IRQ1 Trigger” ¥

—command { break_cycle 1 all interrupt H'05 11 }
pack [button .irg2 —text “IRQ2 Trigger” ¥

—command { break_cycle 1 all interrupt H'06 11 }
pack [button .irg3 —text “IRQ3 Trigger” ¥

—command { break_cycle 1 all interrupt H'07 11 }

5 it~ e ot faens: [l Wil — bt |
U 8¢ s Bumd Qpues G (o Bessr ol Seds fee -
pg-2=§. | LR - G = S = AEE: "ENE N N
| : @ T]] Am
B @ T WBEBF
HFs&~ B EE @B BRE AN ER DS

L =
i . 11 =
I J— &
A s e
i) et
A

B Eh G b -
4 =0 x .
i (eawple) 1% pack [label text -tewt Internet]
o it wod (cample) 2 X pack [budton Lirgd <text "IRD0 Trigser™ ¥
_-f.::::' r ~commard | break_cwcle 1 all interruet W04 111 1
B i {sample} 3 ¥ pacl ton ,iral ~text “IRI Trigger™ ¥
g » ~command | break elall interret HO5 11 1 1
(zamele) 4 ¥ pack [butten .ira? <text TIRR Trigser™ ¥
* ~commard | break_cvcle 1 all interruet H'OB 11]]

(eample) 5 X pack [Bidten L irgd ~tet TIRO3 Tr:ear;_ ¥

» =comeand | bBreak_swela 1 all internst HOT 11]]
Hlearele) B ¥ pack [ter ,irgd ~text TIR0E Trigeer™ ¥
> =comrard | broa I all internet H02 11 1 1
(emple) 7 ¥ pack [b 1 L irB =taxt TIRDE Trigser ¥
» —comeard | brese_cvcle 1oall intermet HO3 11] 3
(gwrple) & %
m L O]
T AT
ran [nterrupt
An interrupt generates and jumps to JUREID Trieer|
. L. RO Trigger =
interrupt vector by clicking one of the — 2
IRGZ Trigger
buttons. —_—
IRG3 Trigger
IRE4 Trigger
IRGS Trigger
—_—

Figure: Example of execution

In the sample program on the previous page, quasi interrupt function, which is prepared in
HEW is used. By assigning break cycle command, which generates a quasi interrupt to
the buttons on the GUI window, it is possible generating interrupts anywhere at an execution
of simulation.

BREAK commands are prepared in HEW to generate quasi interrupt.

List of BREAK commands

Commands Example of how commands are used

break_access | break_access <start_addr> [< end_addr>] [<xmode>]

interrupt <interrupt_typel> <interrupt_type2> [<priority>]

break_cycle | break cycle <cycle> [<count>]

interrupt <interrupt_typel> <interrupt_type2> [<priority>]

break _data | break data <addr> <data> [<size>] [<option>]

interrupt <interrupt_typel> <interrupt_type2> [<priority>]

break_register | break register <register> [<data> <size>] [<option>]

interrupt <interrupt_typel> <interrupt_type2> [<priority>]

break_point | break_point <addr> [<count>]

interrupt <interrupt_typel> <interrupt_type2> [<priority>]

These commands must be assigned to buttons before a simulation.

In the sample program on the previous page, break_cycle 1 all ...command is assigned on
the buttons. (SH1 is selected as CPU) Therefore, if a button is clicked in the middle of a

simulation, a quasi interrupt generates 1 cycle later from the time when the button is clicked.

3-4, Creation of Environment to Control HEW simulation
One integrated environment is created by creating a script file, which is constructed by the

control commands to HEW simulation.

~ sample program ~

#!/bin/sh

the next line restarts using wish¥
exec tclsh "$0" "$@"

catch {destroy .top}

HHHH R R R
Ht

CREATING WIDGETS Window

The false interruption command of HEW is described into the bold letter portion of each
button.

HHHH R R R R
Ht

toplevel .top

Definition of a new

top level window

wm title .top "HEW Simulation"
wm geometry .top 230x450+216+109; update
wm maxsize .top 1028 753
wm minsize .top 104 1
HHHH R i3
o Definition of buttons
SETTING COMMAND Button
The arrangement part of each button is specified.
HHHH A R R R
HitHH#?
button .top.go -command {break_clear;go} -height 0 -pady 0 ¥

-text {Simulation Go} -width 15

button .top.rego -command {break_clear;reset;go} -height 0 -pady 0 ¥
-text {Reset Simulation} -width 15

button .top.reset -command {reset} -height 0 -pady 0 ¥
-text {Reset} -width 15

button .top.irg2 -command {break_cycle 1 all Interrupt H'06 11} -pady 0 ¥

-text {Trigger IRQ2} -width 15
button .top.irg3 -command {break_cycle 1 all Interrupt H'07 11} -pady 0 ¥

-text {Trigger IRQ3} -width 15
button .top.irg4 -command {break_cycle 1 all Interrupt H'08 11} -pady 0 ¥

-text {Trigger IRQ4} -width 15
button .top.irg5 -command {break_cycle 1 all Interrupt H'09 11} -pady 0 ¥

-text {Trigger IRQ5} -width 15
button .top.exit -command exit ¥

-text {Quit} -width 15
HHHHBHHHH R R R R R R R R R R
HHHH Allocation of buttons
SETTING GEOMETRY Button
HHHHBHHHH R R R R R R R R R R
HHHHH

place .top.go -in .top -x 55 -y 15 -anchor nw -bordermode inside

place .top.rego -in .top -x 55 -y 50 -anchor nw -bordermode inside
place .top.reset -in .top -x 55 -y 85 -anchor nw -bordermode inside
place .top.irg0 -in .top -x 55 -y 140 -anchor nw -bordermode inside
place .top.irgl -in .top -x 55 -y 175 -anchor nw -bordermode inside
place .top.irg2 -in .top -x 55 -y 210 -anchor nw -bordermode inside
place .top.irg3 -in .top -x 55 -y 245 -anchor nw -bordermode inside
place .top.irg4 -in .top -x 55 -y 280 -anchor nw -bordermode inside
place .top.irgs -in .top -x 55 -y 315 -anchor nw -bordermode inside

place .top.exit -in .top -x 55 -y 400 -anchor nw -bordermode inside

If the quasi interrupts from IRQO to IRQ5 are generated using the quasi interrupt function in
HEW simulator, setups of the break commands remain in the simulator of HEW. In order to
execute the simulation again, the break commands must be turned off.

In the above sample program, the following commands are assigned on the buttons on GUI

window in addition to the break commands.

button .top.go -command {break_clear;go} -height 0 -pady 0 ¥
-text {Simulation Go} -width 15

button .top.rego -command {break_clear;reset;go} -height 0 -pady 0 ¥
-text {Reset Simulation} -width 15

These commands can be assigned by listing them in curly brackets “{}"of -command option
separating each command by a semicolon “;”. When a button is clicked, the listed

commands are issued to HEW starting from the left.

In the sample program on the previous page, break clear command is issued to HEW to
turn off break_cycle command before an execution of “go” and “reset go” commands.

Therefore, the simulation can be executed again.

'i'_:-_i'-nrli-lf Mighi- perior mence Lebadded Workshog - Inigec] ks
> [[da fe= Progct Qptons [kl [stay Mesory Jook fedoes el - "
(hf—H =N | 6 B - K - Bl = R EDE | == RN | iR 1]
L'|J| __l s O (] [owg Bl T Y .

B B-MmERti |daiiAaniRee
EMHes~s ERAE EPAE BRE HRE A DG
Zx
= oy secE #pragma section INPRG EI'
= I vample E| qal code .|
2 C source Vi ” : il | ghent TR
[f) shaete Sx02009408 ‘-.I..J-IHT_.IFI.‘?.II_E.II&' [void | o 1]
&) miprgc RV
1] meeenrae
&) namplac B Megal 5k
ﬁ E;" Bxna000404 woid INT .|h::;|.1| shod [woid [~ sleep (]
) D e, Ll
]]
= o Dmpencen: e B Rese
() sbrih
M) machpsth “B | AdHr o
| o 3 CPU Adkiress o Fomimt
Ex09000408 woid INT__CPL) Addrais (woid [sleep [1 ") J
i | ® LiE) Trigaer IB00 a

g | Ze s =
Moo _Tiggeinat | =
[oy Tiggwe 102

T IR0
TET B} Doty f P P, Woriom Gonind ‘ Yo il

Slrype [ocace | comdicien |asaem o
= BCY Esakle Eyele-BiL Entereupt (4701) Trpge DS
i »

il Eaeus bvewt 4
Fuent =]
. . . Oui
If Trigger IRQO is clicked, break_cycle 1 command

is issued in the event point of HEW, and a quasi
interrupt is generated, then jumps to a interrupt

vector.

Figure: Example of execution

3-5, Creation of Environment for Input Control to HEW

Simulation 1

An environment for input control to HEW simulator at execution of HEW simulation.

The control environment accepts external input.

~ Sample program ~
#1/bin/sh

Initial setting of an address
set addr ff800030
Initial setting of data

setdata O

The command for an address setup

An address value is stored in Variable addr.
label .|_addr —text ADDRESS

place .|_addr —x 10 —y 10

entry .addr —textvariable addr

place .addr —x 70 —y 10

The command for an data setup.

A data value is stored in Variable data
label .|_data —text DATA

place .|_data —x 10 -y 50

entry .data —textvariable data

place .data —x 70 —y 50

The HEW command is set as a button.

A push on a button sets data to arbitrary addresses.

Set initial values for variable

addr and data

Create an entry box for address

input

Specify the coordinates of Label
and entry using place command

and allocate them

Create an entry box for data

input

button .set -command {memory_fill $addr $addr $data} -text {set data}

place .set —x 60 —y 100

Set a specified address and a data value
using memory_fill command of HEW.
Specify values for variable addr and data by

entry command.

In the sample program on the previous page, one input control environment is created. Any
address and data can be stored in HEW by using an entry box. When an address and
data are entered on GUI window in hexadecimal and “set data” button is clicked, the data is
stored in the specified address of the memory space of HEW.

Data can be stored using memory_fill command. Memory_fill command, which is issued to

HEW can be selected in -command option of button command. Memory_fill command

passes the address and the data values to HEW by referring the variable addr and data
specified in entry command ("$” is used when the data is referred).

) wample ~ High—petlosmance Embedded Worbvhep - [sample,c] ==
e File LSt Viesw [Propct Options Pkl Dstir Menory Tooks Window [l = X
D Hg LR =~ T W S~ = B - TR R I L
|-T| [+ el 0 R [;l | S meionGH:1 =||lA e
= | b & F 4 |lleflELidinl & P C
HRERess s BEOE BB S BE REEB B H

iF) —
e —— s - =
57 wample " "
28 G s filn
|&] dbeste
(&) s
|A&] reswiege i :hain !
£ ey r c 70032 : |
_1] elwks - ol
; L] wcrttdc ™ Thiz file is generaled by Flenesas Project Gensralor [Ver, 1.0
= 3 Dowmlosd mod & : r:
L] mample by J !
[stwicin
.!] elackicth
L] wecih
By entering an address and data and clicking “set data” button, |
4 ")
= '5 f'_:['l ~ || the entered data is stored in the memory space of HEW. —
] it] =

T —— —
o =1E3

ADDRESS | 300030

DATA 0
i
zet data ——

[T ot b, e Trdlim Tien J_Wernon Connd
Feady

Figure: Example of execution

3-6, Creation of Environment for Input Control to HEW

Simulation 2
An environment to set a value in memory space or registers of HEW can be created in

Tel/Tk.

~ sample program ~

wm geometry . 350x280

Size change of an existing window

DATA

scale .scale -label DATA -from 0 -to 10000 -length 300 -variable var -orient horizontal

-tickinterval 2500 -showvalue true
place .scale -x 0 -y 0 Definition of a scale bar for data input

ADDRESS
label .|_addr -text ADDRESS
place .|_addr -x 10 -y 100

Definition of an entry box for address input

entry .addr -textvariable addr
place .addr -x 70 -y 100

DATA size
label .|_size -text SIZE

Definition of a radio button for data input

place .|_size -x 10 -y 140

set select size8

set select_size "BYTE"

radiobutton .size8 -text 8 -variable select -value size8
radiobutton .sizel6 -text 16 -variable select -value size16

radiobutton .size32 -text 32 -variable select -value size32

place .size8 -x 60 -y 140
place .sizel6 -x 100 -y 140
place .size32 -x 140 -y 140

setaddr O

setaddr_s 3 L .
- Specification of initial values for each variable

set addr_e 3

setvarlé O
setvarlé tmp O

Data modify proc

proc set_data { }{
global var Definition of a procedure for processing data,

global var16 which is stored in HEW by specifying the

data size.

global varl6_tmp

global select
set varl6_tmp [format %08x $var]

if { $select == "size8" } {

set varl6 [string range $varl6_tmp 6 7]
} elseif { $select == "sizel6" } {

set varl6 [string range $varl6_tmp 4 7]
} else {

set varl6 $varl6_tmp

Data size proc

proc set_size {}{ Definition of procedure for generating an

global select_size argument (a data size) of a command issued

global select to HEW by specifying the data size.

if { $select == "size8" } {

set select_size "BYTE"
} elseif { $select == "sizel16" } {

set select_size "WORD"
} else {

set select_size "LONG"

Start address proc

proc set_addr s{}{
global select
global addr
global addr_s

if { $select == "size8" } {

Definition of a procedure for generating an
argument (a start address) of a command

issued to HEW by specifying the data size.

set addr_s [expr $addr + 3]

} elseif { $select == "size16" } {

set addr_s [expr $addr + 2]

} else {

set addr_s [expr $addr + 0]

End address proc

proc set_addr_e {}{
global select
global addr
global addr_e

if { $select == "size8" } {

Definition of procedure for generating an
argument (an ending address) of a command

issued to HEW by specifying the data size.

set addr_e [expr $addr + 3]
} elseif { $select == "size16" } {

set addr_e [expr $addr + 3]

} else {

set addr_e [expr $addr + 3]

button
label .|_data -text "DATA SET"
place .|_data -x 10 -y 180

Definition of “set” button
Procedure call command and memory_fill

command are assigned to the button

button .set -text set -command { set_size;set_addr_s;set_addr_e;set_data;memory_fill
$addr_s $addr_e $varl6 $select_size }

place .set -x 90 -y 180

sample - High—perins mamee Embedided Workshop - [senple] |[x
<: File ESt View Progpet Options Build [ebug Memory Took Window Help = %
DFdod B TR|[eE R e BN E I TT EHMNE | N | OH A w (=
T o e ok =] || simGmssionsH-1 =l e @
HiiB-MaEgst4d FHEHENAPRERES
EFesrs 5 FEE|FEEBE BEEEW EDHE
=
= ;I l_ﬂmh - * —_—
'3 C sowece 1 " FLE ample. .
3] dctc b Dot “_M_'n B et
18] i B S b TR T
\8] resetpng * DESCRIFTION iMain Program
 CRUTYPE 1SHTHI2
18] sbrke
[&] weentile -
= 53 Dewmboed m /a
1] mampiee r
4 Drveraiece 0
[N sbokh |
(W] stacksc I—I—I |
L] x 1] 2500 5000 7500 10000
I i of
" gr _Im-r rY) * mamplac I)
ADRRESS ID
L —— A
;flu:lln'-l.'lnl
[enrected g 15 32 -
A% T Sdd) Debug £ Tirdin Mea B Werson Coniol [
-ﬂ Addvane 0 41 47 | *3 | 44 $L | %k | %7 | 4 ~
FRobibiiil U o Lal oo oo L1 oo oy o =
wOO000010 G el Lal oo oo oo oo [o o
eOODODOE0 00 B9 o0 o0 00 00 00 o0 o of
wOBOOO0I0 G0 3 S OO0 G0 G0 90 4% &3 o
eOLOOL04D 00 (=] [=1] oo on an an o (] o
eOLOOONED 00 (=] [=1] oo on an an [1e] (] o
whOOOONED 00 (=] (1] oo on an an oo a0 [=
wDBOOOOTH 0 [--] (-] an nn nn an an (1] [--] [:1:] i
Floads) \ Fewbei (10780 T
Fluample - High—petlus manes Embedded Workshop - [sangphe o] .)
< il St Viw Pomet Qolorm Puill [ebug Memoy Jool Wrdow Heb Specification of a data value A
OFdo BTl B =is EUE o W [[R i B T 1 w (=
T Do e ok = | | [Simassnst-1 R
HiBMast i |[FRHEMPHRERE
HHAesrs~ B RAE ¥HOBI BB
= -]
T 3] DT]
- i sampla = 4EEZ2 "l
' & source 13 FLE || |
ﬁ :::: ™ DATE 1 0 2500 5000 7500 10000 =l
(B rmsetpre DESCRIFT
i TP TYPE
|&] sbrke ADDRESS ID
[&] weentile PR
L 23 Dovwikad m .. Thiz flie = g
L] samplez r SIZE @8 1 32
{24 Brpendonci - -
[N sbokh |
[N sackast DATASET S_Etl o
Mreeh ol | Ll s
i 1 Ll |
", -|~Il_ T '|' % mamplc |]
L —— A
[Chsiww: et
;f-umbod a
AT 5T eidd b Debug £ Tidin Fles A Version Conted [
-ﬂ Addvane 0 41 47 | *3 | 44 L | #& | %7 | #m ¥ 4A | ¥R |%c |#p | AE | ¥F Uslus ~
FRuELLLLLL L o0 oo oo [==] Lol oo oo oo oo [l L}
TO0OD001I0) o0 o (==} Lol oo oo oo oo [
sOOOOO0Z0 0 &3 S0 O : G oD 00 g0 00 00 09
wOOOO00I0 Gd o0
wOLOOOO4N 00 (=]
=omonen oo 2| H'36 s stored in the lower 8 bit, if you choose SIZE8 and
whBOOLOTH 30 [--])) i
semmmmnEn ittt write 4662 in address 0 by BYTE.
Ready y H I

Figure: Example of execution

The value must be specified in decimal (analog value) in the sample program. When a
“set” button is clicked after entering an address value and specifying data size, the data is

stored in the specified address.

H’36 is stored in the lower 8 bit, if you choose SIZE8 and write 4662 in address 0 by BYTE.
H’1236 is stored in the lower 16 bit, if you choose SIZE16 and write 4662 in address O by
WORD.H’00001236 is stored in the 32bit, if you choose SIZE32 and write 4662 in address 0
by LONG.

The sample program is configured with setting of data, address and data size, and “set”

button to set these values to HEW.

In addition, the procedures to process arguments of the data, the start address and the
ending address are defined using proc command. By using these procedures in
—command option of button command, arguments required for setting the data to HEW are

generated at the time of clicking “set” button.

All procedures are configured simply, and they do not treat parameter passing.
The procedures can be referred by defining globally the variables used in Tcl/Tk

programming.

3-7, Creation of Environment for Output Control from HEW

simulation 1
An environment for input control to HEW simulation can be created by creating a simple

script file with commands to HEW. It is because of a one-way command issue from Tcl/Tk
to HEW only. However, under an environment for output control from HEW simulation,
Tcl/Tk cannot accept data directly as the result of an issued command to HEW. The result

must be passed to Tcl/Tk through variable.

HEW environment

Tcl/Tk environment S
L Y an v - x

. Issue command to HEW

Tcl/Tk cannot accept

the result directly

Extract data from a

file, and use it in Tcl/Tk -
tmp File

Figure: Output control from HEW simulator

A file” tmp.file” to temporarily store the data (the result of the issued command) must be

created in advance. Tcl/Tk accepts the data by referring to information stored in the file.

3-8, Creation of Environment for Output Control from HEW
simulation 2

This chapter describes the procedures for creating an environment for output control from

HEW, which accepts the result of an issued command directly from HEW simulator at an

execution of a simulation. Under this environment, Tcl/Tk can accept value of memory and

register and output them.

~ Sample program ~

set content "Display Address "

destroy .b
File open check

button .b -text "Update" -command {

For "log.txt" checking in TEMP directory

global env

set dir $env(TEMP)

set dataFile [open $dir/log.txt {RDWR TRUNC CREAT}]
close $dataFile

Commandline command to read address 0x00000000
using HEW CommandLine command
mdoO 1

md command to an address to refer to here is described.

Read value as Console text is log into "log.txt"
in directory pointed by env. variable TMP

set dataFile [open $::env(TEMP)/log.txt RDWR]
setb ™

seek $dataFile O start

set formatted [format "%08X" 0]
while {$b|= $f0rmatted} { Retrieve the data from tmp file

set e [gets $dataFile]

set d [split $e "]

setb ™

for {set j 0} {$j< 8} {incr j} {append b [lindex $d $j]}

}

) Append command adds a string
set ar [split $e]) o
. [lindex $d $j](lindex command gets
set content [lindex $ar 2]

the jth element of d) to a string b.

close $dataFile

puts -nonewline "Content in Address 0x00000000: 0x"

puts $content

destroy .labelcontent
label .labelcontent -text $content

place .labelcontent -x 90 -y 10

Destroy command destroys the previous

result, and output the updated data.

destroy .labelcontent

label .labelcontent -text $content

place .labelcontent -x 90 -y 10

place .b -x 10 -y 10 Allocate a button

() mample ~ High—peslusmanee Embeidded Workshop - [somple e] b5 IE
o File Est Aew Propct Opfioen Build [ebug Memory ook Window Help - =%
OF o BTl Bl=s ENEI =% HEHNE| | W = E A f

T OO E |G (o =] |[SimGessicnti-1 dae B
IR Es T FHEENMARTERE

BEHFes s EHRAE HmEO O HEE&gW@ B
=

= I sampla Tl a *
3 C vowrce 10 * FLE
ﬂ Crghi " DATE Sep 05, 2003
|8] resetpng * DESCRIFTION Main Pragram

2] ETEEE I CH ; g =

2] sbrke

|Z] vectthile - o o
=3 :"‘":::h": . ADDIRESS Aeb0O000N0

& oy e
gl Unedte dota| Diclay s
(W] stacksc -

o L] rauh. l:. 1] LI_
7 -.5'! !‘]T al ; = Tamplac O LT

[+1]

Al bl -~
it i
Manrectad
w

[T T B Debog T Tz, Versom Conied]

-*JJaqnu" #0 +1 41 43 |44 | 4K | #E | 47 -
poopopoon S o3 oo oo oo oo oo o

cOODODOI0 B3 GO ©D o0 0D 00 60 00 © -
cOODODOZ0 00 G0 ©D 0D 00 00 00 00 o0 80 O0 00 00 00 00 B0 .ieeeeceeeeeees
eOODOD0R0 G0 G2 &0 0D 00 00 00 G0 @ &R @D 00 00 00 00 B iieerereeeesees
sOODODOAD OO GO ©3 OD 00 00 00 00 O0F ©3 O0 00 0D 00 00 00
sOODODOGD 00 GO ©3 O0 00 00 00 00 OF ©3 OO 00 00 00 00 00
wOODOOOED 00 GO ©3 OO0 00 00 00 00 0% ©3 o0 o0 00 00 00 00
«OOOODOTO 30 &3 &3 6h 00 00 A0 03 9% S5 86 OO OO 0O 00 0 -
LA O R S SRS) (R, .) SRR, L SR, S . o SO USROS L SRS
Heady Feafwidy 1058 H IMs

Figure: Start-up display

|f.llr B ek

-

X

I['llﬂﬂl](:[il'- [E1]
Cortent in Address OuDD000000: Dxd)
(test) 1 %]

ADDRESS Du000000

Upchatn data| 000

When “Update data” button is clicked
without changing the value, “00” is output.

D mample - High—periosmanes Embeidnd Workshop - [sanplo o] b 'E‘
“ Bl ESt Vew Progect Opdiorn Buid [ebor Memory Tool ‘Window Melb = %
DFdd L S - = R - B = R ENEL T" HEHNE| |®N W H A [

T @ E | ok | | [simSesuonsH-1 Aae EE

e Es T |HEESENRTERE

Bress mna= #ee s o T

o= Lurerd Wahim [|
= I{ sampla a | "l
Frets e ol |
&) dwcic FE Y
5 amee FCATE =
18] resatpre * DESCRIFTIC
TR TYR SHTa2
2] ks
= &3 El]aw;-bb’l I Thigfie k= generated by Fenesas Project Gereratnr (Ver 1.0
Li=m| Set a value 5 5
!] glwkbh |
(W] stacksc |
M vecth T ol
_l | rac L] | Fryy H ST
Er. [@r. et A e s Eie Ede el
B orrected 4 H -
Vool 0000000 00
bocmactaa Contert in Address DeD0000000: 0x00
i FF
AT F Nermm Tk Joortert in Address 000000000: 0xFF
(test) 1 X|
-ﬂ Addvane &0 7 | *z | 44 $L | %k | %7 | 4
OOOOOD00 ¥F 00 po 00 00 oo o ADDNESS 00000000
0000010) o Lal oo o
sOOOOODZ0 0 &3 S0 0D D0 00 00 o0 00 Ugstale dats| FF
sOBOOO0I0 G0 &3 S0 SO DO G0 40 4% G0 -
wOLOOOO4N 00 (=] [=1] oo on an an o (]
EOLOOONED 00 (=] [=1] oo nn an an [1e] (]
whOOOONED 00 (=] (1] oo nn an an oo a0
whBOOLOTH 30 [--] (-] an nn nn an an (1] .
nonnnnnnEn A0 n_ an_ mn_nn_ nn nn o nn | When *“Update data” button is
Heady
clicked, the data is updated in
~ log.txt file ~ according to the memory.

00000000 FF | |

Content in Address 0x00000000: 0x
FF

Figure: Example of execution

HEW Tcl/Tk Application Note

Publication Date: Nov. 5, 2003 Rev.1.00
:) Sales Strategic Planning Div.
Published by: Renesas Technology Corp.
Edited by: Microcomputer Tool Development Department

Renesas Solutions Corp.

© 2003. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

HEW Tcl/Tk
Application Note

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ10J1113-0100

