To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

>
©
=
=
Q

=
o

-]

Z
)

—+
@D

Flash Development Toolkit

Application Note (Applications)
User Program Mode (H8/3694F)

Renesas Electronics
www.renesas-electoronics.com RGV1OO 200606

10.

11.

12.

13.

Notes regarding these materials

This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of Renesas or any third party with respect to the information in
this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in
light of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
With the exception of products specified by Renesas as suitable for automobile applications, Renesas
products are not designed, manufactured or tested for applications or otherwise in systems the failure or
malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
especially high quality and reliability such as safety systems, or equipment or systems for transportation and
traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
transmission. If you are considering the use of our products for such purposes, please contact a Renesas
sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(2) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
You should use the products described herein within the range specified by Renesas, especially with respect
to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other applicable measures. Among others, since the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
system manufactured by you.
In case Renesas products listed in this document are detached from the products to which the Renesas
products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
high. You should implement safety measures so that Renesas products may not be easily detached from your
products. Renesas shall have no liability for damages arising out of such detachment.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Renesas Flash Development Toolkit
Application Note (Applications)
User Program Mode (H8/3694F)

Revision 1.0

Renesas Technology Corp.

Contents

1. INEPOAUCEION ..eueiiiiiieiii s s 1
2. H8/3694F (HS8/300H Tiny Series)cccceeveeiveiirieriienreeereeeeeesreereeseesseesssessessesssesnnes 2
2.1 Flash Memory Configurationccccccceiiiiiiiiiiiiieeeesesecciieceee e e s s siasse e e e e e s s s s sssssaeaaes 2
2.2 Programming MOAES.........cuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeereearetre..——.————————————.———...—..——..—.—.. 2
2.3 On-Board Programming MOdEsS.........ccciiiiiiiiiiiiiiiiieiiieeeciiieteeeeeeeeeceiirnneeeee e s s s s ssssssesaes 3
3. Functions of the Flash Development ToolKit.........cccceeeerrireiiineiieieeeeeerreriniieeereeeerennnns 4
8.1 Main FUNCEIONSueeiiiiiiiiieeeecccettte et cceete e e e e e e s aaeea e e e e e e e s s e eabsbaa e e e e e e s e s ssssaaaaaaeessanes 4
4. Operating the Flash Development ToolKitccooeivuiiiiiiiriieieeiiriieeeeeeieeeeevveneeeeens 6
4.1 Connecting the Adapter Boardcccceiieieiiiiiiiiiieeccceeeteeeeeeseeceerre e e e e aasae e e 6
Connecting the Adapter BOATdc..eiiiiiiiiiiiiiiie ettt e e e s e e e ibae e s essaaeeeesrsaeeesnnseas 7
4.1.1 Setting Pins on the Adapter Boardooooiiiiiiiiiiiiic e 9

4.2 Setting the Flash Development TOOIKit............cceeueeeiiiiieiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeen. 9
4.2.1 Starting the Flash Development TooIKit...........ccocoiiiiiiiiiiiiiiiiiiieee e 9
4.2.2 SeleCtiNg A1 OPTION .uviieiiiiieeeiiiieeeeiteeeeriteeeeeteeeeetteeeeeereeeeessaeeeasssseeessssseeesassseessansseeesasssesannes 9
4.2.3 Setting a New Project WOrKSPaCeccc.vvviiiiiiiiiiiiiiiiieee ettt e eeivaaee e e e e 11
4.2.4 Selecting the Device and Kernelcccouvviiiiiiiiiiiiiiiiieecceeecciee et 12
4.2.5 Selecting a CommuNICAtions POTtcccuviiiiiiiiiiiiiiec e 13
4.2.6 Device Settings (Setting the INPut CloCK)c.coieuieuiiriiiieeieieieiee ettt 14
4.2.7 Selecting the Connection Type (Communication Speed)cccoovvvviiiiiviiieiieeniiieeeeeeeeeenes 15
4.2.8 Selecting Programming Options (Protection Level and Messaging Level) 16
4.2.9 Adapter Board Pin Settings.......cccouiiiiiiiiiiiiiiiiiiee ettt e e e 17
4.2.10 Reset Mode Pin Settingsueeeiiiiiiiiiiiiiiiieee ettt eeeetr e e e e e e eeesvaareeeaeeeeeanns 19
4.2.11 Completion Of SETEING.....cciiiciiiiiiciiiee ettt eetee e e eteeeeetreeeesstbeeessstaeeesessaeeesenssaeannes 20
4.2.12 Connecting the DEVICE.cccuiiiieciiiiiieciiie et ecttee e eettee ettt e e s etaeeeseeaeeesestaeesessaeeesnssreeennns 21
4.2.13 Completion of CONMECEIONuiiiiciiieieiiieeeciieeeeeiteeeeeiteeeeeiteeeeeereeeseeteeeessssaeesssssaeeessssseeesans 22

4.3 Boot Mode (Programming the USer ATea)c..coeevereeereereeeeseesresseessessessessesseessessenes 23
4.3.1 SELECTING FIIES..ci it e e e et e e e e e e e e eateaaaeeeeas 23
4.3.2 Bullding the ImMage.......cooiiiiiiiiiiec et e e e e et eaeeeas 26
4.3.3 Programmingcoooiiiiiiiiii e e e e a e e e e e e eabtaaeeeaas 28
4.3.4 BIANK CRECK. .. .eiiiiiiiiieiciiie ettt ettt e et e e e e sae e e e eatbeee e ntaeeeeansseeeeanssaeesassseeenssaeanan 30
4.3.5 CRECKSUIM... ..ttt ettt e ettt e e e ettaeeesestbeeesesaaeeesasssaaeeanssaeesassaeeessaeesnnnes 32
4.3.6 Disconnecting the DevICEcc.uviiiiiiiiiiie et e e e a e 34
4.3.7 RemoOvVING FILES ..oooiiie e e e e e e e e et e 36
4.3.8 Removing FOIAEIrSuuviiiiiiiiieeee et e et e e e e e e e aavaaeeeeeens 39
4.3.9 EXIEINIG e et e e e et e e e e e e e e aa b e e e e e e e eaetaraaaaaaaaaas 42

1

4.4 User Program MOode...........oooeiiiiiiiiieiieeeeeeeieeeeeieeeeeeeeeeeeaeeeeeeeeeeeseeesesssessasssasssasssssssasaraarees 43

4.4.1 Starting the Flash Development ToolKit...........cooooiiiiiiiiiiiiiiiiiiieeiecceeeceeee e 43
4.4.2 SeleCtiNg AN OPTION .eviieeiiiiiieiiiiieeeitieeeeittee et eeeetreeeestaeeeesstbeeesssreeesasseeeeassseeessssseeessseenns 43
4.4.3 ConNECtING the DEVICE. ...ccciiiiiiiiiiiiie ettt eettee e et ee e eeite e e setteeesetaeeeseataeeeessaeeesnssseeesnns 45
4.4.4 Writing a Program in the USer ATea.........ooocuiiiiiiiiiiiiiiiiiieeee et e 46
4.4.5 Disconnecting the DevVICEccuuviiiiiiiiiiee e et e e et e e e e e 47
4.4.6 Configuring the Project.......ccviiiiiiiiieiic ettt e e et e e e esraee e enraeeeenes 48
4.4.7 Setting User Program MOiiiiiiiiiiiiiiiiecceecciieeee ettt e e e e eaavaaeeaa e 50
4.4.8 CompPletion Of SETEING.....ciiiiciiiiieiiiie ettt e et e e e e tr e e e satreeessntaeeesessaeeesensseeennes 54
4.4.9 ConNECtING the DEVICE.cciiiiiiiiiiiiie ettt ee e esitee e et ee e et eesetteeesetaeeeeestaeeessssaeessnssseaesnns 55
4410 THMEOUL ..vviiiiiiiiie ettt et e ettt e e ettt e e ettt e e e etteeeeettbeeeestaeaeessaeaesassaeessassseeesassseessassseeenssseesnnnes 56
4.4.11 PrOQIamIMINgovvvviiiiiiiiiiiiiiiieeeeeeeeeiititeeeeeeeeeeeiittaeeeaeeeeeeaisrsaessaeeeeeasstssassaaseeeaaasssssseeesnssrees 57
4.4.12 Blank Check and CheCKSUIMc..ciiiiiiiiiiiiiiiie ettt e e et e e e siareeesnaveeessnsseeeean 58
Flash Development Toolkit Processing........cccceevveeueeeerrenneeeereuneeeeeeeseeeeseeneesesssnnnns 59
N F:01 0] 0] (ST 0 00T =4 2 « REUUU 60
6.1 Program Configuration.........ccccccciiiiiiiiiiiieiciiiiiiiceee e esirree e e e e s e s sibrre e e e e e s e e s s assnaeas 60
6.2 File Configuration.......cccccuiiiiiiiiiiciiiiiieece et e e e eeeerirre e e e e e e e s e s e sasseaaaaeeesessssssnneas 61
6.2.1 Main Processing MoOAULE.........coooiuiiiiiiiiiie e et e e e e earaaee s 61
6.2.2 B T ol AT =Y SRR 62
6.2.3 MaIn KETTIEL..cceiiiiie ettt ettt e e e et e e e e ettt e e s entba e e e e nbaaeeenbaaeeenraeennnaeas 63
6.2.4 Programming Kernel...........cooooiiiiiiiiiiiiiiii et e et e e 64
6.2.5 Erasing Kernel...........oviiiiiiiiiiie ettt e e et e e e e e e eataaa e e eeas 64
6.3 Relationships between Program Modules and Files............cccouvvviiiiiiiiieiiiiiiieineeiieeeeenens 65
6.4 BUlld OPErationccccciiiiiiiieiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeesereeaasassassaeasasasasasassassasasasasaan 66
6.4.1 SET COMIMANA....ciiiiiiiiiiiiiieeiiiieeeeite e et eeeeeteeeeetreeeesatreesesssaeeeasssseeeesssseeeessssseesanssseessnsseenns 66
6.4.2 LADTATY FILE ..uiiiiiiiiiiieeieee et e e e e e et e e e e e e e e e ettt b b e e e e e e eeeabeeaaaaeans 66
6.4.3 OULPUL FILES ..ttt ettt e e et e e e ta e e e sntae e e e ntseeeeanssaeesanssseannssaeanan 66
6.5 MOAULES ...ttt e e et e e et e e e e e e e aataa e e e e e e e e e et aaaaaaeaaeaeansnaaaans 67
6.6 Module Hierarchical Structure.........cccccciiiiiiiiiiiiieeeiicccciiireeee e e e saee e e 68
6.7 Program Processing FIOWuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeseeeseeeessessseseasaeeeaaeeeaeasaaaa———————. 71
6.8 Command Sequence in the User Program Modecccocuviiieiiiiiciiiiiiiieeesceccccieeeeeeenn. 72
6.9 Program SEQUEICEccciiiiiiiiiiiiiiiiieieieieeeeeeeeeeaeeaseetaaeeeeseseeasesessssssssssssessseseeseesessseeree 75
6.9.1 Pre Parationoviiiiiiiicee e e e et aa e e e e eatraaaaaeaaas 75
6.9.2 Main Processing MOAULE.........coooiuiiiiiiiiiie ettt e e e e raaee s 76
6.9.3 By T ol AT =Y SO PRUTSR 76
6.9.4 By N o B L 6 Y USRS 77

111

6.9.5 Programming Kernel...........coooiiiiiiiiiiiiiiiiic et e e e e e 77

6.9.6 Erasing Kernel. ..ot e e e et e e e e e e e eatta e e e eeas 77
6.10 BV =3 04T iy Y 2 o SRR 78
7. Source Files of the Sample Programccccoouevviiiiiiiieiiiiiiireiiiieeeeeeeeeeeeeeeeeene 79
0 R = 1YV Uy L =S 79
7.1.1 Bit Rate Setting (GenTest.)c.ccocveieiiuieeieieieeceeeeceeetee ettt et eans 79
7.1.2 T/O Register Definition (103694.1)cccooiiiiiiiiiieieeieeeeeeeee e, 80
7.1.3 Macro Definition (KALZ.H)ocoiuiiuiiiieieeeeeeee ettt ettt 81
7.2 Main Processing Module (Strt3694.src and GenTest.c)cceevueeveereeeeeeneeeseeeneeeneenees 82
7.2.1 Module Hierarchical StrUCLUTE.uuueiiiiiiiiiieeee ettt e e e et eeaeees 82
7.2.2 Reset Vector (GenTest.c and GENnTESt.11) ...oe.eeeeeeee oottt eeeeeeeeeeeeeee e 82
7.2.3 StACK (SEITBB94.SIC)oevevieeeeereeeeeeeeeteee et ettt ettt eaeete s et e ete st et ese et eseesenseseneetenseseennns 82
7.2.4 Main Processing (Main)c.cocveveveueieeeieeieeeeeeeeeeeeteee et et eeetes et s st eseeseseeseseesereeeeneenns 83
7.2.5 Branch to Copy (JUMPCODPY)ccverereeerieeteeeeeeeteeeteeeteteseeee et esesseteseseseseeseseeseseeseneenns 83
7.3 Micro Kernel (uGenu.c and CIdFUINC.C) ...cocveerveeeieeieeeeeeeeeesetesseesssessseesssessssesssessnes 84
7.3.1 Module Hierarchical StrUCLUTE.uuueiiiiiiiiiieeeee ettt e e e et eeaeees 84
7.3.2 Start Micro Kernel (Start FDTUSEIKETNIED)eeeoeeeeeie oo eeeee e e e eeee e 84
7.3.3 Prepare Micro Kernel (Prepare FDTUSserKernel)ccoccoeuevueoueoieieeeeeeeeeeeeeeeeeeeeeeeeenens 85
7.3.4 Command Function (CmdFunc and CmdFUNC.C)veeeeeeeeeee e eeeee e 86
7.3.5 Prepare RAM (PrepareRAM).........c.ooiiuiiiiieeeeeeteeeeteeteete ettt ettt enneneas 88
7.4 Main Kernel (FDTUMain.c, CmdFunc.c, and CopyFunc.c).........ccccevmrerrerserseeeneenen. 89
7.4.1 Module Hierarchical StrUCLUTE.uuueiiiiiiiiiieeee ettt e e e et eeaeees 89
7.4.2 Main Kernel (KETNIELIMIAII) . .ccoueeeeeeee et eeee e et e e e e e e et e e et e eeeeeeaaeeseaeeeeeaeeseeeeneeeesaeeens 89
7.4.3 Command Processing (ProcessCommand)coooveeuiiiiiiiieieiieeeieeee e se e 90
7.4.4 Copy Function (COPYFUNCEION)coioviiieieieeieeeeee ettt eae e e 91
7.5 Erasing Kernel (FDTErase.c, EraseTime.c, and F3694e.51C)ccoeeueevueeveeeneeeneennen. 92
7.5.1 Module Hierarchical StrUCLUTE.uuueiiiiiiiiieeee e et e e e et eeaeees 92
7.5.2 Flash Erasing (EraseFLASH)ccooiiioiiiiieeeeeeeee ettt ettt 92
7.5.3 Erasing Wait Time (EraseWaitTime and CalCount)............c.cceeeeieierieeeeeeereeeeeeeeeeeeeene, 93
7.6 Programming Kernel (FDTWrite.c, WriteTime.c, and F3694w.src)cceevuveuveenenne. 95
7.6.1 Module Hierarchical StrUCEUTE.uuueiiiiiiiiieeeee ettt e e e et eeaeees 95
7.6.2 Flash Memory Programming (WriteFLASH)c.cooiiiiiiiiiiieieeceeeeceeeeeee et 95
7.6.3 Programming Wait Time (WriteWaitTime and CalCount)ccoccevvvvvevviivenveieieene e, 96
8. Using Programming/Erasing Kernels (Supplied Programs)..........ccccceeuveveuvereueeenne. 98
8.1 PrOZIamMIMINGcoooiiiiiiiiiiiiiiiiiiiiiieieieeiaeeeteeteeeeeeeeeeaeeaaeaeaaasaasaassassssssssssssasssssssssasssssnsssnnnnns 98
8.1.1 USECA FILLES ettt e e e ettt e e e e ettt e e e e s eaaeesaanaaans 98
8.1.2 Module SPeCIfICAIONS. .. .uuviiiiiiiiieeeiiiiiee ettt e eeeee e e e e eeetb e e e e e e eeetataeeeeeeeeeeenaaaeeas 98

v

8.2 EraASINE .ottt eeee e e eeeeee——t————————atttaaaaaaaaaaaaaaa
8.2.1 USEA FALES ittt ettt e e e et e e e e e bb e e e s snbaeeeensbeeesansbaeeeessseeeenseeeennsseas
8.2.2 Module SPeCIfICAIONS. .. .uvviiiiiiii ittt eeecr e e e e ee ettt e e e e e eeeeataareeeaeeeeearaaeeas

1. Introduction

This application note describes the following items with respect to the use of the Flash Development Toolkit and the use
of the user program mode (user mode) of the H8/3694F (H8/300H Tiny Series) using the Flash Development ToolKit:
1) Boot mode (programming the user area)

2 User program mode (user mode)

Read the explanation of these items to understand differences between the boot mode and the user program mode and
understand the user program mode.

This application note describes the above items using a sample program created by referencing a boot mode control
program. This sample program programs and erases on-chip flash memory. To program or erase flash memory in the

user program mode, refer to this sample program.

2. H8/3694F (H8/300H Tiny Series)

2.1 Flash Memory Configuration

The flash memory version of the H8/3694F incorporates 32-Kbyte flash memory. In addition, it has an area for
containing a flash memory programming and erasing control program. This application note calls the area containing
the control program the boot area and flash memory the user area. The flash memory configuration is shown in Table
2-1.

Table 2-1 Flash Memory Configuration

Area Type Size Blocks
Boot area Control program - -
User area Flash memory 32 Kbytes 5 blocks

Four 1-Kbyte blocks
One 28-Kbyte block

2.2 Programming Modes

The following two modes are available to program and erase flash memory: The boot mode which enables on-board
programming/erasing operations and the programmer mode which enables programming/erasing operations using a
PROM programmer. In addition to the above modes, the user program mode enables on-board programming/erasing
operations. When the H8/3694F is started from the reset state, it enters a mode depending on the input levels of the
TEST and NMI pins and port as listed in Table 2-2. The input level of each pin must be set at least 4 states before the
reset state is cleared.

When the LSI enters the boot mode, the boot program incorporated into the LSI starts up. The boot program transfers
the programming control program from the externally connected Flash Development Toolkit to the on-chip RAM via
SCI3, erases the entire flash memory, then executes the programming control program. The boot mode is available for
initial programming in the on-board state and forced return when data cannot be programmed or erased in the user
program mode.

In the user program mode, any desired block can be erased and programmed by causing a branch to a user-provided
programming/erasing program.

For details, refer to the Hardware Manual.

Table 2-2 Programming Mode Selection

LSI Status After the Reset State Is Cleared TEST| NMI | P85 PBO PB1 PB2
On-board programming User program mode 0 1 X X X X
modes Boot mode 0 0 1 X X
Programmer mode 1 X X 0 0 0

Note: 1. X: Don't care

2.3 On-Board Programming Modes
There are two on-board programming modes: The boot mode and the user boot mode. On-board programming modes
are listed in Table 2-3.

Table 2-3 On-Board Programming Modes

Item Boot Mode User Program Mode
Function This mode is a program mode that uses an | The user area can be programmed by
on-chip SCl interface. The user area can be | using a desired interface.
programmed.

This mode can automatically adjust the bit
rate between the host and this LSI.

The entire user area is erased first.

Control program Boot area User area
(On-chip boot program) (User-created user program)
Programming/erasing User area User area
enable area
All erasure v' (Automatic) v
Block division erasure v*1 v
Programming data transfer | From the host via the SCI From a desired device via RAM
Reset start On-chip boot program storage area User area

(Boot area)

Transition to the user Changing mode setting and reset Changing the FLSHE bit setting
program mode

Note: 1. All-erasure is performed. After that, the specified block can be erased.

The entire user area is erased in the boot mode. Then, the user area can be programmed by commands. However, the

contents of the area cannot be read until the entire erasing is done.

3. Functions of the Flash Development Toolkit

The Flash Development Toolkit is an on-board flash programming tool for Renesas F-ZTAT microcomputers, which
offers a sophisticated and easy-to-use graphical user interface.

When it is used with Renesas High-performance Embedded Workshop (HEW), it allows users who develop embedded
application software using Renesas F-ZTAT microcomputers to use an integrated environment.

The Flash Development Toolkit can also be used as an editor for S-record and hexadecimal files.

Note: F-ZTAT (Flexible-Zero Turn Around Time) is a trademark of Renesas Technology Corp.

3.1 Main Functions

o Connecting a device: Connects a device to the interface of the Flash Development Toolkit.

o Disconnecting the device: Disconnects the device from the interface of the Flash Development Toolkit.

e Erasing blocks: Opens the "Erase Block" dialog to erase all or individual blocks in flash memory on the device.

o Checking the blank status: Checks whether the flash section on the target device is blank.

o Uploading data: Uploads data from the target device.

* Downloading a target file: Downloads an active file using the hexadecimal editor.

o Returning a checksum: Returns a checksum of data in flash memory.

o Specifying a flash area: Sets a flash area in which non-programming (such as uploading and blank check) operations
are to be performed.

o The Flash Development Toolkit is available in the simple interface mode and basic simple interface mode to facilitate
the usability of the kit.

For details, refer to Renesas Flash Development Toolkit 3.4 User's Manual.

The graphical user interface screen of the Flash Development Toolkit is shown in Figure 3-1.

Pl Bt e Propect Took Window Debios Help

CEEREL S Ah i d|¥r s oneerce a0

[S 8 a8 | % |
=),

SHIRZRZREE

0! pon0oned

B09001% 0a000; EIJEIDI.'IEIE'F

H'OD0O00OND - HUOX0DODD M° OOOOD0D4
0o00E1l&al H'O0OOLOO) - B OR001110 HO)L1E

000002 non0a;
0000024 Qa00a: : : :
QODR0ZE poooa; DEEEE{EE H'OODOLPGOD - R OOOIFE4R W' OOOO0R4C
nonnzE a00d: pygpo1dh

Q0000 ZE 00000;

000C0ZS 00000; BEEEEEE{
Q000022000097 1y nopz)
Q00C0ZE 00000 pangpazT

[oon S DonOn23a T e e
inanoo: 0000024d £ Ef £f £f £f ff £f ¥ryvpvrovrvsvesvey
T OG000240 T B B PR PR PR IE YHUYTRFVVRIVTUREERY
-?fﬂﬂ. projects | R 22T ot v el ot G isvisi Ca |
‘j_m | ks ﬂgjudmp User Azes IEsge... |
Pt oM clading Bileai
Bsud STE0d Bone
Tt e B Fos i e LigE Mzt idang. .. Czifragras FalsslAenesastifHTL IV Esrne | nl Srnthl 2200 Benennnt | __00 228 Ten k. unr
e Dol st Bl Ma Eutlding... C:i\Frogras Files\RensaasdFOTS. D\Femmels)ProtB) 2552 Reneanat]l_0_00uienl, sot

Iraige Bulld Succesded: O Crogram Flles\Resesas\FBTI. I\Workspaces \Industrial Costrollerilndusteial ComtrolleriInidus
|iser Imsge afdfded to wobspeces

Opering £1le C1iFrogres Flles\Renssss)FRTE. 1\Kernels ProtE\2oez, Renessail 0 000 ZZ8ETesc. ot
File loaded; GxO0000000 -> OkONOLFFFF

Opeming Cile CitFrogrem FilesiRenesas)FOT3.1\KemmelaiProtB 228z Renesan’] 0 00 wSenll. not
File loaded; O0x00000000 -> OxO00LFFFF

1] -- | | af I _’rﬂ
LB bl Commnaicsiiens f Duskce N Brograneser) Mokie [LD, [FOT) bedmstriod Comirslher - TEDT] Wsr Moch Farogramasivg 3 Pl nERs | i
Reaxdy Defaki deckiop | = Ems N

Figure 3-1 Graphical User Interface of the Flash Development Toolkit

4. Operating the Flash Development Toolkit

4.1 Connecting the Adapter Board

On-board programming adapter board for F-ZTAT* microcomputers HSO008EAUF1H (called the adapter board
hereafter), which is connected between a host computer and user system, has a function which can write a user
application program in flash memory built into an F-ZTAT microcomputer on the user system (on-board) and erase it
from the flash memory using the Flash Development Toolkit.

The adapter board connection is shown in Figure 4-1.

Note: F-ZTAT (Flexible-Zero Turn Around Time) is a trademark of Renesas Technology Corp.

Note: FDM (flash development module) is a former name of the adapter board.

USB cable

Adapter board K
\)

HSO00BEALFT II/| Host computer
Q

lo

User system

F-ZTAT /
/ microcomputer
g

Figure 4-1 Connecting the Adapter Board

The pin numbers and corresponding signals of the user system interface cable used for connecting the adapter board and

user system are listed in the following table.

Table 4-1 Pin Numbers and Corresponding Signals of the HSO008BEAUF1H User System Interface
Cable

No. Signal Name No Signal Name
1 RES 2 GND
3 FWx 4 GND
5 MDO 6 GND
7 MD1 8 GND
9 MD2 (100) 10 GND
11 MD3 (101) 12 GND
13 MD4 (102) 14 GND
15 RXD (TXD on the user system side) 16 GND*1
17 TXD (RXD on the user system side) 18 VIN (Vcc or PVcce)*2
19 SCK (NC) 20 VIN (PVcc)*2

Notes: 1. Be sure to connect pin No. 16 to GND to detect that the user system is connected properly.

2. For a device with Vcc and PVcc, be sure to supply Vcc or PVece (pin No. 18) and PVcc (pin No. 20) to the VIN pins of
the user interface connector, respectively. To use a device under condition Vcc = PVcc or when PVcc is not present in
the device, be sure to supply Vcc to both VIN pins Vcc or PVee (pin No. 18) and PVcce (pin No. 20).

Connecting the Adapter Board
An example of connecting the H8/3694F and Renesas adapter board (HSO008EAUF1H) is shown in Figure 4-2. The
pull-up and pull-down resistor values shown are only examples. Evaluate the microcomputer to determine the actual

values on the user system.

Adapter board

(HSOO08EAUF1H) Vee Pulled up at 47 kQ
7 or more.
18,20
VIN(vee) O
RXD (1) +— TXD
™D @ RxD3
MDO (5) NMI
MD2 (9) P85 H8/3694F
(100) Ve
Pulled up at
% about 1 kQ.
RE O f Do RES
) >
o O~ 1 [3
2,4,6,8,10,
12,14,16

Connector*1 Note: 1. Manufacturer: 3M Corporate
3428-6002LCSC

Figure 4-2 Example of Connecting the H8/3694F and Adapter Board

411 Setting Pins on the Adapter Board

An example of setting pins for the boot mode when the H8/3694F user system and Renesas adapter board

(HSO008EAUF1H) is shown in Table 4-2.

Table 4-2 Example of Setting Pins on the H8/3694F and Adapter Board (for the Boot Mode)

Pin No. Pin on the Adapter Pin on the Input/Output Output Level
Board Device

1 'RES RES Output (default) Adapter board
3 FWx NC NC -

5 MDO NMI Output Low (0)

7 MD1 NC NC -

9 MD2 (100) P85 Output High (1)

11 MD3 (101) NC NC -

13 MD4 (102) NC NC -

15 RXD TXD Input (default) Adapter board
17 TXD RXD Output (default) Adapter board
19 SCK (NC) NC NC (default) -

Note: NC: Means no connection.

Table 4-3 Programming Mode Selection

LSI Status After the Reset State Is Canceled TEST | NMI PBO PB1 PB2
- MDO | MD2(100) - - -
On-Board Programming | User Program Mode 0 1 X X X
Modes Boot Mode 0 0 1
Programmer mode 1 X X 0 0

Note: X: Don't care

4.2 Setting the Flash Development Toolkit

Set the Flash Development Toolkit first to write a program in flash memory.

421 Starting the Flash Development Toolkit

From the "All Programs™ menu, select "Flash Development Toolkit 3.4."

F© OO LEVE DTS (ORI =

FRTOZOISAE B G tool

WE S8 D | ot

4.2.2 Selecting an Option
The "Welcome!" screen of the Flash Development Toolkit appears.

Select "Create a new project workspace."

When the Flash Development ToolKkit is started up for the second and subsequent times, the previously selected device

and port information are retained. Select "Open a recent project workspace."

[‘}” Flazh Developi

@ Help

X User Guide {PDF)

| ‘}” Flash Development Toolkit 2.4

f*’ Flazh Development Toolkit 3.4 Baszic

Welcome!

Cptions oF I
% % Treate a new project workspace! e I
% {7 Open a recent project workspace: Bdministration... I
k= :
% " Browse to another project workspace

When you have selected an option, click "OK."

10

4.2.3 Setting a New Project Workspace
Set a new project workspace. Use "Browse..." and select a directory, and specify the device name in "Workspace

Name." Specify a project name if required. In this example, specify the same name in "Workspace Name:" and "Project

Name:."

Hew Project Workspace

Projectz

ERE DT Project Generator | MWorkspace Name:
13694

Project Mame:
|3l394

Directory:

JG:¥I]5fdt¥fdt¥3694 Browse..

CPL family:
|&ll Flash Devices |

Tool chain:

o 7]

Properties...

)L

When you have set the project workspace, click "OK."

11

424

Selecting the Device and Kernel

Select the target device from the pull-down menu. In this example, select H8/3694F.

CGhoose Device And Kernel

|I'Il:,ll_|.1;|:ri:_"'l"l:"_—'r

Ok s cp

- LE _L\fii"-l:lh:ly

= :_-..J L"F"_.-._.'IL'&]rnagt
= Target filgs

=l LEB, mot

E {5] Cormmes, Mot
."_j Davice Image

- Target files
[=3 Drivenmat
J= e ok

™

(2] Kaybadrd, m

‘j Aldgorithmmy

e

The FLASH Development Toolkit suppartz a number of Renesaz

FLASH devices.

select the device you wish to use with this project from the list

Select Device: |HEL'"3EEQ4F :_] Other...
Protocol B
Campiler Fenezas 404

o kernel Path
kernel Version

C¥Program Files¥Renezaz¥FDTI4¥Kerne =Py
1200

[

[

el

L ERE) | AR I

X

When you have set the device, click "Next."

12

425 Selecting a Communications Port

Select the adapter board (FDM) from the pull-down menu.

Communications Port

We The FLASH Development Toolkit supparts connection through the
Jrksnar_e ztandard PC Serial port and the USE port. Use this page to zelect
%"__'_ . vour dezired communizations part. &ll zettings may be changed after
! WAL S the project iz created.
2 _.-:JI kfm"‘! Thehictyis) o]
= EF' L\'H‘ﬂlldy e
i : -.J Device Trnage Select part: FOM ¥:
o= Target filgs
=l LEB, mot
l__’-'.n_ﬂ Kayhindrd, m
? [=] Cafnma, mit Select an Interface tvpe to connect to the target device with. Maormally
= ER thiz will be * Direct Gonnection” or simply left blank.
] Dévice Image
- Target files) =
L B Ortvs,mot Select nterface: __J
;:,j Draba ok
3 Hershm
_ el
< EaiBl i wra D I)]

When you have selected the communications port, click "Next."

13

4.2.6 Device Settings (Setting the Input Clock)

In the first column enter the frequency of the clock used for the board in MHz. For example, enter 9.8 (MHz).

Device Settines

Pleaze enter the specific device options based on:
{ [Ha/3694F] usine [Protocal B]
i YWa I:;:i“_‘_‘“——-—._
@_ SPace] -z Enter the GFU crystal frequency far 1 a8 | Mhz
7 g Diigpl Musthialce the selected device:
: :_.J Device dege
o= Target filgs
=] LEB, muot Enter the clock mode for the IONE
LE'Q Kavhaardm zelected device: :
; E 15 Commmes, miok
= i Gelect the multiplier for the Main i : 1
-] Dﬂ"_P mees clock frequency (CEM:
- Target files
,':_-_; |:|ri1\.-'-.=".llll:|L
{2y Daba ok Select the multiplier for the] 2 i
= pdigorith T Peripheral clock frequency (0K
" el
< Eaig oA

When you have entered the value, click "Next."

The input clock is the frequency of the clock directly input to the microcomputer. Enter the frequency of the crystal or
ceramic resonator connected to the user system with three significant digits. The input clock differs from the operating

frequency (PLL output).

14

4.2.7

Selecting the Connection Type (Communication Speed)

Set the baud rate. For example, select "Use Default."

Connection Iype

' m‘;ﬁ;@“ e

= G Display ustrial e
B _'J Levice Irege
o= Target filgs
=] LEB, muot
lEg Kayhadrd, m
E] [S]° Cafnme. Mo
."_] Davice Image
s J [an__]-'—-_.t”lt‘F
s CiFiye. ok
i [Crabaimok

The FLASH Development Toolkit can connect to wour device in a
number of different wavs. &ll the optionz on thiz page may be
changed after the Project haz been created.

Select Connection:

" |USER Proeram Mode

[Kernel already running
Tn BOOT Program mode the device erazes itz FLASH prior to
connection. The Toolkit downloads programming kernels to the device
az required.

The Recommended Speed zetting iz based on the current device and
clock. The uzer may alzo input their cwn, if this is supported by the
kernel fand the optional FOM).

[lze
v Detfault

iv Recommended Speeds: | 192

; i—

F leer Specifisr

i e |

<{EaB F

X

When you have selected the baud rate, click "Next."

15

4.2.8 Selecting Programming Options (Protection Level and Messaging Level)

Select the protection level and messaging level. For example, select "Automatic"” for "Protection™ and "Advanced" for
"Messaging."

Proeramming Options

The FLASH Development Toolkit offers a device protection svstem,
pluz an advanced meszaegineg level for uze with hardware and kernel
1 development,

E 5“'.‘;';——-__- _____ Vihat level of device protection would wou like?
T HEp Displ sy Mdusthial o — Protection -
g Dt Irnpas . (v i £ Interactive " More
= | Target files _ : : - ;
I - ehn programming the device, any blocks found to have been written
(=) LB, ot ith the devic blocks found to have b tt
& hdvrlnc:rd presciouzly will automatically be erazed.
E) e i

5] Cofmms, miok

ithat level of meszaging would wou like?
] Dévice Image

: —Mezzaging

e Target Files |

v "'i'j Drive.mat ™ Standard * Advanced
f= [mt-‘-‘n"""-'r' L LR PR T LT L T Py P e
A Aot M The Toolkit will display verbozse messages whenever it iz
__J Al communicating with the Tareet device. Thiz mode iz useful for

Interface hardware development, and Kernel development.
.-n-;"'"_’-_'__-_

< RaiB) | AR I F

When you have selected programming options, click "Next."

16

4.2.9 Adapter Board Pin Settings

Set the pins on the adapter board (FDM) for the boot mode.

In the H8/3694F boot mode, set the output of P85 to high (1) and that of NMI to low (0). On the H8/3694F user system,
MD2 (100) is connected to P85 and MDO is connected to NMI. For this reason, set the output of MD2 (100) to high (1)
and that of MDO to low (0). No FWE pin setting is required because no FWE pin is given.

EDM Pin Settines

Pleaze zelect the pin zettings for the FDOM

(2] Kaybadrd, m

"'l"nrl;,
b :
a3 BOOT Mode uging Clock Made i I - i
i mﬂzﬁa-—---ﬁ. -

=|. (s8] USErig) o)

: F .L\flml"'"’" L Operating Mode: 1L|: Uszer Defined :_J

- :j ;‘:j,-.__-._:ll_'& lj:rl'lag'_. WA R RIMG:
argekFil
;-.] L.;[-.Il.r:,;,: Ihcorrect gettings could damage vour hardware

Fie SCK MD4 MD3 MDZ MDT MDO

5] Cofmms, miok

=g BOOT Made |
-@] Davice Image Cutputs L o [] [v [T W x5
~1-£4 Target files BOOT Mode :
T [=3 Drivenmat Setting E 5 [| IS ™ Ox04
e [raka gnck
.j Aot ms
g

< RaiE

el

When you have set the pins, click "Next."

17

An example of connecting the H8/3694F and Renesas adapter board (HSO008EAUF1H) is shown in Figure 4-3. The
pull-up and pull-down resistor values shown are only examples. Evaluate the microcomputer to determine the actual

values on the user system.

Adapter board

(HSOO08EAUF1H) Vee Pulled up at 47 kQ
— or more.
18,20
VIN (vee) ()
RXD (15 e— TXD
™D @) RXD3
mMDOo (5) NMI
MD2 (9) P85 H8/3694F
(100) Vee
Pulled up at
% about 1 kQ.
RES (1) 1 RES
onD O 3

2,4,6,8,10,
12,14,16

Connector*1 Note: 1. Manufacturer: 3M Corporate
3428-6002LCSC

Figure 4-3 Example of Connecting the H8/3694F and Adapter Board

An example of setting pins for the boot mode when the H8/3694F user system and Renesas adapter board
(HSO008EAUF1H) is shown in Table 4-4.

Table 4-4 Example of Setting Pins on the H8/3694F and Adapter Board (for the Boot Mode)

Pin No. Pin on the Adapter Pin on the Input/Output Output Level
Board Device

1 RES RES Output (default) Adapter board
3 FWx NC NC -

5 MDO NMI Output Low (0)

7 MD1 NC NC -

9 MD?2 (100) P85 Output High (1)

11 MD3 (101) NC NC -

13 MD4 (102) NC NC -

15 RXD TXD Input (default) Adapter board
17 TXD RXD Output (default) Adapter board
19 SCK (NC) NC NC (default) -

Note: NC: Means no connection.

18

4.2.10 Reset Mode Pin Settings

Set pins on the adapter board for restarting the device in the reset mode. These settings are not required for this
procedure.

RESET Pin Settines

Pleaze zelect the pin zettings required after a device RESET

T RESET Mode using Clack Mode [[NETVENINN ~
[I'-'I"'":lrkf, =
53 :{%;.'-'ﬂ DiD.!IlrE rnd'l"itri;rf-_', T . —
: ;jnL‘j"' y Operating Mode: 1L|: User Defined :_j
& Jebice] .
[SE Tarua”;";‘:g* A RN IMG:
E‘] LEB: st Ihcorrect settings could damage vour hardware
LEJ h_avh-:-ard.rrn F i SCE MD4 MD3 MDE2 MD1T MDD
(e oarnr , ik
@ Gnes LONCRERERERER v
] Dévice Image P
irl-5 Target files RESET il e E NG I =000
e D ok SEHIHE
e [Crabaimok
15 Algerihme
BESTE

< RaiE | T I F

When you have set the items, click "Finish."

19

4211 Completion of Setting
The H8/3694F board has been set to the Flash Development Toolkit in the boot mode.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

CAEREAEY ELR RN
[FREr T &) o
1]
...... @ 2604
_@ijemx

X|FOT AP initialized: version 3, 4,0, 5

I

4]+ T\ rFo0T13694 4 FindinFiles f

Default] desktop | [2

20

4212 Connecting the Device

Connect the adapter board (FDM) to a PC and the H8/3694F board to the adapter board and turn on the power.

After the completion of the connection, click "Device" to open the pull-down menu and click "Connect to Device."

Eile Edit Miew Project Tools Window

m

| st|lowewzze
B b{

i =R - |||Eﬁ| :

Citpl+ A+

o4 Erase FLASH Blocks
7 Blank Check

ﬁ"r* Upload Image

ﬁ:’ Download Active File
% FLASH Checksum
@a

= Go From Address..

Citrl+&H+E
Ctrl+alt+B
Ctrl+alt+
Citrl+alt+P

Citrl+Al+5

Cirl+ g+

@ Cancel Operation

Ctr i+ Break

Flazh Area for Hon-YWiite Ops

,,.5? Configure Flash Project

flt+Shift+R

.._I 2] Projects |

X|FOT AP initialized: version 3, 4,0, 5

»

4]+ T\ rFo0T13694 4 FindinFiles f

|Default] desktop

[~

Select the adapter board (FDM).
Select USB Device

| 1 USE device lozated

F Dl - SN 00000 [Clozed]

When you have selected the device, click "OK."

21

4.2.13 Completion of Connection
The H8/3694F board has been connected to the Flash Development Toolkit in the boot mode.

At this time, the contents of the user area have been erased.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
2ot |gigi o = 2 @ e <]

B b{

i 2] Projects |

2|Chaneine baud rate ta 19200 bps

2 Set baud rate value = 19200

Downloading main kernel 'C:¥Proeram Files¥FRenezas¥FDT3.4%Kermel=¥ProtB¥3694¥Renesas¥] 2 D0¥Genm3694.cde
Main kernel download complete..

[Connection complete

All blocks marked as blank

]| il [

<[» I\ [FDT13694 4 FindinFiles §

Feady Default] desktop |

22

4.3 Boot Mode (Programming the User Area)

Write a program in the user area in the boot mode. The program to be written is the sample test program supplied with
the Flash Development Toolkit (files 3694 Test.mot and uGenU.mot (S-type files)). The bit rate in this program must be
modified according to the frequency. For how to modify the bit rate, refer to section 7.1.1, Bit Rate Setting (GenTest.h).
The program is contained in the Renesas\FDT3.4\Kernels\ProtB folder for the Flash Development Toolkit. The
following is the full pathname of the Flash Development Toolkit programs when they are installed in the Program Files
folder:

C:\Program Files\Renesas\FDT3.4\Kernels\ProtB\3694\Renesas\1_2_ 00

431 Selecting Files

To select files to be programmed, select "Add Files..." from the "Project"” pull-down menu.

‘?# 3694 — Flash Development Toolkit (Supported VYersion)

Eile Edit Wiew BEfeEES Tool: Window Device Help

B | 4B Set Current Project r ,Iﬂi gl |
T - Ihzert Project.. _
T =]

Add Files.. .

E@m Bemove Files..

I3 3694 File Extenzions..

Febuild Image k
Download Image r
Field Proeramming r

i 2] Projects |

2|Chaneine baud rate ta 19200 bps e
2 Set baud rate value = 19200

Downloading main kernel 'C:¥Proeram Files¥FRenezas¥FDT3.4%Kermel=¥ProtB¥3694¥Renesas¥] 2 D0¥Genm3694.cde
Main kernel download complete..

[Connection complete

All blocks marked as blank

£ | 111 | > [
4]+]\ rFoT13694 4 FindinFiles f
Add filelz) to project Default! desktop | -

23

In the "Add Files" dialog box, add file 3694 Test.mot.

Add File (=)

IrLEIERRG: [(591.2.00 ~| & & cf E

P Gensl60d.cde
S Genmatod.cde
P Genudtgd cde
S Genw3Eod cde
SHuGen3694.cde

uGien Ll mot

FrA 13694 Test mot Add

FrLDIERRT: Project Files | Feor)l |

[~ Belative Path

When you have selected the file, click "Add."

File 3694 Test.mot is now added to the project.

‘?# 3694 - Flash Development Toolkit (Supported Version)
Eile Edit Miew Project Toole Window Device Help

a5 me | @ | e ey
| alsaee s g e i S|k

1zl =l
S SEm
=[5 3694
=23 5-Record Files

------ 694 Test.m

«| | &

i 2/ Projects |

2|Chaneine baud rate ta 19200 bps

2 Set baud rate value = 19200

Downloading main kernel 'C:¥Proeram Files¥FRenezas¥FDT3.4%Kermel=¥ProtB¥3694¥Renesas¥] 2 D0¥Genm3694.cde
Main kernel download complete..

[Connection complete

All blocks marked as blank

s il [

i » [\ [FDT13694 4 FindinFiles §

Default] desktop |

24

In the same way, add uGenU.mot.

‘?# 3694 - Flash Development Toolkit (Supported Version) E”E”E|

Eile Edit Miew Project Toole Window Device Help

@i =e @|wl & B |
[@alseees eimm s

B b{

EI'E S-Record Files
: 04 Test.m
(4] uGenlmat

«| | &

i 2/ Projects

2|Chaneine baud rate ta 19200 bps

2 Set baud rate value = 19200

Downloading main kernel 'C:¥Proeram Files¥FRenezas¥FDT3.4%Kermel=¥ProtB¥3694¥Renesas¥] 2 D0¥Genm3694.cde
Main kernel download complete..

[Connection complete

All blocks marked as blank

il | [

i€
|1+ *]\[FDT]13694 /i FirdinFiles /

Feady Default] desktop |

25

4.3.2 Building the Image
Build the user area device image because more than one file is to be programmed. From the "Project" pull-down menu,

select "Rebuild Image" then "User Area."

‘?# 3694 — Flash Development Toolkit (Supported VYersion)

Eile Edit Wiew BEfeEES Tool: Window Device Help

B | 4B Set Current Project r 'Iﬂl gl ‘

T Ihzert Project..
o ~l| #
= Add Files..

E@m Bemove Files..

5@ 9504 File Extenszions..
Eia S-
i o)

|lzer Boot Area

Both

Download Image

Field Programming

KR | 3
2/ Projects |

2|Chaneine baud rate ta 19200 bps e
2 Set baud rate value = 19200)
Downloading main kernel 'C:¥Proeram Files¥FRenezas¥FDT3.4%Kermel=¥ProtB¥3694¥Renesas¥] 2 D0¥Genm3694.cde
Main kernel download complete..

[Connection complete

&1l blocks marked az blark

$ i |
<[» I\ [FDT13694 4 FindinFiles §
Build the uzer image from the target filez IDefauIﬂ desktop | -

26

Image file 3694.fpr is created.

‘?# 3694 - Flash Development Toolkit (Supported Version)
Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
2ot |gigi o = 2 @ e <]

x|
ST

=[5 3694
EI'E Device Image

=23 5-Record Files
: 04 Test.m

L uGen Ll mat
«| | 2
2/ Projects
2| Excludine files: ™|
£ Hoke)

Building... C#¥Program Files¥Renesaz¥F DT 4%¥Kerne =¥ ProtB¥3694%¥ Renesas¥] 2 00¥3694 Test. mot
Building... C#¥Program Files¥Renesaz¥F DTI4%¥Kerne =¥ Prot B¥3694%¥ Reneszas#¥1 2 00¥uGen L mat
Imaege Build Succeeded: G¥05fdt¥fdt¥3694¥3694¥3694 fpr

User Image added to workspace

|{ | 1iff

o i Kl
<]]\ [FDT13694 4 FindinFiles

Default] desktop | R

27

4.3.3 Programming

Program the user area.

Click the right mouse button on file 3694.fpr to display the pop-up menu. Click "Download User Image" to download

file 3694.fpr to the user area.

‘?# 3694 — Flagh Development Toolkit

{(Supported VYersion)

File Edit Miew Project Tools Window Device Help
IR =2l S
.-f&t 2 |.f_; W 8 2@ ||Ll'~:-3|ﬁ‘-.r|3e| Lll_;ik |
— e 1|
=3 3604
=[5 3694
Eia Device Image
R L A
£ FOT Image, Open 3694.fpr

E-E5 S-Record F
3 Add Files..

Remowve Files..

IMNS

|T Allow Dock.ing

Hoke

Buildine... C¥Program File
Buildine... G:#¥Program Filg
Imaege Build Succeedy{
User Imaege added to

Rebuild Uszer Image

Download User Image

fdvanced Image Options

File Ghecksum

F¥1 _2 00¥3694 Test. mot

¥1 2 0%¥uGenll mot

4| | Hide
@Pm]emx I Froperties
ﬂ Excluding files: Display Block Usaee.. il

|{ | il

z Compare File=>Device Checlksum B
| |
<[» I\ [FDT13694 4 FindinFiles §
Download uzer device image Default] desktop | R

28

You can check that the program has been downloaded to the user area.

‘?# 3694 - Flash Development Toolkit (Supported Version)

findow Device Help

Edit Aiew Project Tools

Eile

=l & B |
1| #

SRR AEY

o |./_,§¢ g E 2@ ||U:~:-3r.ﬂ-.ree.
B b{

EI@ 3694

E"E 3694
=23 Device Image
Lo 2694 fpr
424 FDT Image File
=53 5-PFecord Files

2694 Tezt.m
uGenl) maot

| &

<
2/ Projects

Data programmed at the following positions:

H'O0000000 - H'0000007 F Length : H'OO00O030
H'O0000400 - H'D000057 F Length : H'OO000130
H'O0007E00 - HO0O0?CFF Length - H'OOOOO700

2268 K programmed in 2 seconds
Imaege successfully written to device

L=l

]
<[» I\ [FDT13694 4 FindinFiles §

\Default] desktop

29

434 Blank Check

To confirm that the user boot area has been programmed, perform a blank check.

Click "Device" to open the pull-down menu and click "Blank Check."

Eile Edit Miew Project Tools Window Help

Wb em|@|[m|» ot b
4 | ! 144

Ctrl+ o+

R | e T : Ze lecannect
R |G HFEEPI EO

o4 Erase FLASH Blocks

1zl =l :
oy i k
=) 3604 L
=-[E 3694 & Upload Image
E a Dewce Image $ Download Active File
i

% FLASH Checksum

a FDT Image File 1‘3;':' Go From Address..

—'_“- 43 5-Record Files

Citrl+AH+E
Ctrl+alt+B
Ctrl+alt+
Citrl+alt+P
Citrl+Al+5
Crl+ A+

- [£] 3694 Testm
- [] uGenllmot

@ Cancel Operation

Ctr i+ Break

Flazh Area for Hon-YWiite Ops

4| | i3 # Configure Flash Project

flt+Shift+R

.._I 2/ Projects |

2l|Data programmed at the following positions:

2 H'O0000000 - H'0000007 F Length : H'OO00O030
H'O0000400 - H'D000057 F Length : H'OO000130
H'O0007E00 - HO0O0?CFF Length - H'OOOOO700

2268 K programmed in 2 seconds

Imaege successfully written to device

=B

_ I + I\ [FDT] 3694 ,-i Find in Files f

Check if the device iz blank

|Default] desktop

[~

30

The result of the blank check for the selected area is displayed.

The user area is not blank.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
|9 |Fai# e Z 8 @ |[Useie 1|
- =
=5 2604
?-l@ 3694
EI'E Device Imaege

i 3694 fpr
424 FDT Image File
El'a =-Fecord Files
i 2624 Test.m
! uGen Ll mot

«| | 3
2/ Projects
ﬂ HOO007600 - HODDO?GFF Leneth : HOODOO700 o
. o

2268 K programmed in 2 seconds
Imaege successfully written to device

Checking for blank device
Device iz not blank [Uzer dreal

il | [

i€
|1+ *]\[FDT]13694 /i FirdinFiles /

Default] desktop | Fz

31

435 Checksum
To confirm that the user boot area has been programmed, display a checksum.

Click "Device" to open the pull-down menu and click "FLASH Checksum."

Eile Edit Miew Project Tools Window Help

= | M Ry s e Cot e B
et Lanmect 1o Levice Cir |+ B+
=R A=Y #" Coorieguts [y A

T | R _@i Dizconnect
A|lGHEFEPI EO

1zl (_7‘:* Eraze FLASH Elocks Cirl+alt+E
El- @ 2504 EE:{ Blank Check Ctr+Alt+B
=[5 3694 § Upload Imaee Ctrl+Alt+L
D a DEVICE Image ﬁ:’ Download Active File Citp |+ O t+P

I

""" ¥ [t sum Grl+Alt+S

a FDT Image File 1‘3;':' Go From Address..

—'_“- 43 5-Record Files i

- [4] 3894 Testm @ Cancel Operation Cirl+Ereak

- [] uGenllmot
Flazh Area for Hon-YWiite Ops

4| | # Configure Flash Project filt+Shift+F,

.._I 2/ Projects |

|| HDDOD7600 - HODOD7GFF Length - H'OOOOO700
225 | programmed in 2 seconds
Imaege successfully written to device

Checking for blank device
Device iz not blank [Uzer dreal

_ I + I\ [FDT] 3694 ,-'{._Flnd in Files §

Get the Flagh Checksum iDefauIﬂ desktop

32

The result of the checksum calculation is displayed.

‘?# 3694 - Flash Development Toolkit (Supported Version)
Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
PR | S FE I L@ |[Userhea 1|
- 21 x|
=5 2604
?-l@ 3694
EI'E Device Imaege

IRNY oo i
424 FDT Image File
El'a =-Fecord Files
3624 Test m
i uGen Ll mot

«| | &

i 2/ Projects

x|
I

Checking for blank device
Device iz not blank [Uzer dreal

Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real

o i Kl
<]]\ [FDT13694 4 FindinFiles

Default] desktop | Fz

When the user area is blank, the following value is displayed as the result:
Calculating device checksum
Flash Checksum: OxOO0OFFO000 (User Area)

33

4.3.6 Disconnecting the Device
After the completion of programming, disconnect the device.

Click "Device" to open the pull-down menu and click "Disconnect."

Eile Edit Miew Project Tools Window Help

W REe S |H':ﬁ|_”‘" riect to Devi G+ A+

‘AlomewIRe

Erase FLASH Blocks Ctrl+AR+E
27, a'}"& k Check Ctrl+Alt+B
_— L1 + +
= @ 01 Qﬁr Blari e ¢
=[5 3694 g~ Upload Image Cirl+alt+U
D -El Dewce Image $ Download Active File Citrl+Alt+P
a 2] % FLASH Checksum Ctrl+ &+
FDT Image File &0
:_ a & PRecord Files = Go From Address.. Ctr+Alt+G
3694 Test.m @ Cancel Operation Cirl+Break
- uGen Ll mot
Flash fArea for Mon-Write Ops
4| | # Configure Flash Project filt+Shift+F,
@Pm]emx |
-li AI

£ Checking for blank device 0
Device iz not blank [Uzer dreal

Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real

% | 11l | > [
4]+]\ rFoT13694 4 FindinFiles f
Dizconnect from the device Default] desktop | E

34

The device is disconnected.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device

Help

a5 me | @ |

=™ & B

7 o |.f_$¢ g LT L ||U:~:er.ﬁ.ree|

=]

x|
=y 3604
=[5 3694
=23 Device Image
Al o0 for

b =3 FOT Imaee File
Ela S-Record Files
: 04 Test.m

L uGen Ll mat
«| | 2
2/ Projects
x| =
£ Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real
Digconnecting
Digconnected
v
Il 1ili =
| <] |\ [FDT13694 4 FindinFiles f
Default] desktop | Fz

35

4.3.7 Removing Files

Remove files.

Click "Project" to open the pull-down menu and click "Remove Files...."

¥ 3694 — Flash Development Toolkit

Eile Edit Wiew BEEEHS Tools

{(Supported VYersion)

findow Device Help

i

E | .:H) By d Set Current Project k ,I Hl ﬁ' % ‘
T Ihzert Project..
¥ oL | & =] 2
= Add Files...
File Extenszions..
Febuild Image k
Download Image r
Field Programming
uGenllmot
«| |]
2/ Projects
ﬁ |
£ Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real
Digconnecting
Digconnected
v

<[» I\ [FDT13694 4 FindinFiles §

Femaove fileiz) from project

\Default] desktop

36

The project files are desplayed.

Remoxe PFroject Files

Project files:

L0 for LoD TdiErdi¥anSaan4 [
3694 Test mat [C¥Program Files¥Renesas¥FDT. 4¥ Cancel
uGien Ll mot [C¥Proeram Files¥Renezas¥FOT3.4%

Remove All

< |

Y

Click "Remove All."

Remoxe PFroject Files

Project files: oK
Cancel

< |

Y

Click "OK."

37

The files are removed.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device

Help

a5 me | @ |

=l & B |

7 o |.f_§¢ g LT L ||U:~:n3r.ﬁ.r|3a

=]

B b{

=y 3604
=[5 3694
=4 Device Image

«| |
2/ Projects
| |
£ Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real
Digconnecting
Digconnected
v
i i 2
| <] |\ [FDT13694 4 FindinFiles f
Feady Default] desktop | [2

38

4.3.8 Removing Folders

Remove folders.

Click the right mouse button on a folder to display the pop-up menu and click "Remove Folder."

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

[@s = e s ||n B
|2 ot |G T L@ ||Userbiea 1|
-~ x1 =l
-y 3654
. ?I@ 3694

-E Device Image
=3 FOT Imaee File

OvE Fl:l |IjEfr
Rename Faolder

iT Allow Docking

] Uil

Hide
«| | oy

2/ Projects
ﬁ |
£ Calculating device checksum

Flazh Checksum: 0x00F982BE (User &real

Digconnecting

Digconnected

v

<[» I\ [FDT13694 4 FindinFiles §

\Default] desktop

39

The folder is removed.

¥ 3694 — Flash Development Toolkit

Eile Edit Miew Project Toole Window Device

{(Supported VYersion)

Help

a5 me | @ |

=™ & B

7 o |.f_§¢ g LT L ||U:~:n3r.ﬁ.r|3a

=]

B b{

= 3694
=[5 3694
4 Device Image

«| |]

i 2/ Projects

x|
I

Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real

Digconnecting
Digconnected

i

|1+ *]\[FDT]13694 /i FirdinFiles /

\Default] desktop

| [

40

In the same way, remove the Device Image and FDT Image Files folders.

‘?# 3694 - Flash Development Toolkit (Supported Version)
Eile Edit Miew Project Toole Window Device Help

@ m e @ ||l =% & B |
[P alowews e imm <
ix

=y 3604

Y @m

2] Projects
x| A
£ Calculating device checksum

Flazh Checksum: 0x00F982BE (User &real

Digconnecting

Digconnected

v
|

£ |
|1 <] *]\[FDT]13694 /i FirdinFiles /

Feady

\Default] desktop

41

4.3.9 Exiting
Save the work folder and exit the Flash Development Toolkit.

Click "File" to open the pull-down menu and click "Exit."

‘?# 3694 - Flash Development Toolkit (Supported VYersion)

&= Edit Wiew Project Toole Window Device Help

Cloze Girl+F4 <M R ‘
Mew Workspace.. ||U:~:-3r e j | yu
Cpen Waorkzpace..

Save Workzpace

Cloze Workspace

ﬁ' Open fAn 5-Fecord... Cirl+F.

E Save Ciri+3

Save Az

i 2] Projects |

] Uil

ﬁ |
£ Calculating device checksum
Flazh Checksum: 0x00F982BE (User &real
Digconnecting
Digconnected
v

<[» I\ [FDT13694 4 FindinFiles §

Exit FOT = waou will be prompted to save modified documents IDefauIﬂ desktop

The Flash Development ToolKkit terminates.

The work file space of the Flash Development ToolKkit is saved as file 3694. AWS.

42

4.4 User Program Mode

In the user program mode, the user area can be programmed or erased.

441 Starting the Flash Development Toolkit

From the "All Programs" menu, select "Flash Development Toolkit 3.4."

fmm e e imimm mrmmmmmm emeeeep

F&OUIEN LR IUSITENL ULR Ly e e

; ‘5” Flazh Development Toolkit 3.4
ff’ Flash Development Toolkit 3.4 Basic

@ Help

) User Guide (PDF)

W EZ & |5 el - [% Flash Devalop

4.4.2 Selecting an Option
The "Welcome!" screen of the Flash Development Toolkit appears.

Select "Open a recent project workspace" and project workspace file 3694.AWS.

Welcome! ?”§|
~ Dptions: - - ok]
ﬁ' " Create a new project workspace e I
% Dpen a recent project workspace: Bdministration...]
é iG:¥DEfdt¥fdt¥3694¥3694.F'.'u'I.I'S _:_j
k= :
% " Browse to another project workspace

When you have selected an option, click "OK."

43

Project 3694 is displayed.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

CAEREAEY ELR RN
[FREr T &) o
1]
...... @ 2604
_@ijemx

X|FOT AP initialized: version 3, 4,0, 5

I

4]+ T\ rFo0T13694 4 FindinFiles f

Feady Default] desktop | Fz

The Flash Development Toolkit can also be activated by directly opening (or double-clicking on) project workspace file
3694.AWS.

44

4.4.3 Connecting the Device
Connect the adapter board (FDM) to a PC and the H8/3694F board to the adapter board and turn on the power.

After the completion of the connection, click "Device" to open the pull-down menu and click "Connect to Device."

The device is connected.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
2ot |gigi o = 2 @ e <]

B b{

i 2] Projects |

2|Chaneine baud rate ta 19200 bps

2 Set baud rate value = 19200

Downloading main kernel 'C:¥Proeram Files¥FRenezas¥FDT3.4%Kermel=¥ProtB¥3694¥Renesas¥] 2 D0¥Genm3694.cde
Main kernel download complete..

[Connection complete

All blocks marked as blank

P i | B

<[» I\ [FDT13694 4 FindinFiles §

Feady Default] desktop |

45

4.4.4 Writing a Program in the User Area

Add files 3694 Test.mot and uGenU.mot and build the image to create file 3694.fpr. Then, download file 3694.fpr to

write the program in the user area.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device

Help

a5 me | @ |

=l & B |

o |./_,§¢ g E 2@ ||U:~:-3r.ﬂ-.ree.

=]

B b{

=y 3604
=[5 3694
EI@ De
NE q
23 FOT Imaee File
=53 5-PFecord Files
: 04 Test.m
uGenllmot

«| | &

i 2/ Projects

Data programmed at the following positions:
H'O0000000 - H'0000007 F Length : H'OO00O030
H'O0000400 - H'D000057 F Length : H'OO000130
H'O0007E00 - HO0O0?CFF Length - H'OOOOO700
2268 K programmed in 3 geconds

Imaege successfully written to device

L=l

i

<[» I\ [FDT13694 4 FindinFiles §

Feady

\Default] desktop

46

445 Disconnecting the Device

Click "Device" to open the pull-down menu and click "Disconnect."

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
|2 ot |G T L@ ||Userbiea 1|
- 21 x|
=5 2604
?-l@ 3694
EI'E Device Imaege

i 3694 fpr
424 FDT Image File
El'a =-Fecord Files
i 2624 Test.m
! uGen Ll mot

«| | 3
2/ Projects
ﬂ HOO007600 - HODDO?GFF Leneth : HOODOO700 o
. o

2268 K programmed in 3 geconds
Imaege successfully written to device

Digconnecting
Digconnected

v
il il [B
o[I [FDT13694 4 Findin Files f
Feady Default] desktop | Fz

47

4.4.6

Configuring the Project

Click "Device" to open the pull-down menu and click "Configure Flash Project.”

Eile Edit Miew Project Tools

ifirdioy

ICIEE A

o st |gmieiwz 2o

B b{

=23 Device Image
N 604 o
-3 FDT Imaee File
I:_i'a =-Fecord Files
2624 Test.m
- [] uGenllmot

KR | 3
2/ Projects |

Help
}?“ Connect to Device Citrl+ A1+
gﬁ Dizconnect
o4 Erase FLASH Blocks Citrl+&H+E
7 Blank Check Ctrl+A1t+B
§ Upload Imaee Citrl+Alt+U
ﬁ:’ Download Active File Cirl+alt+P
% FLASH Checksum Ctrl+ &+

89 Go From Address..

Cirl+ g+

* Gancel Operation

Cirl+Break

Flazh Area for Hon-YWiite Ops

x|| HOOOO7600 - HOOOO7CFF

I

Digconnecting
Digconnected

Length - H'OOOOO700
2268 K programmed in 3 geconds
Imaege successfully written to device

| — :
4]+]\ rFoT13694 4 FindinFiles f

Configure the flagh project

\Default] desktop

48

The configure project window appears.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
|2l |Fae#P I Re |[User Avea =[x
- 21 x|
=5 2604
?-l@ 3694
EI'E Device Image

[T
-a FOT Image File
=53 5-PFecord Files
3694 Test.m
L uGen Ll mot

< |
2] Projects I
x| Property | Value 2| HO00O7600 - HOODOPGFF Leneth : HOOODOTOO A |
4 kernel Path C¥Program Files¥PRenezaz¥FD bl 225 K programmed in 3 seconds
Frequency 2.8000 MHz Imaege successfully written to device
Protocol B
M 1 . .
CKP NS B Disconnecting
Clock Mode 1] Dizconnected
=]
e M | | 1| (T, il | ¢l
4] bf‘-..IszrnEI ,-'-: Communications _.]'-.. Cevice _h Prog | || 1' I-I'I.[FDT] 3694 ,-'-: Find in Files ;"
Default] desktop | [2

49

4.4.7 Setting User Program Mode

Select the "Device" tab in the configure project window and double-click "Connection™ and "Boot."

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

@] =e @ |l =In & B |
__!Fa g |-’_§:_ g LT L ||U3-3|f1‘-.r|3e. ;'”}
e 1|

=y 3604
=-[E 3694
=23 Device Image
: 3694 fpr
{3 FODT Image File
=124 5-Record Files
- [4] 3604 Testm

uGenl) maot
< |
2] Projects I
2! Praperty | Walue 5| || HO00O7600 - HOOOO7CGFF Length : H'DO0O0700 A
4 Device_ Ha/ 3624 F bl 225 K programmed in 3 seconds
RAM 5'2? 2K | Imaege successfully written to device
FLASH Size 32 K =|
FLASH Start (00000000) .
Connectian Boot | Dizconnecting
Interface Direct Connection = Dizconnected
bernel Resident Mo
llzer Boot Area M B =1
. o |
< I | ¥ 1 - i | 2|
1] II bi'-. Kernel h Communications ,]'l.lgevrice i Prog | || 1' I-l'-. [FDT] 3694 ,-'-: Find in Files ;"
Default] desktop | [2

50

Set the connection type.
Select "USER Program Mode" in "Select Connection:."
Set the baud rate to 9600 bps.

Connection Iype

The FLASH Development Toolkit can connect to wour device in a

""""“""‘ihan. number of different wavs. &l the options on this page mayv be
o v changed after the Project has been created.
i mﬁ'ﬁaﬁf*‘“— Select Connection: —
= HER Digpl g, T ¢ BOOT Mode &+ USER Program Mode
i =] Device 15,
; = T - nl] 5
= Target files e
5] LED. muk In USER. Program mode the device must have a USER micro kernel
(2 Kavbedrd.mi inztalled.
: {5] Cormmes, Mot
= @ The Recommended Speed zetting iz based on the current device and
] Dévice Image clock. The uger may alzo input their own, if thiz iz supported by the
-5y Target files kernel tand the optional FOM}.

,':_-_; |:|ri1\.-'-.=".llll:|L

___jj Craba ok iv Recommended Speeds:]gﬁﬂﬂ ~| Hgfault

3 Hershm
P leer Specifisd

™

e

el

X

When you have selected the baud rate, click "Next."

51

Set the pins on the adapter board (FDM) for the user program mode.
In the H8/3694F user program mode, set the output of NMI to high (1). On the H8/3694F user system, MDO is
connected to NMI. For this reason, set the output of MDO to high (1). No FWE pin setting is required because no FWE

pin is given.

EDM Pin Settines

Pleaze zelect the pin zettings for the FDOM
w“rkshdrp
Mo LUSER Maode uging Clock Mode i [N - i
. ﬂ;s I'.'".l'l’J ;"""L'u—_______
% BB IE‘_'E“"'—‘! "TFich rst.r'i:ri'-‘r' [;
e i ;j{'jl"'"" ' Operating Mode: | L: User Defined |
Devig
BV Ty o WHARNING
argmt Filas)
;-.] LEB, mek Ihcorrect settings could damage vour hardware
L‘ﬂ "z:;j’:”’" Fie SCK MD4 MD3 MD2 MD1 MDO
| e USER Mode :
& e S w ml e w w0
- Target files USER Mode = [S i = o el
; e D ok SEt‘tiﬂE
{27 Draba ok
:Elj ,a,lut-ﬂlhul.ll"'- U?ﬂ%ﬁepétégt;?nrg r]_ r_ r :I_ '|_.]-': : O
il
<{EaB F

When you have set the pin, click "Finish."

52

An example of connecting the H8/3694F and Renesas adapter board (HSO008EAUF1H) is shown in Figure 4-4. The
pull-up and pull-down resistor values shown are only examples. Evaluate the microcomputer to determine the actual

values on the user system.

Adapter board
(HSOO008EAUF1H) Vce Pulled up at 47 kQ
- or more.
18,20
VIN(vee) O
RXD (1 +—| TxD
™0 @ RxD3
MDo (5) NMI
MD2 (9) P85 H8/3694F
(00) Vee
Pulled up at
% about 1 kQ.
RES (D f RES
ND O —1
2,4,6,8,10,
12,14,16
Connector*1 Note: 1. Manufacturer: 3M Corporate
3428-6002LCSC

Figure 4-4 Example of Connecting the H8/3694F and Adapter Board

An example of setting pins for the user program mode when the H8/3694F user system and Renesas adapter board
(HS0008EAUF1H) is shown in Table 4-5.

Table 4-5 Example of Setting Pins on the H8/3694F and Adapter Board (for the User Program Mode)

Pin No. Pin on the Adapter Pin on the Input/Output Output Level
Board Device

1 RES RES Output (default) Adapter board
3 FWx NC NC -

5 MDO NMI Output High (1)

7 MD1 NC NC -

9 MD2 (100) P85 Input -

11 MD3 (101) NC NC -

13 MD4 (102) NC NC -

15 RXD TXD Input (default) Adapter board
17 TXD RXD Output (default) Adapter board
19 SCK (NC) NC NC (default) -

Note: NC: Means no connection.

53

4.4.8 Completion of Setting

The user program mode has been set.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
|2 ot |G T L@ ||Userbiea =[x
- 21 x|
=5 2604
?-l@ 3694
EI'E Device Image

i 3694 fpr

424 FDT Image File

El'a =-Fecord Files
i 2624 Test.m

(4] uGenlmat
< |
2] Projects I
2! Praperty | Walue 5| || HO00O7600 - HOOOO7CGFF Length : H'DO0O0700 A
4 Device_ Ha/ 3624 F A 225 K programmed in 3 seconds
RAM 5'2? 2K | Imaege successfully written to device
FLASH Size 32 K =|
FLASH Start (00000000) .
Cionnection Ulzer | D!SC':'””EC“”E
Interface Direct Connection T Dizconnected
bernel Resident Mo
llzer Boot Area M B =1
. || o]
i< T | ¥ L i | |
1] II bi'-. Kernel h Communications }-.IEIE?icE i Prog | || 1' I-l'-. [FDT] 3694 ,-'-: Find in Files ;"
Feady Default] desktop | [2

54

4.4.9 Connecting the Device

After the completion of the setting, click "Device" to open the pull-down menu and click "Connect to Device."

The connection in the user program mode is completed.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

a5 me | @ | =% & % |
__Fﬁ" 2 |.f_; W 8 2@ ||U:~:-3|ﬁ‘-.r|3e| ;'”}
= i
=y 3604
?I@ 3694

- 7
a FOT Image File
Ela S-Recaord Files

: 04 Test.m
uGenllmot

< |
2] Projects I
= Property I Walue adl 2| |Downloading main kernel 'G¥Program Files¥Renesas a
4 Device_ Ha/ 3604 F A Main kernel download complete...
IE{I_P'Pr:qSEIZSg EZKK | Cetermining block uzage
ize = : 3
FLASH Start 000000000 || R |=" 2=k ine for-blank devies
S R T Lsar | Device ig not blank [User Areal
Interface Direct Connection T {Gonnection complete
bernel Resident Mo
llzer Boot Area M A =
o 8|
< i | ¥ L iji | ¥
1] II bi'-. Kernel h Communications ,]'l.lgevrice i Prog | || 1' I-l'-. [FDT] 3694 ,-'-: Find in Files ;"
Feady Default] desktop | Fz

55

4.4.10 Timeout

A timeout error may occur during an attempt to connect the device.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

@ s = e e || =In & R
| st |cwiees o= =z
— xd
=- 3604
| ?l@ 3694
Eia Device Image

i 3694 fpr

424 FDT Image File
Ei'a =-Fecord Files
694 Tezt.m

uGen Ll mot
< |
2] Projects I
= Property I Walue ~| x| Cuerving FOM verzion info.. A
4 Device_ Ha/ 3624 F A FOM 0102, firmmare 107, product 1.02, build 227
Eﬂf‘sﬁ'zsﬁ %;K | |||FDM SN 00000 FDM
FLASH S;Z?t 00000000 = | Sending inguiry for lgettin.g line siz_e
Cortection Llzar Error No 15005: 'FDM’ read time out
Interface Direct Connection T Error Ho 15019: Download{} failed
bernel Resident Mo
llzer Boot Area M B =
. | |
£ | I | ¥ £l il | >
1] 1I bi'-. Kernel h Communications ,]'l.lgevrice i Prog | || 4' I-l'-. [FDT] 3694 ,-'-: Find in Files ;"
Default] desktop | Fz

There are several possible causes. Either of the following operations may not be performed. Check them.

1) Modify the bit rate in the sample program to 9600 bps.
For how to modify the bit rate, refer to section 7.1.1, Bit Rate Setting (GenTest.h).

2 Connect the serial input to the 1/O bus (26P) (J2).
For details on connection to the 1/0 bus, refer to section TS5 —! SBRNFRO2HPVELRA. , IF—! &
BANFROPUEEA, .

56

4411 Programming

Write a program in the user area in the user program mode.

Click the right mouse button on file 3694.fpr to display the pop-up menu. Click "Download User Image" to download
file 3694.fpr to the user area.

You can check that the program has been downloaded to the user area.

‘?# 3694 - Flash Development Toolkit (Supported Version)

Eile Edit Miew Project Toole Window Device Help

CAERAEAEY ELE RN
__f@, P |¢; g E 2@ ||U'~:-3|f-‘-.n3c-. ;'”}
= Il
[=]-4] 3604
| ?I@ 3694
Eia Device Image

i 3694 fpr

=3 FOT Imaee File
Ei'a =-Fecord Files
3694 Test.m
- [] uGenllmot

< |
2] Projects I
= Property I Walue adl %||Data programmed at the folloming pozitions: A
=1 Device Ha/ 2694 F i ki H'00000000 - HO0000a7F Length : H'O0000020
RAM ize 2K : HOO000400 - HOODDOSTF Leneth - HOOOOO180
ELARH Size g2 K = HOO0O7600 - HODOOZGFF Leneth - HODODOTAO
FLASH Start 00000000 [: ;
Cannection Llzer I 225 K programmed in 4 seconds
Interface Direct Connection T Imaege successfully written to device
bernel Resident Mo
llzer Boot Area M A =
| el
< i | ¥ L iji | ¥
1] ll bi'-. Kernel h Communications ,]'l.lgevrice i Prog | || 4' I-l'-. [FDT] 3694 ,-'-: Find in Files ;"
Feady Default] desktop | Fz

57

4412 Blank Check and Checksum
To confirm that the user area has been programmed, perform a blank check and calculate a checksum.
Click "Device" to open the pull-down menu and click "Blank Check."

Click "Device" to open the pull-down menu and click "FLASH Checksum."

The results of the blank check and checksum calculation are displayed.

‘?# 3694 - Flash Development Toolkit (Supported Version)
Eile Edit Miew Project Toole Window Device Help

@+ =e|s ||wl ECR RS
__Fﬁ"’ Fa |./_,§‘ g E 2@ ||U$-3If5‘-.r|3.:| | ”}
= lx
[=]-4] 3604
?l@ 3694
Ela Device Image

i 3694 fpr

a FOT Image File
=53 5-PFecord Files
3694 Test.m
- [] uGenllmot

< []
2] Projects I
2| Property | Walue A | ~
A Device. He/3604F || Flohecking for blank devics
RAM Size 2K | Device is not blank [User Areal
FLASH Size 32 K =3
FLASH Start (00000000 [. .
Cannection Llzer | Caloulatineg device checksum
Interface Direct Connection = Flazh Checksum: 0x00F92C1 G (User Areal
bernel Resident Mo
IUzer Boot frea M =
£ | ||| | ¥ { | i 11 I -l
1] II bi'-. Kernel h Communications ,]'l.lgevrice i Prog | || 1' I-l'-. [FDT] 3694 ,-'-: Find in Files ;"
Feady Default] desktop | Fz

58

5. Flash Development Toolkit Processing

The Flash Development Toolkit can be connected in either of the following two modes: the boot mode and user

program mode. In both modes, the continuation of the execution from a previous session (direct connection to the main

kernel) can be specified. The connection modes of the Flash Development Toolkit are listed in Table 5-1. Usually, use

new connection processing. The hexadecimal codes are the command codes of the Flash Development ToolKit.

Table 5-1 Connection Modes of the Flash Development Toolkit

Micro kernel transfer

H'27 (Programming unit inquiry)
H'10 (Device selection)

H'11 (Clock mode selection)
H'3F (New baud rate setting)
Main kernel transfer

Mode Normal Processing Continuation of the Execution from a Previous
Session
Boot mode Baud rate adjustment H'27 (Programming unit inquiry)

H'4F (Status request)
H'4D (User area blank check)

User program mode

H'27 (Programming unit inquiry)
H'10 (Device selection)

H'11 (Clock mode selection)
H'3F (New baud rate setting)
Main kernel transfer

H'27 (Programming unit inquiry)
H'4F (Status request)
H'4D (User area blank check)

59

6. Sample Program

This section describes the sample program in the user program mode of the H8/3694F.

6.1 Program Configuration

The configuration of the sample program is shown in Table 6-1.

Table 6-1 Program Configuration

No. Program Function Location and Startup
1 Main processing Causes a branch to the micro kernel. Stored in ROM in the boot mode in
module advance.
Initiated by a reset.
2 Micro kernel Processes inquiry and selection Stored in ROM in the boot mode in
commands. advance.

Transfers the transmit and receive
modules to RAM.

Receives the main kernel and stores it
in RAM.

Causes a branch to the main kernel.

Branches from the main processing
module.

3 Main kernel Processes programming, erasing, and
check commands.

Receives the programming or erasing
program and stores it in RAM.

Calls the programming or erasing

Received by the micro kernel and stored
in RAM.

Branches from the micro kernel.

program.
4 Programming kernel Programs flash memory. Received by the main kernel and stored in
RAM.
Called from the main kernel.
5 Erasing kernel Erases flash memory. Received by the main kernel and stored in

RAM.
Called from the main kernel.

60

6.2 File Configuration
The program files are contained in the C:\Program Files\Renesas\FDT3.4\Kernels\ProtB\3694\Renesas\1_2_ 00 folder.
The file configuration of each program module is shown below. These program modules are provided as a sample of a

program in the user program mode that is to be created uniquely by the user.

6.2.1 Main Processing Module

Table 6-2 File Configuration of the Main Processing Module

No. File Name Description Type
1 3694 Test.mot Load module of the main processing module in the S-type format
user program mode
2 bTest.bat Batch file of the main processing module in the user MS-DOS batch file
program mode
3 13694t.xcl Link subfile of the main processing module in the user | Linkage editor command file
program mode
4 Strt3694.src Stack initial setting source file Assembly language source file
5 GenTest.c Main source file of the main processing module in the | C source file
user program mode
GenTest.h GenTest.c function prototype declaration C header file
i103694.h SCI and port register definition C header file
KDevice.h Device-specific information (such as kernel location C header file
definition)
9 KStruct.h Structure definition and other information C header file
10 KTypes.h Type definition and other information C header file

61

6.2.2

Micro Kernel

Table 6-3 File Configuration of the Micro Kernel

No. File Name Description File Type
1 uGenU.mot Load module of the micro kernel in the user S-type format
program mode
2 ub3694u.bat Batch file of the micro kernel in the user program MS-DOS batch file
mode
3 ul3694u.xcl Link subfile of the micro kernel in the user program | Linkage editor command file
mode
4 uGenu.c Main source file of the micro kernel in the user C source file
program mode
5 CmdFunc.c Command function source file C source file (common)
6 CmdFunc.h CmdFunc.c function prototype declaration C header file
7 Commands.h Command ID definition C header file
8 Devicelnfo.h Device-specific information (inquiry/response data) | C header file
9 Extern.h External reference definition for functions and C header file
variables
10 uGenu.h uGenu.c function prototype declaration C header file
11 i03694.h SCI and port register definition C header file
12 KDevice.h Device-specific information (such as kernel location | C header file
definition)
13 KStruct.h Structure definition and other information C header file
14 KTypes.h Type definition and other information C header file
15 H8runtime.lib Runtime library Required for re-creating the kernel.

(This file is not provided. Use a library
configuration tool to create the file.)

Note: Refer to BuildAll.bat.

62

6.2.3

Main Kernel

Table 6-4 File Configuration of the Main Kernel

No. File Name Description File Type
1 Genu3694.cde | Load module of the main kernel in the user Binary format
program mode
2 b3694u.bat Batch file of the main kernel in the user program MS-DOS batch file
mode
3 13694 u.xcl Link subfile of the main kernel in the user program Linkage editor command file
mode
4 FDTUMain.c Source file of the main kernel in the user program C source file
mode
5 CopyFunc.c Source file of the copy function of the main kernel C source file
in the user program mode
6 CmdFunc.c Command function source file C source file (common)
7 CmdFunc.h CmdFunc.c function prototype declaration C header file
8 Commands.h Command ID definition C header file
9 Devicelnfo.h Device-specific information (inquiry/response data) | C header file
10 Extern.h External reference definition for functions and C header file
variables
11 FDTBMain.h FDTBMain.c function prototype declaration C header file
12 i03694.h SCI and port register definition C header file
13 KDevice.h Device-specific information (such as kernel location | C header file
definition)
14 KStruct.h Structure definition and other information C header file
15 KTypes.h Type definition and other information C header file

63

6.2.4

Programming Kernel

Table 6-5 File Configuration of Programming Kernel Main

No. File Name Description File Type

1 Genw3694.cde Load module of the programming kernel Binary format

2 b3694w.bat Batch file of the programming kernel MS-DOS batch file

3 13694w.xcl Link subfile of the programming kernel Linkage editor command file

4 F3694w.src Source file of the programming kernel Assembly language source file

5 FDTWrite.c Main source file of the programming kernel C source file

6 WriteTime.c Source file of programming wait time calculation C source file

7 Commands.h Command ID definition C header file

8 F3694asm.inc Flash memory register definition and other Assembly language include file

information

9 i03694.h SCI and port register definition C header file

10 KAlg.h Programming/erasing function definition C header file

11 KDevice.h Device-specific information (such as kernel C header file

location definition)

12 KStruct.h Structure definition and other information C header file

13 KTypes.h Type definition and other information C header file

14 H8runtime.lib Runtime library Required for re-creating the kernel.
(This file is not provided. Use a library
configuration tool to create the file.)
Note: Refer to BuildAll.bat.

6.2.5 Erasing Kernel

Table 6-6 File Configuration of the Erasing Kernel

No. File Name Description File Type

1 Gene3694.cde Load module of the erasing kernel Binary format

2 b3694e.bat Batch file of the erasing kernel MS-DOS batch file

3 13694e.xcl Link subfile of the erasing kernel Linkage editor command file

4 F3694e.src Source file of the erasing kernel Assembler source file

5 FDTErase.c Source file of the erasing kernel C source file

6 EraseTime.c Source file of erasing wait time calculation C source file

7 Commands.h Command ID definition C header file

8 F3694asm.inc Flash memory register definition and other Assembler include file
information

9 i03694.h SCI and port register definition C header file

10 KAlg.h Programming/erasing function definition C header file

11 KDevice.h Device-specific information (such as kernel C header file
location definition)

12 KStruct.h Structure definition and other information C header file

13 KTypes.h Type definition and other information C header file

14 H8runtime.lib Runtime library Required for re-creating the kernel.

(This file is not provided. Use a library
configuration tool to create the file.)

Note: Refer to BuildAll.bat.

64

6.3

Relationships between Program Modules and Files

The relationships between program modules and files are given in Table 6-7.

Table 6-7 Relationships between Program Modules and Files

Program Name Batch File Source Files | Header Files | Subcommand | Library File Output File
File
Main processing module [bTest.bat GenTest.c GenTest.h 13694t.xcl - 3694 Test.mot
(User program mode) strt3694.src [03694.h
KDevice.h
KStruct.h
KTypes.h
Micro kernel ub3694u.bat [Ugenu.c Ugenu.h ul3694u.xcl H8runtime.lib [uGenU.mot
(User program mode) CmdFunc.c CmdFunc.h
Commands.h
Devicelnfo.h
Extern.h
103694.h
KDevice.h
KStruct.h
KTypes.h
Main kernel b3694u.bat FDTUMain.c |[FDTUMain.h (I3694u.xcl - Genu3694.cde
(User program mode) CopyFunc.c [CmdFunc.h
CmdFunc.c Commands.h
Devicelnfo.h
Extern.h
i03694.h
KDevice.h
KStruct.h
KTypes.h
Programming kernel bh3694w.bat FDTWrite.c F3694asm.inc (I3694w.xcl H8runtime.lib [Genw3694.cde
WriteTime.c |[Commands.h
F3694w.src [i03694.h
KAlg.h
KDevice.h
KStruct.h
KTypes.h
Erasing kernel b3694e.bat FDTErase.c |F3694asm.inc |I3694e.xcl H8runtime.lib (Gene3694.cde
EraseTime.c |Commands.h
F3694e.src i03694.h
KAlg.h
KDevice.h
KStruct.h
KTypes.h
Micro kernel ub3694.bat Ugen.c Ugen.h ul3694.xcl = uGen3694.cde
(Boot mode) CmdFunc.c CmdFunc.h
strt3694.src
Main kernel b3694m.bat FDTBMain.c |[FDTBMain.h [I3694m.xcl - Genm3694.cde
(Boot mode) CmdFunc.c CmdFunc.h
All build batch file BuildAll.bat - - H8runtime.lib |-

Note: Boot mode program modules and all build batch files are included.

65

6.4 Build Operation

Build operation is not required when the provided program is used. When re-creation is required due to such as the use
of a different operating frequency, build operation is required.

Executing build operation deletes all generated files. Create a copy, then execute build operation because a current file
may be required.

6.4.1 SET Command

Before executing build operation, set the environment. Insert the following commands in the set.bat batch file to
execute set before build operation:

set PATH=%PATH%;C:\Hew3\Tools\Renesas\H8\6_1 O\Bin

set CH38=C:\Hew3\Tools\Renesas\H8\6_ 1 O\Include

set CH38TMP=C:\Hew3\Tools\Renesas\H8\6_1 O\Ctemp

6.4.2 Library File

A library file is required for executing build operation. No library file is provided, so use a library configuration tool to
create the file. For the command, refer to BuildAll.bat. Use the following command to create a library file. Executing
BuildAll allows all programs including a library file to be created.

REM -- LIBRARY COMPILE --

"%CH38%\ . .\bin\1bg38" -output=H8runtime.lib -head=runtime -cpu=300HN
6.4.3 Output Files
Open the "Command Prompt" window by clicking "Accessories," then "Command Prompt." On the window, execute

each batch file to create the relevant output file.

Table 6-8 Batch Files and Output Files

No. Program Batch File Output File Output File Type
1 Main processing module bTest.bat 3694 Test.mot S-type file
2 Micro kernel ub3694u.bat uGenU.mot S-type file
3 Main kernel b3694u.bat Genu3694.cde [Binary load module file
4 Programming kernel b3694w.bat Genw3694.cde [Binary load module file
5 Erasing kernel b3694e.bat Gene3694.cde |Binary load module file
6 Library BuildAll.bat H8runtime.lib Library file

66

6.5 Modules

The modules are listed in Table 6-9.

Table 6-9 Modules

Program File Module Function
Main processing Strt3694.src startup Start
module GenTest.c main Main processing
WDTStop Watchdog timer stop
InitSCI SCl initial setting
Get Reception
Put Transmission
JumpCopy Branch to copy
Micro kernel Ugenu.c StartFDTUserKernel Start FDT
PrepareFDTUserKernel Prepare FDT
PrepareRAM Prepare RAM
CmdFunc Command function
CmdFunc.c ReferFunc Reference function
SelectDevice Device selection
SelectClockMode Clock mode selection
SetNewBaudRate New baud rate setting
SendSciBreak Break transmission
RequestBootPrgSts Program status
SendAck ACK transmission
GetCmdData Command read
Main kernel FDTUMain.c Kernelmain Main kernel
ProcessCommand Command processing
CopyFunc.c CopyFunction Copy function
CmdFunc.c RequestBootPrgSts Program status
SumcheckUserArea User area checksum
SendAck ACK transmission
CheckBlank Blank check
ReadMemory Memory read
GetCmdData Command read
Programming kernel FDTWrite.c WriteFLASH Flash programming
RequestBootPrgSts Program status
SendAck ACK transmission
GetWriteData Programming data reception
WriteTime.c WriteWaitTime Programming wait time
F3694w.src flash_write Data programming
CalCount Time calculation
Erasing kernel FDTErase.c EraseFLASH Flash erasing
RequestBootPrgSts Program status
SendAck ACK transmission
GetEraseData Erase data reception
EraseTime.c EraseWaitTime Erasing wait time
F3694e.src block_erase Block erasing
CalCount Time calculation

67

6.6 Module Hierarchical Structure

The module hierarchical structure is shown in Figure 6-1.

VECT (0x0000) Reset vector
|—startup (0Ox400) (Strt3694.src) Start (Main processing module)
| —main (GenTest.c) Main processing
|—WDTStop Watchdog timer stop
| —InitSCl SCl initial setting
|—JumpCopy Branch to copy
| —CopyFDT (0x7600) Micro kernel copy
| —StartFDTUserKernel (uGenu.c) Start micro kernel (Micro kernel)
|—PrepareFDTUserKerneI Prepare micro kernel
| | —CmdFunc Command function
| | —Get Reception
| —SendAck ACK transmission
| | —Put Transmission
| —ReferFunc Reference function
| | —Put Transmission
| —GetCmdData Command read
| | —Get Reception
| |—ErrorCode Error code macro
| | —Put Transmission
|—SelectDevice Device selection
| | —SendAck ACK transmission
| | —ErrorCode Error code macro
| | —Put Transmission

| | —ErrorCode Error code macro
| | —Put Transmission
| | —SendAck ACK transmission
| —SetNewBaudRate New bit rate selection
| | —ErrorCode Error code macro
|—Put Transmission
| —SendAck ACK transmission

| |—Get Reception

| | —SendAck ACK transmission

| —Get Reception
|—RequestBootPrgSts Program status

|

|

|

|

|

|

|

|

|

|

|

|

| | —SelectClockMode ~ Clock mode selection
|

|

|

|

|

.

.

| | |—SendSciBreak Break transmission
.

.

I

|
|

| | —Put Transmission

| | —Put Transmission

|—PrepareRAM Prepare RAM

| —Get Reception

| —ErrorCode Error code macro

|—Put Transmission

| —SendAck ACK transmission
—RAMStartAddress (0xF780) RAM start address
(To be continued)

Figure 6-1 Module Hierarchical Structure (1)

68

(Continued)

| —RAMStartAddress (OxF780) RAM start address
| —Kernelmain (FDTUMain.c) Main kernel

| —ProcessCommand Command processing

| —Get Reception
|—RequestBootPrgSts Program status
| |—Put Transmission

| —SumcheckUserArea User area checksum
| |—Put Transmission

| —SendAck ACK transmission

| —GetCmdData Command read

| | —Get Reception

| |—ErrorCode Error code macro

| |—Put Transmission
|—ReadMemory Memory read

| |—ErrorCode Error code macro

| |—Put Transmission

| —CheckBlank Blank check

| |—ErrorCode Error code macro

| |—Put Transmission

| |—SendAck ACK transmission
|—Put Transmission

|—CopyFunction (CopyFunc.c) Copy function

| —Get Reception

|—ErrorCode Error code macro

| —Put Transmission

| —SendAck ACK transmission

| —FLASHFunc (0xFB10) Flash function

(To be continued)

Figure 6-2 Module Hierarchical Structure (2)

69

(To be continued)

| —FLASHFunc (0xFB10) Flash function
| —EraseFLASH (FDTErase.c) Flash erasing (Erasing kernel)
| |—EraseWaitTime Erasing wait time
| | |—calCount (F3694e.src) Time calculation
| | —Get Reception
| |—RequestBootPrgSts Program status
| | —GetEraseData Erase data reception
| | |—cet Reception
| | |—ErrorCode Error code macro
| | |—Put Transmission
| |—b|ock_erase (F3694e.src) Block erasing
| |—Put Transmission
| |—SendAck ACK transmission

| —WriteFLASH (FDTWrite.c) Flash programming (Programming kernel)

| —WriteWaitTime Programming wait time

| |—calcount (F3694w.src) Time calculation

| —Get Reception

|—RequestBootPrgSts Program status

| —GetWriteData Programming data reception

| | —Get Reception

| |—ErrorCode Error code macro

| |—Put Transmission

|—f|ash_write (F3694w.src) Data programming

| —Put Transmission

| —SendAck ACK transmission

Figure 6-3 Module Hierarchical Structure (3)

70

6.7 Program Processing Flow
The processing flow of the sample program is shown in Figure 6-4.
In the user program mode, bit rate adjustment and user area erase processing, which are performed during boot

operation, are not performed. Accordingly, the program and data written in flash memory can be saved.

Reset
I NN NN I N N N R S S - - .- -----------------------q

Bit-rate-adjustment status

Note: The sample program does

1
1
1
L : 1
not contain this processing. I
1

Wait for inquiry
and selection

Inquiry Selectio
Inquiry Selection
Transition to the processing processing
programming/
erasing status

Programming/erasing status |
|

Wait for
programming or
erasing to be
selected

Programiing Erasing

Programming Erase Check
rocessin rocessin
P g P g Check
processing

Figure 6-4 Program Processing Flow

71

6.8 Command Sequence in the User Program Mode
The sequence of the commands between the Flash Development Toolkit and microcomputer when a device is connected,
when flash memory is programmed, and when flash memory is erased in the user program mode is shown in Figure 6-5,

Figure 6-6, and Figure 6-7.

Host (PC) Microcomputer

H'27: Programming unit inquiry
H'37: Response to programming unit inquiry

-

H'10: Device selection

ACK

H'11: Clock mode selection

- oK Micro
H'3F: New baud rate setting kernel
ACK B
N ACK
ACK -

-

H40: Completion of data setting

e

ACK

Main kernel downloading

ACK

H'4F: Boot program status request

o

H'5F:[Response to boot program status request

-

Main
kernel

H’4D: User area blank check

ACK

Figure 6-5 When a Device Is Connected

72

Host (PC) Microcomputer

H'4F: Boot program status request

|
H'bF: Response to boot program status
|y .
H'43: User area programming preparation Main
»| kernel
ACK
|t
Programming kernel downloading
|
ACK

S D X

H'50: 128-byte data programming
|

ACK

Programming
kernel

H'50: Data programming (end code)

ACK

To the main kernel

Figure 6-6 When Flash Memory Is Programmed

73

Host (PC) Microcomputer

\

H'4F: Boot program status request

o

H'5F Response to boot program status reqyest

-

H'48: Erasing preparation Main
- kernel

ACK

Erasing kernel downloading

ACK

H'58: Block erasing

ACK

Erasing
kernel

H'58: Block erasing (end code)

ACK

To the main kernel

Figure 6-7 When Flash Memory Is Erased

74

6.9

Program Sequence

This section describes the program sequence of the sample program. An outline of the program sequence is given in
Table 6-10.

Table 6-10 Program Sequence

No. Sequence Processing

1 Preparation ¢ To use the Flash Development Toolkit in the user program mode, program the
main processing module and micro kernel in flash memory in advance.
¢ When the entire flash memory can be erased with no problems, they can be
programmed in the boot mode of using the Flash Development Toolkit.

2 Main processing e The reset vector causes a branch to the main processing module by a power-on

module reset.
¢ Performs initial setting for the stack pointer.
¢ Performs initial setting for the SCI.
¢ Pushes the addresses and sizes of the SCI interface functions (Put and Get) on
the stack.
(Passes arguments to the micro kernel.)
e Causes a branch to the micro kernel.

3 Micro kernel ¢ Receives and responds to the device specification inquiry/selection commands.
¢ After receiving the data setting completion command, receives the main kernel and
stores it in RAM.

e Stores the SCl interface functions (Put and Get) in RAM.
e Causes a branch to the main kernel.

4 Main kernel ¢ Receives and responds to the programming, erasing, and check commands.
¢ After receiving the programming/erasing preparation command, receives the
programming or erasing kernel and stores it in RAM.

Calls the programming or erasing kernel.
5 Programming kernel ¢ Receives programming data and the programming destination address.
e Programs flash memory.
¢ Receives programming end data, then returns control to the main kernel.
6 Erasing kernel ¢ Receives the erase block number.
¢ Erases the block in flash memory.
¢ Receives erasing end data, then returns control to the main kernel.
6.9.1 Preparation
The flow of preparation is shown below:
1) To use the Flash Development Toolkit in the user program mode, program the main processing module and
micro kernel in flash memory in advance.
When the entire flash memory can be erased with no problems, they can be programmed using the boot mode
of the Flash Development Toolkit. Alternatively, they can be programmed in the programmer mode using a
PROM programmer.

(2) After programming the main processing module and micro kernel in the flash memory, set the pins on the

microcomputer to the user program mode, perform a reset, and initiate the user program mode.

75

6.9.2 Main Processing Module

The flow of the main processing module is shown below. The main processing module runs in ROM.

Q) The reset vector causes a branch to start (startup).

2) Start (startup) sets the stack pointer and calls main processing (main).

3) Main processing (main) calls watchdog timer stop (WDTStop) and SCI initial setting (InitSCI) and causes a
branch to branch to copy (JumpCopy).
Watchdog timer stop (WDT Stop) stops the watchdog timer and SCI initial setting (InitSCI) sets the SCI bit
rate.

4) Micro kernel copy (CopyFDT) sets the addresses and sizes of the SCI interface functions (Get and Put) in the

variable area and branches to start micro kernel (StartFDTUserKernel) via micro kernel copy (CopyFDT).

6.9.3 Micro Kernel
The flow of the micro kernel is shown below. The micro kernel runs in ROM.
(1) Command function (CmdFunc) processes each command, responds to each inquiry, and sets selection.
(2) Reference function (ReferFunc) and program status (RequestBootPrgSts) respond to each inquiry that
corresponds to one of the following commands:
Supported device inquiry
Clock mode inquiry
Multiplication ratio inquiry
Operating frequency inquiry
User area information inquiry
Erase block information inquiry
Programming unit inquiry
Boot program status inquiry
3) A selection setting command is set using one of the following modules:
Device selection (SelectDevice)
Clock mode selection (SelectClockMode)
New bit rate selection (SetNewBaudRate)
4) The command for a transition to the programming/erasing status ends command processing and calls prepare
RAM (PrepareRAM).
(5) Prepare RAM (PrepareRAM) receives the main kernel (Kernelmain) and stores it in RAM and transfers the
SCI interface functions (Get and Put) to RAM.

(6) Control branches to the main kernel (Kernelmain) transferred to RAM.

76

6.9.4 Main Kernel

The flow of the main kernel is shown below. The main kernel runs in RAM.

Q) Command processing (ProcessCommand) processes commands. The following commands are to be processed:
Memory read (ReadMemory)
User area sum check (SumcheckUserArea)
User area blank check (CheckBlank)
Boot program status inquiry (RequestBootPrgSts)

2) When command processing receives the user area programming selection command or erasing selection
command, it calls copy function (CopyFunction).

3) Copy function (CopyFunction) receives the programming kernel (WriteFLASH) or erasing kernel
(EraseFLASH) corresponding to the command, stores it in RAM, and calls the programming kernel
(WriteFLASH) or erasing kernel (EraseFLASH).

6.9.5 Programming Kernel

The flow of the programming kernel is shown below. The programming kernel runs in RAM.

1) Flash programming (WriteFLASH) calculates the wait time using programming wait time (WriteWaitTime).
Then, it receives a command.

(2) When the received command is the boot program status inquiry command, flash programming calls program
status (RequestBootPrgSts).

3) When the received command is the 128-byte programming command, programming data reception
(GetWriteData) receives programming data.

4) When the received programming data is not programming end (the address data is H'FFFFFFFF), data
programming (flash_write) programs flash memory.

(5) When the received programming data is programming end, flash programming terminates programming and

returns control to the main kernel.

6.9.6 Erasing Kernel
The flow of the erasing kernel is shown below. The erasing kernel runs in RAM.
1) Flash erasing (EraseFLASH) calculates the wait time using erasing wait time (EraseWaitTime).

Then, it receives a command.

(2) When the received command is the boot program status inquiry command, flash erasing calls program status
(RequestBootPrgSts).
3) When the received command is the block erasing command, erase data reception (GetEraseData) receives the

erase block number.

4) When the received erase block number is not erasing end (H'FF), block erasing (block_erase) erases a block in
flash memory.

(5) When the received erase block number is erasing end, flash erasing terminates erasing and returns control to

the main kernel.

77

6.10

Memory Map

The memory map corresponding to the program sequence of the sample program is shown in Table 6-11.

Table 6-11 Program Sequence and Memory Map

ROM/ Address Sequence
RAM Main Micro Kernel Main Kernel Programming Erasing Kernel
Processing Kernel
Module
ROM H’0000 - Reset vector Programming Erasing enable
H’0400 - Main enable area area
processing
module
H'7600 - Micro kernel Micro kernel
RAM H'F780 - Main kernel Main kernel Main kernel Main kernel
Put, Get Put, Get Put, Get Put, Get
H'FBOS8 - Variable
H'FB10 - Programming Programming Erasing kernel
kernel or erasing kernel
kernel
H'FF10 - Global variable | Global variable | Global variable Global variable Global variable
- HFF7F Stack Stack Stack Stack Stack

78

7. Source Files of the Sample Program
This section describes the functions and processing of the following main source files of the sample program.

7.1 Header Files

This sample program uses the following header files.

7.1.1 Bit Rate Setting (GenTest.h)

Abit rate is set.
* 20MHz 9600bps */

/l#define MA_BRR_SCI 0x40 /* Bit rate register channel 3 */
* 9.8MHz 9600bps */

#define MA_BRR_SCI Ox1f [* Bit rate register channel 3 */

In the user program mode, a device is connected at 9600 bps. For this reason, the bit rate register (BRR) in the SCI
module must be set according to the operating frequency. In this example, the operating frequency is 9.8 MHz. To set
9600 bps, MA_BRR_SCl is set to 31 (0x1f). The relationships between operating frequencies and BRR register settings

are shown in Table 7-1.

Table 7-1 Operating Frequencies and BRR Register Settings (When the Bit Rate Is 9600 (bit/s))

Operating Frequency ¢ (MHz) BRR Setting Error (%)
8 25 0.16
9.8304 31 0.00
10 32 -1.36
12 38 0.16
12.288 39 0.00
14 45 -0.93
14.7456 47 0.00
16 51 0.16
17.2032 55 0.00
18 58 -0.69
19.6608 63 0.00
20 64 0.16

The MA_BRR_SCI value is set according to the operating frequency of the board and perform a build with a batch file
or HEW to create an S-type file program.

79

7.1.2 I/0 Register Definition (i03694.h)
The registers and bits related to the SCI module and WDT are defined.

/**/

/* HB8/3694F,36014F,36024F,36064F Internal 1/0O Include File */

/**/

/**/

* SCI */
* */
* CHANNEL 3
lhhhhhhhhhhhhhhhhhhhhhhhhhikkhhiiiiskkkiiiskisisiisisiisisiisisisisisisisisisisisisiiisisiiaiabe’
#define SCI_SMR (*(volatile unsigned char *)0xFFAS)
#define SCI_BRR (*(volatile unsigned char *)0xFFA9)
#define SCI_SCR3 (*(volatile unsigned char *)OxFFAA)
#define TE (unsigned char)0x20
#define RE (unsigned char)0x10
#define TE_RE (unsigned char)(TE | RE)
#define SCI_TDR (*(volatile unsigned char *)OxFFAB)
#define SCI_SSR (*(volatile unsigned char *)OxFFAC)
#define TDRE (unsigned char)0x80
#define RDRF (unsigned char)0x40
#define ERR_CLR (unsigned char)0xC7
#define TEND (unsigned char)0x04
#define SCI_RDR (*(volatile unsigned char *)0xFFAD)

/**/

I* 1/0 Port
I* */
I* Port 1 (inuse : TXD)
/**/
#define PMR1 (*(volatile unsigned char *)OxFFEQ)

#define TXD (unsigned char)0x02

/**/

I* 1/0 Port
I* */
I* Port 2 (inuse : P22/TXD at SCI Break)
/**/
#define PCR2 (*(volatile unsigned char *)OxFFES5)

#define PCR22 (unsigned char)0x04

80

*/

*/

*/

*/

*/

#define PDR2 (*(volatile unsigned char *)0xFF5D)
#define P22 (unsigned char)0x04

/**/

* WDT */
I* */

* */
/****-k-k-k***-k-k-k***-k-k-k***-k-k-k***-k-k-k***-k*-k***-k*-k***-k*-k***-k*-k***-k*-k***-k*-k***-k*/
#define TCSRWD (*(volatile unsigned char *)0xFFCO0)

7.1.3 Macro Definition (KAlg.h)

Labels used in the program are defined. ERASE_END is used to determine the end of erasing by the block erasing
command. WRITE_END is used to determine the end of programming by the 128-byte programming command.
[*DEFINES™¥*

#define LOOP_END 1

#define bufSize 0x80

#define BLOCK_NO_ERROR OXE1
#define ERASE_END OXFF
#define WRITE_END OXFFFFFFFF
#define ADDRESS_ERROR OxF1

#define ADDRESS BOUNDARY_ERROR OxF2

81

7.2 Main Processing Module (Strt3694.src and GenTest.c)
7.2.1 Module Hierarchical Structure

The module hierarchical structure of the main processing module is shown in Figure 7-1.

VECT (0x0000) Reset vector
|—startup (0Ox400) (Strt3694.src) Start (Main processing module)
| —main (GenTest.c) Main processing

|—WDTStop Watchdog timer stop
| —InitSCI SCl initial setting

|—JumpCopy Branch to copy

| —CopyFDT (0x7600) Micro kernel copy
| —StartFDTUserKernel (uGenu.c) Start micro kernel (Micro kernel)

Figure 7-1 Module Hierarchical Structure of the Main Processing Module

7.2.2 Reset Vector (GenTest.c and GenTest.h)
Reset vector H'400 is set in the CVECT section.
(1) GenTest.c
[*Declare the vector table*/
#pragma section VECT
const WORD RESET_VECTOR = (DWORD)RESET_JMP_ADDRESS;
#pragma section
(2) GenTest.h
J*
This value specifies the address to where to program
will JMP on startup. This value should be the link address

for the associated asm file.

*/
#define RESET_JMP_ADDRESS 0x400
7.2.3 Stack (Strt3694.src)

The stack pointer is set to H'FF80.
MOV.L #H'FF80, ER7

82

7.2.4 Main Processing (main)
WDTStop();
InitSCI();
JumpCopy();

The watchdog timer is stopped, SCI initial setting is performed, and control branches to the micro kernel.

7.2.5 Branch to Copy (JumpCopy)
(1) JumpCopy
[* Create Function Pointer & assign address to it */
FuncPtr CopyFDT = (FuncPtr)USER_KERNEL_LINK_ADDRESS;
[*This is where the linker has put the code*/
I* Store structure elements */
ParamFDT.GetFuncPtr = (GetPtr)Get;
ParamFDT.PutFuncPtr = (PutPtr)Put;
ParamFDT.PutSize = (WORD)((DWORD)Dummy - (DWORD)Put);
ParamFDT.GetSize = (WORD)((DWORD)Put - (DWORD)Get);

ParamFDT.RAMStartAddress = RAM_START_ADDRESS;

* Jump to CopyFDT */
(*CopyFDT)((paramFDT *)&ParamFDT);
(2) GenTesth
[
These defines relate to the USER kernel.
In order to call the user kernel we must know the address it was
linked at.
*/
#define USER_KERNEL_LINK_ADDRESS 0x7600

The addresses and sizes of the SCI interface functions (Get and Put) are set in ParamFDT and control branches to
CopyFDT. The address of CopyFDT is H'7600, which is indicated by USER_KERNEL_LINK_ADDRESS. Start micro
kernel (StartFDTUserKernel) of the micro kernel is programmed at H'7600.

83

7.3 Micro Kernel (uGenu.c and CmdFunc.c)
7.3.1 Module Hierarchical Structure

The module hierarchical structure of the micro kernel is shown in Figure 7-2.

[—StartFDTUserKernel (uGenu.c) Start micro kernel (Micro kernel)
|—PrepareFDTUserKernel Prepare micro kernel

[—CmdFunc Command function

[—ReferFunc Reference function

| —GetCmdData Command read

| —SelectDevice Device selection

| —SelectClockMode Clock mode selection

| —SetNewBaudRate New bit rate selection

|—RequestBootPrgSts Program status

|—PrepareRAM Prepare RAM

[—RAMStartAddress (0xF780) RAM start address
[—Kernelmain (FDTUMain.c) Main kernel

Figure 7-2 Module Hierarchical Structure of the Micro Kernel

7.3.2 Start Micro Kernel (StartFDTUserKernel)

(1) StartFDTUserKernel
PrepareFDTUserKernel(parameters);

I* Pass execution to the main kernel */
(*((FuncPtr)parameters->RAMStartAddress))(parameters);
(2) GenTesth
/*Use these defines to specify the range of RAM FDT can use*/
#define RAM_START_ADDRESS OxF780

Prepare micro kernel is called and the module stored at RAMStartAddress in RAM is called. Prepare micro kernel

stores the main kernel in the area starting at RAMStartAddress in RAM. RAMStartAddress is set to H'F780.

84

7.3.3 Prepare Micro Kernel (PrepareFDTUserKernel)
while(1){
/* Command Function */
CmdFunc(parameters->PutFuncPtr, parameters->GetFuncPtr);
[*Prepare RAM */
if('PrepareRAM ((parameters, &ParamFDT)){
break;

Command function is called. When command function terminates (on receiving the command for a transition to the
programming/erasing status), prepare RAM is called. When prepare RAM terminates (the main kernel has been

received and stored normally), prepare micro kernel terminates.

85

7.3.4 Command Function (CmdFunc and CmdFunc.c)
The structure of command function is shown below.
while(1){
[* Acquisition of a command ID */
add_sum = Get(&commandID, 1);
switch(commandID)
{
case finishDataSet:
return;
case supportDevice:
ReferFunc(commandID, deviceData, sizeof(deviceData), Put);
break;
case selectDevice:
SelectDevice(cmdBuf.bdata, Put);
break;
case referClockMode:
ReferFunc(commandID, clockModeData, sizeof(clockModeData), Put);
break;
case selectClockMode:
SelectClockMode(cmdBuf.bdata, Put);
break;
case referRatio:
ReferFunc(commandID, ratioData, sizeof(ratioData), Put);
break;
case setNewBaudRate:
SetNewBaudRate(commandID, (BaudRate *)cmdBuf.bdata, Put, Get);
break;
case referUserRominfo:
ReferFunc(commandID, usrRomData, sizeof(usrRomData), Put);
break;
case referEraseBlockinfo:
ReferFunc(commandID, eraseBlkData, sizeof(eraseBlkData), Put);
break;
case referWriteSystem:
ReferFunc(commandID, writeSysData, sizeof(writeSysData), Put);
break;
case referFrequency:
ReferFunc(commandID, frequencyData, sizeof(frequencyData), Put);

break;

86

case referWriteSize:
ReferFunc(commandID, writeSizeData, sizeof(writeSizeData), Put);
break;
case requestBootPrgSts:
RequestBootPrgSts(Put);
break;
default:
cBuff[0] = COMMAND_ERROR;
cBuff[1] = commandID;
Put(cBuff, 2);

break;

}
When command function receives the command for a transition to the programming/erasing status, it terminates
processing. When command function receives another command, it processes the command, then enters the command
reception wait state.
The processing module for each command is contained in CmdFunc.c. CmdFunc.c contains both the command
processing modules for the micro kernel, as well as those for the main kernel. #ifdef is used to determine whether a
command processing module is for the micro kernel or main kernel.
These command processing modules are used not only in the user program mode, but also in the boot mode. In the user
program mode, the SCI interface functions (Get and Put) have arguments, but in the boot mode, they have no

arguments.

87

7.3.5 Prepare RAM (PrepareRAM)
kernelPos = (BYTE *)parameters->RAMStartAddress;
I* Receive size of User Kernel module from host */
add_sum = Get((BYTE *)&kernelSize, sizeof(kernelSize));
/* Download kernel to beginning of allowable RAM */
add_sum-+= Get(kernelPos, kernelSize);
[* Adjust start position of RAM */

parameters->RAMStartAddress += kernelSize;

[*
Copy the Get and Put functions into memory, first Get() then Put()

*/

pSrc = (BYTE *)parameters->GetFuncPtr;

pDest = (BYTE *)parameters->RAMStartAddress;

/* Now perform the copy */

for(i = 0; i < parameters->GetSize; i++, pSrc++, pDest++)

{
*pDest = *pSrc;

parameters->RAMStartAddress += parameters->GetSize;
pSrc = (BYTE *)parameters->PutFuncPtr;
pDest = (BYTE *)parameters->RAMStartAddress;
/* Now perform the copy */
for(i = 0; i < parameters->PutSize; i++, pSrc++, pDest++)
{
*pDest = *pSrc;
}
Prepare RAM performs the following processing:
(1) Receives the main kernel and stores it in RAM.
(2) Copies the Get function into RAM.
(3) Copies the Put function into RAM.
Prepare RAM sets the starting address of each function and stores it in RAM. Prepare RAM also stores the size of each

function in RAM. The functions are executed in RAM to erase or program flash memory.

88

7.4 Main Kernel (FDTUMain.c, CmdFunc.c, and CopyFunc.c)
7.4.1 Module Hierarchical Structure

The module hierarchical structure of the main kernel is shown in Figure 7-3.

| —Kernelmain (FDTUMain.c) Main kernel
| —ProcessCommand Command processing
| |—RequestBootPrgSts Program status
| |—SumcheckUserArea User area checksum
| |—SendAck ACK transmission
| |—GetCmdData Command read
| |—ReadMemory Memory read
| |—CheckBlank Blank check
|—CopyFunction (CopyFunc.c) Copy function
| —FLASHFunc (0xFB10) Flash function

Figure 7-3 Module Hierarchical Structure of the Main Kernel

7.4.2 Main Kernel (Kernelmain)

/* Main control processing loop */

while (1)
{
if(ProcessCommand(&commandID, parameters))
{
CopyFunction(commandID, parameters);
}

The main kernel executes command processing (ProcessCommand) repeatedly. Command processing receives and
processes commands. Copy function (CopyFunction) is called only when the user area programming selection or
erasing selection command is received. It receives the erasing or programming kernel corresponding to the command
and stores it in RAM. The erasing kernel erases data and the programming kernel programs data. When programming or

erasing terminates, command processing is called again.

89

7.4.3 Command Processing (ProcessCommand)
The structure of command processing is shown below:

[* Acquisition of a command ID */

add_sum = Get(commandID, 1);

switch(*commandID)

{
case requestBootPrgSts:
RequestBootPrgSts(Put);
break;
case sumcheckUserArea:
SumcheckUserArea(Put);
break;
case prepareErase:
case prepareUserAreaWrite:
return(TRUE);
case readMemory:
ReadMemory(cmdBuf.bdata, Put);
break;
case checkBlank:
CheckBlank(Put);
break;
default:
cBuff[0] = COMMAND_ERROR;
cBuff[1] = *commandID;
Put(cBuff, 2);
break;
}
return(FALSE);

When command processing receives the erasing or programming selection command, it returns TRUE. Other

commands are processed by the relevant command processing modules and command processing returns FALSE.

The command processing modules are contained in CmdFunc.c.

90

7.4.4 Copy Function (CopyFunction)

(1) CopyFunction
BYTE *funcAddress = (BYTE *)FUNC_START, add_sum;
FLASHFuncPtr FLASHFunc = (FLASHFuncPtr)FUNC_START;

I* Acquire size of function to be downloaded */
add_sum = Get((BYTE *)&size, sizeof(size));
/* Download function to RAM address received */

add_sum-+= Get(funcAddress, size);

I* Pass execution to the FLASH function */
(*FLASHFunc)(Put, Get);
(2) KDevice.h
#define FUNC_START 0xFB10 /* Write/Erase function start position */
#define WRITE_DATA OxFE90 /* write-data area start position */

Copy function receives the erasing or programming kernel and stores it in a RAM area starting at H'FB10 indicated by
FUNC_START. After storing the kernel, copy function calls FUNC_START to execute erasing or programming.
Erasing or programming is determined according to the command received by command processing

(ProcessCommand).

91

7.5 Erasing Kernel (FDTErase.c, EraseTime.c, and F3694e.src)
7.5.1 Module Hierarchical Structure

The module hierarchical structure of the erasing kernel is shown in Figure 7-4.

| —FLASHFunc (0xFB10) Flash function
| —EraseFLASH (FDTErase.c) Flash erasing (Erasing kernel)
| |—EraseWaitTime (EraseTime.c) Erasing wait time
| | |—calCount (F3694e.src) Time calculation
| |—RequestBootPrgStS Program status
| | —GetEraseData Erase data reception
| |—b|ock_erase (F3694e.src) Block erasing

Figure 7-4 Module Hierarchical Structure of the Erasing Kernel

7.5.2 Flash Erasing (EraseFLASH)

The structure of flash erasing is shown below:

[* Waiting time calculation of erase processing */
EraseWaitTime();

do{
/* Acquisition of a command 1D */
add_sum = Get(&commandID, 1);
/* Is it a demand of boot status command? */
if (commandID == requestBootPrgSts){
RequestBootPrgSts(Put);
Yelse{
/* Acquisition of command data */
if(GetEraseData(&blk _no, add_sum, Put, Get)){
return;
}
if (blk_no !'= ERASE_END){
I* Erase start */
rsts = block_erase(blk_no);
if(rsts){
if (rsts == BLOCK_NO_ERROR){
cBuff[1] = ERASE_BLOCK_NO_ERROR;
Yelse{
cBuff[1] = ERASE_ERROR;

return;

92

Yelse{
end_flg = LOOP_END;

}
Jwhile(lend_flg);

Flash erasing (EraseFLASH) calculates the erasing wait time using erasing wait time (EraseWaitTime).

Then, it receives a command. When the command is program status inquiry, flash erasing responds with the status using
program status (RequestBootPrgSts).

When the command is block erasing and the data is not erasing end, flash erasing specifies the block number and calls
block erasing (block_erase).

When the data is erasing end, flash erasing terminates erasing and returns control to the main kernel.

7.5.3 Erasing Wait Time (EraseWaitTime and CalCount)
(1) EraseWaitTime

SWES_W = CalCount(1)+1;

SWEC_W = ESUS_W = CalCount(100)+1;

ESUC_ W =EC_W = CalCount(10)+1;

ES_W = CalCount(10000);

EVS_W = CalCount(20)+1;

EVC_W = CalCount(4)+1;

DLCH_W = CalCount(2)+1;
(2) CalCount

FREQ: .EQU H'FF10 ; Frequency(Global data) import from "KDevice.h"
LCNT: .EQU D'600 ; 1us loop counter
; _CalCount .EQU $

SUB.W EO,EO

MOV.W @FREQ,R1 ;frequency

MULXU.W R1,ERO

MOV.W #LCNT,R1

DIVXUW R1,ERO

RTS
Erasing wait time (EraseWaitTime) calculates the wait time (us) after each bit of the relevant register is set to 1 or
cleared to 0 when erasing is executed. Time calculation (CalCount) calculates the wait time with the number of
instructions based on the given frequency, assuming that one instruction requires 6 cycles. The frequency is the
operating frequency calculated based on the value given by new bit rate selection. The frequency in 10 kHz is stored at
H'FF10.
To erase flash memory using a dedicated interface without using the Flash Development Toolkit, create a program,

referring to the user manual for how to set the operating frequency and how to calculate the erasing wait time.

93

Examples of calculated erasing wait time values are listed in Table 7-2.

Table 7-2 Examples of Erasing Wait Time Values (Operating Frequency: 20 MHz)

Erasing Wait Time Variable Time (us) Software Loop Count
After the SWE bit is set SWES W 1 4
After the SWE bit is cleared | SWEC_W 100 334
After the ESU bit is set ESUS W 100 334
After the ESU bit is cleared | ESUC_W 10 34
After the E bit is set ES_ W 10000 (10 ms) 33333
After the E bit is cleared EC W 10 34
After the EV bit is set EVS_W 20 67
After the EV bit is cleared EVC_W 4 14
After dummy data is DLCH_W 2 7

programmed

94

7.6 Programming Kernel (FDTWrite.c, WriteTime.c, and F3694w.src)
7.6.1 Module Hierarchical Structure

The module hierarchical structure of the programming kernel is shown in Figure 7-5.

| —FLASHFunc (0xFB10) Flash function
| —WriteFLASH (FDTWrite.c) Flash memory programming (Programming kernel)
| —WriteWaitTime (WriteTime.c) Programming wait time
| |—calCount (F3694w.src) Time calculation
|—RequestBootPrgSts Program status
| —GetwriteData Programming data reception
|—f|ash_write (F3694w.src) Data programming

Figure 7-5 Module Hierarchical Structure of the Programming Kernel

7.6.2 Flash Memory Programming (WriteFLASH)

The structure of flash memory programming is shown below:

/* Waiting time calculation of write processing */
WriteWaitTime();

do{
[* Acquisition of a command 1D */
add_sum = Get(&commandID, 1);
/* Is it a demand of boot status command? */
if (commandID == requestBootPrgSts){
RequestBootPrgSts(Put);
Yelse{
/* Acquisition of command data */
if(GetWriteData(&pAddress, add_sum, Put, Get)){
return;
}
if (pAddress != WRITE_END){
I* Write-in start */
rsts = flash_write((BYTE *)WRITE_DATA, (BYTE *)pAddress);
if(rsts)
{
if (rsts == ADDRESS_ERROR ||
rsts == ADDRESS_BOUNDARY_ERROR)

cBuff[1] = WRITE_ADDRESS_ERROR;
Yelse{

95

cBuff[1] = WRITE_ERROR;

}
return;
}
Yelse{
end_flg = LOOP_END;
}

}
Jwhile(lend_flg);

Flash memory programming (WriteFLASH) calculates the programming wait time using programming wait time
(WriteWaitTime).

Then, it receives a command. When the command is program status inquiry, flash memory programming responds with
the status using program status (RequestBootPrgSts).

When the command is 128-byte programming and the data is not programming end, flash memory erasing specifies the
programming address and programming data and calls data programming (flash_write).

When the data is programming end, flash memory programming terminates programming and returns control to the

main kernel.

7.6.3 Programming Wait Time (WriteWaitTime and CalCount)
(1) WriteWaitTime

P10S_W = CalCount(10);

P30S_W = CalCount(30);

PSUS_W = CalCount(50);

SWEC_W =PSUS_W * 2;

P200S_ W =SWEC_W * 2;

PSUC_W =PC W =PVS W =DLCH_W = CalCount(5);
(2) CalCount

FREQ: .EQU H'FF10 ; Frequency(Global data) import from "KDevice.h"
LCNT: .EQU D'600 ; 1us loop counter
_CalCount .EQU $

SUB.W EO,EO

MOV.W @FREQ:16,R1 ;frequency

MULXU.W R1,ERO
MOV.W #LCNT,R1
DIVXUW R1,ERO
RTS

Programming wait time (WriteWaitTime) calculates the wait time (us) after each bit of the relevant register is set to 1 or

cleared to 0 when programming is executed. Time calculation (CalCount) calculates the wait time with the number of

96

instructions based on the given frequency, assuming that one instruction requires 6 cycles. The frequency is the

operating frequency calculated based on the value given by new bit rate selection. The frequency in 10 kHz is stored at

H'FF10.

To program flash memory using a dedicated interface without using the Flash Development Toolkit, create a program,

referring to the user manual for how to set the operating frequency and how to calculate the programming wait time.

Examples of calculated programming wait time values are listed in Table 7-3.

Table 7-3 Examples of Programming Wait Time Values (Operating Frequency: 20 MHz)

Programming Wait Time Variable Time (us) Software Loop Count
After the PSU bit is set PSUS W 50 166
After the PSU bit is cleared PSUC_W 5 16
Programming time for P10S W 10 33
additional programming
Programming time for P30S _W 30 100
programming after the P bit is
set
(Programming count: 1 to 6)

Programming time for P200S_W 200 666
programming

(Programming count: 7 to

1000)

After the SWE bit is cleared SWEC_W 100 34
After the P bit is cleared PC W 5 16
After the PV bit is set PVS_W 5 16
After dummy data is DLCH_W 5 16
programmed

97

8. Using Programming/Erasing Kernels (Supplied Programs)
You can use the flash memory programming/erasing logical modules by connecting them to your own developed

program without the Flash Development Toolkit interface section (main processing module and micro kernel). This

section describes the logical modules which are part of the programming/erasing kernels.

8.1 Programming
8.1.1 Used Files
File Name Description Language
F3694w.src Source file of 128-byte programming Assembly language
F3694asm.inc Header file common to 128-byte programming and | Assembly language
block erasing

8.1.2 Module Specifications
Name 128-byte programming
Type unsigned char flash_write(unsigned char *data, unsigned char *adr)
Function Programs 128-byte data.
Arguments data: Programming data start address

adr: Programming destination address

Return Value Processing result

Normal termination: H'00

Maximum programming count error: H'01
Programmed data error: H'02

FWE error: H'D1

FLER error: H'D2

Programming address error: H'F1
128-byte boundary address error: H'F2

Input Programming wait time
Processing Executes programming in 128-byte units.

For details, refer to program/program-verify flowchart in the hardware manual.
Note To use the module, set the programming wait time (software loop count) in the

global variable area in advance.

98

8.2 Erasing
8.2.1 Used Files
File Name Description Language
F3694e.src Source file of block erasing Assembly language

F3694asm.inc

Header file common to 128-byte programming and

block erasing

Assembly language

8.2.2 Module Specifications
Name Block erasing
Type unsigned char block_erase (unsigned char blk_no)
Function Erases a block.
Argument blk_no: Block number

Return Value

Processing result

Normal termination: H'00
Erasing error: H'01

FWE error: H'D1

FLER error: H'D2

Block number error: H'E1

Maximum erasing count error: H'E2

Input Erasing wait time
Processing Executes erasing of each block.
For details, refer to erase/erase-verify flowchart in the hardware manual.
Note To use the module, set the erasing wait time (software loop count) in the global

variable area in advance.

99

Flash Development Toolkit Application Note (Applications)
User Program Mode (H8/3694F)

Publication Date: Jun. 28, 2006 Rev.1.00
:) Sales Strategic Planning Div.
Published by: Renesas Technology Corp.
Edited by: Microcomputer Tool Development Department

Renesas Solutions Corp.

© 2006. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

Flash Development Toolkit
Application Note (Applications)

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ06J0004-0100

	1. Introduction
	2. H8/3694F (H8/300H Tiny Series)
	2.1 Flash Memory Configuration
	2.2 Programming Modes
	2.3 On-Board Programming Modes

	3. Functions of the Flash Development Toolkit
	3.1 Main Functions

	4. Operating the Flash Development Toolkit
	4.1 Connecting the Adapter Board
	Connecting the Adapter Board
	4.1.1 Setting Pins on the Adapter Board

	4.2 Setting the Flash Development Toolkit
	4.2.1 Starting the Flash Development Toolkit
	4.2.2 Selecting an Option
	4.2.3 Setting a New Project Workspace
	4.2.4 Selecting the Device and Kernel
	4.2.5 Selecting a Communications Port
	4.2.6 Device Settings (Setting the Input Clock)
	4.2.7 Selecting the Connection Type (Communication Speed)
	4.2.8 Selecting Programming Options (Protection Level and Messaging Level)
	4.2.9 Adapter Board Pin Settings
	4.2.10 Reset Mode Pin Settings
	4.2.11 Completion of Setting
	4.2.12 Connecting the Device
	4.2.13 Completion of Connection

	4.3 Boot Mode (Programming the User Area)
	4.3.1 Selecting Files
	4.3.2 Building the Image
	4.3.3 Programming
	4.3.4 Blank Check
	4.3.5 Checksum
	4.3.6 Disconnecting the Device
	4.3.7 Removing Files
	4.3.8 Removing Folders
	4.3.9 Exiting

	4.4 User Program Mode
	4.4.1 Starting the Flash Development Toolkit
	4.4.2 Selecting an Option
	4.4.3 Connecting the Device
	4.4.4 Writing a Program in the User Area
	4.4.5 Disconnecting the Device
	4.4.6 Configuring the Project
	4.4.7 Setting User Program Mode
	4.4.8 Completion of Setting
	4.4.9 Connecting the Device
	4.4.10 Timeout
	4.4.11 Programming
	4.4.12 Blank Check and Checksum

	5. Flash Development Toolkit Processing
	6. Sample Program
	6.1 Program Configuration
	6.2 File Configuration
	6.2.1 Main Processing Module
	6.2.2 Micro Kernel
	6.2.3 Main Kernel
	6.2.4 Programming Kernel
	6.2.5 Erasing Kernel

	6.3 Relationships between Program Modules and Files
	6.4 Build Operation
	6.4.1 SET Command
	6.4.2 Library File
	6.4.3 Output Files

	6.5 Modules
	6.6 Module Hierarchical Structure
	6.7 Program Processing Flow
	6.8 Command Sequence in the User Program Mode
	6.9 Program Sequence
	6.9.1 Preparation
	6.9.2 Main Processing Module
	6.9.3 Micro Kernel
	6.9.4 Main Kernel
	6.9.5 Programming Kernel
	6.9.6 Erasing Kernel

	6.10 Memory Map

	7. Source Files of the Sample Program
	7.1 Header Files
	7.1.1 Bit Rate Setting (GenTest.h)
	7.1.2 I/O Register Definition (io3694.h)
	7.1.3 Macro Definition (KAIg.h)

	7.2 Main Processing Module (Strt3694.src and GenTest.c)
	7.2.1 Module Hierarchical Structure
	7.2.2 Reset Vector (GenTest.c and GenTest.h)
	(1) GenTest.c
	(2) GenTest.h

	7.2.3 Stack (Strt3694.src)
	7.2.4 Main Processing (main)
	7.2.5 Branch to Copy (JumpCopy)
	（１） JumpCopy
	（２） GenTest.h

	7.3 Micro Kernel (uGenu.c and CmdFunc.c)
	7.3.1 Module Hierarchical Structure
	7.3.2 Start Micro Kernel (StartFDTUserKernel)
	（１） StartFDTUserKernel
	（２） GenTest.h

	7.3.3 Prepare Micro Kernel (PrepareFDTUserKernel)
	7.3.4 Command Function (CmdFunc and CmdFunc.c)
	7.3.5 Prepare RAM (PrepareRAM)

	7.4 Main Kernel (FDTUMain.c, CmdFunc.c, and CopyFunc.c)
	7.4.1 Module Hierarchical Structure
	7.4.2 Main Kernel (Kernelmain)
	7.4.3 Command Processing (ProcessCommand)
	7.4.4 Copy Function (CopyFunction)
	(1) CopyFunction
	(2) KDevice.h

	7.5 Erasing Kernel (FDTErase.c, EraseTime.c, and F3694e.src)
	7.5.1 Module Hierarchical Structure
	7.5.2 Flash Erasing (EraseFLASH)
	7.5.3 Erasing Wait Time (EraseWaitTime and CalCount)
	(1) EraseWaitTime
	(2) CalCount

	7.6 Programming Kernel (FDTWrite.c, WriteTime.c, and F3694w.src)
	7.6.1 Module Hierarchical Structure
	7.6.2 Flash Memory Programming (WriteFLASH)
	7.6.3 Programming Wait Time (WriteWaitTime and CalCount)
	(1) WriteWaitTime
	(2) CalCount

	8. Using Programming/Erasing Kernels (Supplied Programs)
	8.1 Programming
	8.1.1 Used Files
	8.1.2 Module Specifications

	8.2 Erasing
	8.2.1 Used Files
	8.2.2 Module Specifications

