

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REG05B0022-0100/Rev.1.00 December 2008 Page 1 of 107

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

Introduction
All Renesas microcontrollers featuring Flash memory have the ability to self program their Flash
memory. This opens up the opportunity to explore new applications and enhance existing ones.
For example firmware can be updated in the field via a modem, Internet, wireless etc or motor
characterisation data can be changed throughout its lifetime.
At the time of writing Renesas are manufacturing Flash microcontrollers with a 0.18μm process
complementing the 0.6μm and 0.35μm based devices. The objective of this apps note is to give an
overview of programming and erasing 0.6μm, 0.35μm and 0.18μm based 16-bit and 32-bit
microcontrollers and to provide example routines for doing this written in ‘C’.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 2 of 107

Contents

FLASH MEMORY PROGRAMMING MODES.. 3

0.6μM ALGORITHMS ... 4

0.6μM PROGRAM/PROGRAM-VERIFY... 5

0.6μM ERASE/ERASE-VERIFY.. 8

0.35μM ALGORITHMS ... 12

0.35μM PROGRAM/PROGRAM-VERIFY... 12

0.35μM ERASE/ERASE-VERIFY.. 18
*IMPORTANT NOTE RELATING TO 0.35�M DEVICES ... 20

0.18μM ALGORITHMS ... 21

0.18μM PROGRAMMING ... 21

0.18μM ERASING .. 27

SUMMARY .. 29

APPENDIX A – RENESAS 0.6μM FLASH PROGRAM/PROGRAM VERIFY & ERASE/ERASE
VERIFY ROUTINES FOR H8S/2144F ... 30

APPENDIX B – RENESAS 0.6μM FLASH PROGRAM/PROGRAM VERIFY & ERASE/ERASE
VERIFY ROUTINES FOR SH7045F .. 41

APPENDIX C – RENESAS 0.35μM FLASH PROGRAM/PROGRAM VERIFY & ERASE/ERASE
VERIFY ROUTINES FOR H8S/2612F .. 51

APPENDIX D – RENESAS 0.35μM FLASH PROGRAM/PROGRAM VERIFY & ERASE/ERASE
VERIFY ROUTINES FOR SH7047F .. 61

APPENDIX E – RENESAS 0.35μM FLASH PROGRAM/PROGRAM VERIFY & ERASE/ERASE
VERIFY ROUTINES FOR H8/3664F MICROCONTROLLER.. 71

APPENDIX F – RENESAS 0.18μM FLASH PROGRAMING & ERASING ROUTINES
FOR H8/3069F.. 81

APPENDIX G – RENESAS 0.18μM FLASH PROGRAMING & ERASING ROUTINES
FOR SH7058F .. 94

WEBSITE AND SUPPORT ... 106

 APPLICATION NOTE

REG05B0022-0100/Rev.1.00 December 2008 Page 3 of 107

Flash Memory Programming Modes

Renesas Flash microcontrollers typically have three programming modes, PROM, boot and user.

PROM mode requires the use of an external ‘EPROM’ type programmer where the microcontroller
is placed into a socket and programmed. This method offers high programming speeds but lacks
flexibility and has limited use in the field.

Boot mode is entered by setting values on a combination of the micro’s pins and resetting the
device. The micro will then execute a ‘hidden’ program which erases the Flash memory for
security purposes, auto-bauds with a host and then allows a programming kernel to be downloaded
into the internal RAM of the micro and executed. This mode allows unprogrammed devices to have
their Flash memory programmed in-circuit and in the field. This mode is supported by PC hosted
applications such as FDT (Flash Development Toolkit) available from http://www.renesas.com It
should be noted that in this mode the Flash memory is erased and so must be completely re-
programmed each time it is used and that the SCI port used in the boot process is fixed.

The 0.18μm devices introduce an additional boot mode called ‘user boot mode’. In this mode the
device boots from an additional area of Flash, typically 8kB in size and starting from address 0,
which takes the place of the ‘normal’ user Flash memory. What differentiates user boot mode from
boot mode is that this additional area of Flash can be programmed by the user making the
implementation of a bootloader a simpler prospect. It should be noted that the user boot mode area
of Flash can only be programmed from ‘normal’ boot mode. When in user boot mode the ‘normal’
user Flash area can be erased and programmed. During the erase sequence of ‘normal’ boot mode
both the ‘normal’ user area of Flash and the user boot mode area of Flash are erased.

User mode offers the most flexible approach to in-field programming. With this mode the micro is
able to reprogram itself by copying the required routines from existing memory contents into RAM
or external memory and running from there. This method allows partial erasing and reprogramming
of the memory and is particularly suited to bootloader type scenarios. Unlike boot mode the way
data is supplied to the device is not limited to a particular SCI channel as, by its very nature, it is
user defined and so can be via a parallel interface, wireless link or across the Internet etc.

In all cases it is important to note that while the Flash memory of the micro is being erased or
programmed the Flash memory must not be accessed. This means that the erasing and
programming code must run from internal RAM or external memory and interrupts should be
disabled (unless in the case of SH the vector table is located to non-Flash memory and the VBR
changed accordingly).

It is the intention of this apps note to present 0.6μm, 0.35μm and 0.18μm programming and erasing
routines for H8/300H, H8S and SH-2 Renesas microcontroller families that can be used in user
mode applications. This apps note will not be concerned with the mechanics of getting data into the
device as this will be application specific. As previously mentioned, user mode typically runs
routines from internal RAM that have been copied from Flash memory which means that these
routines must be linked for RAM but relocated and stored in Flash. There are various methods of
achieving this storage and relocation some of which have been covered in other Renesas application
notes. Therefore, the reading of application note REG05B0021-0100 is recommended.

http://www.renesas.com/homepage.jsp�

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 4 of 107

All H8S and H8/300H code examples have been developed using HEW (High_Performance
Embedded Workshop) v1.3 and Renesas C/C++ compiler version v4.0a. The SH-2 examples have
been tested using HEW v1.3 and Renesas C/C++ compiler v6.0a.

0.6μm Algorithms
The 0.6μm Renesas microcontroller Flash memory has the following characteristics.

The Flash memory must be programmed in units of 32 bytes starting on a 32 byte boundary.
The Flash memory is split into sectors of varying sizes.
Erasing is performed on a sector by sector basis.
The erased state is all 1’s.
Programming must be performed in the erased state.
Programming data is written in 16-bit units for H8(S)(300H) and 32-bits for SH-2.
Programming and erase verification data is read in 16-bit units for H8S & H8/300H and 32-bits for
SH-2.

Although all 0.6μm Renesas Flash microcontrollers essentially have common programming and
erasing algorithms it is important that this apps note is read in conjunction with the hardware
manual for the device being programmed as there can be subtle differences.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 5 of 107

0.6μm Program/Program-Verify

Figure 1 shows the typical program/program verify algorithm for 0.6μm Renesas Flash
microcontrollers.

Start

Set SWE bit in FLMCR1

Wait 10 μsec

Store 32-byte data in reprogram area

n = 1

m = 0

Write 32-byte reprogram data to Flash
memory consecutively

Enable WDT

Set PSU1/2 bit in FLMCR1/2

Wait 50μsec

Set P1/2 bit in FLMCR1/2

Wait 200 μsec

Clear P1/2 bit in FLMCR1/2

Start of programming

End of programming

Wait 10μsec

Clear PSU1/2 bit in FLMCR1/2

Wait 10μsec

Disable WDT

Set PV1/2 bit in FLMCR1/2

n = n + 1

Start of verification

Start

Set SWE bit in FLMCR1

Wait 10 μsec

Store 32-byte data in reprogram area

n = 1

m = 0

Write 32-byte reprogram data to Flash
memory consecutively

Enable WDT

Set PSU1/2 bit in FLMCR1/2

Wait 50μsec

Set P1/2 bit in FLMCR1/2

Wait 200 μsec

Clear P1/2 bit in FLMCR1/2

Start of programming

End of programming

Wait 10μsec

Clear PSU1/2 bit in FLMCR1/2

Wait 10μsec

Disable WDT

Set PV1/2 bit in FLMCR1/2

n = n + 1

Start of verification

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 6 of 107

Figure1: 0.6µm Program/Program-Verify Algorithm

Wait 4 μsec

Dummy write of 0xFF to verify addr

Wait 2 μsec

Read verify data

Program data =
verify data?

m = 1

Reprogram data computation

Transfer reprogram data to reprogram
data area

End of 32-byte
data verification?

Increment verify
address

No

Yes

No

Clear PV1/2 bit in FLMCR1/2

Wait 4 μsec

m = 0?

Clear SWE bit in FLMCR1

End of
programming

N >= 1000

Clear SWE bit in FLMCR1

Programming
FAILURE

No

OK

OK OK

No

This is a byte write

End of verification

16-bit read for H8(S)(300H),
32-bit read for SH-2

Wait 4 μsec

Dummy write of 0xFF to verify addr

Wait 2 μsec

Read verify data

Program data =
verify data?

m = 1

Reprogram data computation

Transfer reprogram data to reprogram
data area

End of 32-byte
data verification?

Increment verify
address

No

Yes

No

Clear PV1/2 bit in FLMCR1/2

Wait 4 μsec

m = 0?

Clear SWE bit in FLMCR1

End of
programming

N >= 1000

Clear SWE bit in FLMCR1

Programming
FAILURE

No

OK

OK OK

No

This is a byte write

End of verification

16-bit read for H8(S)(300H),
32-bit read for SH-2

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 7 of 107

Important aspects of the 0.6μm program/program-verify algorithm to note include:
• All delay times are minimum times required to allow the internal signals to settle with one

major exception – the time the programming signal (P bit in FLMCR) is set. This time is a
MAXIMUM and should not be exceeded.

• Loop counts are maximum values and should not be exceeded.
• When performing a dummy write during the verify stage the dummy write should be

performed as a byte access.
• During the verify stage the data read back from the Flash should be compared against the

actual data to be programmed and not the reprogram data.
• Programming should only be performed with the Flash cells in the erased (‘1’) state.

The program/program-verify process is a two stage affair. First an attempt to program a Flash line
of 32-bytes is made. Then the Flash memory is put into program-verify mode and the programmed
data read back using a ‘weak’ read of the cells. Here if the data is read back correctly with a ‘weak’
read then the cell’s contents can be guaranteed over the data retention lifetime and temperature
range specified for the individual device. If any of the bits fail to stick then reprogram data is
calculated that only attempts to reprogram the bits that need programming next time and so
avoiding the over-programming of cells that stick early in the programming process. This is
repeated until either the Flash memory is programmed successfully or the maximum number of
programming attempts is reached.

The reprogram data is calculated according to the following truth table.

Table 1: Reprogramming Data

Appendix A contains source code for implementing the program/program-verify algorithm
described above for the H8S and H8/300H. This code has been tested on an H8S/2144F device.
This code should be taken as an example and should be modified where necessary for the particular
device being programmed and its xtal frequency. It is worth noting that the delays are implemented
using a hardware timer and that for the shorter periods the waiting time will be slightly greater than
the desired value. This is acceptable as these shorter delays are provided to allow internal signals to
settle and so are, as previously mentioned, minimum values.

Appendix B contains example source code for the 0.6 μm program/program verify algorithm for the
SH-2 series of Renesas microcontrollers. This code has been tested on an SH7045F device.

A 32-byte Flash line can be programmed by calling the function ‘prog_flash_line_32’ which has the
following prototype.

Required Data Verify Data Read Reprogram Data
--------------------|----------------------------------|----------------------------

 0 0 1
 0 1 0
 1 0 1
 1 1 1

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 8 of 107

unsigned char prog_flash_line_32 (unsigned long t_address, union
char_rd_datum_union *p_data)

As can be seen the function is passed two variables. The first, ‘t_address’ is the address of the first
byte to be programmed in the Flash memory and must be on a 32-byte boundary. The second
variable, ‘p_data’, is a pointer to a ‘char_rd_datum_union’ which contains the 32 bytes of data to be
programmed into the Flash. The funtion returns a programming success or failure status byte. This
function is identical in the two listings with its functionality being modified by the typedef
‘read_datum’ which is 16-bits in size for the H8S implementation and 32-bits for the SH-2.

0.6μm Erase/Erase-Verify

Figure 2 below shows the typical erase/erase verify algorithm for 0.6μm Renesas Flash
microcontrollers.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 9 of 107

Start

Set SWE bit in FLMCR1

Wait 10μsec

n = 1

Set EBR1/2

Enable WDT

Set ESU1/2 bit in FLMCR1/2

Wait 200μsec

Set E1/2 bit in FLMCR1/2 Start of erasing

Wait 5msec

Clear E1/2 bit in FLMCR1/2 End of erasing

Wait 10μsec

Clear ESU1/2 bit in FLMCR1/2

Wait 10μsec

Disable WDT

Set EV1/2 bit in FLMCR1/2

n = n + 1

Start of verification

Start

Set SWE bit in FLMCR1

Wait 10μsec

n = 1

Set EBR1/2

Enable WDT

Set ESU1/2 bit in FLMCR1/2

Wait 200μsec

Set E1/2 bit in FLMCR1/2 Start of erasing

Wait 5msec

Clear E1/2 bit in FLMCR1/2 End of erasing

Wait 10μsec

Clear ESU1/2 bit in FLMCR1/2

Wait 10μsec

Disable WDT

Set EV1/2 bit in FLMCR1/2

n = n + 1

Start of verification

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 10 of 107

Figure 2: 0.6µm Erase/Erase-Verify Algorithm

Wait 20μsec

Set block start addr to verify addr

H’FF dummy write to verify address

Wait 2μsec

Read Verify data

This is a byte write

16-bit read for H8S/300H,
32-bit for SH-2

Verify data all 1’s?

Last address of
block?

Clear EV1/2 bit in FLMCR1/2

Wait 5μsec

End of erasing of
all blocks?

Clear SWE bit in FLMCR1

End of erasing

Clear EV1/2 bit in FLMCR1/2

Wait 5μsec

n >= N?

Clear SWE bit in FLMCR1

Erasing FAILURE

Increment
Address

No

No

No No

OK

OK

OK OK

End of verificationEnd of verification

Wait 20μsec

Set block start addr to verify addr

H’FF dummy write to verify address

Wait 2μsec

Read Verify data

This is a byte write

16-bit read for H8S/300H,
32-bit for SH-2

Verify data all 1’s?

Last address of
block?

Clear EV1/2 bit in FLMCR1/2

Wait 5μsec

End of erasing of
all blocks?

Clear SWE bit in FLMCR1

End of erasing

Clear EV1/2 bit in FLMCR1/2

Wait 5μsec

n >= N?

Clear SWE bit in FLMCR1

Erasing FAILURE

Increment
Address

No

No

No No

OK

OK

OK OK

End of verificationEnd of verification

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 11 of 107

Important aspects of the 0.6μm erase/erase-verify algorithm to note include:

• All delay times are minimum times required to allow the internal signals to settle with one
major exception – the time the erase signal (E bit in FLMCR) is set. This time is a
MAXIMUM and should not be exceeded.

• The erase pulse time is in units of msec and the settling times in units of μsec.
• Loop counts are maximum values and should not be exceeded.
• The dummy write performed during the erase-verify stage should be a byte wide access.
• During the verify stage the Flash should be accessed as 16-bits for H8S/300H and 32-bits

for SH-2.
• The erased state is all 1’s.
• Pre-programming the Flash contents to ‘0’ is not necessary.
• Only one bit in the EBR registers should be set at any one time as each Flash block must be

erased separately.

As with the programming of the Flash memory the erase/erase-verify is a two stage process. An
attempt is made to erase the Flash block then the memory is placed into erase verify mode and a
‘weak’ read of its contents made. If any bit in the Flash block is not set to ‘1’ when read then
another attempt is made to erase the block. This process is repeated until either the Flash block is
successfully erased or the maximum number of erase attempts is reached.

The source code listings in Appendices A and B contain a function to erase a specified Flash block.
The prototype for this function is shown below.

unsigned char erase_block_06_um (unsigned char block_num)

The function should be passed the number of the Flash block to be erased with the first block being
numbered ‘0’. A success or failure status byte is returned to the caller. The same function can be
used with both H8S and SH-2 based 0.6μm Flash memory so long as the typedef ‘read_datum’ is
declared accordingly.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 12 of 107

0.35μm Algorithms

The 0.35μm Renesas microcontroller Flash memory has the following characteristics.

• The Flash memory must be programmed in units of 128 bytes starting on a 128 byte
boundary.

• The Flash memory is split into sectors of varying sizes.
• Erasing is performed on a sector by sector basis.
• The erased state is all 1’s.
• Programming must be performed in the erased state.
• Programming data is written in 16-bit units for H8(S)(300H) and 32-bits for SH-2.
• Programming and erase verification data is read in 16-bit units for H8S & H8/300H and 32-

bits for SH-2.
• Programming times are reduced when compared to the 0.6μm Flash memory based Renesas

microcontrollers.

Although all 0.35μm Renesas Flash microcontrollers essentially have common programming and
erasing algorithms it is important that this apps note is read in conjunction with the hardware
manual for the device being programmed as there are can subtle differences introduced.

0.35μm Program/Program-Verify

Figure 3 shows the typical program/program-verify algorithm for 0.35μm Renesas Flash
microcontrollers.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 13 of 107

Start

Set SWE bit in FLMCR1

Wait tSSWE μsec

Store 128-byte program data in
program data & reprogram data areas

n = 1

m = 0

Write 128-byte reprogram data
consecutively to Flash memory Byte access must be used

WDT enable

Set PSU bit in FLMCR1

Wait tSPSU μsec

Set P bit in FLMCR1

Wait tSP μsec

Clear P bit in FLMCR1

Wait tCP μsec

Clear PSU bit in FLMCR1

Wait tCPSU μsec

WDT disable

Shaded area could be
implemented as a

sub-routine

* see
note

Start of programming

End of programming

Start

Set SWE bit in FLMCR1

Wait tSSWE μsec

Store 128-byte program data in
program data & reprogram data areas

n = 1

m = 0

Write 128-byte reprogram data
consecutively to Flash memory Byte access must be used

WDT enable

Set PSU bit in FLMCR1

Wait tSPSU μsec

Set P bit in FLMCR1

Wait tSP μsec

Clear P bit in FLMCR1

Wait tCP μsec

Clear PSU bit in FLMCR1

Wait tCPSU μsec

WDT disable

Shaded area could be
implemented as a

sub-routine

* see
note

Start of programming

End of programming

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 14 of 107

Set PV bit in FLMCR1

Wait tSPV μsec

H’FF dummy write to verify address Byte write

Wait tSPVR μsec

Read verify data 16-bit read for H8S/300H,
32-bit for SH-2

Program data =
verify data? m = 1

No

Calc additional programming data

Transfer additional programming
data to additional prog data area

Reprogram data calculation

Transfer reprogram data to
reprogram data area

128-byte data
verify complete?

Clear PV bit in FLMCR1

Wait tCPV μsec

6 >= n? No

Yes

Yes

Increment address

No

Yes

n = n + 1

* see
note

Start of verification

End of verification

Set PV bit in FLMCR1

Wait tSPV μsec

H’FF dummy write to verify address Byte write

Wait tSPVR μsec

Read verify data 16-bit read for H8S/300H,
32-bit for SH-2

Program data =
verify data? m = 1

No

Calc additional programming data

Transfer additional programming
data to additional prog data area

Reprogram data calculation

Transfer reprogram data to
reprogram data area

128-byte data
verify complete?

Clear PV bit in FLMCR1

Wait tCPV μsec

6 >= n? No

Yes

Yes

Increment address

No

Yes

n = n + 1

* see
note

Start of verification

End of verification

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 15 of 107

Figure 3: 0.35µmProgram/Program-Verify Algorithm

6 >= n

Write 128-byte additional
programming data consecutively to

Flash memory

WDT enable

Set PSU bit in FLMCR1

Wait tSPSU μsec

Set P bit in FLMCR1

Wait tSP μsec

Clear P bit in FLMCR1

Wait tCP μsec

Clear PSU bit in FLMCR1

Wait tCPSU μsec

WDT disable

Clear SWE bit in FLMCR1

Wait tCSWE μsec

End of programming

Clear SWE bit in FLMCR1

Wait tCSWE μsec

Programming FAILURE

m == 0? n >= N?

Yes

No

Yes Yes

No No

Shaded area could be
implemented as a

sub-routine

* see
note

6 >= n

Write 128-byte additional
programming data consecutively to

Flash memory

WDT enable

Set PSU bit in FLMCR1

Wait tSPSU μsec

Set P bit in FLMCR1

Wait tSP μsec

Clear P bit in FLMCR1

Wait tCP μsec

Clear PSU bit in FLMCR1

Wait tCPSU μsec

WDT disable

Clear SWE bit in FLMCR1

Wait tCSWE μsec

End of programming

Clear SWE bit in FLMCR1

Wait tCSWE μsec

Programming FAILURE

m == 0? n >= N?

Yes

No

Yes Yes

No No

Shaded area could be
implemented as a

sub-routine

* see
note

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 16 of 107

Important aspects of the 0.35μm program/program-verify algorithm worthy of note include:
• The actual values for the delays given in the flowchart should be obtained from the

hardware manual for the device being programmed.
• All delay times are minimum times required to allow the internal signals to settle with the

exception of the time the ‘P’ bit is set in the FLMCR1 register. This time is a MAXIMUM
value and should not be exceeded.

• Loop counts are maximum values and as such should not be exceeded.
• The verify dummy write should be a byte write of H’FF.
• The verify data read back during the program verify stage must be compared with the actual

data to be programmed into the Flash and not the reprogram data or additional program data.
• Programming should only be performed on Flash cells which are in the erased state, ‘1’.

As can be seen from the algorithm the 0.35μm program/program-verify algorithm is more complex
than its 0.6μm counterpart. The program/program-verify process is again a two stage affair with the
Flash line being programmed and then verified using the ‘weak’ read as previously discussed in the
0.6μm section of this apps note. During the programming phase the length of time the ‘P’ bit in the
FLAMCR1 register is set varies depending on how many attempts to program the Flash line have
been made. Typically, for the first 6 programming attempts the ‘P’ bit is set for 30μs and then for
the remaining attempts this extends to 200μs. Also, for the first 6 programming attempts after the
intial 30μs programming pulse using the reprogramming data there is a extra programming pulse,
typically 10μs long, using the additional programming data.

The reprogram data is calculated in the same way as for the 0.6μm algorithm and for completeness
is given in table 2 below.

Table 2: Reprogramming Data

The additional programming data used during the first 6 programming attempts is calculated
according to the truth table shown in table 3 below.

Required Data Verify Data Read Reprogram Data
--------------------|----------------------------------|----------------------------

 0 0 1
 0 1 0
 1 0 1
 1 1 1

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 17 of 107

Table 3: Additional Programming Data

Appendix C contains C source code for implementing the program/program-verify algorithm
described by figure 3 for the H8S series. This code has been tested on an H8S/2612F
microcontroller. As with the 0.6μm code this C source should be viewed as example code and
modified where necessary to meet the Flash memory programming requirements of a particular
Renesas microcontroller. Note should be made that the correct operation of this code is affected by
the frequency of the xtal connected to the micro. In this code the xtal frequency is specified as
18.432MHz via the definition ‘XTAL’ which should be changed to reflect the frequency of the
target device. Again the timing delays have been achieved using a hardware timer and so in the
case of the shorter delays they can be longer than required but this is not a problem for settling
times which have specified minimum values.

Appendix D contains C source code for the SH-2 0.35μm program/program-verify algorithm. This
code has been tested on an SH7047F microcontroller.

In both instances a 128-byte Flash line can be programmed by calling the function
‘prog_flash_line_128’ which has the following definition.

unsigned char prog_flash_line_128 (unsigned long t_address, union
char_rd_datum_union *p_data)

The first parameter passed to this function is the start address of the Flash memory to be
programmed which must be on a 128-byte boundary. The second passed parameter is a pointer to a
‘char_rd_datum_union’ union containing the data to be programmed. The function is identical for
both H8S and SH-2 with the functionality changing depending on the type specifed by the typedef
‘read_datum’.

Reprogram Data Verify Data Read Additional Programming Data

--------------------|----------------------------------|---------------------------------------

0 0 0
0 1 1
1 0 1
1 1 1

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 18 of 107

0.35μm Erase/Erase-Verify

Figure 4 below shows the typical erase/erase-verify algorithm for 0.35μm Renesas Flash
microcontrollers.

Erase Start

Set SWE bit in FLMCR1

Wait tSSWE μsec

n = 1

Set EBR1 and EBR2

Enable WDT

Set ESU bit in FLMCR1

Wait tSESU μsec

Set E bit in FLMCR1

Wait tSE msec

Clear E bit in FLMCR1

Wait tCE μsec

Disable WDT

Set EV bit in FLMCR1

n = n + 1

Start of erasing

End of erasing

Wait tSEV μsec

Clear ESU bit in FLMCR1

Wait tCESU μsec

Erase Start

Set SWE bit in FLMCR1

Wait tSSWE μsec

n = 1

Set EBR1 and EBR2

Enable WDT

Set ESU bit in FLMCR1

Wait tSESU μsec

Set E bit in FLMCR1

Wait tSE msec

Clear E bit in FLMCR1

Wait tCE μsec

Disable WDT

Set EV bit in FLMCR1

n = n + 1

Start of erasing

End of erasing

Wait tSEV μsec

Clear ESU bit in FLMCR1

Wait tCESU μsec

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 19 of 107

Figure 4: 0.35 µm Erase/Erase-Verify Algorithm

H’FF dummy write to verify address

Wait tSEVR μsec

Read verify data

Verify data = all
1’s?

Last address of
block?

Clear EV bit in FLMCR1

Wait tCEV μsec

All erase block
erased?

Clear SWE bit in FLMCR1

Wait tCSWE μsec

End of erasing

Clear EV bit in FLMCR1

Wait tCEV μsec

n <= N

Clear SWE bit in FLMCR1

Wait tCSWE μsec

Erasing FAILURE

Increment address

This is a byte write

No

No

No

Yes

Yes

* see
note

Yes Yes

Set block start address as verify
address

H’FF dummy write to verify address

Wait tSEVR μsec

Read verify data

Verify data = all
1’s?

Last address of
block?

Clear EV bit in FLMCR1

Wait tCEV μsec

All erase block
erased?

Clear SWE bit in FLMCR1

Wait tCSWE μsec

End of erasing

Clear EV bit in FLMCR1

Wait tCEV μsec

n <= N

Clear SWE bit in FLMCR1

Wait tCSWE μsec

Erasing FAILURE

Increment address

This is a byte write

No

No

No

Yes

Yes

* see
note

Yes Yes

Set block start address as verify
address

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 20 of 107

Important aspects of the 0.35μm erase/erase-verify algorithm worthy of note include:

• All delay times are minimum times required to allow the internal signals to settle with one
major exception – the time the erase signal (E bit in FLMCR) is set. This time is a
MAXIMUM and should not be exceeded.

• The erase pulse time is in units of msec and the settling times in units of μsec.
• Loop counts are maximum values and should not be exceeded.
• When performing a dummy write during the verify stage the dummy write should be

performed as a byte access.
• During the verify stage the Flash should be accessed as 16-bits for H8(S)(300H) and 32-bits

for SH-2.
• Pre-programming the Flash contents to ‘0’ is not necessary.
• Only one bit in the EBR registers should be set at any one time as each Flash block must be

erased separately.

As with 0.6μm Flash erasure the 0.35μm memory is erased in a two stage process. First an attempt
is made to erase the Flash block and then the memory is placed into erase-verify mode and its
contents read back with a ‘weak’ read and compared with the erase value of all 1s. If any of the bits
in the block are not read back as ‘1’ then another attempt is made to erase the block. This process is
repeated until either the Flash memory block is successfully erased or the maximum number of
erase attempts specified for the device is reached.

Appendices C and D contain soure code listings with functions to erase a specified 0.35μm Flash
block for both the H8S/2612F and SH7047F Renesas microcontrollers. The prototype for the erase
function is shown below.

unsigned char erase_block_035_um (unsigned char block_num);

The function should be passed the number of the Flash block to be erased with the first block being
numbered ‘0’. A success or failure status byte is returned to the caller. The same function can be
used with both H8(S)(300H) and SH-2 based 0.35μm Flash memory so long as the typedef
‘read_datum’ is declared accordingly.

*Important Note Relating to 0.35μm Devices

The Renesas H8/3664F microcontroller, a member of the H8/300H-Tiny family, has a requiremnt
where an ‘RTS’ instruction is not permitted at certain points in the program/program-verify and
erase/erase-verify processes. Figures 3 and 4 indicate the points in the algorithm where this is
applicable. This impacts the source code provided in appendices C and D as the affected parts of
the algorithm feature delays and the code uses a function call to a ‘delay’ function to implement the
delay. As the function call eventually results in an ‘RTS’ this will cause problems. A workaround
for this problem is to manually inline the ‘delay’ function code inplace of the function call at the
points highlighted in figures 3 and 4.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 21 of 107

Although this is a requirement of the H8/3664F it may not be limited to this device. Therefore, it is
strongly recommended that the latest hardware manual is obtained for the microcontroller being
used and the Flash algorithms are examined carefully. Failure to do so could permanently damage
the microcontroller.

Appendix E contains C source code with modified program/program-verify and erase/erase-verify
routines specifically for the H8/3664F. In these routines the ‘delay’ function calls have been
replaced by inline code at the critical points mentioned above. In order to reduce the code size for
the H8/3664F implementation a separate ‘apply_write_pulse’ function has been used. This enables
the programming and erasing functionality to comfortably fit in the internal RAM of this device.

0.18μm Algorithms
The 0.18μm Renesas microcontroller Flash memory has the following characteristics.

• The Flash memory is programmed in units of 128 bytes starting on a 128 byte boundary.
• The erasing and programming routines are built into the device and called from a user

application.
• The Flash memory is split into sectors of varying sizes.
• Erasing is performed on a sector by sector basis.
• The erased state is all 1’s.
• Programming must only be performed in the erased state.
• Programming times are reduced compared to 0.6μm and 0.35μm based Renesas

microcontrollers.

Although all 0.18μm Renesas Flash microcontrollers essentially have common programming and
erasing algorithms, it is important that this apps note is read in conjunction with the hardware
manual for the device being programmed, as there can be subtle differences introduced.

0.18μm Programming
Figure 5 shows the typical programming algorithm for 0.18μm Renesas Flash microcontrollers.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 22 of 107

Figure 5: 0.18μm Programming Algorithm

Select on-chip
program to be

downloaded and
set download

address by
FTDAR

DFPR == 0

FKEY = 0xA5

Yes

No

SCO = 1 to start
download

FKEY = 0

D/L Error processing

Set FPEFEQ and
FUBRA

parameters

Initialisation JSR
FTDAR + 32

FPFR == 0

D/L Error processing

Disable ints &
non-CPU bus

master

Set FMATS != 0xAA

FKEY = 0x5A

Set FMPAR to Rn &
FMPDR to Rm

Programming JSR
FTDAR + 16

FPFR == 0

Clear FKEY. Prog
error processing *

No More
data to

program?

FKEY = 0

Set FMATS = 0xAA

End of programming

Only required when
switching MAT
from user boot
MAT to user MAT

Only required
when switching
MAT from user
MAT to user boot
MAT

*If necessary the MAT must be switched to
user boot MAT
Rn = ER0 (H8) / R4 (SH)
Rm = ER1(H8) / R5 (SH)
Return value in R0L (H8) / R0 (SH)

D
ow

nl
oa

d
I n

i ti
al

is
at

io
n

P r
o g

ra
m

m
in

g

No

No

Yes

Yes

Yes

No

Select on-chip
program to be

downloaded and
set download

address by
FTDAR

DFPR == 0

FKEY = 0xA5

Yes

No

SCO = 1 to start
download

FKEY = 0

D/L Error processing

Set FPEFEQ and
FUBRA

parameters

Initialisation JSR
FTDAR + 32

FPFR == 0

D/L Error processing

Disable ints &
non-CPU bus

master

Set FMATS != 0xAA

FKEY = 0x5A

Set FMPAR to Rn &
FMPDR to Rm

Programming JSR
FTDAR + 16

FPFR == 0

Clear FKEY. Prog
error processing *

No More
data to

program?

FKEY = 0

Set FMATS = 0xAA

End of programming

Only required when
switching MAT
from user boot
MAT to user MAT

Only required
when switching
MAT from user
MAT to user boot
MAT

*If necessary the MAT must be switched to
user boot MAT
Rn = ER0 (H8) / R4 (SH)
Rm = ER1(H8) / R5 (SH)
Return value in R0L (H8) / R0 (SH)

D
ow

nl
oa

d
I n

i ti
al

is
at

io
n

P r
o g

ra
m

m
in

g

No

No

Yes

Yes

Yes

No

Select on-chip
program to be

downloaded and
set download

address by
FTDAR

DFPR == 0

FKEY = 0xA5

Yes

No

SCO = 1 to start
download

FKEY = 0

D/L Error processing

Set FPEFEQ and
FUBRA

parameters

Initialisation JSR
FTDAR + 32

FPFR == 0

D/L Error processing

Disable ints &
non-CPU bus

master

Set FMATS != 0xAA

FKEY = 0x5A

Set FMPAR to Rn &
FMPDR to Rm

Programming JSR
FTDAR + 16

FPFR == 0

Clear FKEY. Prog
error processing *

No More
data to

program?

FKEY = 0

Set FMATS = 0xAA

End of programming

Only required when
switching MAT
from user boot
MAT to user MAT

Only required
when switching
MAT from user
MAT to user boot
MAT

*If necessary the MAT must be switched to
user boot MAT
Rn = ER0 (H8) / R4 (SH)
Rm = ER1(H8) / R5 (SH)
Return value in R0L (H8) / R0 (SH)

D
ow

nl
oa

d
I n

i ti
al

is
at

io
n

P r
o g

ra
m

m
in

g

No

No

Yes

Yes

Yes

No

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 23 of 107

As previously mentioned the actual 0.18μm programming routine is built into the device and is
called from a user application. Using the built in programming routine consists of 3 steps – loading,
initialisation and programming (execution).

Loading
The loading process copies the built in programming routine into internal RAM for execution. The
space used by the programming code is 2000 bytes for H8/300H and 2048 bytes for SH-2. The
RAM used by the routine is configurable and set via the FTDAR register. Figure 6 shows the RAM
map during the programming process.

Figure 6: RAM Map During Programming/Erasing

On-Chip RAMLow Address

High Address

RAM emulation area or area
that can be used by user

DPFR (return value: 1 byte)

System use area (15 bytes)

Programming/Erasing entry

Initialisation process area

Initialisation &
programming/erasing

program

Area that can be used by user

RAMTOP

FTDAR setting

FTDAR setting + 16

FTDAR setting + 32

FTDAR setting + 2000(H8)/2048(SH)

RAMEND

On-Chip RAMLow Address

High Address

RAM emulation area or area
that can be used by user

DPFR (return value: 1 byte)

System use area (15 bytes)

Programming/Erasing entry

Initialisation process area

Initialisation &
programming/erasing

program

Area that can be used by user

RAMTOP

FTDAR setting

FTDAR setting + 16

FTDAR setting + 32

FTDAR setting + 2000(H8)/2048(SH)

RAMEND

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 24 of 107

The first byte of this RAM space is given the label DPFR (download pass/fail result) and is used to
indicate the result of the request to download the programming routine to the RAM. The download
is executed by setting the routine to be downloaded in the FPCS (flash program code select) and
FECS (flash erase code select) registers and then setting SCO (source program copy operation) bit
in the FCCS (flash code control and status) register. Four NOPs should be executed after the
setting of the SCO bit. When using the Renesas compiler the NOP instruction is inserted in the ‘C’
code as inline assembly code. With the Renesas compiler, the file containing the inline assembly
code must have its output format set as ‘assembly code’ rather than the default ‘machie code’. The
DPFR byte should be initialised to H’FF prior to starting the download process.

The 0.18μm Flash memory offers software protection to prevent accidental programming etc. This
protection is implemented using the FKEY register. When this register is set to ‘0’ the protection is
active. For downloading the FKEY value should be H’A5 and for programming it should be H’5A.
FKEY should be left as zero for the initialisation operation.

The results of the loading request is given in the DPFR byte. The loading can fail due to incorrect
FKEY value, trying to download the program and erase routines at the same time (multi-session) or
an invalid setting in the FPCS and FECS registers.

Initialisation
Once the correct routine has successfully been loaded into the internal RAM it must be initialised.
The initialisation process configures the routines with the current CPU frequency and user branch
address. The user branch option, which is supported by SH-2, allows user code to be called during
programming and erasing. This is particularly useful for tickling a watchdog timer during erasing
and programming. To use the user branch option the address of the routine should be loaded into
the FUBRA (flash user branch address) register. The process of erasing a block or programming a
flash line consists of many erase or programming pulses respectively; the user branch routine is
called for each such pulse. As the erase and programming pulse lengths are not constant the time
between two successive calls of the user branch routine will vary. The minimum and maximum
values for this period are given in the Flash memory section of the relevant hardware manual.
When the user branch feature is either not supported by the hardware or is not being used the
FUBRA register should be set to zero.
The CPU frequency (FPEFEQ) and user branch address (FUBRA) parameters are passed to the
programming routine via CPU registers. The actual registers used depend on the device family.
For H8/300H, FPEFEQ should be in ER0 and for SH-2 it should be in R4. For the FUBRA value,
the registers are ER1 for H8/300H and R5 for SH-2. The FPEFEQ value is the CPU frequency in
MHz to 2 decimal places multiplied by 100. For example:

CPU frequency = 20.00MHz
FPEFEQ = 20.00 x 100 = 2000

The FUBRA value is the 32-bit address of the user branch routine.
Although passing these parameters via CPU registers may seem initially inconvenient when
programming in ‘C’, the registers used are those used by the Renesas C/C++ compiler for function
parameter passing. Appendices F and G contain source code, in C, for implementing programming
and erasing of the 0.18μm Flash memory of the H8/3069F (H8/300H) and SH-2e (SH7058F)
respectively. This code contains the function ‘func’ with the prototype below.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 25 of 107

void func (unsigned long ul1, unsigned long ul2);

Passing the FPEFEQ and FUBRA values to this function will result in the values being loaded into
the correct CPU registers. With the values in the CPU registers the internal initialisation routine
must be called. The start address for this routine is the address set by FTDAR + 32 bytes. In the
example code this initialisation routine is called via a function pointer ‘fp’. This function returns a
byte (FPFR) in R0L (H8/300H) or R0 (SH-2e) containing the result of the initialisation request. A
non-zero value indicates that the initialisation has failed. Failure can occur due to the CPU
frequency or the user branch address being invalid.

The registers used for parameter passing have been chosen for compatibilty with the Renesas
C/C++ compiler toolchain. When using other compilers provision must be made to ensure that the
correct values are loaded into the correct registers. The KPIT GNUH8 and KPIT GNUSH
compilers can be configured to use the Renesas calling convention. If the IAR compiler is being
used with H8 then some assembler code will be required.

Programming
With the initialisation completed correctly the 128 byte Flash line can be programmed. If the code
is running in user boot mode then, before and after the programming function call, the current MAT
must be switched from the user boot MAT to the user MAT and back again. This is achieved by
using the FMATS register. Four NOPs should be inserted after changing the FMATS register value.

When programming, the Flash address where programming should start (FMPAR) should be loaded
into ER0 for H8/300H and for SH-2 it should be in R4. The address of the data to be programmed
(FMPDR), usually in RAM, should be loaded into registers ER1 for H8/300H and R5 for SH-2.
The internal programming routine is positioned at address FTDAR + 16. In the example routines
programming is executed using the ‘fp’ function pointer. The return value (FPFR) of this function
call contains the result of the programming request. A non-zero value indicates an error such as
invalid FWE, invalid FKEY value, incorrect data source address or incorrect data destination
address.

If more than one 128 byte Flash line is to be programmed it is not necessary for the programming
routine to be downloaded and initialised more than once for each line. This is not implemented in
the example source code for reasons of clarity but the download and initialisation functionality can
easily be extracted into a subroutine.

The H8/300H 0.18μm makes available an additional feature over the SH-2. This feature is the
ability to change the address of the NMI vector for situations where using the NMI interrupt cannot
be avoided due to system requirements. The FVACR (Flash vector address control register) enables
or disables this feature. When enabled the address of the NMI interrupt service routine should be
placed in FVADR (Flash vector address register). This feature is not required by the SH-2 as the
whole interrupt and exception vector table can be relocated and then accessed via the VBR (vector
base register).

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 26 of 107

Appendices F and G contain source code, in C, for implementing programming the 0.18μm Flash
memory of the H8/3069F (H8/300H) and SH-2e (SH7058F) respectively. In both instances a 128
byte Flash line can be programmed by calling the function ‘Program018FlashLine’ which has the
following definition.

unsigned short Program018FlashLine(unsigned long Address,
unsigned char *ProgData);

The first parameter passed is the start address of the Flash to be programmed which must be on a
128-byte boundary. The second parameter is a pointer to the data to be programmed into the Flash
line. The return value is zero if the Flash line programming was completed successfully. A non-
zero value indicates a failure. The error code format is described in the comments at the start of the
function.

The source code is supplied in three files for each processor family – ‘erase018.c’, ‘program018.c’
and ‘flash.h’. The C source files are the same for both H8/3069F and SH7058F. The header file
though is different as it contains the specific addresses of the Flash registers and values specific to
each device. If the code is to be executed in user boot mode then the definition
‘INUSERBOOTMODE’ must be defined in order for the MAT switching to be performed. The
header files contain extensive comments so there should be no problem in modifying them for use
with other 0.18μm based Renesas Flash microcontrollers.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 27 of 107

0.18μm Erasing
Figure 7 shows the typical erasing algorithm for 0.18μm Renesas Flash microcontrollers.

Figure 7: 0.18μm Erasing Algorithm

As previously mentioned the actual 0.18μm erasing routine is built into the device and is called
from a user application. Using the built in erasing routine consists of 3 steps – loading,
initialisation and erasing (execution).

Loading
The loading of the built in erasing routine into the internal RAM is the same as for the
programming routine. The only change is that the erase program is selected in the FPCS and FECS
registers. Figure 6 shows the RAM map during the erasing process.

Select on-chip
program to be

downloaded and set
download address by

FTDAR

DFPR == 0

FKEY = 0xA5

Yes

No

SCO = 1 to start
download

FKEY = 0

D/L Error processing

Set FPEFEQ and
FUBRA parameters

Initialisation JSR
FTDAR + 32

FPFR == 0

D/L Error processing

Disable ints & non-
CPU bus master

Set FMATS != 0xAA

FKEY = 0x5A

Set FEBS in Rn

Erasing JSR FTDAR
+ 16

FPFR == 0

Clear FKEY. Prog
error processing *

No More
blocks to

erase?

FKEY = 0

Set FMATS = 0xAA

End of erasing

Only required when
switching MAT from user
boot MAT to user MAT

Only required when
switching MAT from user
MAT to user boot MAT

D
ow

nl
oa

d
I n

iti
al

is
at

io
n

Er
as

in
g

No

No

Yes

Yes

Yes

No

*If necessary the MAT must be switched to user boot MAT
Rn = ER0 (H8) / R4 (SH)
Rm = ER1(H8) / R5 (SH)
Return value in R0L (H8) / R0 (SH)

Select on-chip
program to be

downloaded and set
download address by

FTDAR

DFPR == 0

FKEY = 0xA5

Yes

No

SCO = 1 to start
download

FKEY = 0

D/L Error processing

Set FPEFEQ and
FUBRA parameters

Initialisation JSR
FTDAR + 32

FPFR == 0

D/L Error processing

Disable ints & non-
CPU bus master

Set FMATS != 0xAA

FKEY = 0x5A

Set FEBS in Rn

Erasing JSR FTDAR
+ 16

FPFR == 0

Clear FKEY. Prog
error processing *

No More
blocks to

erase?

FKEY = 0

Set FMATS = 0xAA

End of erasing

Only required when
switching MAT from user
boot MAT to user MAT

Only required when
switching MAT from user
MAT to user boot MAT

D
ow

nl
oa

d
I n

iti
al

is
at

io
n

Er
as

in
g

No

No

Yes

Yes

Yes

No

*If necessary the MAT must be switched to user boot MAT
Rn = ER0 (H8) / R4 (SH)
Rm = ER1(H8) / R5 (SH)
Return value in R0L (H8) / R0 (SH)

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 28 of 107

Initialisation
Once the correct routine has successfully been loaded into the internal RAM it must be initialised.
The initialisation process for erasing is the same as for the programming routine previously
described.

Erasing
With the initialisation completed correctly a Flash block can be erased. If the code is running in
user boot mode then, before and after the erasing function call, the current MAT must be switched
from the user boot MAT to the user MAT and back again. This is achieved by using the FMATS
register. Four NOPs should be inserted after changing the FMATS register value.

The number of the Flash block to be erased (FEBS) should be loaded into ER0 for H8/300H and for
SH-2 it should be in R4 using the ‘func’ function. The internal erasing routine is located at address
FTDAR + 16. In the example routines erasing is executed using the ‘fp’ function pointer. The
return value (FPFR) of this function call contains the result of the erasing request. A non-zero
value indicates an error such as invalid FWE, invalid FKEY value or invalid erase block.

If more than one erase block is to be erased it is not necessary for the erasing routine to be
downloaded and initialised more than once for each block. This is not implemented in the example
source code for reasons of clarity but the download and initialisation functionality can easily be
extracted into a subroutine.

Again the H8/300H 0.18μm Flash memory NMI vector redirection feature is available during
erasing. See the programming section for more details.

Appendices F and G contain source code, in C, for erasing the 0.18μm Flash memory of the
H8/3069F (H8/300H) and SH-2e (SH7058F) respectively. In both instances a Flash block can be
erased by calling the function ‘Erase018FlashBlock’ which has the following definition.

unsigned short Erase018FlashBlock(unsigned char FlashBlock)

The ‘FlashBlock’ parameter passed is Flash block to be erased which must be valid for the device.
The return value is zero if the Flash block erase was completed successfully. A non-zero value
indicates a failure. The error code format is described in the comments at the start of the function.

The source code is supplied in three files for each processor family – ‘erase018.c’, ‘program018.c’
and ‘flash.h’. The C source files are the same for both H8/3069F and SH7058F. The header file
though is different as it contains the specific addresses of the Flash registers and values specific to
each device. If the code is to be executed in user boot mode then the definition
‘INUSERBOOTMODE’ must be defined in order for the MAT switching to be performed. The
header files contains extensive comments so there should be no problem in modifying them for use
with other 0.18μm based Renesas Flash microcontrollers.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 29 of 107

Summary

All Renesas micrcontrollers with Flash memory have the ability to easily self program and erase
their memory.

It is hoped this application note has helped to demystify the process of programming and erasing
the Flash memory of Renesas H8 and SH 0.6μm, 0.35μm and 0.18μm microcontrollers. The
supplied code examples should provided a basis for implementing custom user mode programming
routines giving greater flexibility to current and future applications. It is accepted that the code is
not the most efficient in its current form but it is hoped that it is easy to follow. This leaves the user
to optimise the code for speed and/or size once an understanding of its operation is established.

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 30 of 107

APPENDIX A – RENESAS 0.6μM FLASH PROGRAM/PROGRAM
VERIFY & ERASE/ERASE VERIFY ROUTINES
FOR H8S/2144F

// kernel.c

//

//

// Clock speed = 18.432MHz

// H8S2148 uses SCI1 for boot mode

// Kernel start address - 0xffe080

#include "iodefine.h" // IO header file

// change following define depending on target

//#define SH

#define H8

#ifdef SH

typedef unsigned long read_datum; // unsigned long for SH

#define BLANK_VALUE 0xFFFFFFFF

#else

typedef unsigned short read_datum; // unsigned short for H8S

#define BLANK_VALUE 0xFFFF

#endif

// to get round the problem of different 'iodefine.h' files using slightly

// different names for the flash registers and bits the following defines

// are used

#define FLASH_SWE FLASH.FLMCR1.BIT.SWE

#define FLASH_PSU2 FLASH.FLMCR2.BIT.PSU

#define FLASH_PSU1 FLASH.FLMCR2.BIT.PSU

#define FLASH_P2 FLASH.FLMCR1.BIT.P

#define FLASH_P1 FLASH.FLMCR1.BIT.P

#define FLASH_PV2 FLASH.FLMCR1.BIT.PV

#define FLASH_PV1 FLASH.FLMCR1.BIT.PV

#define FLASH_EBR1 FLASH.EBR1.BYTE

#define FLASH_EBR2 FLASH.EBR2.BYTE

#define FLASH_EB0 FLASH.EBR2.BIT.EB0

#define FLASH_EB1 FLASH.EBR2.BIT.EB1

#define FLASH_EB2 FLASH.EBR2.BIT.EB2

#define FLASH_EB3 FLASH.EBR2.BIT.EB3

#define FLASH_EB4 FLASH.EBR2.BIT.EB4

#define FLASH_EB5 FLASH.EBR2.BIT.EB5

#define FLASH_EB6 FLASH.EBR2.BIT.EB6

#define FLASH_EB7 FLASH.EBR2.BIT.EB7

#define FLASH_EB8 FLASH.EBR1.BIT.EB8

#define FLASH_EB9 FLASH.EBR1.BIT.EB9

#define FLASH_EB10 FLASH.EBR1.BIT.EB9

#define FLASH_EB11 FLASH.EBR1.BIT.EB9

#define FLASH_ESU2 FLASH.FLMCR2.BIT.ESU

#define FLASH_ESU1 FLASH.FLMCR2.BIT.ESU

#define FLASH_E2 FLASH.FLMCR1.BIT.E

#define FLASH_E1 FLASH.FLMCR1.BIT.E

#define FLASH_EV2 FLASH.FLMCR1.BIT.EV

#define FLASH_EV1 FLASH.FLMCR1.BIT.EV

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 31 of 107

// H8S2148 specific

#define MAX_FLASH_ADDR 0x20000

#define FLASH_LINE_SIZE 32

#define NO_OF_FLASH_BLOCKS 10

#define XTAL 18432000L

#define MAX_PROG_COUNT 1000

#define MAX_ERASE_ATTEMPTS 120

#define MAX_FLMCR1_ADDRESS 0x1FFFFL

// array below should contain the start addresses of the flash memory blocks

// final array element should contain the end address of the flash memory (+1)

const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {

0x00000000L,

0x00000400L,

0x00000800L,

0x00000C00L,

0x00001000L,

0x00008000L,

0x0000C000L,

0x0000E000L,

0x00010000L,

0x00018000L,

0x00020000L /* max flash address + 1 */

};

#define BLANK 1

#define NOT_BLANK 2

#define PROG_PASS 0x01

#define PROG_FAIL 0x02

#define ERASE_PASS 0x01

#define ERASE_FAIL 0x02

// delay values

// note this is xtal frequency specific

#define TWO_USEC ((2L * XTAL) / 8000000L)

#define FOUR_USEC ((4L * XTAL) / 8000000L)

#define FIVE_USEC ((5L * XTAL) / 8000000L)

#define TEN_USEC ((1L * XTAL) / 800000L)

#define TWENTY_USEC ((2L * XTAL) / 800000L)

#define FIFTY_USEC ((5L * XTAL) / 800000L)

#define TWO_HUNDRED_USEC ((2L * XTAL) / 80000L)

#define FIVE_MSEC ((5L * XTAL) / 8000L)

union char_rd_datum_union {

 unsigned char c[FLASH_LINE_SIZE];

 read_datum u[FLASH_LINE_SIZE / sizeof (read_datum)];

} prog_data;

// function prototypes

unsigned char prog_flash_line_32 (unsigned long t_address, union char_rd_datum_union *p_data);

void delay (unsigned short);

void init_delay_timer (void);

unsigned char erase_block_06_um (unsigned char block_num);

// variables

volatile unsigned long delay_counter;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 32 of 107

// Functions

unsigned char prog_flash_line_32 (unsigned long t_address, union char_rd_datum_union *p_data)

{

 unsigned short n_prog_count; // loop counter for programming attempts (0->MAX_PROG_COUNT)

 unsigned short d; // general variable used for various loop counts

 unsigned char m; // flag to indicate if re-programming required 1=yes 0=no

 unsigned char *dest_address; // pointer used for writing to the flash

 unsigned char *uc_v_write_address; // pointer used for writing to the addr to be verified

 read_datum *ul_v_read_address; // pointer used to read address being verified

 unsigned char ax; // variable used as loop counter for incrementing the

 // pointer to the byte being wriiten next

in verify process

 union char_rd_datum_union reprog_data; // storage (on stack) for the re-program data

 // enable flash writes

 FLASH_SWE = 1;

 // wait 10us

 delay (TEN_USEC);

 // copy data from program data area to reprogram data area

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 reprog_data.c[d] = p_data->c[d];

 }

 // program the data in FLASH_LINE_SIZE byte chunks

 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)

 {

 // clear reprogram required flag

 m = 0;

 // copy data from reprogram data area into the flash

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = reprog_data.c[d];

 }

 // enter program setup

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PSU2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_PSU1 = 1;

 }

 // wait 50us

 delay (FIFTY_USEC);

 // start programming pulse

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 33 of 107

 FLASH_P2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_P1 = 1;

 }

 // wait 200us

 delay (TWO_HUNDRED_USEC);

 // stop programming pulse

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_P2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_P1 = 0;

 }

 // wait 20us

 delay (TEN_USEC);

 // leave programming setup

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PSU2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_PSU1 = 0;

 }

 // wait 10us

 delay (TEN_USEC);

 // enter program verify mode

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PV2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_PV1 = 1;

 }

 // wait 4us

 delay (FOUR_USEC);

 // verify the data via read_datum size reads

 uc_v_write_address = (unsigned char *) t_address;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 34 of 107

 ul_v_read_address = (read_datum *) t_address;

 // verify loop

 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)

 {

 // dummy write of H'FF to verify address

 *uc_v_write_address = 0xff;

 // increment this address by sizeof(read_datum) to get to next verify address

 for(ax=0; ax<sizeof(read_datum); ax++)

 {

 uc_v_write_address++;

 }

 // wait 2us

 delay (TWO_USEC);

 // read verify data

 // check with the original data

 if (*ul_v_read_address != p_data->u[d])

 {

 // 1 or more bits failed to program

 //

 // set the reprogram required flag

 m = 1;

 }

 // calculate reprog data

 reprog_data.u[d] = p_data->u[d] | ~(p_data->u[d] | *ul_v_read_address);

 // increment the pointers

 ul_v_read_address++;

 } // end of verify loop

 // exit program verify mode

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PV2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_PV1 = 0;

 }

 // wait 4us

 delay (FOUR_USEC);

 // check if flash line has successfully been programmed

 if (m == 0)

 {

 // program verified ok

 //

 // disable flash writes

 FLASH_SWE = 0;

 // end of successful programming

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 35 of 107

 return (PROG_PASS);

 }

 } // end of MAX_PROG_COUNT attempts to program

 // failed to program after MAX_PROG_COUNT attempts

 // disable flash writes

 FLASH_SWE = 0;

 // end of failed programming

 return (PROG_FAIL);

}

unsigned char erase_block_06_um (unsigned char block_num)

{

 unsigned char erase; // flag showing erase status - either BLANK or NOT_BLANK

 unsigned long attempts; // counter for erase attempts (0->MAX_ERASE_ATTEMPTS)

 read_datum *ul_v_read; // pointer for reading erase/verify data

 unsigned char *uc_v_write; // pointer for writing erase/verify dummy byte

 unsigned char inc_uc_v_write_count; // loop counter for incrementing the uc_v_write variable

 // check that block is not already erased

 erase = BLANK;

 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num + 1]; attempts++)

 {

 if (*(unsigned char *) attempts != 0xff)

 erase = NOT_BLANK;

 }

 if (erase == BLANK)

 return ERASE_PASS;

 else

 {

 // block needs erasing

 //

 // enable flash writes

 FLASH_SWE = 1;

 // wait 10us

 delay (TEN_USEC);

 // set the correct EB bit in correct EBR register

 FLASH_EBR1 = 0;

 FLASH_EBR2 = 0;

 switch (block_num)

 {

 case 0:

 FLASH_EB0 = 1;

 break;

 case 1:

 FLASH_EB1 = 1;

 break;

 case 2:

 FLASH_EB2 = 1;

 break;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 36 of 107

 case 3:

 FLASH_EB3 = 1;

 break;

 case 4:

 FLASH_EB4 = 1; // note the change to EBR2 here!

 break;

 case 5:

 FLASH_EB5 = 1;

 break;

 case 6:

 FLASH_EB6 = 1;

 break;

 case 7:

 FLASH_EB7 = 1;

 break;

 case 8:

 FLASH_EB8 = 1;

 break;

 case 9:

 FLASH_EB9 = 1;

 break;

 case 10:

 FLASH_EB10 = 1;

 break;

 case 11:

 FLASH_EB11 = 1;

 break;

 }

 // initialise the attempts counter

 // 0 as we check for less than MAX (not <= MAX)

 attempts = 0;

 erase = NOT_BLANK;

 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == NOT_BLANK))

 {

 // increment the attempts counter

 attempts++;

 // enter erase setup mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_ESU2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_ESU1 = 1;

 }

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 37 of 107

 // wait 200us

 delay (TWO_HUNDRED_USEC);

 // transition to erase mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_E2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_E1 = 1;

 }

 // wait 5ms

 delay (FIVE_MSEC);

 // exit erase mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_E2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_E1 = 0;

 }

 // wait 10us

 delay (TEN_USEC);

 // exit erase setup mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_ESU2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_ESU1 = 0;

 }

 // wait 10 us

 delay (TEN_USEC);

 // enter erase/verify mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_EV2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_EV1 = 1;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 38 of 107

 }

 // wait 20 us

 delay (TWENTY_USEC);

 // verify flash has been erased

 // read all the addresses in the current erase block and check that they are

 // successfully erased

 // exit this loop if a non-erased address is detected

 ul_v_read = (read_datum *) eb_block_addr [block_num];

 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = BLANK;

 while ((erase == BLANK) && (ul_v_read < (read_datum *) eb_block_addr

[block_num + 1]))

 {

 // dummy write

 *uc_v_write = 0xff;

 // wait 2 us

 delay (TWO_USEC);

 if (*ul_v_read != BLANK_VALUE)

 {

 // this address is not erased yet

 erase = NOT_BLANK;

 }

 else

 {

 // advance to next verify write address

 for (inc_uc_v_write_count=0;

inc_uc_v_write_count<sizeof(read_datum); inc_uc_v_write_count++)

 {

 uc_v_write++;

 }

 // advance to next verify read address

 ul_v_read++;

 }

 }

 // exit erase/verify mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_EV2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_EV1 = 0;

 }

 // wait 5 us

 delay (FIVE_USEC);

 } // end of outer while loop

 // end either of erase attempts or block has been erased ok

 //

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 39 of 107

 // disable flash writes

 FLASH_SWE = 0;

 // check if block has been erased ok

 if (erase == BLANK)

 {

 // successfully erased

 return ERASE_PASS;

 }

 else

 {

 // failed to erase this block

 return ERASE_FAIL;

 }

 }

}

void init_delay_timer (void)

{

 MSTPCR.BIT.B13 = 0; // FRT enabled in Module Stop Register

 FRT.TOCR.BIT.OCRS = 0; // Access to OCRA

 FRT.OCRA = 0;

 FRT.TOCR.BIT.OCRS = 1; // Access to OCRB

 FRT.OCRB = 0;

 FRT.TOCR.BIT.ICRS = 0; // Access to ICRA, ICRB & ICRC enabled

 FRT.ICRA = 0;

 FRT.ICRB = 0;

 FRT.ICRC = 0;

 FRT.ICRD = 0;

 FRT.TOCR.BIT.ICRS = 1; // Access to OCRAR, OCRAF & OCRDM enabled

 FRT.OCRAR = 0;

 FRT.OCRAF = 0;

 FRT.OCRDM = 0;

 FRT.TIER.BYTE = 0; // Disable all FRT interrupts

 FRT.TCSR.BIT.CCLRA = 1; // 0 = Timer NOT cleared by compare-match A

 // 1 = Timer IS cleared by compare-match A

 FRT.TCR.BIT.IEDGA = 0; // Capture on falling edge

 FRT.TCR.BIT.IEDGB = 0; // Capture on falling edge

 FRT.TCR.BIT.IEDGC = 0; // Capture on falling edge

 FRT.TCR.BIT.IEDGD = 0; // Capture on falling edge

 FRT.TCR.BIT.BUFEA = 0; // ICRC not used as buffer for I/C A

 FRT.TCR.BIT.BUFEB = 0; // ICRC not used as buffer for I/C B

 FRT.TCR.BIT.CKS = 1; // Clock source: CKS1 = 0 CKS0 = 1 (clk / 8)

 FRT.TOCR.BIT.ICRDMS = 0;

 FRT.TOCR.BIT.OCRAMS = 0;

 FRT.TOCR.BIT.OEA = 0;

 FRT.TOCR.BIT.OEB = 0;

 FRT.TOCR.BIT.OLVLA = 0;

 FRT.TOCR.BIT.OLVLB = 0;

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 40 of 107

void delay (unsigned short d)

{

 FRT.TOCR.BIT.OCRS = 0; // Access to OCRA

 FRT.OCRA = d; // set compare value

 FRT.FRC = 0; // clear TCNT to 0

 FRT.TCSR.BIT.OCFA = 0; // Clear flag

 while(FRT.TCSR.BIT.OCFA == 0); // wait until compare value is met

}

void main (void)

{

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 41 of 107

APPENDIX B – RENESAS 0.6μM FLASH PROGRAM/PROGRAM
VERIFY & ERASE/ERASE VERIFY ROUTINES
FOR SH7045F

// kernel.c

//

// Programming kernel for SH7045F

//

// Clock speed = 29.488MHz

#include "iodefine.h" // IO header file

// change following define depending on target

#define SH

//#define H8

#ifdef SH

typedef unsigned long read_datum; // unsigned long for SH

#define BLANK_VALUE 0xFFFFFFFF

#else

typedef unsigned short read_datum; // unsigned short for H8S

#define BLANK_VALUE 0xFFFF

#endif

// to get round the problem of different 'iodefine.h' files using slightly

// different names for the flash registers and bits the following defines

// are used

#define FLASH_SWE FLASH.FLMCR1.BIT.SWE

#define FLASH_PSU2 FLASH.FLMCR2.BIT.PSU2

#define FLASH_PSU1 FLASH.FLMCR1.BIT.PSU1

#define FLASH_P2 FLASH.FLMCR2.BIT.P2

#define FLASH_P1 FLASH.FLMCR1.BIT.P1

#define FLASH_PV2 FLASH.FLMCR2.BIT.PV2

#define FLASH_PV1 FLASH.FLMCR1.BIT.PV1

#define FLASH_EB0 FLASH.EBR1.BIT.EB0

#define FLASH_EB1 FLASH.EBR1.BIT.EB1

#define FLASH_EB2 FLASH.EBR1.BIT.EB2

#define FLASH_EB3 FLASH.EBR1.BIT.EB3

#define FLASH_EB4 FLASH.EBR2.BIT.EB4

#define FLASH_EB5 FLASH.EBR2.BIT.EB5

#define FLASH_EB6 FLASH.EBR2.BIT.EB6

#define FLASH_EB7 FLASH.EBR2.BIT.EB7

#define FLASH_EB8 FLASH.EBR2.BIT.EB8

#define FLASH_EB9 FLASH.EBR2.BIT.EB9

#define FLASH_EB10 FLASH.EBR2.BIT.EB10

#define FLASH_EB11 FLASH.EBR2.BIT.EB11

#define FLASH_ESU2 FLASH.FLMCR2.BIT.ESU2

#define FLASH_ESU1 FLASH.FLMCR1.BIT.ESU1

#define FLASH_E2 FLASH.FLMCR2.BIT.E2

#define FLASH_E1 FLASH.FLMCR1.BIT.E1

#define FLASH_EV2 FLASH.FLMCR2.BIT.EV2

#define FLASH_EV1 FLASH.FLMCR1.BIT.EV1

#define FLASH_EBR1 FLASH.EBR1.BYTE

#define FLASH_EBR2 FLASH.EBR2.BYTE

// SH704/5F specific

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 42 of 107

#define MAX_FLASH_ADDR 0x40000

#define FLASH_LINE_SIZE 32

#define NO_OF_FLASH_BLOCKS 12

#define XTAL 29488000L

#define MAX_PROG_COUNT 1000

#define MAX_ERASE_ATTEMPTS 60

#define MAX_FLMCR1_ADDRESS 0x1FFFFL

// array below should contain the start addresses of the flash memory blocks

// final array element should contain the end address of the flash memory (+1)

const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {

 0x00000000L,

 0x00008000L,

 0x00010000L,

 0x00018000L,

 0x00020000L,

 0x00028000L,

 0x00030000L,

 0x00038000L,

 0x0003F000L,

 0x0003F400L,

 0x0003F800L,

 0x0003FC00L,

 0x00040000L /* max flash address + 1 */

};

#define BLANK 1

#define NOT_BLANK 2

#define PROG_PASS 0x01

#define PROG_FAIL 0x02

#define ERASE_PASS 0x01

#define ERASE_FAIL 0x02

// delay values

// note this is xtal frequency specific

// these values are for the SH7045F CMT with a system clock divider of 8

#define TWO_USEC ((2L * XTAL) / 8000000L)

#define FOUR_USEC ((4L * XTAL) / 8000000L)

#define FIVE_USEC ((5L * XTAL) / 8000000L)

#define TEN_USEC ((1L * XTAL) / 800000L)

#define TWENTY_USEC ((2L * XTAL) / 800000L)

#define FIFTY_USEC ((5L * XTAL) / 800000L)

#define TWO_HUNDRED_USEC ((2L * XTAL) / 80000L)

#define FIVE_MSEC ((5L * XTAL) / 8000L)

// function prototypes

void main (void);

unsigned char prog_flash_line_32 (unsigned long t_address, union char_rd_datum_union *p_data);

void delay (unsigned short);

void init_delay_timer (void);

unsigned char erase_block_06_um (unsigned char block_num);

union char_rd_datum_union {

 unsigned char c[FLASH_LINE_SIZE];

 read_datum u[FLASH_LINE_SIZE / sizeof (read_datum)];

} prog_data;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 43 of 107

// variables

volatile unsigned long delay_counter;

// Functions

unsigned char prog_flash_line_32 (unsigned long t_address, union char_rd_datum_union *p_data)

{

 unsigned short n_prog_count; // loop counter for programming attempts (0->MAX_PROG_COUNT)

 unsigned short d; // general variable used for various loop counts

 unsigned char m; // flag to indicate if re-programming required 1=yes 0=no

 unsigned char *dest_address; // pointer used for writing to the flash

 unsigned char *uc_v_write_address; // pointer used for writing to the addr to be verified

 read_datum *ul_v_read_address; // pointer used to read address being verified

 unsigned char ax; // variable used as loop counter for incrementing the

 // pointer to the byte being wriiten next

in verify process

 union char_rd_datum_union reprog_data; // storage (on stack) for the re-program data

 // enable flash writes

 FLASH_SWE = 1;

 // wait 10us

 delay (TEN_USEC);

 // copy data from program data area to reprogram data area

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 reprog_data.c[d] = p_data->c[d];

 }

 // program the data in FLASH_LINE_SIZE byte chunks

 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)

 {

 // clear reprogram required flag

 m = 0;

 // copy data from reprogram data area into the flash

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = reprog_data.c[d];

 }

 // enter program setup

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PSU2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_PSU1 = 1;

 }

 // wait 50us

 delay (FIFTY_USEC);

 // start programming pulse

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 44 of 107

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_P2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_P1 = 1;

 }

 // wait 200us

 delay (TWO_HUNDRED_USEC);

 // stop programming pulse

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_P2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_P1 = 0;

 }

 // wait 20us

 delay (TEN_USEC);

 // leave programming setup

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PSU2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_PSU1 = 0;

 }

 // wait 10us

 delay (TEN_USEC);

 // enter program verify mode

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PV2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_PV1 = 1;

 }

 // wait 4us

 delay (FOUR_USEC);

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 45 of 107

 // verify the data via read_datum size reads

 uc_v_write_address = (unsigned char *) t_address;

 ul_v_read_address = (read_datum *) t_address;

 // verify loop

 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)

 {

 // dummy write of H'FF to verify address

 *uc_v_write_address = 0xff;

 // increment this address by sizeof(read_datum) to get to next verify address

 for(ax=0; ax<sizeof(read_datum); ax++)

 {

 uc_v_write_address++;

 }

 // wait 2us

 delay (TWO_USEC);

 // read verify data

 // check with the original data

 if (*ul_v_read_address != p_data->u[d])

 {

 // 1 or more bits failed to program

 //

 // set the reprogram required flag

 m = 1;

 }

 // calculate reprog data

 reprog_data.u[d] = p_data->u[d] | ~(p_data->u[d] | *ul_v_read_address);

 // increment the pointers

 ul_v_read_address++;

 } // end of verify loop

 // exit program verify mode

 if (t_address > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_PV2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_PV1 = 0;

 }

 // wait 4us

 delay (FOUR_USEC);

 // check if flash line has successfully been programmed

 if (m == 0)

 {

 // program verified ok

 //

 // disable flash writes

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 46 of 107

 FLASH_SWE = 0;

 // end of successful programming

 return (PROG_PASS);

 }

 } // end of MAX_PROG_COUNT attempts to program

 // failed to program after MAX_PROG_COUNT attempts

 // disable flash writes

 FLASH_SWE = 0;

 // end of failed programming

 return (PROG_FAIL);

}

unsigned char erase_block_06_um (unsigned char block_num)

{

 unsigned char erase; // flag showing erase status - either BLANK or NOT_BLANK

 unsigned long attempts; // counter for erase attempts (0->MAX_ERASE_ATTEMPTS)

 read_datum *ul_v_read; // pointer for reading erase/verify data

 unsigned char *uc_v_write; // pointer for writing erase/verify dummy byte

 unsigned char inc_uc_v_write_count; // loop counter for incrementing the uc_v_write variable

 // check that block is not already erased

 erase = BLANK;

 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num + 1]; attempts++)

 {

 if (*(unsigned char *) attempts != 0xff)

 erase = NOT_BLANK;

 }

 if (erase == BLANK)

 return ERASE_PASS;

 else

 {

 // block needs erasing

 //

 // enable flash writes

 FLASH_SWE = 1;

 // wait 10us

 delay (TEN_USEC);

 // set the correct EB bit in correct EBR register

 FLASH_EBR1 = 0;

 FLASH_EBR2 = 0;

 switch (block_num)

 {

 case 0:

 FLASH_EB0 = 1;

 break;

 case 1:

 FLASH_EB1 = 1;

 break;

 case 2:

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 47 of 107

 FLASH_EB2 = 1;

 break;

 case 3:

 FLASH_EB3 = 1;

 break;

 case 4:

 FLASH_EB4 = 1; // note the change to EBR2 here!

 break;

 case 5:

 FLASH_EB5 = 1;

 break;

 case 6:

 FLASH_EB6 = 1;

 break;

 case 7:

 FLASH_EB7 = 1;

 break;

 case 8:

 FLASH_EB8 = 1;

 break;

 case 9:

 FLASH_EB9 = 1;

 break;

 case 10:

 FLASH_EB10 = 1;

 break;

 case 11:

 FLASH_EB11 = 1;

 break;

 }

 // initialise the attempts counter

 // 0 as we check for less than MAX (not <= MAX)

 attempts = 0;

 erase = NOT_BLANK;

 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == NOT_BLANK))

 {

 // increment the attempts counter

 attempts++;

 // enter erase setup mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_ESU2 = 1;

 }

 else

 {

 // FLMCR1

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 48 of 107

 FLASH_ESU1 = 1;

 }

 // wait 200us

 delay (TWO_HUNDRED_USEC);

 // transition to erase mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_E2 = 1;

 }

 else

 {

 // FLMCR1

 FLASH_E1 = 1;

 }

 // wait 5ms

 delay (FIVE_MSEC);

 // exit erase mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_E2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_E1 = 0;

 }

 // wait 10us

 delay (TEN_USEC);

 // exit erase setup mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_ESU2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_ESU1 = 0;

 }

 // wait 10 us

 delay (TEN_USEC);

 // enter erase/verify mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_EV2 = 1;

 }

 else

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 49 of 107

 {

 // FLMCR1

 FLASH_EV1 = 1;

 }

 // wait 20 us

 delay (TWENTY_USEC);

 // verify flash has been erased

 // read all the addresses in the current erase block and check that they are

 // successfully erased

 // exit this loop if a non-erased address is detected

 ul_v_read = (read_datum *) eb_block_addr [block_num];

 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = BLANK;

 while ((erase == BLANK) && (ul_v_read < (read_datum *) eb_block_addr

[block_num + 1]))

 {

 // dummy write

 *uc_v_write = 0xff;

 // wait 2 us

 delay (TWO_USEC);

 if (*ul_v_read != BLANK_VALUE)

 {

 // this address is not erased yet

 erase = NOT_BLANK;

 }

 else

 {

 // advance to next verify write address

 for (inc_uc_v_write_count=0;

inc_uc_v_write_count<sizeof(read_datum); inc_uc_v_write_count++)

 {

 uc_v_write++;

 }

 // advance to next verify read address

 ul_v_read++;

 }

 }

 // exit erase/verify mode

 if (eb_block_addr [block_num] > MAX_FLMCR1_ADDRESS)

 {

 // FLMCR2

 FLASH_EV2 = 0;

 }

 else

 {

 // FLMCR1

 FLASH_EV1 = 0;

 }

 // wait 5 us

 delay (FIVE_USEC);

 } // end of outer while loop

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 50 of 107

 // end either of erase attempts or block has been erased ok

 //

 // disable flash writes

 FLASH_SWE = 0;

 // check if block has been erased ok

 if (erase == BLANK)

 {

 // successfully erased

 return ERASE_PASS;

 }

 else

 {

 // failed to erase this block

 return ERASE_FAIL;

 }

 }

}

void init_delay_timer (void)

{

 // initialises compare match timer (CMT) channel 0

 // enable in module stop register

 //MST.MSTCR2.BIT.MSTP12 = 0;

 // stop channel 0

 CMT.CMSTR.BIT.STR0 = 0;

 // channel 0 compare match interrupt disabled

 CMT0.CMCSR.BIT.CMIE = 0;

 // system clock / 8

 CMT0.CMCSR.BIT.CKS = 0;

 // start timer

 CMT.CMSTR.BIT.STR0 = 1;

}

void delay (unsigned short d)

{

 // load compare match value into the constant register

 CMT0.CMCOR = d;

 // clear counter

 CMT0.CMCNT = 0;

 // clear compare match flag

 CMT0.CMCSR.BIT.CMF = 0;

 // loop until we have a compare match

 while (CMT0.CMCSR.BIT.CMF == 0);

}

void main (void)

{

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 51 of 107

APPENDIX C – RENESAS 0.35μM FLASH PROGRAM/PROGRAM
VERIFY & ERASE/ERASE VERIFY ROUTINES
FOR H8S/2612F

// kernel.c

//

//

// Clock speed = 18.432 MHz

// SH7047F WS uses SCI2 for boot mode

// Kernel start address - 0xffe800

#include "iodefine.h" // IO header file

// change following define depending on target

//#define SH

#define H8

#ifdef SH

typedef unsigned long read_datum; // unsigned long for SH

#define BLANK_VALUE 0xFFFFFFFF

#else

typedef unsigned short read_datum; // unsigned short for H8S

#define BLANK_VALUE 0xFFFF

#endif

// H8S2612F WS specific

#define FLASH_SWE FLASH.FLMCR1.BIT.SWE

#define FLASH_PSU FLASH.FLMCR1.BIT.PSU

#define FLASH_P FLASH.FLMCR1.BIT.P

#define FLASH_PV FLASH.FLMCR1.BIT.PV

#define FLASH_EBR1 FLASH.EBR1.BYTE

#define FLASH_EBR2 FLASH.EBR2.BYTE

#define FLASH_EB0 FLASH.EBR1.BIT.EB0

#define FLASH_EB1 FLASH.EBR1.BIT.EB1

#define FLASH_EB2 FLASH.EBR1.BIT.EB2

#define FLASH_EB3 FLASH.EBR1.BIT.EB3

#define FLASH_EB4 FLASH.EBR1.BIT.EB4

#define FLASH_EB5 FLASH.EBR1.BIT.EB5

#define FLASH_EB6 FLASH.EBR1.BIT.EB6

#define FLASH_EB7 FLASH.EBR1.BIT.EB7

#define FLASH_EB8 FLASH.EBR2.BIT.EB8

#define FLASH_EB9 FLASH.EBR2.BIT.EB9

#define FLASH_EB10 FLASH.EBR2.BIT.EB9

#define FLASH_EB11 FLASH.EBR2.BIT.EB9

#define FLASH_ESU FLASH.FLMCR1.BIT.ESU

#define FLASH_E FLASH.FLMCR1.BIT.E

#define FLASH_EV FLASH.FLMCR1.BIT.EV

#define MAX_FLASH_ADDR 0x20000

#define FLASH_LINE_SIZE 128

#define NO_OF_FLASH_BLOCKS 10

#define XTAL 18432000L

#define MAX_PROG_COUNT 1000

#define MAX_ERASE_ATTEMPTS 120

// array below should contain the start addresses of the flash memory blocks

// final array element should contain the end address of the flash memory (+1)

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 52 of 107

const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {

 0x00000000L,

 0x00000400L,

 0x00000800L,

 0x00000c00L,

 0x00001000L,

 0x00008000L,

 0x0000c000L,

 0x0000e000L,

 0x00010000L,

 0x00018000L,

 0x00020000L /* max flash address + 1 */

};

#define BLANK 1

#define NOT_BLANK 2

#define PROG_PASS 0x01

#define PROG_FAIL 0x02

#define ERASE_PASS 0x01

#define ERASE_FAIL 0x02

// delay values

// note this is xtal frequency specific

// these values are for the H8S/2612 tpu with a system clock deivider of 16

#define ONE_USEC ((1L * XTAL) / 16000000L)

#define TWO_USEC ((2L * XTAL) / 16000000L)

#define FOUR_USEC ((4L * XTAL) / 16000000L)

#define FIVE_USEC ((5L * XTAL) / 16000000L)

#define TEN_USEC ((1L * XTAL) / 1600000L)

#define TWENTY_USEC ((2L * XTAL) / 1600000L)

#define THIRTY_USEC ((3L * XTAL) / 1600000L)

#define FIFTY_USEC ((5L * XTAL) / 1600000L)

#define ONE_HUNDRED_USEC ((1L * XTAL) / 160000L)

#define TWO_HUNDRED_USEC ((2L * XTAL) / 160000L)

#define TEN_MSEC ((1L * XTAL) / 1600L)

// function prototypes

void main (void);

unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data);

void delay (unsigned short);

void init_delay_timer (void);

unsigned char erase_block_035_um (unsigned char block_num);

// variables

union char_rd_datum_union {

 unsigned char c[FLASH_LINE_SIZE];

 read_datum u[FLASH_LINE_SIZE / sizeof (read_datum)];

} prog_data;//, additional_prog_data, re_program_data;

volatile unsigned long delay_counter;

// Functions

unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data)

{

 // function to program one 128 byte flash line

 //

 // t_address is the start address for the flash line to be programmed

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 53 of 107

 //

 // data to be prgrammed should be passed to this function in the form of a

 // 'char_rd_datum_union' union pointer

 //

 // data must be written to the flash in byte units

 unsigned short n_prog_count; // loop counter for programming attempts (0-

>MAX_PROG_COUNT)

 unsigned short d; // variable used for various loop counts

 unsigned char m; // flag to indicate if re-programming required

(1=yes 0=no)

 unsigned char ax; // loop counter for incrementing

'uc_v_write_address' ptr

 unsigned char *dest_address; // pointer for writing to flash

 unsigned char *uc_v_write_address; // pointer for writing to address to be verified

 read_datum *ul_v_read_address; // pointer for reading verify address

 union char_rd_datum_union additional_prog_data, re_program_data; // storage on stack

 // enable flash writes

 FLASH_SWE = 1;

 // wait tSSWE

 delay(ONE_USEC);

 // copy data from program data area to reprogram data area

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 re_program_data.c[d] = p_data->c[d];

 }

 // program the data in FLASH_LINE_SIZE byte chunks

 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)

 {

 // clear reprogram required flag

 m = 0;

 // copy data from reprogram data area into the flash with byte access

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = re_program_data.c[d];

 }

 // apply the write pulse

 // note that this is specified as a sub-routine call in the hw manual

 // flowchart but is part of this single function here

 //

 // if code size is a problem then placing this code in a sub-routine may be beneficial

 //

 // enter program setup

 FLASH_PSU = 1;

 // wait tSPSU

 delay (FIFTY_USEC);

 // start programming pulse

 FLASH_P = 1;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 54 of 107

 if (n_prog_count < 6)

 delay (THIRTY_USEC);

 else

 delay (TWO_HUNDRED_USEC);

 // stop programming

 FLASH_P = 0;

 // wait tCP

 delay (FIVE_USEC);

 // exit program setup

 FLASH_PSU = 0;

 // wait tCPSU

 delay (FIVE_USEC);

 // verify the data via long word reads

 uc_v_write_address = (unsigned char *) t_address;

 ul_v_read_address = (read_datum *) t_address;

 // enter program verify mode

 FLASH_PV = 1;

 // wait tSPV

 delay (FOUR_USEC);

 // read data in read_datum size chunks

 // verify loop

 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)

 {

 // dummy write of H'FF to verify address

 *uc_v_write_address = 0xff;

 // wait tSPVR

 delay (TWO_USEC);

 // increment this pointer to get to next verify address

 for (ax=0; ax<sizeof(read_datum); ax++)

 uc_v_write_address++;

 // read verify data

 // check with the original data

 if (*ul_v_read_address != p_data->u[d])

 {

 // 1 or more bits failed to program

 //

 // set the reprogram required flag

 m = 1;

 }

 // check if we need to calculate additional programming data

 if (n_prog_count < 6)

 {

 // calculate additional programming data

 // simple ORing of the reprog and verify data

 additional_prog_data.u[d] = re_program_data.u[d] | *ul_v_read_address;

 }

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 55 of 107

 // calculate reprog data

 re_program_data.u[d] = p_data->u[d] | ~(p_data->u[d] | *ul_v_read_address);

 // increment the verify read pointer

 ul_v_read_address++;

 } // end of verify loop

 // exit program verify mode

 FLASH_PV = 0;

 // wait tCPV

 delay (TWO_USEC);

 // check if additional programming is required

 if (n_prog_count < 6)

 {

 // perform additional programming

 //

 // copy data from additional programming area to flash memory

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = additional_prog_data.c[d];

 }

 // enter program setup

 FLASH_PSU = 1;

 // wait SPSU

 delay (FIFTY_USEC);

 // start programming pulse

 FLASH_P = 1;

 // wait tSP

 delay (TEN_USEC);

 // stop programming

 FLASH_P = 0;

 // wait

 delay (FIVE_USEC);

 // exit program setup

 FLASH_PSU = 0;

 // wait tCPSU

 delay (FIVE_USEC);

 }

 // check if flash line has successfully been programmed

 if (m == 0)

 {

 // program verified ok

 //

 // disable flash writes

 FLASH_SWE = 0;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 56 of 107

 // wait tCSWE

 delay (ONE_HUNDRED_USEC);

 // end of successful programming

 return (PROG_PASS);

 }

 } // end of for loop (n<MAX_PROG_COUNT) at this point we have made MAX_PROG_COUNT prog

attempts

 // failed to program after MAX_PROG_COUNT attempts

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE

 delay (ONE_HUNDRED_USEC);

 // end of failed programming

 return (PROG_FAIL);

}

unsigned char erase_block_035_um (unsigned char block_num)

{

 unsigned char erase; // flag showing erase status - BLANK or NOT_BLANK

 unsigned char ax; // loop counter

 unsigned long attempts; // loop counter for erase attempts (0-

>MAX_ERASE_ATTEMPTS)

 read_datum *ul_v_read; // pointer for reading verify data

 unsigned char *uc_v_write; // pointer for writing to verify data area

 // check that block is not already erased

 erase = BLANK;

 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num + 1]; attempts++)

 {

 if (*(unsigned char *) attempts != 0xff)

 erase = NOT_BLANK;

 }

 if (erase == BLANK)

 return ERASE_PASS;

 else

 {

 // block needs erasing

 //

 // enable flash writes

 FLASH_SWE = 1;

 // wait tSSWE

 delay (ONE_USEC);

 // set the correct EB bit in correct EBR register

 // this is usually device specific

 FLASH_EBR1 = 0;

 FLASH_EBR2 = 0;

 switch (block_num)

 {

 case 0:

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 57 of 107

 FLASH_EB0 = 1;

 break;

 case 1:

 FLASH_EB1 = 1;

 break;

 case 2:

 FLASH_EB2 = 1;

 break;

 case 3:

 FLASH_EB3 = 1;

 break;

 case 4:

 FLASH_EB4 = 1;

 break;

 case 5:

 FLASH_EB5 = 1;

 break;

 case 6:

 FLASH_EB6 = 1;

 break;

 case 7:

 FLASH_EB7 = 1;

 break;

 case 8:

 FLASH_EB8 = 1; // note the change to EBR2 here!

 break;

 case 9:

 FLASH_EB9 = 1;

 break;

 case 10:

 FLASH_EB10 = 1;

 break;

 case 11:

 FLASH_EB11 = 1;

 break;

 }

 // initialise the attempts counter

 attempts = 0;

 erase = NOT_BLANK;

 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == NOT_BLANK))

 {

 // increment the attempts counter

 attempts++;

 // enter erase mode

 FLASH_ESU = 1;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 58 of 107

 // wait tSESU (100 us)

 delay (ONE_HUNDRED_USEC);

 // start erasing

 FLASH_E = 1;

 // wait tSE

 delay (TEN_MSEC);

 // stop erasing

 FLASH_E = 0;

 // wait tCE

 delay (TEN_USEC);

 // exit erase mode

 FLASH_ESU = 0;

 // wait tCESU

 delay (TEN_USEC);

 // enter erase verify mode

 FLASH_EV = 1;

 // wait tSEV

 delay (TWENTY_USEC);

 // verify flash has been erased

 ul_v_read = (read_datum *) eb_block_addr [block_num];

 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = BLANK;

 while ((erase == BLANK) && (ul_v_read < (read_datum *) eb_block_addr

[block_num + 1]))

 {

 // this loop will exit either when one long word is not erased

 // or all addresses have been read as erased

 //

 // dummy write

 *uc_v_write = 0xff;

 // wait tSEVR

 delay (TWO_USEC);

 if (*ul_v_read != BLANK_VALUE)

 {

 // this word is not erased yet

 erase = NOT_BLANK;

 }

 else

 {

 // advance to the next byte write address

 for (ax=0; ax<sizeof(read_datum); ax++)

 uc_v_write++;

 // advance to the next verify read address

 ul_v_read++;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 59 of 107

 }

 }

 // exit erase verify mode

 FLASH_EV = 0;

 // wait tCEV

 delay (FOUR_USEC);

 } // end of outer while loop

 // end either of erase attempts or block has been erased ok

 //

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE

 delay (ONE_HUNDRED_USEC);

 // check if block has been erased ok

 if (erase == BLANK)

 {

 // successfully erased

 return ERASE_PASS;

 }

 else

 {

 // failed to erase this block

 return ERASE_FAIL;

 }

 }

}

void init_delay_timer (void)

{

 TPU1.TCR.BIT.CCLR = 1; // TCNT cleared by TGRA C/M, I/C

 TPU1.TCR.BIT.CKEG = 0; // Count at rising edge

 TPU1.TCR.BIT.TPSC = 2; // Timer pre-scaler = clk / 16

 TPU1.TMDR.BIT.MD = 0; // Normal operation

 TPU1.TIOR.BIT.IOB = 0; // Output disabled

 TPU1.TIOR.BIT.IOA = 0; // Output disabled

 TPU1.TIER.BIT.TTGE = 0; // ADC start request disabled

 TPU1.TIER.BIT.TCIEU = 0; // Underflow interrupt request disabled

 TPU1.TIER.BIT.TCIEV = 0; // Overflow interrupt request disabled

 TPU1.TIER.BIT.TGIEB = 0; // TGRB interrupt request disabled

 TPU1.TIER.BIT.TGIEA = 0; // TGRA interrupt request enabled

 TPU1.TCNT = 0;

 TPU1.TGRA = 0;

 TPU1.TGRA = 0;

 TPU1.TGRB = 0;

 TPU1.TGRB = 0;

}

void delay (unsigned short d)

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 60 of 107

{

 TPU1.TSR.BIT.TGFA = 0;

 TPU1.TGRA = d; // set compare value

 TPU1.TCNT = 0; // clear TCNT to 0

 TPU.TSTR.BIT.CST1 = 1; // start timer

 while(TPU1.TSR.BIT.TGFA == 0); // wait until compare value is met

 TPU.TSTR.BIT.CST1 = 0; // stop timer

}

void main (void)

{

 init_delay_timer();

 while(1)

 {

 }

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 61 of 107

APPENDIX D – RENESAS 0.35μM FLASH PROGRAM/PROGRAM
VERIFY & ERASE/ERASE VERIFY ROUTINES
FOR SH7047F

// kernel.c

//

//

// Clock speed = 44.236MHz

#include "io7047f_ws.h" // IO header file

// change following define depending on target

#define SH

//#define H8

#ifdef SH

typedef unsigned long read_datum; // unsigned long for SH

#define BLANK_VALUE 0xFFFFFFFF

#else

typedef unsigned short read_datum; // unsigned short for H8S

#define BLANK_VALUE 0xFFFF

#endif

#define FLASH_SWE FLASH.FLMCR1.BIT.SWE

#define FLASH_PSU FLASH.FLMCR1.BIT.PSU

#define FLASH_P FLASH.FLMCR1.BIT.P

#define FLASH_PV FLASH.FLMCR1.BIT.PV

#define FLASH_EBR1 FLASH.EBR1.BYTE

#define FLASH_EBR2 FLASH.EBR2.BYTE

#define FLASH_EB0 FLASH.EBR1.BIT.EB0

#define FLASH_EB1 FLASH.EBR1.BIT.EB1

#define FLASH_EB2 FLASH.EBR1.BIT.EB2

#define FLASH_EB3 FLASH.EBR1.BIT.EB3

#define FLASH_EB4 FLASH.EBR1.BIT.EB4

#define FLASH_EB5 FLASH.EBR1.BIT.EB5

#define FLASH_EB6 FLASH.EBR1.BIT.EB6

#define FLASH_EB7 FLASH.EBR1.BIT.EB7

#define FLASH_EB8 FLASH.EBR2.BIT.EB8

#define FLASH_EB9 FLASH.EBR2.BIT.EB9

#define FLASH_EB10 FLASH.EBR2.BIT.EB10

#define FLASH_EB11 FLASH.EBR2.BIT.EB11

#define FLASH_ESU FLASH.FLMCR1.BIT.ESU

#define FLASH_E FLASH.FLMCR1.BIT.E

#define FLASH_EV FLASH.FLMCR1.BIT.EV

// SH7047F WS specific

#define MAX_FLASH_ADDR 0x40000

#define FLASH_LINE_SIZE 128

#define NO_OF_FLASH_BLOCKS 12

//#define XTAL 36864000L

#define XTAL 44236800L

#define MAX_PROG_COUNT 1000

//#define BAUD_115200 9

#define BAUD_115200 11

#define MAX_ERASE_ATTEMPTS 120

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 62 of 107

// array below should contain the start addresses of the flash memory blocks

// final array element should contain the end address of the flash memory (+1)

const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {

 0x00000000L,

 0x00001000L,

 0x00002000L,

 0x00003000L,

 0x00004000L,

 0x00005000L,

 0x00006000L,

 0x00007000L,

 0x00008000L,

 0x00010000L,

 0x00020000L,

 0x00030000L,

 0x00040000L /* max flash address + 1 */

};

#define BLANK 1

#define NOT_BLANK 2

#define PROG_PASS 0x01

#define PROG_FAIL 0x02

#define ERASE_PASS 0x01

#define ERASE_FAIL 0x02

// delay values

// note this is xtal frequency specific

// these values are for the SH7047F CMT with a system clock deivider of 8

#define ONE_USEC ((1L * XTAL) / 8000000L)

#define TWO_USEC ((2L * XTAL) / 8000000L)

#define FOUR_USEC ((4L * XTAL) / 8000000L)

#define FIVE_USEC ((5L * XTAL) / 8000000L)

#define TEN_USEC ((1L * XTAL) / 800000L)

#define TWENTY_USEC ((2L * XTAL) / 800000L)

#define THIRTY_USEC ((3L * XTAL) / 800000L)

#define FIFTY_USEC ((5L * XTAL) / 800000L)

#define ONE_HUNDRED_USEC ((1L * XTAL) / 80000L)

#define TWO_HUNDRED_USEC ((2L * XTAL) / 80000L)

#define TEN_MSEC ((1L * XTAL) / 800L)

// function prototypes

void main (void);

unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data);

void delay (unsigned short);

void init_delay_timer (void);

unsigned char erase_block_035_um (unsigned char block_num);

// variables

volatile unsigned long delay_counter;

union char_rd_datum_union {

 unsigned char c[FLASH_LINE_SIZE];

 read_datum u[FLASH_LINE_SIZE / sizeof (read_datum)];

} prog_data;

// Functions

unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data)

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 63 of 107

{

 // function to program one 128 byte flash line

 //

 // t_address is the start address for the flash line to be programmed

 //

 // data to be prgrammed should be passed to this function in the form of a

 // 'char_rd_datum_union' union pointer

 //

 // data must be written to the flash in byte units

 unsigned short n_prog_count; // loop counter for programming attempts (0->MAX_PROG_COUNT)

 unsigned short d; // variable used for various loop counts

 unsigned char m; // flag to indicate if re-programming required (1=yes 0=no)

 unsigned char ax; // loop counter for incrementing 'uc_v_write_address' ptr

 unsigned char *dest_address; // pointer for writing to flash

 unsigned char *uc_v_write_address; // pointer for writing to address to be verified

 read_datum *ul_v_read_address; // pointer for reading verify address

 union char_rd_datum_union additional_prog_data, re_program_data; // storage on stack

 // enable flash writes

 FLASH_SWE = 1;

 // wait tSSWE

 delay(ONE_USEC);

 // copy data from program data area to reprogram data area

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 re_program_data.c[d] = p_data->c[d];

 }

 // program the data in FLASH_LINE_SIZE byte chunks

 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)

 {

 // clear reprogram required flag

 m = 0;

 // copy data from reprogram data area into the flash with byte access

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = re_program_data.c[d];

 }

 // apply the write pulse

 // note that this is specified as a sub-routine call in the hw manual

 // flowchart but is part of this single function here

 //

 // if code size is a problem then placing this code in a sub-routine may be beneficial

 //

 // enter program setup

 FLASH_PSU = 1;

 // wait tSPSU

 delay (FIFTY_USEC);

 // start programming pulse

 FLASH_P = 1;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 64 of 107

 if (n_prog_count < 6)

 delay (THIRTY_USEC);

 else

 delay (TWO_HUNDRED_USEC);

 // stop programming

 FLASH_P = 0;

 // wait tCP

 delay (FIVE_USEC);

 // exit program setup

 FLASH_PSU = 0;

 // wait tCPSU

 delay (FIVE_USEC);

 // verify the data via long word reads

 uc_v_write_address = (unsigned char *) t_address;

 ul_v_read_address = (read_datum *) t_address;

 // enter program verify mode

 FLASH_PV = 1;

 // wait tSPV

 delay (FOUR_USEC);

 // read data in read_datum size chunks

 // verify loop

 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)

 {

 // dummy write of H'FF to verify address

 *uc_v_write_address = 0xff;

 // wait tSPVR

 delay (TWO_USEC);

 // increment this pointer to get to next verify address

 for (ax=0; ax<sizeof(read_datum); ax++)

 uc_v_write_address++;

 // read verify data

 // check with the original data

 if (*ul_v_read_address != p_data->u[d])

 {

 // 1 or more bits failed to program

 //

 // set the reprogram required flag

 m = 1;

 }

 // check if we need to calculate additional programming data

 if (n_prog_count < 6)

 {

 // calculate additional programming data

 // simple ORing of the reprog and verify data

 additional_prog_data.u[d] = re_program_data.u[d] | *ul_v_read_address;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 65 of 107

 }

 // calculate reprog data

 re_program_data.u[d] = p_data->u[d] | ~(p_data->u[d] | *ul_v_read_address);

 // increment the verify read pointer

 ul_v_read_address++;

 } // end of verify loop

 // exit program verify mode

 FLASH_PV = 0;

 // wait tCPV

 delay (TWO_USEC);

 // check if additional programming is required

 if (n_prog_count < 6)

 {

 // perform additional programming

 //

 // copy data from additional programming area to flash memory

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = additional_prog_data.c[d];

 }

 // enter program setup

 FLASH_PSU = 1;

 // wait SPSU

 delay (FIFTY_USEC);

 // start programming pulse

 FLASH_P = 1;

 // wait tSP

 delay (TEN_USEC);

 // stop programming

 FLASH_P = 0;

 // wait

 delay (FIVE_USEC);

 // exit program setup

 FLASH_PSU = 0;

 // wait tCPSU

 delay (FIVE_USEC);

 }

 // check if flash line has successfully been programmed

 if (m == 0)

 {

 // program verified ok

 //

 // disable flash writes

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 66 of 107

 FLASH_SWE = 0;

 // wait tCSWE

 delay (ONE_HUNDRED_USEC);

 // end of successful programming

 return (PROG_PASS);

 }

} // end of for loop (n<MAX_PROG_COUNT) at this point we have made MAX_PROG_COUNT prog attempts

 // failed to program after MAX_PROG_COUNT attempts

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE

 delay (ONE_HUNDRED_USEC);

 // end of failed programming

 return (PROG_FAIL);

}

unsigned char erase_block_035_um (unsigned char block_num)

{

 unsigned char erase; // flag showing erase status - BLANK or NOT_BLANK

 unsigned char ax; // loop counter

 unsigned long attempts; // loop counter for erase attempts (0->MAX_ERASE_ATTEMPTS)

 read_datum *ul_v_read; // pointer for reading verify data

 unsigned char *uc_v_write; // pointer for writing to verify data area

 // check that block is not already erased

 erase = BLANK;

 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num + 1]; attempts++)

 {

 if (*(unsigned char *) attempts != 0xff)

 erase = NOT_BLANK;

 }

 if (erase == BLANK)

 return ERASE_PASS;

 else

 {

 // block needs erasing

 //

 // enable flash writes

 FLASH_SWE = 1;

 // wait tSSWE

 delay (ONE_USEC);

 // set the correct EB bit in correct EBR register

 // this is usually device specific

 FLASH_EBR1 = 0;

 FLASH_EBR2 = 0;

 switch (block_num)

 {

 case 0:

 FLASH_EB0 = 1;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 67 of 107

 break;

 case 1:

 FLASH_EB1 = 1;

 break;

 case 2:

 FLASH_EB2 = 1;

 break;

 case 3:

 FLASH_EB3 = 1;

 break;

 case 4:

 FLASH_EB4 = 1;

 break;

 case 5:

 FLASH_EB5 = 1;

 break;

 case 6:

 FLASH_EB6 = 1;

 break;

 case 7:

 FLASH_EB7 = 1;

 break;

 case 8:

 FLASH_EB8 = 1; // note the change to EBR2 here!

 break;

 case 9:

 FLASH_EB9 = 1;

 break;

 case 10:

 FLASH_EB10 = 1;

 break;

 case 11:

 FLASH_EB11 = 1;

 break;

 }

 // initialise the attempts counter

 attempts = 0;

 erase = NOT_BLANK;

 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == NOT_BLANK))

 {

 // increment the attempts counter

 attempts++;

 // enter erase mode

 FLASH_ESU = 1;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 68 of 107

 // wait tSESU (100 us)

 delay (ONE_HUNDRED_USEC);

 // start erasing

 FLASH_E = 1;

 // wait tSE

 delay (TEN_MSEC);

 // stop erasing

 FLASH_E = 0;

 // wait tCE

 delay (TEN_USEC);

 // exit erase mode

 FLASH_ESU = 0;

 // wait tCESU

 delay (TEN_USEC);

 // enter erase verify mode

 FLASH_EV = 1;

 // wait tSEV

 delay (TWENTY_USEC);

 // verify flash has been erased

 ul_v_read = (read_datum *) eb_block_addr [block_num];

 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = BLANK;

 while ((erase == BLANK) && (ul_v_read < (read_datum *) eb_block_addr

[block_num + 1]))

 {

 // this loop will exit either when one long word is not erased

 // or all addresses have been read as erased

 //

 // dummy write

 *uc_v_write = 0xff;

 // wait tSEVR

 delay (TWO_USEC);

 if (*ul_v_read != BLANK_VALUE)

 {

 // this word is not erased yet

 erase = NOT_BLANK;

 }

 else

 {

 // advance to the next byte write address

 for (ax=0; ax<sizeof(read_datum); ax++)

 uc_v_write++;

 // advance to the next verify read address

 ul_v_read++;

 }

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 69 of 107

 }

 // exit erase verify mode

 FLASH_EV = 0;

 // wait tCEV

 delay (FOUR_USEC);

 } // end of outer while loop

 // end either of erase attempts or block has been erased ok

 //

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE

 delay (ONE_HUNDRED_USEC);

 // check if block has been erased ok

 if (erase == BLANK)

 {

 // successfully erased

 return ERASE_PASS;

 }

 else

 {

 // failed to erase this block

 return ERASE_FAIL;

 }

 }

}

void init_delay_timer (void)

{

 // initialises compare match timer (CMT) channel 0

 // enable in module stop register

 MST.MSTCR2.BIT.MSTP12 = 0;

 // stop channel 0

 CMT.CMSTR.BIT.STR = 0;

 // channel 0 compare match interrupt disabled

 CMT.CMCSR_0.BIT.CMIE = 0;

 // system clock / 8

 CMT.CMCSR_0.BIT.CKS = 0;

 // start timer

 CMT.CMSTR.BIT.STR = 1;

}

void delay (unsigned short d)

{

 // load compare match value into the constant register

 CMT.CMCOR_0 = d;

 // clear counter

 CMT.CMCNT_0 = 0;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 70 of 107

 // clear compare match flag

 CMT.CMCSR_0.BIT.CMF = 0;

 // loop until we have a compare match

 while (CMT.CMCSR_0.BIT.CMF == 0);

}

void main (void)

{

 init_delay_timer();

 while(1)

 {

 }

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 71 of 107

APPENDIX E – RENESAS 0.35μM FLASH PROGRAM/PROGRAM
VERIFY & ERASE/ERASE VERIFY ROUTINES
FOR H8/3664F MICROCONTROLLER

// Renesas H8/3664F example flash programming and erasing routines

//

// kernel.c

//

// Clock speed = 7.3728MHz

// H8/3664F uses SCI0 for boot mode

// Kernel start address - 0xF780

#include "iodefine.h" // IO header file

#include <machine.h>

// H8/3664F specific

#define FLASH_SWE FLASH.FLMCR1.BIT.SWE

#define FLASH_PSU FLASH.FLMCR1.BIT.PSU

#define FLASH_P FLASH.FLMCR1.BIT.P

#define FLASH_PV FLASH.FLMCR1.BIT.PV

#define FLASH_EBR1 FLASH.EBR1.BYTE

#define FLASH_ESU FLASH.FLMCR1.BIT.ESU

#define FLASH_E FLASH.FLMCR1.BIT.E

#define FLASH_EV FLASH.FLMCR1.BIT.EV

#define FLASH_FENR FLASH.FENR.BIT.FLSHE

// H8/3664F specific

#define MAX_FLASH_ADDR 0x8000

#define FLASH_LINE_SIZE 128

#define NO_OF_FLASH_BLOCKS 5

#define XTAL 7372800L

#define MAX_PROG_COUNT 1000

#define MAX_ERASE_ATTEMPTS 100

#define BLANK_VALUE 0xFFFF // 0xFFFFFFFF for SH, 0xFFFF for H8S/300H

// array below should contain the start addresses of the flash memory blocks

// final array element should contain the end address of the flash memory (+1)

const unsigned long eb_block_addr [NO_OF_FLASH_BLOCKS + 1] = {

 0x00000000L,

 0x00000400L,

 0x00000800L,

 0x00000C00L,

 0x00001000L,

 0x00008000L /* max flash address + 1 */

};

#define BLANK 1

#define NOT_BLANK 2

#define PROG_PASS 0x01

#define PROG_FAIL 0x02

#define ERASE_PASS 0x01

#define ERASE_FAIL 0x02

// delay values

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 72 of 107

// note this is xtal frequency specific

// these values are for the H8/3664F Timer W with a clock divider of 8

#define ONE_USEC ((1L * XTAL) / 8000000L)

#define TWO_USEC ((2L * XTAL) / 8000000L)

#define FOUR_USEC ((4L * XTAL) / 8000000L)

#define FIVE_USEC ((5L * XTAL) / 8000000L)

#define TEN_USEC ((1L * XTAL) / 800000L)

#define TWENTY_USEC ((2L * XTAL) / 800000L)

#define THIRTY_USEC ((3L * XTAL) / 800000L)

#define FIFTY_USEC ((5L * XTAL) / 800000L)

#define ONE_HUNDRED_USEC ((1L * XTAL) / 80000L)

#define TWO_HUNDRED_USEC ((2L * XTAL) / 80000L)

#define TEN_MSEC ((1L * XTAL) / 800L)

// typedef for reading the flash memory

// should be the size of the data bus connection to the flash memory

typedef unsigned short read_datum;

// function prototypes

unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data);

void delay (unsigned short);

void init_delay_timer (void);

unsigned char erase_block (unsigned char block_num);

void apply_write_pulse(unsigned short prog_pulse);

// variables

volatile unsigned long delay_counter;

union char_rd_datum_union {

 unsigned char c[FLASH_LINE_SIZE];

 read_datum u[FLASH_LINE_SIZE / sizeof (read_datum)];

} prog_data;

// Functions

unsigned char prog_flash_line_128 (unsigned long t_address, union char_rd_datum_union *p_data)

{

 // Function to program one 128 byte flash line

 //

 // t_address is the start address for the flash line to be programmed and must be

 // on a flash line boundary e.g. multiple of 128 (this is not checked and so must

 // be ensured by the caller)

 //

 // data to be programmed should be passed to this function in the form of a

 // 'char_rd_datum_union' union pointer

 //

 // returns:

 // PROG_PASS if programming is successful

 // PROG_FAIL if programming is unsucessful

 //

 // data must be written to the flash in byte units

 //

 // Please note that for the H8/3664F during the dummy write, setting the PSU

 // and P bits no RTS intructions are permitted. Therefore no functions calls

 // are allowed.

 // For this reason at these points in this function the code from the 'delay'

 // function has been inlined to eliminate any RTS instructions.

 // For further information on this see the Flash ROM section of the H8/3664F

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 73 of 107

 // hardware manual version 4 or later.

 // Note: This information has been omitted in hardware manuals prior to version 4.

 // Please always ensure that you are using the very latest hardware manual.

 // Hardware manuals can be downloaded from the Internet by following the 'products'

 // link at:-

 // http://www.eu.renesas.com

 unsigned short n_prog_count; // loop counter for programming attempts (0 ->

MAX_PROG_COUNT)

 unsigned short d; // variable used for various loop counts

 unsigned short ax; // loop counter for incrementing

'uc_v_write_address'

 // pointer (an unsigned short

produces more efficient code than unsigned char in this case)

 unsigned char m; // flag to indicate if re-programming is

required (1=yes, 0=no)

 unsigned char *dest_address; // pointer for writing to flash

 unsigned char *uc_v_write_address; // pointer for writing to address to be verified

 read_datum *ul_v_read_address; // pointer for reading verify address

 union char_rd_datum_union additional_prog_data, re_program_data;

 // storage on stack for

intermediate programming data

// enable access to the flash registers

 FLASH_FENR = 1;

// enable flash writes

 FLASH_SWE = 1;

 // wait tSSWE (1 us)

 delay(ONE_USEC);

 // copy data from program data area to reprogram data area

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 re_program_data.c[d] = p_data->c[d];

 }

 // program the data in FLASH_LINE_SIZE (128) byte chunks

 for (n_prog_count=0; n_prog_count<MAX_PROG_COUNT; n_prog_count++)

 {

 // clear reprogram required flag

 m = 0;

 // copy data from reprogram data area into the flash with byte wide access

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = re_program_data.c[d];

 }

 // to minimise code space the code to apply a write pulse has been

 // placed into a separate function called 'apply_write_pulse'

 if (n_prog_count < 6)

 {

 apply_write_pulse(THIRTY_USEC);

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 74 of 107

 }

 else

 {

 apply_write_pulse(TWO_HUNDRED_USEC);

 }

 // verify the data via word wide reads

 uc_v_write_address = (unsigned char *) t_address;

 ul_v_read_address = (read_datum *) t_address;

 // enter program verify mode

 FLASH_PV = 1;

 // wait tSPV (4 us)

 delay (FOUR_USEC);

 // read data in read_datum size chunks

 // verify loop

 for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)

 {

 // dummy write of H'FF to verify address

 *uc_v_write_address = 0xff;

 // see note at beginning of function

 // no RTS allowed here so 'apply_write_pulse' function inlined

 TMRW.GRA = TWO_USEC;

 TMRW.TCNT = 0;

 TMRW.TSR.BIT.IMFA = 0;

 TMRW.TMR.BIT.CTS = 1;

 while (TMRW.TSR.BIT.IMFA == 0);

 TMRW.TMR.BIT.CTS = 0;

 // increment this pointer to get to next verify address

 for (ax=0; ax<sizeof(read_datum); ax++)

 uc_v_write_address++;

 // read verify data

 // check with the original data

 if (*ul_v_read_address != p_data->u[d])

 {

 // 1 or more bits failed to program

 //

 // set the reprogram required flag

 m = 1;

 }

 // check if we need to calculate additional programming data

 if (n_prog_count < 6)

 {

 // calculate additional programming data

 // simple ORing of the reprog and verify data

 additional_prog_data.u[d] = re_program_data.u[d] | *ul_v_read_address;

 }

 // calculate reprog data

 re_program_data.u[d] = p_data->u[d] | ~(p_data->u[d] | *ul_v_read_address);

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 75 of 107

 // increment the verify read pointer

 ul_v_read_address++;

 } // end of verify loop

 // exit program verify mode

 FLASH_PV = 0;

 // wait tCPV (2 us)

 delay (TWO_USEC);

 // check if additional programming is required

 if (n_prog_count < 6)

 {

 // perform additional programming

 //

 // copy data from additional programming area to flash memory

 dest_address = (unsigned char *) t_address;

 for (d=0; d<FLASH_LINE_SIZE; d++)

 {

 *dest_address++ = additional_prog_data.c[d];

 }

 apply_write_pulse(TEN_USEC);

 }

 // check if flash line has successfully been programmed

 if (m == 0)

 {

 // program verified ok

 //

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE (100 us)

 delay (ONE_HUNDRED_USEC);

 // end of successful programming

 // disable access to the flash registers

 FLASH_FENR = 0;

 return (PROG_PASS);

 }

 } // end of for loop (n<MAX_PROG_COUNT) at this point we have made MAX_PROG_COUNT

programming attempts

 // failed to program after MAX_PROG_COUNT attempts

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE (100 us)

 delay (ONE_HUNDRED_USEC);

 // end of failed programming

 // disable access to the flash registers

 FLASH_FENR = 0;

 return (PROG_FAIL);

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 76 of 107

}

void apply_write_pulse(unsigned short prog_pulse)

{

 // this function applies the programming pulse to the flash memory

 //

 // 'prog_pulse' contains the value to be loaded into the timer general register

 // caller must ensure that this value will provide the correct length programming

 // pulse for the timer and its clock divider

 //

 // under programming can result in either a failure to program or a reduced

 // data retention period

 //

 // over programming can permanently damage the flash cells

 //

 // Please note that for the H8/3664F during the dummy write, setting the PSU

 // and P bits no RTS intructions are permitted. Therefore no functions calls

 // are allowed.

 // For this reason at these points in this function the code from the 'delay'

 // function has been inlined to eliminate any RTS instructions.

 // For further information on this see the Flash ROM section of the H8/3664F

 // hardware manual version 4 or later.

 // Note: This information has been omitted in hardware manuals prior to version 4.

 // Please always ensure that you are using the very latest hardware manual.

 // Hardware manuals can be downloaded from the Internet by following the 'products'

 // link at:-

 // http://www.eu.renesas.com

 // enter program setup mode

 FLASH_PSU = 1;

 // see note at beginning of function

 // no RTS allowed here so 'apply_write_pulse' function inlined

 TMRW.GRA = FIFTY_USEC;

 TMRW.TCNT = 0;

 TMRW.TSR.BIT.IMFA = 0;

 TMRW.TMR.BIT.CTS = 1;

 while (TMRW.TSR.BIT.IMFA == 0);

 TMRW.TMR.BIT.CTS = 0;

 // start programming pulse

 FLASH_P = 1;

 // see note at beginning of function

 // no RTS allowed here so 'apply_write_pulse' function inlined

 TMRW.GRA = prog_pulse;

 TMRW.TCNT = 0;

 TMRW.TSR.BIT.IMFA = 0;

 TMRW.TMR.BIT.CTS = 1;

 while (TMRW.TSR.BIT.IMFA == 0);

 TMRW.TMR.BIT.CTS = 0;

 // stop programming

 FLASH_P = 0;

 // wait tCP (5 us)

 delay (FIVE_USEC);

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 77 of 107

 // exit program setup mode

 FLASH_PSU = 0;

 // wait tCPSU (5 us)

 delay (FIVE_USEC);

}

unsigned char erase_block (unsigned char block_num)

{

 // This function attempts to erase the flash memory block specified by

 // 'block_num' (0 -> NO_OF_FLASH_BLOCKS)

 //

 // returns:

 // ERASE_PASS is attempt is successful

 // ERASE_FAIL is attempt fails

 //

 // Please note that for the H8/3664F during the dummy write, setting the PSU

 // and P bits no RTS intructions are permitted. Therefore no functions calls

 // are allowed.

 // For this reason at these points in this function the code from the 'delay'

 // function has been inlined to eliminate any RTS instructions.

 // For further information on this see the Flash ROM section of the H8/3664F

 // hardware manual version 4 or later.

 // Note: This information has been omitted in hardware manuals prior to version 4.

 // Please always ensure that you are using the very latest hardware manual.

 // Hardware manuals can be downloaded from the Internet by following the 'products'

 // link at:-

 // http://www.eu.renesas.com

 unsigned char erase, ax, x;

 unsigned long attempts;

 read_datum *ul_v_read;

 unsigned char *uc_v_write;

 // check that block is not already erased

 erase = BLANK;

 for (attempts=eb_block_addr[block_num]; attempts<eb_block_addr[block_num + 1]; attempts++)

 {

 if (*(unsigned char *) attempts != 0xff)

 erase = NOT_BLANK;

 }

 if (erase == BLANK)

 return ERASE_PASS;

 else

 {

 // block needs erasing

 //

 // enable flash writes

 FLASH_SWE = 1;

 // wait tSSWE (1us)

 delay (ONE_USEC);

 // initialise the attempts counter

 // 0 as we check for less than MAX (not <= MAX)

 attempts = 0;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 78 of 107

 // set the correct EB bit in correct EBR register

 FLASH_EBR1 = 1<<block_num;

 erase = 0;

 while ((attempts < MAX_ERASE_ATTEMPTS) && (erase == 0))

 {

 // increment the attempts counter

 attempts++;

 // enter erase setup mode

 FLASH_ESU = 1;

 // wait tSESU (100 us)

 delay (ONE_HUNDRED_USEC);

 // start erasing

 FLASH_E = 1;

 // wait tSE (10 ms)

 delay (TEN_MSEC);

 // stop erasing

 FLASH_E = 0;

 // wait tCE (10 us)

 delay (TEN_USEC);

 // exit erase setup mode

 FLASH_ESU = 0;

 // wait tCESU (10 us)

 delay (TEN_USEC);

 // enter erase verify mode

 FLASH_EV = 1;

 // wait tSEV (20 us)

 delay (TWENTY_USEC);

 // verify flash has been erased

 // setup the pointers for reading and writing the flash

 ul_v_read = (read_datum *) eb_block_addr [block_num];

 uc_v_write = (unsigned char *) eb_block_addr [block_num];

 erase = 1;

 while ((erase == 1) && (ul_v_read < (read_datum *) eb_block_addr [block_num +

1]))

 {

 // this loop will exit either when one word is not erased ('erase'

becomes 0)

 // or all addresses have been read as erased ('erase' stays as 1)

 // if 'erase' stays as 1 the outer while loop will exit as the block has

been erased

 //

 // dummy write

 *uc_v_write = 0xff;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 79 of 107

 // see note at beginning of function

 // no RTS allowed here so 'apply_write_pulse' function inlined

 TMRW.GRA = TWO_USEC;

 TMRW.TCNT = 0;

 TMRW.TSR.BIT.IMFA = 0;

 TMRW.TMR.BIT.CTS = 1;

 while (TMRW.TSR.BIT.IMFA == 0);

 TMRW.TMR.BIT.CTS = 0;

 if (*ul_v_read != BLANK_VALUE)

 {

 // this word is not erased yet

 erase = 0;

 }

 else

 {

 // advance to the next byte write address

 for (ax=0; ax<sizeof(read_datum); ax++)

 uc_v_write++;

 // advance to the next verify read address

 ul_v_read++;

 }

 }

 // exit erase verify mode

 FLASH_EV = 0;

 // wait tCEV (4 us)

 delay (FOUR_USEC);

 } // end of outer while loop

 // end either of erase attempts or block has been erased ok

 //

 // disable flash writes

 FLASH_SWE = 0;

 // wait tCSWE (100 us)

 delay (ONE_HUNDRED_USEC);

 // check if block has been erased ok

 if (erase == 1)

 {

 // successfully erased

 // disable access to the flash registers

 FLASH_FENR = 0;

 return ERASE_PASS;

 }

 else

 {

 // failed to erase this block

 // disable access to the flash registers

 FLASH_FENR = 0;

 return ERASE_FAIL;

 }

 }

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 80 of 107

void init_delay_timer (void)

{

 // Stop Timer Count

 TMRW.TMR.BIT.CTS = 0;

 // Compare match A interrupt disabled

 TMRW.TIER.BIT.IMIEA = 0;

 // System clock / 8

 TMRW.TCR.BIT.CKS = 3;

}

void delay (unsigned short d)

{

 // load compare match value into the constant register A

 TMRW.GRA = d;

 // Clear counter

 TMRW.TCNT = 0;

 // Clear compare match flag

 TMRW.TSR.BIT.IMFA = 0;

 // Start the timerW

 TMRW.TMR.BIT.CTS = 1;

 // Loop until we have a compare match

 while (TMRW.TSR.BIT.IMFA == 0);

 // Stop the TimerW

 TMRW.TMR.BIT.CTS = 0;

}

void main(void)

{

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 81 of 107

APPENDIX F – RENESAS 0.18μM FLASH PROGRAMING & ERASING
ROUTINES FOR H8/3069F

Flash.h

// flash.h

#ifndef _FLASH_H

#define _FLASH_H

#define H83069F

//#define INUSERBOOTMODE

#define FLASH_NO_ERROR 0x0000

#define FLASH_PROG_ERASE_DOWNLOAD_ERROR 0x0100

#define FLASH_INIT_ERROR 0x0200

#define FLASH_PROGRAMMING_ERROR 0x0400

#define FLASH_ERASING_ERROR 0x0800

union fl_fccs { /* FCCS */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char FWE :1; /* FWE */

 unsigned char :2; /* */

 unsigned char FLER:1; /* FLER */

 unsigned char :3; /* */

 unsigned char SCO :1; /* SCO */

 } BIT;

};

union fl_fpcs { /* FPCS */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :7; /* */

 unsigned char PPVS:1; /* PPVS */

 } BIT;

};

union fl_fecs { /* FECS */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :7; /* */

 unsigned char EPVB:1; /* EPVB */

 } BIT;

};

union fl_ramcr { /* RAMCR */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :4; /* */

 unsigned char RAMS:1; /* RAMS */

 unsigned char RAM2:1; /* RAM2 */

 unsigned char RAM1:1; /* RAM1 */

 unsigned char RAM0:1; /* RAM0 */

 } BIT;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 82 of 107

};

#ifdef H83069F

union fl_fvacr { /* FVACR */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char FVCHGE:1; /* FVCHGE */

 unsigned char :3; /* */

 unsigned char FVSEL3 :1; /* FVSEL */

 unsigned char FVSEL2 :1; /* FVSEL */

 unsigned char FVSEL1 :1; /* FVSEL */

 unsigned char FVSEL0 :1; /* FVSEL */

 } BIT;

};

#endif

// SH7058F

#ifndef H83069F

#define FLASH_FCCS (*(volatile union fl_fccs *)0xFFFFE800)

#define FLASH_FPCS (*(volatile union fl_fpcs *)0xFFFFE801)

#define FLASH_FECS (*(volatile union fl_fecs *)0xFFFFE802)

#define FLASH_FKEY (*(volatile unsigned char *)0xFFFFE804)

#define FLASH_FMATS (*(volatile unsigned char *)0xFFFFE805)

#define FLASH_FTDAR (*(volatile unsigned char *)0xFFFFE806)

#define FLASH_RAMER (*(volatile union fl_ramcr *)0xFFFFEC26)

#define FTDAR_START_ADDRESS_FFFF0000 0x00

#define FTDAR_START_ADDRESS_FFFF0800 0x01

#define FTDAR_START_ADDRESS_FFFF1000 0x02

#define FTDAR_START_ADDRESS_FFFF1800 0x03

#define FTDAR_START_ADDRESS_FFFF2000 0x04

#define FTDAR_START_ADDRESS_FFFF2800 0x05

#define FTDAR_ADDRESS 0xFFFF0800

#define CPU_CLOCK_FREQ 4000 // 40MHz

#define USER_BRANCH_DEST_ADDRESS 0 // no address

#endif

// H8/3069F

#ifdef H83069F

#define FLASH_FCCS (*(volatile union fl_fccs *)0xFEE0B0)

#define FLASH_FPCS (*(volatile union fl_fpcs *)0xFEE0B1)

#define FLASH_FECS (*(volatile union fl_fecs *)0xFEE0B2)

#define FLASH_FKEY (*(volatile unsigned char *)0xFEE0B4)

#define FLASH_FMATS (*(volatile unsigned char *)0xFEE0B5)

#define FLASH_FTDAR (*(volatile unsigned char *)0xFEE0B6)

#define FLASH_RAMER (*(volatile union fl_ramcr *)0xFEE077)

#define FLASH_FVACR (*(volatile union fl_fvacr *)0xFEE0B7)

#define FLASH_FVADRR (*(volatile unsigned char *)0xFEE0B8)

#define FLASH_FVADRE (*(volatile unsigned char *)0xFEE0B9)

#define FLASH_FVADRH (*(volatile unsigned char *)0xFEE0BA)

#define FLASH_FVADRL (*(volatile unsigned char *)0xFEE0BB)

#define FTDAR_START_ADDRESS_FFEF20 0x00

#define FTDAR_START_ADDRESS_FFDF20 0x01

#define FTDAR_START_ADDRESS_FFCF20 0x02

#define FTDAR_START_ADDRESS_FFBF20 0x03

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 83 of 107

#define FTDAR_ADDRESS 0xFFCF20

#define FTDAR_START_ADDRESS FTDAR_START_ADDRESS_FFCF20

#define CPU_CLOCK_FREQ 2212 // 22.1184MHz

#define USER_BRANCH_DEST_ADDRESS 0 // no address

#endif

#define INIT_PROGRAM_ADDRESS (FTDAR_ADDRESS + 32)

#define INIT_ERASE_ADDRESS INIT_PROGRAM_ADDRESS

#define PROG_ROUTINE_ADDRESS (FTDAR_ADDRESS + 16)

#define ERASE_ROUTINE_ADDRESS PROG_ROUTINE_ADDRESS

// function prototypes

unsigned short Erase018FlashBlock(unsigned char);

unsigned short Program018FlashLine(unsigned long, unsigned char *);

#endif

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 84 of 107

program018.c

// program018.c

#include "flash.h"

#include <machine.h>

typedef unsigned short (*pt2Function)(unsigned long Address, unsigned char *ProgData);

#pragma section PTRTABLE

const pt2Function ptrtable[] = {

 Program018FlashLine

};

#pragma section

//

// The Renesas C/C++ SH compiler passes parameters in ER0 and ER1 with the return value in R0

// The Renesas C/C++ H8 compiler passes parameters in R4 and R5 with the return value in R0

// see the relevant documentation for further details

//

void func (unsigned long ul1, unsigned long ul2)

{

 // dummy function used to get the passed values into

 // registers ER0 and ER1 (H8)

 // registers R4 and R5 (SH)

}

// to use inline assembler with the Renesas C/C++ compiler the compiler output must be

// set to assembler source, this can cause problems when dubugging

#pragma inline_asm(no_operation)

static void no_operation (void)

{

 NOP

}

unsigned short Program018FlashLine(unsigned long Address, unsigned char *ProgData)

{

 //

 // Function to program a 0.18um flash line (128 bytes) starting at specified address

 // with the data pointed to by the specified pointer.

 //

 // Note:

 // This function along with the functions 'func' and 'no_operation' must all be

 // executed from on-chip RAM.

 // This means that these functions must be linked to internal RAM to ensure that any

 // references to absolute addresses refer to addresses in the internal RAM. Control

 // must not return to flash based code until this function has completed.

 //

 // While executing from internal RAM this function must not access any code or data

 // located in flash. This includes constant data and also library routines. For example,

 // when building for the H8/300H with the Renesas v4.0a compiler toolchain the library

 // functions 'sp_regsv3' and '$spregld2$3' are used by these functions. Therefore,

 // these library routines must also be located in the internal RAM.

 //

 // One of the simplest ways to achieve this is to build the functions in this file as a

 // completely separate project which is linked to internal RAM. This RAM based code

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 85 of 107

 // should then be stored in the flash by the project that is to use the functions. This

 // project should then copy the RAM based code into RAM at runtime and execute it from there.

 //

 // There are a number of methods of taking the RAM based code, moving it to flash for storage

 // and then moving it to RAM for execution. Some of these methods are described in apps

notes

 // numbers REG05B0021-0100 & REG05B0023-0100

 //

 // If a separate project is not used for the functions in this file then any library calls

and

 // constant data accesses are likely to access the flash memory unless an alternative

approach

 // is adopted.

 //

 // parameters:

 // -----------

 // Address - Address in flash which is where programming should start. The

caller

 // must ensure that this address is on a flash line boundary

(128 byte)

 // *ProgData - Pointer to the data to be programmed into the flash

 //

 // returns:

 // --------

 // result of program request

 // 0x0000 - flash line programmed ok

 // 0x01xx - download error

 // 0x02xx - initialisation error

 // 0x04xx - programing error

 // where xx is the value indicating the exact nature of the error as specified in the ROM

 // section of the hardware manual

 //

 volatile unsigned char *dfpr; // pointer used to access the contents of the FTDAR

address containing

 // the pass or fail

information when downloading the erase routine to internal RAM

 unsigned char fpfr; // flash pass/fail result parameter

 unsigned long fpefeq, fubra; // variables used for passing CPU frequency, user branch

destination address

 unsigned long fmpar, fmpdr; // variables used for passing prog destination

start addr and data storage address

 unsigned char (*fp) (void); // function pointer for calling the intialisation and

programming routines

 unsigned short status; // variable for calculating the return value for

this function

 #ifndef H83069F

 // if SH-2(e) set the vector base register to zero

 set_vbr((void **) 0);

 #endif

 // initialise dfpr to point to first byte in download destination area

 // specified by FDAR

 dfpr = (unsigned char *) FTDAR_ADDRESS;

 // set address where flash prog and erase routines will be loaded

 // approx 2kB of RAM from this address will be unavailable to the user program

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 86 of 107

 // while flash erasing is being performed

 FLASH_FTDAR = FTDAR_START_ADDRESS;

 // select flash programming program to be downloaded

 FLASH_FPCS.BIT.PPVS = 1; // download flash programming program to RAM

 FLASH_FECS.BIT.EPVB = 0; // do NOT download flash erasing program to RAM

 // initialise contents of dfpr

 // the contents of this pointer will contain the status of the request to download the

 // erasing program to RAM

 *dfpr = 0xff;

 // start download of flash programming program

 // disable software protection

 FLASH_FKEY = 0xa5;

 FLASH_FCCS.BIT.SCO = 1;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 // enable software protection

 FLASH_FKEY = 0;

 // check that the download has completed successfully

 // if *dfpr ==

 // 0x00 - indicates download was successful

 // 0xff - indicates that there was something wrong with the FTDAR value

idicated by

 // the TDER (bit 7) error bit in FTDAR

 // bit 0 set - downloading of on-chip program failed (SF==1)

 // bit 1 set - FKEY setting is abnormal (FK==1)

 // bit 2 set - Download error as multi-selection or non-supported program selected

(SS==1)

 if(*dfpr != 0)

 {

 // the download has failed for some reason

 status = (unsigned short) *dfpr;

 status |= (unsigned short) FLASH_PROG_ERASE_DOWNLOAD_ERROR;

 return status;

 }

 // set the operating frequency

 // FPEFEQ value must be loaded into ER0 (H8) / R4 (SH)

 // FUBRA value must be loaded into ER1 (H8) / R5 (SH)

 // return value is in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 fpefeq = CPU_CLOCK_FREQ;

 fubra = 0; // user branch processing not required

 func(fpefeq, fubra);

 // load the address of the erase intialisation routine into the function pointer

 fp = (void *) INIT_PROGRAM_ADDRESS;

 fpfr = fp(); // the returned value is in fpfr (R0(L))

 // check that the initialisation was performed without errors

 // if fpfr ==

 // 0x00 - indicates initialisation was successful

 // bit 0 set - initialisation failed (SF==1)

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 87 of 107

 // bit 1 set - operating frequency invalid (FQ==1)

 // bit 2 set - user branch address invalid (BR==1)

 if(fpfr != 0)

 {

 // there has been an error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_INIT_ERROR;

 return status;

 }

 // in either user mode or user boot mode only the user mat can be erased so

 // if in user boot mode then the MAT should be switched from the user boot mat

 // to the user mat

 #ifdef INUSERBOOTMODE

 // set FMATS to any value other than H'AA

 FLASH_FMATS = 0;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // disable software protection

 FLASH_FKEY = 0x5a;

 // FMPAR (address in Flash where programming should start) should be in ER1 (H8) / R5 (SH)

 // FMPDR (address of data) should be in ER0 (H8) / R4 (SH)

 // result returned in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 fmpar = Address;

 fmpdr = (unsigned long) ProgData;

 func(fmpdr, fmpar);

 fp = (void *) PROG_ROUTINE_ADDRESS;

 fpfr = fp();

 // if in user boot mode then switch MAT back to the user boot MAT

 #ifdef INUSERBOOTMODE

 // set FMATS to H'AA

 FLASH_FMATS = 0xAA;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // enable software protection

 FLASH_FKEY = 0;

 if(fpfr != 0)

 {

 // there has been an programming error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_PROGRAMMING_ERROR;

 return status;

 }

 else

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 88 of 107

 {

 return (unsigned short) FLASH_NO_ERROR;

 }

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 89 of 107

erase018.c

// erase018.c

#include "flash.h"

#include <machine.h>

typedef unsigned short (*pt2Function)(unsigned char); // function pointer for calling the

RAM based erase routine

#pragma section PTRTABLE

const pt2Function ptrtable[] = {

 Erase018FlashBlock

};

#pragma section

//

// The Renesas C/C++ SH compiler passes parameters in ER0 and ER1 with the return value in R0

// The Renesas C/C++ H8 compiler passes parameters in R4 and R5 with the return value in R0

// see the relevant documentation for further details

//

void func (unsigned long ul1, unsigned long ul2)

{

 // dummy function used to get the passed values into

 // registers ER0 and ER1 (H8)

 // registers R4 and R5 (SH)

}

// to use inline assembler with the Renesas C/C++ compiler the compiler output must be

// set to assembler source, this can cause problems when dubugging

#pragma inline_asm(no_operation)

static void no_operation (void)

{

 NOP

}

unsigned short Erase018FlashBlock(unsigned char FlashBlock)

{

 //

 // Function to erase the specified 0.18um flash erase block

 //

 // Note:

 // This function along with the functions 'func' and 'no_operation' must all be

 // executed from on-chip RAM.

 // This means that these functions must be linked to internal RAM to ensure that any

 // references to absolute addresses refer to addresses in the internal RAM. Control

 // must not return to flash based code until this function has completed.

 //

 // While executing from internal RAM this function must not access any code or data

 // located in flash. This includes constant data and also library routines. For example,

 // when building for the H8/300H with the Renesas v4.0a compiler toolchain the library

 // functions 'sp_regsv3' and '$spregld2$3' are used by these functions. Therefore,

 // these library routines must also be located in the internal RAM.

 //

 // One of the simplest ways to achieve this is to build the functions in this file as a

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 90 of 107

 // completely separate project which is linked to internal RAM. This RAM based code

 // should then be stored in the flash by the project that is to use the functions. This

 // project should then copy the RAM based code into RAM at runtime and execute it from there.

 //

 // There are a number of methods of taking the RAM based code, moving it to flash for storage

 // and then moving it to RAM for execution. Some of these methods are described in apps

notes

 // numbers REG05B0021-0100 & REG05B0023-0100

 //

 // If a separate project is not used for the functions in this file then any library calls

and

 // constant data accesses are likely to access the flash memory unless an alternative

approach

 // is adopted.

 //

 // parameters:

 // -----------

 // FlashBlock - flash erase block to be erased, the caller should ensure that the value

is valid

 //

 // returns:

 // --------

 // result of erase request

 // 0x0000 - block erased ok

 // 0x01xx - download error

 // 0x02xx - initialisation error

 // 0x08xx - erasing error

 // where xx is the value indicating the exact nature of the error as specified in the ROM

 // section of the hardware manual

 //

 volatile unsigned char *dfpr; // pointer used to access the contents of the

FTDAR addresswhich contains

 // the pass or fail

information when downloading the erase routine to internal RAM

 unsigned char fpfr; // flash pass/fail result parameter

 // variable to store the

result of initialisation and erase routines

 unsigned long fpefeq, fubra, febs; // variables used for passing CPU frequency, user branch

destination address

 // and flash erase block

number

 unsigned char (*fp) (void); // function pointer for calling the intialisation

and programming routines

 unsigned short status; // variable for calculating the return

value for this function

 #ifndef H83069F

 // if SH-2(e) set the vector base register to zero

 set_vbr((void **) 0);

 #endif

 // initialise dfpr to point to first byte in download destination area

 // specified by FDAR

 dfpr = (unsigned char *) FTDAR_ADDRESS;

 // set address where flash prog and erase routines will be loaded

 // approx 2kB of RAM from this address will be unavailable to the user program

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 91 of 107

 // while flash erasing is being performed

 FLASH_FTDAR = FTDAR_START_ADDRESS;

 // select flash erasing program to be downloaded

 FLASH_FPCS.BIT.PPVS = 0; // do NOT download flash programming program RAM

 FLASH_FECS.BIT.EPVB = 1; // download flash erasing program to RAM

 // initialise contents of dfpr

 // the contents of this pointer will contain the status of the request to download the

 // erasing program to RAM

 *dfpr = 0xff;

 // start download of flash programming program

 // disable software protection

 FLASH_FKEY = 0xa5;

 FLASH_FCCS.BIT.SCO = 1;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 // enable software protection

 FLASH_FKEY = 0;

 // check that the download has completed successfully

 // if *dfpr ==

 // 0x00 - indicates download was successful

 // 0xff - indicates that there was something wrong with the FTDAR value

idicated by

 // the TDER (bit 7) error bit in FTDAR

 // bit 0 set - downloading of on-chip program failed (SF==1)

 // bit 1 set - FKEY setting is abnormal (FK==1)

 // bit 2 set - Download error as multi-selection or non-supported program selected

(SS==1)

 if(*dfpr != 0)

 {

 // the download has failed for some reason

 status = (unsigned short) *dfpr;

 status |= (unsigned short) FLASH_PROG_ERASE_DOWNLOAD_ERROR;

 return status;

 }

 // set the operating frequency

 // FPEFEQ value must be loaded into ER0 (H8) / R4 (SH)

 // FUBRA value must be loaded into ER1 (H8) / R5 (SH)

 // return value is in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 fpefeq = CPU_CLOCK_FREQ;

 fubra = 0; // user branch processing not required

 func(fpefeq, fubra);

 // load the address of the erase intialisation routine into the function pointer

 fp = (void *) INIT_ERASE_ADDRESS;

 fpfr = fp(); // the returned value is in fpfr (R0(L))

 // check that the initialisation was performed without errors

 // if fpfr ==

 // 0x00 - indicates initialisation was successful

 // bit 0 set - initialisation failed (SF==1)

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 92 of 107

 // bit 1 set - operating frequency invalid (FQ==1)

 // bit 2 set - user branch address invalid (BR==1)

 if(fpfr != 0)

 {

 // there has been an error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_INIT_ERROR;

 return status;

 }

 // in either user mode or user boot mode only the user mat can be erased so

 // if in user boot mode then the MAT should be switched from the user boot mat

 // to the user mat

 #ifdef INUSERBOOTMODE

 // set FMATS to any value other than H'AA

 FLASH_FMATS = 0;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // disable software protection

 FLASH_FKEY = 0x5a;

 // set the flash block to be erased

 // FEBS parameter must be loaded into (E)R0 (H8) / R4 (SH)

 // return value is in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 febs = (unsigned long) FlashBlock;

 func(febs, 0);

 fp = (void *) ERASE_ROUTINE_ADDRESS;

 fpfr = fp();

 // if in user boot mode then switch MAT back to the user boot MAT

 #ifdef INUSERBOOTMODE

 // set FMATS to H'AA

 FLASH_FMATS = 0xAA;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // enable software protection

 FLASH_FKEY = 0;

 // check if block erased ok

 if(fpfr != 0)

 {

 // there has been an erasing error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_ERASING_ERROR;

 return status;

 }

 else

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 93 of 107

 {

 return (unsigned short) FLASH_NO_ERROR;

 }

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 94 of 107

APPENDIX G – RENESAS 0.18μM FLASH PROGRAMING & ERASING
ROUTINES FOR SH7058F

flash.h

// flash.h

#ifndef _FLASH_H

#define _FLASH_H

//#define H83069F

//#define INUSERBOOTMODE

#define FLASH_NO_ERROR 0x0000

#define FLASH_PROG_ERASE_DOWNLOAD_ERROR 0x0100

#define FLASH_INIT_ERROR 0x0200

#define FLASH_PROGRAMMING_ERROR 0x0400

#define FLASH_ERASING_ERROR 0x0800

union fl_fccs { /* FCCS */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char FWE :1; /* FWE */

 unsigned char :2; /* */

 unsigned char FLER:1; /* FLER */

 unsigned char :3; /* */

 unsigned char SCO :1; /* SCO */

 } BIT;

};

union fl_fpcs { /* FPCS */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :7; /* */

 unsigned char PPVS:1; /* PPVS */

 } BIT;

};

union fl_fecs { /* FECS */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :7; /* */

 unsigned char EPVB:1; /* EPVB */

 } BIT;

};

union fl_ramcr { /* RAMCR */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :4; /* */

 unsigned char RAMS:1; /* RAMS */

 unsigned char RAM2:1; /* RAM2 */

 unsigned char RAM1:1; /* RAM1 */

 unsigned char RAM0:1; /* RAM0 */

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 95 of 107

 } BIT;

};

#ifdef H83069F

union fl_fvacr { /* FVACR */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char FVCHGE:1; /* FVCHGE */

 unsigned char :3; /* */

 unsigned char FVSEL3 :1; /* FVSEL */

 unsigned char FVSEL2 :1; /* FVSEL */

 unsigned char FVSEL1 :1; /* FVSEL */

 unsigned char FVSEL0 :1; /* FVSEL */

 } BIT;

};

#endif

// SH7058F

#ifndef H83069F

#define FLASH_FCCS (*(volatile union fl_fccs *)0xFFFFE800)

#define FLASH_FPCS (*(volatile union fl_fpcs *)0xFFFFE801)

#define FLASH_FECS (*(volatile union fl_fecs *)0xFFFFE802)

#define FLASH_FKEY (*(volatile unsigned char *)0xFFFFE804)

#define FLASH_FMATS (*(volatile unsigned char *)0xFFFFE805)

#define FLASH_FTDAR (*(volatile unsigned char *)0xFFFFE806)

#define FLASH_RAMER (*(volatile union fl_ramcr *)0xFFFFEC26)

#define FTDAR_START_ADDRESS_FFFF0000 0x00

#define FTDAR_START_ADDRESS_FFFF0800 0x01

#define FTDAR_START_ADDRESS_FFFF1000 0x02

#define FTDAR_START_ADDRESS_FFFF1800 0x03

#define FTDAR_START_ADDRESS_FFFF2000 0x04

#define FTDAR_START_ADDRESS_FFFF2800 0x05

#define FTDAR_ADDRESS 0xFFFF0800

#define FTDAR_START_ADDRESS FTDAR_START_ADDRESS_FFFF0800

#define CPU_CLOCK_FREQ 4000 // 40MHz

#define USER_BRANCH_DEST_ADDRESS 0 // no address

#endif

// H8/3069F

#ifdef H83069F

#define FLASH_FCCS (*(volatile union fl_fccs *)0xFEE0B0)

#define FLASH_FPCS (*(volatile union fl_fpcs *)0xFEE0B1)

#define FLASH_FECS (*(volatile union fl_fecs *)0xFEE0B2)

#define FLASH_FKEY (*(volatile unsigned char *)0xFEE0B4)

#define FLASH_FMATS (*(volatile unsigned char *)0xFEE0B5)

#define FLASH_FTDAR (*(volatile unsigned char *)0xFEE0B6)

#define FLASH_RAMER (*(volatile union fl_ramcr *)0xFEE077)

#define FLASH_FVACR (*(volatile union fl_fvacr *)0xFEE0B7)

#define FLASH_FVADRR (*(volatile unsigned char *)0xFEE0B8)

#define FLASH_FVADRE (*(volatile unsigned char *)0xFEE0B9)

#define FLASH_FVADRH (*(volatile unsigned char *)0xFEE0BA)

#define FLASH_FVADRL (*(volatile unsigned char *)0xFEE0BB)

#define FTDAR_START_ADDRESS_FFEF20 0x00

#define FTDAR_START_ADDRESS_FFDF20 0x01

#define FTDAR_START_ADDRESS_FFCF20 0x02

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 96 of 107

#define FTDAR_START_ADDRESS_FFBF20 0x03

#define FTDAR_ADDRESS 0xFFCF20

#define FTDAR_START_ADDRESS FTDAR_START_ADDRESS_FFCF20

#define CPU_CLOCK_FREQ 2212 // 22.1184MHz

#define USER_BRANCH_DEST_ADDRESS 0 // no address

#endif

#define INIT_PROGRAM_ADDRESS (FTDAR_ADDRESS + 32)

#define INIT_ERASE_ADDRESS INIT_PROGRAM_ADDRESS

#define PROG_ROUTINE_ADDRESS (FTDAR_ADDRESS + 16)

#define ERASE_ROUTINE_ADDRESS PROG_ROUTINE_ADDRESS

// function prototypes

unsigned short Erase018FlashBlock(unsigned char);

unsigned short Program018FlashLine(unsigned long, unsigned char *);

#endif

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 97 of 107

program018.c

// program018.c

#include "flash.h"

#include <machine.h>

typedef unsigned short (*pt2Function)(unsigned long Address, unsigned char *ProgData);

#pragma section PTRTABLE

const pt2Function ptrtable[] = {

 Program018FlashLine

};

#pragma section

//

// The Renesas C/C++ SH compiler passes parameters in ER0 and ER1 with the return value in R0

// The Renesas C/C++ H8 compiler passes parameters in R4 and R5 with the return value in R0

// see the relevant documentation for further details

//

void func (unsigned long ul1, unsigned long ul2)

{

 // dummy function used to get the passed values into

 // registers ER0 and ER1 (H8)

 // registers R4 and R5 (SH)

}

// to use inline assembler with the Renesas C/C++ compiler the compiler output must be

// set to assembler source, this can cause problems when dubugging

#pragma inline_asm(no_operation)

static void no_operation (void)

{

 NOP

}

unsigned short Program018FlashLine(unsigned long Address, unsigned char *ProgData)

{

 //

 // Function to program a 0.18um flash line (128 bytes) starting at specified address

 // with the data pointed to by the specified pointer.

 //

 // Note:

 // This function along with the functions 'func' and 'no_operation' must all be

 // executed from on-chip RAM.

 // This means that these functions must be linked to internal RAM to ensure that any

 // references to absolute addresses refer to addresses in the internal RAM. Control

 // must not return to flash based code until this function has completed.

 //

 // While executing from internal RAM this function must not access any code or data

 // located in flash. This includes constant data and also library routines. For example,

 // when building for the H8/300H with the Renesas v4.0a compiler toolchain the library

 // functions 'sp_regsv3' and '$spregld2$3' are used by these functions. Therefore,

 // these library routines must also be located in the internal RAM.

 //

 // One of the simplest ways to achieve this is to build the functions in this file as a

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 98 of 107

 // completely separate project which is linked to internal RAM. This RAM based code

 // should then be stored in the flash by the project that is to use the functions. This

 // project should then copy the RAM based code into RAM at runtime and execute it from there.

 //

 // There are a number of methods of taking the RAM based code, moving it to flash for storage

 // and then moving it to RAM for execution. Some of these methods are described in apps

notes

 // numbers REG05B0021-0100 & REG05B0023-0100

 //

 // If a separate project is not used for the functions in this file then any library calls

and

 // constant data accesses are likely to access the flash memory unless an alternative

approach

 // is adopted.

 //

 // parameters:

 // -----------

 // Address - Address in flash which is where programming should start. The

caller

 // must ensure that this address is on a flash line boundary

(128 byte)

 // *ProgData - Pointer to the data to be programmed into the flash

 //

 // returns:

 // --------

 // result of program request

 // 0x0000 - flash line programmed ok

 // 0x01xx - download error

 // 0x02xx - initialisation error

 // 0x04xx - programing error

 // where xx is the value indicating the exact nature of the error as specified in the ROM

 // section of the hardware manual

 //

 volatile unsigned char *dfpr; // pointer used to access the contents of the FTDAR

address containing

 // the pass or fail

information when downloading the erase routine to internal RAM

 unsigned char fpfr; // flash pass/fail result parameter

 unsigned long fpefeq, fubra; // variables used for passing CPU frequency, user branch

destination address

 unsigned long fmpar, fmpdr; // variables used for passing prog destination

start addr and data storage address

 unsigned char (*fp) (void); // function pointer for calling the intialisation and

programming routines

 unsigned short status; // variable for calculating the return value for

this function

 #ifndef H83069F

 // if SH-2(e) set the vector base register to zero

 set_vbr((void **) 0);

 #endif

 // initialise dfpr to point to first byte in download destination area

 // specified by FDAR

 dfpr = (unsigned char *) FTDAR_ADDRESS;

 // set address where flash prog and erase routines will be loaded

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 99 of 107

 // approx 2kB of RAM from this address will be unavailable to the user program

 // while flash erasing is being performed

 FLASH_FTDAR = FTDAR_START_ADDRESS;

 // select flash programming program to be downloaded

 FLASH_FPCS.BIT.PPVS = 1; // download flash programming program to RAM

 FLASH_FECS.BIT.EPVB = 0; // do NOT download flash erasing program to RAM

 // initialise contents of dfpr

 // the contents of this pointer will contain the status of the request to download the

 // erasing program to RAM

 *dfpr = 0xff;

 // start download of flash programming program

 // disable software protection

 FLASH_FKEY = 0xa5;

 FLASH_FCCS.BIT.SCO = 1;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 // enable software protection

 FLASH_FKEY = 0;

 // check that the download has completed successfully

 // if *dfpr ==

 // 0x00 - indicates download was successful

 // 0xff - indicates that there was something wrong with the FTDAR value

idicated by

 // the TDER (bit 7) error bit in FTDAR

 // bit 0 set - downloading of on-chip program failed (SF==1)

 // bit 1 set - FKEY setting is abnormal (FK==1)

 // bit 2 set - Download error as multi-selection or non-supported program selected

(SS==1)

 if(*dfpr != 0)

 {

 // the download has failed for some reason

 status = (unsigned short) *dfpr;

 status |= (unsigned short) FLASH_PROG_ERASE_DOWNLOAD_ERROR;

 return status;

 }

 // set the operating frequency

 // FPEFEQ value must be loaded into ER0 (H8) / R4 (SH)

 // FUBRA value must be loaded into ER1 (H8) / R5 (SH)

 // return value is in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 fpefeq = CPU_CLOCK_FREQ;

 fubra = 0; // user branch processing not required

 func(fpefeq, fubra);

 // load the address of the erase intialisation routine into the function pointer

 fp = (void *) INIT_PROGRAM_ADDRESS;

 fpfr = fp(); // the returned value is in fpfr (R0(L))

 // check that the initialisation was performed without errors

 // if fpfr ==

 // 0x00 - indicates initialisation was successful

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 100 of 107

 // bit 0 set - initialisation failed (SF==1)

 // bit 1 set - operating frequency invalid (FQ==1)

 // bit 2 set - user branch address invalid (BR==1)

 if(fpfr != 0)

 {

 // there has been an error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_INIT_ERROR;

 return status;

 }

 // in either user mode or user boot mode only the user mat can be erased so

 // if in user boot mode then the MAT should be switched from the user boot mat

 // to the user mat

 #ifdef INUSERBOOTMODE

 // set FMATS to any value other than H'AA

 FLASH_FMATS = 0;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // disable software protection

 FLASH_FKEY = 0x5a;

 // FMPAR (address in Flash where programming should start) should be in ER1 (H8) / R5 (SH)

 // FMPDR (address of data) should be in ER0 (H8) / R4 (SH)

 // result returned in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 fmpar = Address;

 fmpdr = (unsigned long) ProgData;

 func(fmpdr, fmpar);

 fp = (void *) PROG_ROUTINE_ADDRESS;

 fpfr = fp();

 // if in user boot mode then switch MAT back to the user boot MAT

 #ifdef INUSERBOOTMODE

 // set FMATS to H'AA

 FLASH_FMATS = 0xAA;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // enable software protection

 FLASH_FKEY = 0;

 if(fpfr != 0)

 {

 // there has been an programming error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_PROGRAMMING_ERROR;

 return status;

 }

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 101 of 107

 else

 {

 return (unsigned short) FLASH_NO_ERROR;

 }

}

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 102 of 107

erase018.c

// erase018.c

#include "..\userbootmodedemo\flash.h"

// #define H83069F // defined on compiler command line

//#define INUSERBOOTMODE // defined on compiler command line

#include <machine.h>

typedef unsigned short (*pt2Function)(unsigned char); // function pointer for calling the

RAM based erase routine

#pragma section PTRTABLE

const pt2Function ptrtable[] = {

 Erase018FlashBlock

};

#pragma section

//

// The Renesas C/C++ SH compiler passes parameters in ER0 and ER1 with the return value in R0

// The Renesas C/C++ H8 compiler passes parameters in R4 and R5 with the return value in R0

// see the relevant documentation for further details

//

void func (unsigned long ul1, unsigned long ul2)

{

 // dummy function used to get the passed values into

 // registers ER0 and ER1 (H8)

 // registers R4 and R5 (SH)

}

// to use inline assembler with the Renesas C/C++ compiler the compiler output must be

// set to assembler source, this can cause problems when dubugging

#pragma inline_asm(no_operation)

static void no_operation (void)

{

 NOP

}

unsigned short Erase018FlashBlock(unsigned char FlashBlock)

{

 //

 // Function to erase the specified 0.18um flash erase block

 //

 // Note:

 // This function along with the functions 'func' and 'no_operation' must all be

 // executed from on-chip RAM.

 // This means that these functions must be linked to internal RAM to ensure that any

 // references to absolute addresses refer to addresses in the internal RAM. Control

 // must not return to flash based code until this function has completed.

 //

 // While executing from internal RAM this function must not access any code or data

 // located in flash. This includes constant data and also library routines. For example,

 // when building for the H8/300H with the Renesas v4.0a compiler toolchain the library

 // functions 'sp_regsv3' and '$spregld2$3' are used by these functions. Therefore,

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 103 of 107

 // these library routines must also be located in the internal RAM.

 //

 // One of the simplest ways to achieve this is to build the functions in this file as a

 // completely separate project which is linked to internal RAM. This RAM based code

 // should then be stored in the flash by the project that is to use the functions. This

 // project should then copy the RAM based code into RAM at runtime and execute it from there.

 //

 // There are a number of methods of taking the RAM based code, moving it to flash for storage

 // and then moving it to RAM for execution. Some of these methods are described in apps

notes

 // numbers REG05B0021-0100 & REG05B0023-0100

 //

 // If a separate project is not used for the functions in this file then any library calls

and

 // constant data accesses are likely to access the flash memory unless an alternative

approach

 // is adopted.

 //

 // parameters:

 // -----------

 // FlashBlock - flash erase block to be erased, the caller should ensure that the value

is valid

 //

 // returns:

 // --------

 // result of erase request

 // 0x0000 - block erased ok

 // 0x01xx - download error

 // 0x02xx - initialisation error

 // 0x08xx - erasing error

 // where xx is the value indicating the exact nature of the error as specified in the ROM

 // section of the hardware manual

 //

 volatile unsigned char *dfpr; // pointer used to access the contents of the

FTDAR addresswhich contains

 // the pass or fail

information when downloading the erase routine to internal RAM

 unsigned char fpfr; // flash pass/fail result parameter

 // variable to store the

result of initialisation and erase routines

 unsigned long fpefeq, fubra, febs; // variables used for passing CPU frequency, user branch

destination address

 // and flash erase block

number

 unsigned char (*fp) (void); // function pointer for calling the intialisation

and programming routines

 unsigned short status; // variable for calculating the return

value for this function

 #ifndef H83069F

 // if SH-2(e) set the vector base register to zero

 set_vbr((void **) 0);

 #endif

 // initialise dfpr to point to first byte in download destination area

 // specified by FDAR

 dfpr = (unsigned char *) FTDAR_ADDRESS;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 104 of 107

 // set address where flash prog and erase routines will be loaded

 // approx 2kB of RAM from this address will be unavailable to the user program

 // while flash erasing is being performed

 FLASH_FTDAR = FTDAR_START_ADDRESS;

 // select flash erasing program to be downloaded

 FLASH_FPCS.BIT.PPVS = 0; // do NOT download flash programming program RAM

 FLASH_FECS.BIT.EPVB = 1; // download flash erasing program to RAM

 // initialise contents of dfpr

 // the contents of this pointer will contain the status of the request to download the

 // erasing program to RAM

 *dfpr = 0xff;

 // start download of flash programming program

 // disable software protection

 FLASH_FKEY = 0xa5;

 FLASH_FCCS.BIT.SCO = 1;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 // enable software protection

 FLASH_FKEY = 0;

 // check that the download has completed successfully

 // if *dfpr ==

 // 0x00 - indicates download was successful

 // 0xff - indicates that there was something wrong with the FTDAR value

idicated by

 // the TDER (bit 7) error bit in FTDAR

 // bit 0 set - downloading of on-chip program failed (SF==1)

 // bit 1 set - FKEY setting is abnormal (FK==1)

 // bit 2 set - Download error as multi-selection or non-supported program selected

(SS==1)

 if(*dfpr != 0)

 {

 // the download has failed for some reason

 status = (unsigned short) *dfpr;

 status |= (unsigned short) FLASH_PROG_ERASE_DOWNLOAD_ERROR;

 return status;

 }

 // set the operating frequency

 // FPEFEQ value must be loaded into ER0 (H8) / R4 (SH)

 // FUBRA value must be loaded into ER1 (H8) / R5 (SH)

 // return value is in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 fpefeq = CPU_CLOCK_FREQ;

 fubra = 0; // user branch processing not required

 func(fpefeq, fubra);

 // load the address of the erase intialisation routine into the function pointer

 fp = (void *) INIT_ERASE_ADDRESS;

 fpfr = fp(); // the returned value is in fpfr (R0(L))

 // check that the initialisation was performed without errors

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 105 of 107

 // if fpfr ==

 // 0x00 - indicates initialisation was successful

 // bit 0 set - initialisation failed (SF==1)

 // bit 1 set - operating frequency invalid (FQ==1)

 // bit 2 set - user branch address invalid (BR==1)

 if(fpfr != 0)

 {

 // there has been an error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_INIT_ERROR;

 return status;

 }

 // in either user mode or user boot mode only the user mat can be erased so

 // if in user boot mode then the MAT should be switched from the user boot mat

 // to the user mat

 #ifdef INUSERBOOTMODE

 // set FMATS to any value other than H'AA

 FLASH_FMATS = 0;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // disable software protection

 FLASH_FKEY = 0x5a;

 // set the flash block to be erased

 // FEBS parameter must be loaded into (E)R0 (H8) / R4 (SH)

 // return value is in R0(L)

 // dummy 'func' function used to ensure correct function call interface

 febs = (unsigned long) FlashBlock;

 func(febs, 0);

 fp = (void *) ERASE_ROUTINE_ADDRESS;

 fpfr = fp();

 // if in user boot mode then switch MAT back to the user boot MAT

 #ifdef INUSERBOOTMODE

 // set FMATS to H'AA

 FLASH_FMATS = 0xAA;

 no_operation();

 no_operation();

 no_operation();

 no_operation();

 #endif

 // enable software protection

 FLASH_FKEY = 0;

 // check if block erased ok

 if(fpfr != 0)

 {

 // there has been an erasing error

 status = (unsigned short) fpfr;

 status |= (unsigned short) FLASH_ERASING_ERROR;

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 106 of 107

 return status;

 }

 else

 {

 return (unsigned short) FLASH_NO_ERROR;

 }

}

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/�
http://www.renesas.com/inquiry�
mailto:csc@renesas.com�

H8 Family, H8S Family, SuperH RISC Engine Family
Flash Memory Programming Routines

REG05B0022-0100/Rev.1.00 December 2008 Page 107 of 107

© 2008. Renesas Technology Corp., All rights reserved.

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

	Flash Memory Programming Modes
	0.6m Algorithms
	0.6m Program/Program-Verify
	0.6m Erase/Erase-Verify
	0.35m Algorithms
	0.35m Program/Program-Verify
	0.35m Erase/Erase-Verify
	*Important Note Relating to 0.35m Devices
	0.18m Algorithms
	0.18m Programming
	Programming

	0.18m Erasing
	Erasing

	Summary
	Flash.h
	erase018.c
	flash.h
	erase018.c

