

## アプリケーションノート

RZ/T1グループ

RZ/T1モーションコントロール・ソリューションキット向け 永久磁石同期モータのエンコーダ利用ベクトル制御(速度制御)編 R01AN4148JJ0100 Rev.1.00 2018.03.05

## 要旨

本アプリケーションノートは RZ/T1 グループの機能を使って永久磁石同期モータをエンコーダ利用ベクトル制御(速度制御)で駆動するサンプルプログラムについて説明することを目的としています。

サンプルプログラムはあくまで参考用途であり、弊社がこの動作を保証するものではありません。サンプルプログラムを使用する場合、適切な環境で十分な評価をしたうえでご使用ください。

## 動作確認デバイス

サンプルプログラムの動作確認は下記のデバイスで行っております。

• RZ/T1 グループ (R7S910018CBG)

# 目 次

| 1. | 概説.   |                              | 3  |
|----|-------|------------------------------|----|
|    | 1.1   | システムの利用                      | 3  |
|    | 1.2   | 開発環境                         | 3  |
| 2. | シスラ   | テム概要                         | 4  |
|    | 2.1   | ハードウェア構成                     | 4  |
|    | 2.2   | ハードウェア仕様                     | 5  |
|    | 2.2.1 | ユーザ・インタフェース                  | 5  |
|    | 2.2.2 | 周辺機能                         | 6  |
|    | 2.3   | ソフトウェア構成                     | 7  |
|    | 2.3.1 | ソフトウェア・ファイル構成                | 7  |
|    | 2.3.2 | モジュール構成                      | 7  |
|    | 2.4   | ソフトウェア仕様                     | 8  |
| 3. | モー    | ヲ制御方法                        | 9  |
|    | 3.1   | モータ制御システムの電圧方程式              | 9  |
|    | 3.2   | ベクトル制御                       | 11 |
|    | 3.3   | 始動方法                         | 14 |
|    | 3.4   | 速度演算方法                       | 15 |
|    | 3.5   | 三角波比較法                       | 16 |
| 4. | 制御:   | プログラム説明                      | 18 |
|    | 4.1   | 制御内容                         | 18 |
|    | 4.1.1 | モータ起動/停止                     | 18 |
|    | 4.1.2 | モータ回転速度指令値、インバータ母線電圧、モータ3相電圧 | 18 |
|    | 4.1.3 | 制御方法                         | 19 |
|    | 4.1.4 | システム保護機能                     | 19 |
|    | 4.2   | 関数仕様                         | 20 |
|    | 4.3   | 変数一覧                         | 23 |
|    | 4.4   | マクロ定義                        | 25 |
|    | 4.5   | 制御フロー (フローチャート)              | 28 |
| 5. | 参考    | ドキュメント                       | 31 |

## 1. 概説

本アプリケーションノートは、RZ/T1 グループを使用し、永久磁石同期モータ (以降は SPMSM)のエンコーダ利用ベクトル制御 (速度制御)のサンプルプログラムについて説明するものです。

#### 1.1 システムの利用

本システム (サンプルプログラム)は、RZ/T1 モーションコントロール・ソリューションキットに含まれるインバータボード Biplane、表面型永久磁石同期モータ (MB057GA140) を使用し、エンコーダ利用ベクトル制御を実現しています。

RZ/T1 モーションコントロール・ソリューションキットのご購入、技術サポートにつきましては、弊社営業および特約店にお問い合わせください。

#### 1.2 開発環境

#### (1) ソフトウェア開発環境

| 統合開発環境 | ● IARシステムズ製 Embedded Workbench for ARM (V7.80) |
|--------|------------------------------------------------|
|        | ● RENESAS製 e <sup>2</sup> studio (V6.1.0)      |

#### (2) ハードウェア環境

| オンチップ・デバック・エミュレータ | Embedded Workbench for ARM環境:IARシステムズ社製 I-jet     e2Studio環境:SEGGER社製 J-Link |
|-------------------|------------------------------------------------------------------------------|
| 使用マイコン            | RZ/T1グループ (R7S910018CBG)                                                     |
| インバータボード          | Biplane                                                                      |
| モータ               | MB057GA140 (SPMSM)                                                           |

## 2. システム概要

本システムの概要を以下に説明します。

## 2.1 ハードウェア構成

ハードウェア構成を次に示します。

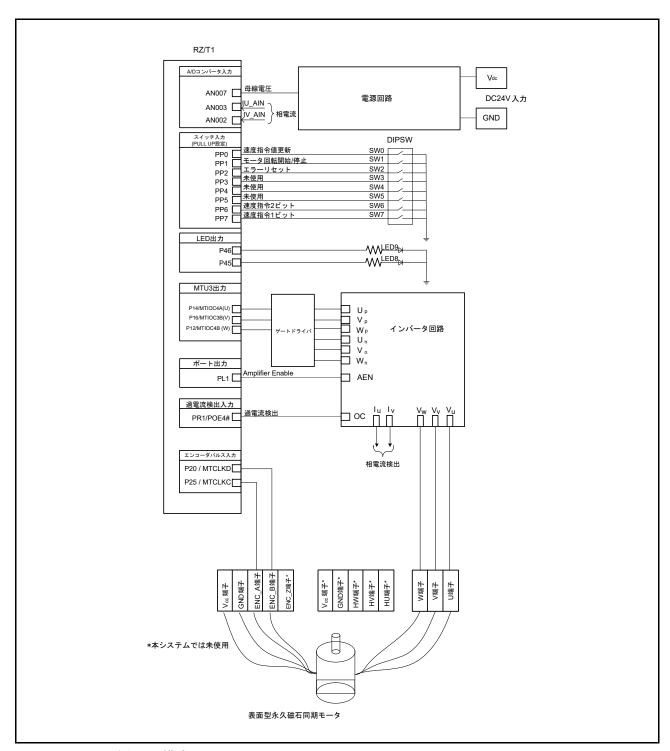



図 2.1 ハードウェア構成図

## 2.2 ハードウェア仕様

## 2.2.1 ユーザ・インタフェース

本システムのユーザ・インタフェース一覧を表 2.1 に示します。

本システムは Axis2 でのみ動作します。エンコーダコネクタを P2 ポートに、モータコネクタを J3 ポートに接続してください。

表 2.1 ユーザ・インタフェース

| 項目          | インタフェース部品       | 機能                                           |
|-------------|-----------------|----------------------------------------------|
| 速度指令値更新     | ディップスイッチ(SW0)   | 回転速度指令値を更新(4.1.1参照)                          |
| 回転速度指令      | ディップスイッチ(SW6-7) | 回転速度指令値入力(4.1.2参照)                           |
| START/STOP  | ディップスイッチ(SW1)   | モータ回転開始/停止指令(4.1.1参照)                        |
| ERROR RESET | ディップスイッチ(SW2)   | エラー状態からの復帰指令                                 |
| LED9        | 黄緑色LED          | <ul><li>モータ回転時:点灯</li><li>停止時:消灯</li></ul>   |
| LED8        | 黄緑色LED          | <ul><li>エラー検出時:点灯</li><li>通常動作時:消灯</li></ul> |
| RESET       | プッシュスイッチ(RESET) | システムリセット                                     |

本システムの RZ/T1 グループ端子のインタフェース一覧を表 2.2 に示します。

#### 表2.2 端子インタフェース

| R7S910018CBG端子名 | 機能                     |
|-----------------|------------------------|
| AN007           | インバータ母線電圧測定            |
| PP0             | 速度指令値更新 ディップスイッチ       |
| PP6             | 速度指令 2ビット目 ディップスイッチ    |
| PP7             | 速度指令 1ビット目 ディップスイッチ    |
| PP1             | START/STOPディップスイッチ     |
| PP2             | ERROR RESETディップスイッチ    |
| P46             | LED9点灯/消灯制御            |
| P45             | LED8点灯/消灯制御            |
| AN003           | U相電流測定                 |
| AN002           | V相電流測定                 |
| P14 / MTIOC4A   | PWM出力(U)               |
| P16 / MTIOC3B   | PWM出力(V)               |
| P12 / MTIOC4B   | PWM出力(W)               |
| PL1             | AEN (Amplifier Enable) |
| PR1/POE4#       | 過電流検出時のPWM緊急停止入力       |
| P25 / MTCLKC    | エンコーダA相入力              |
| P20 / MTCLKD    | エンコーダB相入力              |
| RESET#          | RESET                  |

#### 2.2.2 周辺機能

本システムに使用する周辺機能一覧を表 2.3 に示します。

#### 表2.3 周辺機能一覧

| 周辺機能                             | 用途                                                 |
|----------------------------------|----------------------------------------------------|
| 12ビットA/Dコンバータ(S12ADAa)           | <ul><li>インバータ母線電圧測定</li><li>U、V相電流測定</li></ul>     |
| コンペアマッチタイマ(CMT)                  | 1 [ms] インターバルタイマ                                   |
| マルチファンクションタイマパルスユニット3<br>(MTU3a) | <ul><li>PWM出力(3本)</li><li>エンコーダ入力パルスカウント</li></ul> |
| ポートアウトプットイネーブル3(POE3)            | 過電流検出時、PWM出力中の端子をハイインピーダンスにする                      |

#### (1) 12 ビット A/D コンバータ

U 相電流  $(I_u)$ 、V 相電流  $(I_v)$ 、インバータ母線電圧  $(V_{dc})$ 、を「12 ビット A/D コンバータ」を使用して測定します。

動作モードについてはユニット 0 でサンプル 2 ホールド機能を使用した「1 サイクルスキャンモード」に設定します。

#### (2) コンペアマッチタイマ (CMT)

コンペアマッチタイマのチャネル 0 を、1 [ms] インターバルタイマとして使用します。

#### (3) マルチファンクションタイマパルスユニット3 (MTU3a)

動作モードはチャネル毎に異なり、チャネル3、4では相補 PWM モードを使用して、デッドタイムなしの出力("High"アクティブ)を行います。ゲートドライバにより逆相を生成するため、正相のみを出力するよう設定します。また、チャネル2では位相計数モードを使用して、エンコーダからの入力パルスをカウントします。

#### (4) ポートアウトプットイネーブル 3 (POE3)

過電流検出時(POE4# 端子の立ち下がりエッジ検出時)と出力短絡検出時は PWM 出力中端子をハイインピーダンス状態にします。

## 2.3 ソフトウェア構成

#### 2.3.1 ソフトウェア・ファイル構成

サンプルプログラムのフォルダとファイル構成を以下に記します。

下記はモータ制御サンプルプログラムに必要となるもののみ記載しており、ボード初期化等、モータ制御に直接関係しないものは省略しています。

表2.4 サンプルプログラムのフォルダとファイル構成

| RZT1_BIPLANE_SSNS_ | inc    |     | iodefine.h          | RZ/T1 グループ IO レジスタ定義ヘッダ |                        |
|--------------------|--------|-----|---------------------|-------------------------|------------------------|
| ENCD_FOC_CSP       |        |     |                     | main.h                  | メイン関数、ユーザ・インタフェース制御ヘッダ |
|                    |        |     | mtr_common.h        | 共通定義用ヘッダ                |                        |
|                    |        |     |                     | mtr_ctrl_biplane.h      | ボード依存処理部へッダ            |
|                    |        |     |                     | mtr_ctrl_rzt1.h         | RZ/T1 グループ依存処理部へッダ     |
|                    |        |     | mtr_ssns_encd_foc.h | エンコーダ利用ベクトル制御依存部ヘッダ     |                        |
|                    | src    | drv | mtr                 | mtr_ctrl_biplane.c      | ボード依存処理部               |
|                    |        |     |                     | mtr_ctrl_rzt1.c         | RZ/T1 グループ依存処理部        |
|                    |        |     |                     | mtr_interrupt.c         | 割り込みハンドラ               |
|                    |        |     |                     | mtr_ssns_encd_foc.c     | エンコーダ利用ベクトル制御依存部       |
|                    | sample |     |                     | main.c                  | メイン関数、ユーザ・インタフェース制御    |

#### 2.3.2 モジュール構成

サンプルプログラムのモジュール構成を図2.2に示します。

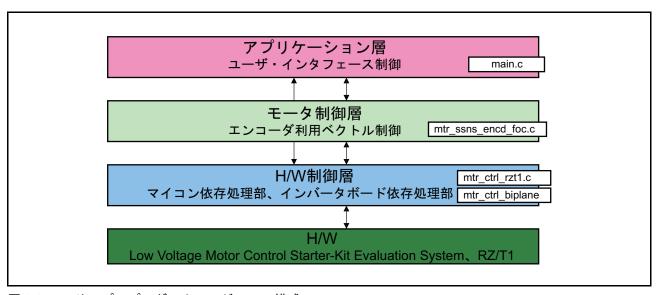



図 2.2 サンプルプログラムのモジュール構成

## 2.4 ソフトウェア仕様

本システムのソフトウェアの基本仕様を表 2.5 に示します。

#### 表2.5 ソフトウェア基本仕様

| 項目           | 内容                                                                                                                                                                                                                                                                                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 制御方式         | ベクトル制御(速度制御)                                                                                                                                                                                                                                                                                                                            |
| モータ回転開始/停止   | SW1 (PP1) のレベルにより判定("Low":回転開始 "High":停止)                                                                                                                                                                                                                                                                                               |
| 回転子磁極位置検出    | エンコーダ                                                                                                                                                                                                                                                                                                                                   |
| キャリア周波数(PWM) | 20 [kHz]                                                                                                                                                                                                                                                                                                                                |
| 制御周期         | 100 [µs] (キャリア周期の2倍)                                                                                                                                                                                                                                                                                                                    |
| 回転速度制御範囲     | CW: 600 [rpm] ~ 1500 [rpm]                                                                                                                                                                                                                                                                                                              |
| 保護停止処理       | <ul> <li>以下4つのうちいずれかの条件の時、モータ制御信号出力(3本)を非アクティブにする         <ol> <li>各相の電流が4 [A]を超過(100 [µs]毎に監視)</li> <li>インバータ母線電圧が28 [V]を超過(100 [µs]毎に監視)</li> <li>インバータ母線電圧が12 [V]未満(100 [µs]毎に監視)</li> <li>回転速度が600 [rad/s](電気角)を超過(100 [µs]毎に監視)</li> </ol> </li> <li>外部からの過電流検出信号(POE4#端子に立ち下がりエッジ)および出力短絡を検出した場合、PWM出力中端子をハイインピーダンスにする</li> </ul> |

## 3. モータ制御方法

サンプルプログラムで用いる SPMSM のベクトル制御について説明します。

#### 3.1 モータ制御システムの電圧方程式

正弦波状の磁束分布を持った永久磁石同期モータ(**図 3.1**)の電圧方程式は下記の様に表すことが出来ます。

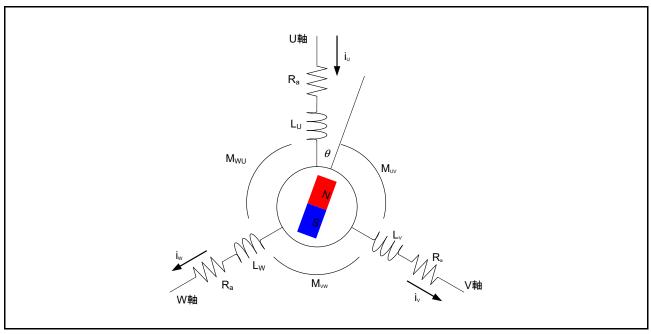



図 3.1 3 相永久磁石同期モータの概念図

$$\begin{pmatrix} v_{u} \\ v_{v} \\ v_{w} \end{pmatrix} = R_{a} \begin{pmatrix} i_{u} \\ i_{v} \\ i_{w} \end{pmatrix} + \rho \begin{pmatrix} \phi_{u} \\ \phi_{v} \\ \phi_{w} \end{pmatrix}$$
 
$$\begin{pmatrix} \phi_{u} \\ \phi_{v} \\ \phi_{w} \end{pmatrix} = \begin{pmatrix} L_{u} & M_{uv} & M_{wu} \\ M_{uv} & L_{v} & M_{vw} \\ M_{wu} & M_{vw} & L_{w} \end{pmatrix} \begin{pmatrix} i_{u} \\ i_{v} \\ i_{w} \end{pmatrix} + \psi \begin{pmatrix} \cos \theta \\ \cos (\theta - 2\pi / 3) \\ \cos (\theta + 2\pi / 3) \end{pmatrix}$$

*v*<sub>,,</sub>, *v*<sub>v</sub>, *v*<sub>w</sub>:各相電機子電圧

L,, L,, Lw: 各相自己インダクタンス

*i*,,, *i*,, *i*,, :各相電機子電流

*M<sub>,,v</sub>*, *M<sub>vw</sub>*, *M<sub>w,i</sub>* : 各相間相互インダクタンス

 $\phi_{\!\scriptscriptstyle J}$  ,  $\phi_{\!\scriptscriptstyle J}$  ,  $\phi_{\!\scriptscriptstyle W}$  :各相電機子鎖交磁束

ψ:永久磁石による電機子鎖交磁束の最大値

Ra: 各相電機子電流

heta: U相からの永久磁石 (回転子) の進み角

p:微分演算子

ここで自己インダクタンスと相互インダクタンスは次式の様に表されます。

 $\begin{cases} L_{u} = I_{a} + L_{a} - L_{as} \cos(2\theta) \\ L_{v} = I_{a} + L_{a} - L_{as} \cos(2\theta + 2\pi/3) \\ L_{w} = I_{a} + L_{a} - L_{as} \cos(2\theta - 2\pi/3) \end{cases}$   $\begin{cases} M_{uv} = -L_{a}/2 - L_{as} \cos(2\theta - 2\pi/3) \\ M_{vw} = -L_{a}/2 - L_{as} \cos2\theta \\ M_{wu} = -L_{a}/2 - L_{as} \cos(\theta + 2\pi/3) \end{cases}$ 

*I*<sub>a</sub>:一相あたりの漏れインダクタンス

 $L_a$ : 一相あたりの有効インダクタンスの平均値  $L_{as}$ : 一相あたりの有効インダクタンスの振幅

#### 3.2 ベクトル制御

回転子の永久磁石の磁束(N極)方向に d 軸を定め、d 軸から 90 度進んだ方向に q 軸を取る事にすると、 dq 座標系から見た永久磁石同期モータの電圧方程式を得るためには以下の変換行列を用いればよい事になります。

$$C = \sqrt{\frac{2}{3}} \begin{pmatrix} \cos\theta & \cos(\theta - 2\pi/3) & \cos(\theta + 2\pi/3) \\ -\sin\theta & -\sin(\theta - 2\pi/3) & -\sin(\theta + 2\pi/3) \end{pmatrix}$$

$$\begin{pmatrix} v_d \\ v_q \end{pmatrix} = C \begin{pmatrix} v_u \\ v_v \\ v_w \end{pmatrix}$$

上記の座標変換により dq 座標系での永久磁石同期モータの電圧方程式は以下の様に表すことが出来ます。

$$\begin{pmatrix} v_d \\ v_q \end{pmatrix} = \begin{pmatrix} R_a + pL_d & -\omega L_q \\ \omega L_d & R_a + pL_q \end{pmatrix} \begin{pmatrix} i_d \\ i_q \end{pmatrix} + \begin{pmatrix} 0 \\ \omega \psi_a \end{pmatrix}$$

V<sub>a</sub>, V<sub>a</sub>:各相電機子電圧

 $oldsymbol{\mathit{L}_{d}}$  ,  $oldsymbol{\mathit{L}_{q}}$  :各相自己インダクタンス

i, , i, :各相電機子電流

 $L_d = I_a + 3/2 (L_a - L_{as}), \qquad L_q = I_a + 3/2 (L_a + L_{as})$ 

θ: U相からの d 軸 (回転子) の進み角

ψ。:永久磁石による電機子 鎖交磁束の実効値

R<sub>a</sub>:各相電機子抵抗

 $\psi_a = \sqrt{3/2} \, \psi$ 

これにより静止している3相固定子に流れていた交流は、回転子である永久磁石と同期して回転している2相の固定子に直流として現れるとみなす事が出来ます。

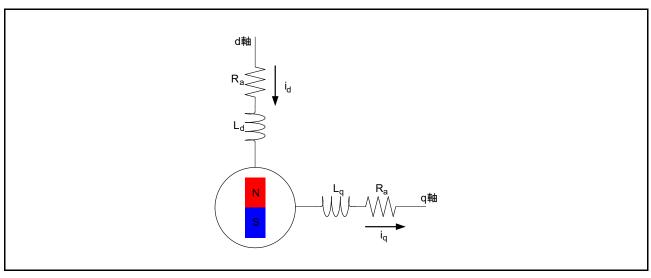



図 3.2 2 相直流モータの概念図

モータに生じるトルクの大きさは電流ベクトルと電機子鎖交磁束の外積により、下記のように求めること ができます。この式の右辺第一項をマグネットトルク、右辺第二項をリラクタンストルクと呼びます。

$$T = P_n \left\{ \psi_a i_q + (L_d - L_q) i_d i_q \right\}$$
 $T: モータトルク P_n:$ 極対数

d 軸と g 軸のインダクタンスの差が無いモータを突極性が無いモータと呼びます。この場合、リラクタン ストルクは0になるので、q軸電流に比例してトルクは大きくなります。このため、q軸電流をトルク電流 と呼ぶ事があります。一方、d軸電流は、その大きさを変化させる事でq軸電圧にとって恰も永久磁石の磁 束の大きさが変化しているかの様に見做せるはたらきをするので励磁電流と呼ぶ事があります。

一般的に SPMSM は突極性が無いので、速度制御の際、トルクを発生させるのに不要な d 軸電流は 0 に制 御します。これをid=0制御と呼びます。一方、この時のモータの運動方程式は、下記の様に表されるの で、速度を上昇させたい場合は、q軸電流iqを上昇させればよい事が解ります。

$$I\frac{d\omega}{dt} = P_n \psi_a i_q - T_L$$

T<sub>1</sub>: 負荷トルク 1: モータの慣性モーメント

速度制御は、この運動方程式を解く事によってではなく、PI 制御によって行います。速度 PI 制御によっ てq軸電流の指令値を得ます。

$$i_q^* = (K_{P\omega} + \frac{K_{I\omega}}{s})(\omega^* - \omega)$$

 $K_{P\omega}$ : 速度PI比例ゲイン  $K_{I\omega}$ : 速度PI積分ゲイン s: ラプラス演算子

d 軸と q 軸の電流指令値により早く安定させるため、電流値にも PI 制御を行います。電流 PI 制御によって指令電圧値を得ます。

$$oldsymbol{v}_d^* = (oldsymbol{K}_{Pi_d} + rac{oldsymbol{K}_{li_d}}{oldsymbol{s}})(i_d^* - i_d)$$
 $oldsymbol{K}_{Pi_q}: ext{d軸電流PI比例ゲイン}$ 
 $oldsymbol{V}_q^* = (oldsymbol{K}_{Pi_q} + rac{oldsymbol{K}_{li_q}}{oldsymbol{s}})(i_q^* - i_q)$ 
 $oldsymbol{K}_{Pi_q}: ext{q軸電流PI比例ゲイン}$ 
 $oldsymbol{K}_{li_q}: ext{q軸電流PI積分ゲイン}$ 

モータが回転すると誘起電圧が発生し、d 軸電圧にはq 軸電流による影響が、またq 軸電圧にはd 軸電流と永久磁石磁束による影響が、速度が大きくなるにつれ顕著になります。このd 軸とq 軸の干渉は、電流値の安定を遅らせるはたらきをしてしまう事があります。これを避けるために、各軸の干渉項を予めキャンセルする様にフィードフォワードして各軸の電圧を算出します。

$$v_{d}^{*} = (K_{Pi_{d}} + \frac{K_{Ii_{d}}}{s})(i_{d}^{*} - i_{d}) - \omega L_{q}i_{q}$$

$$v_{q}^{*} = (K_{Pi_{q}} + \frac{K_{Ii_{q}}}{s})(i_{q}^{*} - i_{q}) + \omega(L_{d}i_{d} + \psi_{d})$$

この様にして干渉項の影響を無くす方法を非干渉制御と呼びます。これにより、d軸と q軸を独立に制御する事が可能になります。

ベクトル制御は、互いに独立して制御する事が出来なかった3相の交流モータを独立に制御可能な2相の 直流モータへと変換し、トルクや回転子の速度、位置を管理しながら制御する方法といえます。

ベクトル制御の制御フローを以下に記します。

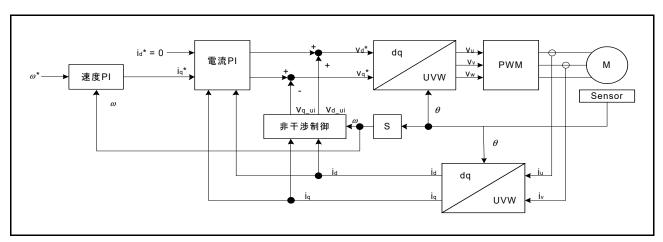



図 3.3 ベクトル制御の制御フロー

## 3.3 始動方法

本システムでは、始動時に**図3.4**のような順で電流ベクトルを作ることでd軸と電流ベクトルの向きを一致させ、回転子の磁極位置を決定します。始動時のシーケンスを**図3.5**に記します。

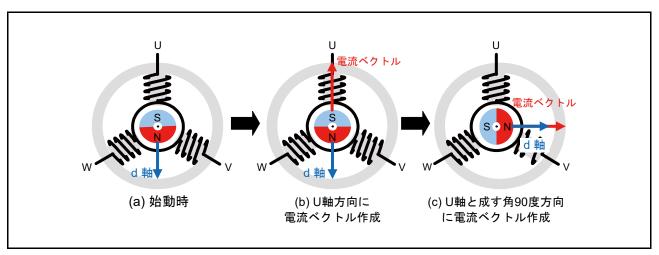



図 3.4 永久磁石位置の決定

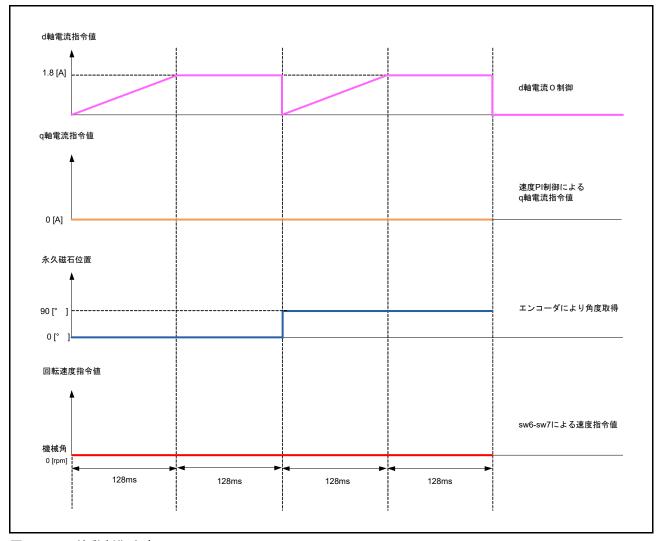



図 3.5 始動制御内容

## 3.4 速度演算方法

本システムでは、図3.6の様にエンコーダタイマカウンタ値から角速度を演算します。

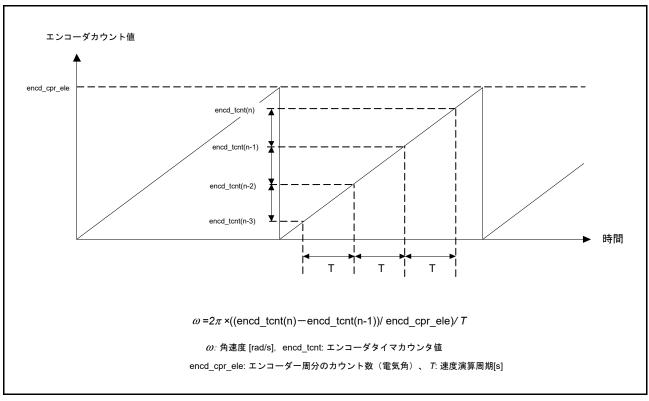



図 3.6 エンコーダ利用による速度演算

## 3.5 三角波比較法

指令値電圧を実際に出力するためには、キャリア波形(三角波)と指令値電圧波形を比較する事で出力電圧のパルス幅を決める三角波比較法を用います。この PWM 方式により、正弦波状の指令値電圧を擬似的に出力する事が出来ます。

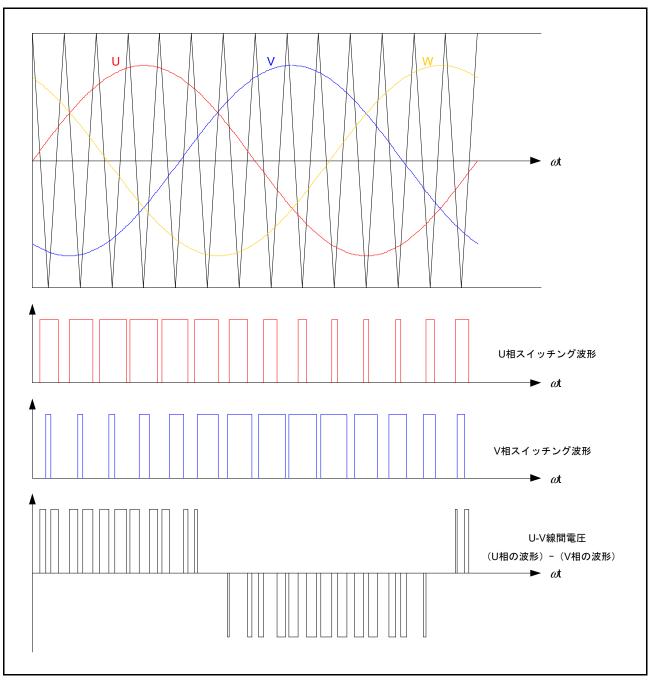



図 3.7 三角波比較法の概念図

ここで、図3.8のように、出力電圧パルスのキャリア波に対する割合をデューティと呼びます。

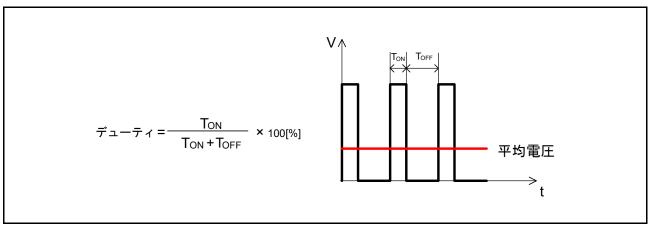



図 3.8 デューティの定義

また、変調率 m を以下のように定義します。

この変調率を、PWM デューティを決めるレジスタに反映させる事で所望の制御を行います。

## 4. 制御プログラム説明

本システムの制御プログラムについて説明します。

#### 4.1 制御内容

#### 4.1.1 モータ起動/停止

モータの起動と停止は、SW1の入力によって制御します。

SW1 には汎用ポート (PP1) が割り当てられ、メインループ内で、PP1 端子を読み、"Low" (SW1 = SW ON) のときモータが起動状態となり、逆に "High" (SW1 = SW OFF) のときはモータが停止状態となります。ただし、電源投入後にモータ回転速度指令値を一度以上更新していない場合、SW1 = SW ON を入力してもモータ起動はしません。SW1 = SW ON とした後、4.1.2 に示す SW0 を切り替え、モータ回転速度指令値を更新する必要があります。

#### 4.1.2 モータ回転速度指令値、インバータ母線電圧、モータ3相電圧

#### (1) モータ回転速度指令値

ディップスイッチを使用して、**表 4.1** に示すように回転速度指令値を設定します。また、メインループ内で SWO の汎用ポート (PPO) 端子を読みこんでおり、SWO の切り替えにより前回のループで読み込んだレベルと異なっている場合に、速度指令値を更新します。

表4.1 位置指令値の組み合せ

| 速度指令値 | ディップスイ | ッチ操作設定 |  |
|-------|--------|--------|--|
| [rpm] | SW6    | SW7    |  |
| 1500  | SW ON  | SW ON  |  |
| 1200  | SW ON  | SW OFF |  |
| 900   | SW OFF | SW ON  |  |
| 600   | SW OFF | SW OFF |  |

#### (2) インバータ母線電圧

表 4.2 のように、インバータ母線電圧を測定します。

変調率の算出と過電圧検出(異常時は PWM 停止)に使用します。

#### 表4.2 インバータ母線電圧の変換比

| 項目        | 変換比(インバータ母線電圧:A/D変換値)             | チャネル  |
|-----------|-----------------------------------|-------|
| インバータ母線電圧 | 0 [V] ~ 280.0 [V] : 0000H ~ 0FFFH | AN007 |

#### (3) U相、V相電流

表 4.3 のように、U 相、V 相電流を測定し、ベクトル制御に使用します。

#### 表4.3 U、V相電流の変換比

| 項目      | 変換比(U相、V相電流:A/D変換値)                  | チャネル        |
|---------|--------------------------------------|-------------|
| U相、V相電流 | -37.5 [A] ~ 37.5 [A] : 0000H ~ 0FFFH | AN003、AN002 |

## 4.1.3 制御方法

始動時に回転子の磁極位置を決定し、一定時間が経過したら (3.3 章参照)、エンコーダを利用したベクトル制御によってモータを駆動します (図 3.3 のブロック図を参照)。また、速度制御には PI 制御を用いています。

#### 4.1.4 システム保護機能

本制御プログラムは、以下の4種のエラー状態を持ち、それぞれの場合に緊急停止機能を実現しています。

#### 過電流エラー

ハードウェアからの緊急停止信号(過電流検出)により、PWM 出力端子にハイインピーダンス出力します(CPU を介さない緊急停止)。

また、 $100 [\mu s]$  間隔で U 相、V 相、W 相電流を監視し、過電流(4 [A] を超過)を検出した時に、 CPU によって緊急停止します。

#### • 過電圧エラー

100 [ $\mu$ s] 間隔でインバータ母線電圧を監視し、過電圧(28 [V] を超過)を検出した時に、CPU によって緊急停止します。ここで、過電圧リミット値 28 [V] は抵抗値の誤差と AC アダプタ等による供給電圧の誤差を考慮して設定した値です。

#### • 低電圧エラー

 $100 \, [\mu s] \, 間隔でインバータ母線電圧を監視し、低電圧(12 \, [V] を下回った場合)を検出した時に、CPU によって緊急停止します。$ 

#### 高速度エラー

100 [μs] 間隔で速度を監視し、600 [rad/s] (電気角) を超過した場合、CPU によって緊急停止します。

## 4.2 関数仕様

本制御プログラムでは、複数の制御関数を使用しています。制御関数の一覧を以下に示します。より詳細な処理については、フローチャート、またはソースファイルを参照してください。

表 4.4 制御関数一覧 (1/3)

| ファイル名              | 関数概要                                                                                        | 処理概要                                                                                                                                                                                            |
|--------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| main.c             | main<br>入力: なし<br>出力: なし                                                                    | <ul> <li>ハードウェア初期化関数呼び出し</li> <li>ユーザ・インタフェース初期化関数呼び出し</li> <li>メイン処理使用変数初期化関数呼び出し</li> <li>状態遷移およびイベント実行関数呼び出し</li> <li>メイン処理</li> <li>⇒メイン処理実行関数呼び出し</li> <li>⇒ウォッチドッグタイマクリア関数呼び出し</li> </ul> |
|                    | ctrl_ui<br>入力:なし<br>出力:なし                                                                   | モータステータスの変更     回転速度指令値の決定                                                                                                                                                                      |
|                    | software_init<br>入力:なし<br>出力:なし                                                             | メイン処理にて使用する変数の初期化                                                                                                                                                                               |
| mtr_ctrl_biplane.c | get_sw_speed<br>入力:なし<br>出力:(uint16) speed_value / 速度設定                                     | 速度設定を取得                                                                                                                                                                                         |
|                    | get_sw1<br>入力:なし<br>出力:(uint8) tmp_port / SW1のレベル                                           | SW1の状態を取得                                                                                                                                                                                       |
|                    | get_sw2<br>入力:なし<br>出力:(uint8) tmp_port / SW2のレベル                                           | SW2の状態を取得                                                                                                                                                                                       |
|                    | led9_on<br>入力 : なし<br>出力 : なし                                                               | LED9の点灯                                                                                                                                                                                         |
|                    | led8_on<br>入力 : なし<br>出力 : なし                                                               | LED8の点灯                                                                                                                                                                                         |
|                    | led9_off<br>入力: なし<br>出力: なし                                                                | LED9の消灯                                                                                                                                                                                         |
|                    | led8_off<br>入力 : なし<br>出力 : なし                                                              | LED8の消灯                                                                                                                                                                                         |
| mtr_ctrl_rzt1.c    | R_MTR_InitHardware<br>入力:なし<br>出力:なし                                                        | クロックと周辺機能の初期化                                                                                                                                                                                   |
|                    | Init_ui<br>入力:なし<br>出力:なし                                                                   | UIの初期化                                                                                                                                                                                          |
|                    | mtr_ctrl_start<br>入力:なし<br>出力:なし                                                            | モータ起動処理                                                                                                                                                                                         |
|                    | mtr_ctrl_stop<br>入力:なし<br>出力:なし                                                             | モータ停止処理                                                                                                                                                                                         |
|                    | mtr_get_sw_speed<br>入力:なし<br>出力:(uint16)速度設定                                                | 速度設定を取得                                                                                                                                                                                         |
|                    | mtr_get_speed_first_update<br>入力:なし<br>出力:(uint8) g_u1_speed_first_update / 速度指令初回<br>更新フラグ | 速度指令初回更新フラグの取得                                                                                                                                                                                  |

#### 表 4.4 制御関数一覧 (2/3)

| ファイル名           | 関数概要                                                                                                                                      | 処理概要                                                              |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| mtr_ctrl_rzt1.c | mtr_get_iuivvdc<br>入力:(float32) *f4_iu_ad / U相電流AD変換値<br>: (float32) *f4_iv_ad / V相電流AD変換値<br>: (float32) *f4_vdc_ad / Vdc AD変換値<br>出力:なし | U相電流、V相電流、インバータ母線電圧 AD 変換                                         |
|                 | clear_wdt<br>入力:なし<br>出力:なし                                                                                                               | WDTクリア                                                            |
|                 | mtr_clear_poe3_oei1_flag<br>入力:なし<br>出力:なし                                                                                                | ハイインピーダンス状態解除                                                     |
|                 | mtr_clear_poe3_oei2_flag<br>入力:なし<br>出力:なし                                                                                                | ハイインピーダンス状態解除                                                     |
|                 | mtr_clear_mtu4_flag<br>入力:なし<br>出力:なし                                                                                                     | 割り込みフラグクリア                                                        |
|                 | mtr_clear_cmt0_flag<br>入力:なし<br>出力:なし                                                                                                     | 割り込みフラグクリア                                                        |
|                 | mtr_inv_set_uvw<br>入力: (float32) f4_u / U相電圧<br>: (float32) f4_v / V相電圧<br>: (float32) f4_w / W相電圧<br>: (float32) f4_vdc / Vdc<br>出力: なし  | PWM出力設定                                                           |
|                 | mtr_get_encd_tcnt<br>入力:なし<br>出力:(float32) f4_temp / エンコーダタイマカウンタ値                                                                        | エンコーダタイマカウンタ値取得                                                   |
|                 | mtr_clear_encd_tcnt<br>入力:なし<br>出力:なし                                                                                                     | エンコーダタイマカウンタ値クリア                                                  |
|                 | mtr_power_on<br>入力:(uint32) mtr_num / チャネル<br>出力:なし                                                                                       | Amplifierの起動処理                                                    |
|                 | mtr_amp_enable<br>入力:(uint32) mtr_num / チャネル<br>出力:なし                                                                                     | AmplifierのEnable処理                                                |
|                 | mtr_amp_disable<br>入力:(uint32) mtr_num / チャネル<br>出力:なし                                                                                    | AmplifierのDisable処理                                               |
|                 | mtr_amp_fault<br>入力:(uint32) mtr_num / チャネル<br>出力:(uint32) result / チェック結果                                                                | Amplifierのチェック処理                                                  |
| mtr_interrupt.c | mtr_poe3_oei1_interrupt<br>入力:なし<br>出力:なし                                                                                                 | 過電流検出処理                                                           |
|                 | mtr_poe3_oei2_interrupt<br>入力:なし<br>出力:なし                                                                                                 | 過電流検出処理     イベント処理選択関数呼び出し     モータステータス変更     ハイインピーダンス状態解除関数呼び出し |
|                 | mtr_mtu4_interrupt<br>入力:なし<br>出力:なし                                                                                                      | 100 [µs]毎に呼び出し <ul><li>ベクトル制御</li><li>電流PI制御</li></ul>            |
|                 | mtr_cmt0_interrupt<br>入力:なし<br>出力:なし                                                                                                      | 1 [ms]毎に呼び出し                                                      |

#### 表 4.4 制御関数一覧 (3/3)

| ファイル名               | 関数概要                                                                              | 処理概要                                                             |
|---------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|
| mtr_ssns_encd_foc.c | R_MTR_InitSequence<br>入力:なし<br>出力:なし                                              | シーケンス処理の初期化                                                      |
|                     | R_MTR_ExecEvent<br>入力:(uint8)u1_event / 発生イベント<br>出力:なし                           | <ul><li>ステータスの変更を行う</li><li>発生イベントに対して、適切な処理の実行関数を呼び出し</li></ul> |
|                     | mtr_act_run<br>入力:(uint8)u1_state / モータステータス<br>出力:(uint8)u1_state /モータステータス      | モータ起動時変数初期化関数呼び出し     モータ制御開始関数呼び出し                              |
|                     | mtr_act_stop<br>入力:(uint8)u1_state /モータステータス<br>出力:(uint8)u1_state /モータステータス      | モータ制御終了関数呼び出し                                                    |
|                     | mtr_act_none<br>入力:(uint8)u1_state /モータステータス<br>出力:(uint8)u1_state /モータステータス      | 処理なし                                                             |
|                     | mtr_act_reset<br>入力:(uint8)u1_state /モータステータス<br>出力:(uint8)u1_state /モータステータス     | グローバル変数の初期化                                                      |
|                     | mtr_act_error<br>入力:(uint8)u1_state /モータステータス<br>出力:(uint8)u1_state /モータステータス     | モータ制御終了関数呼び出し                                                    |
|                     | mtr_angle_speed<br>入力:なし<br>出力:なし                                                 | 位置、速度演算処理                                                        |
|                     | mtr_start_init<br>入力:なし<br>出力:なし                                                  | モータ起動時に必要な変数だけ初期化                                                |
|                     | mtr_pi_ctrl<br>入力:MTR_PI_CTRL *vdq/ PI制御用構造体<br>出力:(float32)f4_ref / PI制御出力值      | PI制御                                                             |
|                     | R_MTR_SetSpeed<br>入力:(float32)ref_speed / 速度指令値<br>出力:なし                          | 速度指令値の設定                                                         |
|                     | R_MTR_GetSpeed<br>入力:なし<br>出力:(float32) g_f4_speed_rad / 速度                       | 速度演算値(電気角)の取得                                                    |
|                     | R_MTR_GetStatus<br>入力:なし<br>出力:(uint8)g_u1_mode_system / モータステータス                 | モータステータスを取得                                                      |
|                     | mtr_error_check<br>入力:なし<br>出力:なし                                                 | エラーの監視と検出                                                        |
|                     | R_MTR_GetCurrentAdjustStatus<br>入力:なし<br>出力:(uint8)u1_temp / 電流オフセット検出ステータス<br>情報 | 電流オフセット検出のステータスを取得                                               |
|                     | R_MTR_ClearCurrentAdjustStatus<br>入力:なし<br>出力:なし                                  | 電流オフセット検出のステータスをクリア                                              |

## 4.3 変数一覧

本制御プログラムで使用する変数一覧を次に示します。ただし、ローカル変数は記載していません。

表 4.5 変数一覧 (1/2)

| ファイル                           | 変数名                      | 型       | 内容               | 備考                                                         |
|--------------------------------|--------------------------|---------|------------------|------------------------------------------------------------|
| main.c                         | g_f4_max_mecha_speed_rad | float32 | 速度指令最大値          | 機械角 [rad/s]                                                |
| <b>(アプリケーション)</b>              | g_f4_min_mecha_speed_rad | float32 | 速度指令最小値          | 機械角 [rad/s]                                                |
|                                | g_f4_set_speed           | float32 | ユーザ速度指令値         | 電気角 [rad/s]                                                |
|                                | g_u1_motor_status        | uint8   | ユーザモータステータス管理    | 0:停止<br>1:回転中<br>2:エラー                                     |
|                                | g_u1_reset_req           | uint8   | リセット要求フラグ        | 0:エラー状態時SW2 ON<br>1:エラー状態時SW2 OFF                          |
|                                | g_u1_sw1_cnt             | uint8   | SW1判定カウンタ        | チャタリング除去                                                   |
|                                | g_u1_sw2_cnt             | uint8   | SW2判定カウンタ        | チャタリング除去                                                   |
| mtr_ssns_encd_foc.c<br>(モータ制御) | g_u1_mode_system         | uint8   | ステート管理           | 0:ストップモード<br>1:ランモード<br>2:エラーモード                           |
|                                | g_u2_run_mode            | uint16  | 運転モード管理          | 2:始動モード<br>5:通常運転モード                                       |
|                                | g_u1_error_status        | uint8   | エラーステータス管理       | 1:過電流エラー<br>2:過電圧エラー<br>3:高速度エラー<br>7:低電圧エラー<br>FFh:未定義エラー |
|                                | g_f4_vdc_ad              | float32 | インバータ母線電圧A/D値    | [V]                                                        |
|                                | g_f4_vd_ref              | float32 | d軸電圧指令値          | 電流 PI制御出力値 [V]                                             |
|                                | g_f4_vq_ref              | float32 | q軸電圧指令値          | 電流PI制御出力値 [V]                                              |
|                                | g_f4_iu_ad               | float32 | U相電流             | [A]                                                        |
|                                | g_f4_pre_iu_ad           | float32 | U相電流前回値          | [A]                                                        |
|                                | g_f4_iv_ad               | float32 | V相電流             | [A]                                                        |
|                                | g_f4_pre_iv_ad           | float32 | V相電流前回値          | [A]                                                        |
|                                | g_f4_iw_ad               | float32 | W相電流             | [A]                                                        |
|                                | g_f4_offset_iu           | float32 | U相電流オフセット値       | [A]                                                        |
|                                | g_f4_offset_iv           | float32 | V相電流オフセット値       | [A]                                                        |
|                                | g_f4_id_lpf              | float32 | d軸電流             | [A]                                                        |
|                                | g_f4_iq_lpf              | float32 | q軸電流             | [A]                                                        |
|                                | g_f4_kp_id               | float32 | d軸電流PI比例項ゲイン     |                                                            |
|                                | g_f4_ki_id               | float32 | d軸電流PI積分項ゲイン     |                                                            |
|                                | g_f4_kp_iq               | float32 | q軸電流PI比例項ゲイン     |                                                            |
|                                | g_f4_ki_iq               | float32 | q軸電流PI積分項ゲイン     |                                                            |
| mtr_ssns_encd_foc.c            | g_f4_kp_speed            | float32 | 速度PI制御比例項ゲイン     |                                                            |
| (H/W制御)                        | g_f4_ki_speed            | float32 | 速度PI制御積分項ゲイン     |                                                            |
|                                | g_f4_lim_vd              | float32 | d軸電流PI制御出力リミット値  | [V]                                                        |
|                                | g_f4_lim_vq              | float32 | q軸電流PI制御出カリミット値  | [V]                                                        |
|                                | g_f4_ilim_vd             | float32 | d軸電流PI制御積分項リミット値 | [V]                                                        |
|                                | g_f4_ilim_vq             | float32 | q軸電流PI制御積分項リミット値 | [V]                                                        |
|                                | g_f4_lim_iq              | float32 | 速度PI制御出力リミット値    | [A]                                                        |
|                                | g_f4_ilim_iq             | float32 | 速度PI制御積分項リミット値   | [A]                                                        |
|                                | g_f4_id_ref              | float32 | d軸電流指令値          | [A]                                                        |

表4.5 変数一覧 (2/2)

| ファイル                | 変数名                     | 型               | 内容              | 備考                                                                     |
|---------------------|-------------------------|-----------------|-----------------|------------------------------------------------------------------------|
| mtr_ssns_encd_foc.c | g_f4_iq_ref             | float32         | q軸電流指令値         | [A]                                                                    |
| (H/W制御)             | g_f4_speed_rad          | float32         | 速度演算値           | 電気角 [rad/s]                                                            |
|                     | g_f4_ref_speed_rad      | float32         | 速度指令値           | 電気角 [rad/s]                                                            |
|                     | g_f4_ref_speed_rad_ad   | float32         | 速度調整値           | 電気角 [rad/s]                                                            |
|                     | g_f4_angle_rad          | float32         | 回転子位置           | 電気角 [rad]                                                              |
|                     | g_f4_max_speed_rad      | float32         | 速度最大値           | 電気角 [rad/s]                                                            |
|                     | g_f4_min_speed_rad      | float32         | 速度最小値           | 電気角 [rad/s]                                                            |
|                     | g_f4_refu               | float32         | U相電圧指令値         | [V]                                                                    |
|                     | g_f4_refv               | float32         | V相電圧指令値         | [V]                                                                    |
|                     | g_f4_refw               | float32         | W相電圧指令値         | [V]                                                                    |
|                     | g_f4_inv_limit          | float32         | 相電圧リミット値        | [V]                                                                    |
|                     | vd                      | MTR_PI_<br>CTRL | d軸電流PI制御用構造体    |                                                                        |
|                     | vq                      | MTR_PI_<br>CTRL | q軸電流PI制御用構造体    |                                                                        |
|                     | speed                   | MTR_PI_<br>CTRL | 速度PI制御用構造体      |                                                                        |
|                     | g_u1_flag_id_open       | uint8           | 始動モード判定フラグ      |                                                                        |
|                     | g_u2_cnt_adjust         | uint16          | 電流オフセット計算用カウンタ  |                                                                        |
|                     | g_f4_id_open            | float32         | 始動モード時d軸電流指令値   | [A]                                                                    |
|                     | g_u2_cnt_adj_theta      | uint16          | 位置決め時間カウンタ      |                                                                        |
|                     | g_f4_d_angle_rad        | float32         | 回転子位置差分         | [rad]                                                                  |
|                     | g_f4_encd_tcnt          | float32         | エンコーダタイマカウンタ値   |                                                                        |
|                     | g_f4_pre_encd_tcnt      | float32         | エンコーダタイマカウンタ前回値 |                                                                        |
|                     | g_s2_angle_count        | int16           | 速度計測用カウンタ       |                                                                        |
|                     | g_u1_def_state          | uint8           | モータステータスの定義     | 配列メンバ • ストップモード • ランモード • エラーモード                                       |
|                     | gp_u1_def_action        | uint8           | アクションの定義        | 配列メンバ     ストップアクション     ランアクション     エラーアクション     リセットアクション     アクションなし |
| mtr_ctrl_rzt1.c     | g_u1_sw0_port_old       | uint8           | SW0前回值          | 0 : ON<br>1 : OFF                                                      |
|                     | g_u1_speed_first_update | uint8           | 速度指令初回更新フラグ     | 1 : ON<br>0 : OFF                                                      |
|                     | g_u2_sw_speed_value     | uint16          | 速度設定            |                                                                        |
|                     | g_u2_def_speed_ref      | uint16          | 速度設定の定義         |                                                                        |

## 4.4 マクロ定義

本制御プログラムで使用するマクロ定義一覧を次に示します。

表4.6 マクロ定義一覧(1/3)

| ファイル名               | マクロ名                 | 定義値                                                                          | 備考                      |
|---------------------|----------------------|------------------------------------------------------------------------------|-------------------------|
| main.c              | MAX_SPEED            | 1500                                                                         | 回転速度指令最大値(機械角) [rpm]    |
|                     | MIN_SPEED            | 600                                                                          | 回転速度指令最小値(機械角) [rpm]    |
|                     | PI                   | 3.14159265f                                                                  | 円周率                     |
|                     | RPM_RAD              | (2*PI)/60                                                                    | [rpm]→[rad/s]単位変換用定数    |
|                     | SW_ON                | 0                                                                            | "Low" アクティブ             |
|                     | SW_OFF               | 1                                                                            |                         |
|                     | CHATTERING_CNT       | 200                                                                          | チャタリング除去                |
|                     | FLAG_ON              | 1                                                                            | フラグON                   |
|                     | FLAG_OFF             | 0                                                                            | フラグOFF                  |
| mtr_ctrl_rzt1.h     | MTR_PWM_TIMER_FREQ   | 150.0f                                                                       | PWMタイマカウント周波数 [MHz]     |
|                     | MTR_CARRIER_FREQ     | 20.0f                                                                        | キャリア周波数 [kHz]           |
|                     | MTR_DEADTIME_SET     | MTR_DEADTIME * MTR_PWM_TIMER_FREQ                                            | デッドタイム設定値               |
|                     | MTR_CARRIER_SET      | ((MTR_PWM_TIMER_FREQ * 1000 /<br>MTR_CARRIER_FREQ / 2)+<br>MTR_DEADTIME_SET) | キャリア設定値                 |
|                     | MTR_HALF_CARRIER_SET | MTR_CARRIER_SET / 2                                                          | キャリア設定値/2               |
|                     | MTR_PORT_UP          | PORT1.PODR.BIT.B4                                                            | U相(正相)出力ポート             |
|                     | MTR_PORT_VP          | PORT1.PODR.BIT.B6                                                            | V相(正相)出力ポート             |
|                     | MTR_PORT_WP          | PORT1.PODR.BIT.B2                                                            | W相(正相)出力ポート             |
|                     | MTR_PORT_SW1         | PORTP.PIDR.BIT.B1                                                            | SW1入力ポート                |
|                     | MTR_PORT_SW2         | PORTP.PIDR.BIT.B2                                                            | SW2入力ポート                |
|                     | MTR_PORT_LED9        | PORT4.PODR.BIT.B6                                                            | LED9出力ポート               |
|                     | MTR_PORT_LED8        | PORT4.PODR.BIT.B5                                                            | LED8出力ポート               |
|                     | MTR_LED_ON           | 1                                                                            | "High"アクティブ             |
|                     | MTR_LED_OFF          | 0                                                                            |                         |
|                     | MTR_ENCD_TCNT        | MTU2.TCNT                                                                    | エンコーダタイマカウンタ            |
|                     | MTR_NUM_REF          | 4                                                                            | 速度設定の定義数                |
|                     | INIT_MTR_NUM_0       | 0                                                                            | チャネル0                   |
|                     | INIT_MTR_NUM_1       | 1                                                                            | チャネル1                   |
| mtr_ssns_encd_foc.h | MTR_DEADTIME         | 0                                                                            | デッドタイム [μs]             |
|                     | MTR_INT_DECIMATION   | 1                                                                            | 割り込み間引き回数               |
|                     | MTR_CTRL_PERIOD      | (MTR_INT_DECIMATION + 1)/<br>(MTR_CARRIER_FREQ*1000)                         | 制御周期 [s]                |
|                     | MTR_CONTROL_FREQ     | (MTR_CARRIER_FREQ*1000)/<br>(MTR_INT_DECIMATION + 1)                         | 制御周波数 [Hz]              |
|                     | MTR_M                | 0.040107f                                                                    | 磁束 [Wb]                 |
|                     | MTR_R                | 3.35f                                                                        | 抵抗 [Ω]                  |
|                     | MTR_LD               | 0.00632f                                                                     | d軸インダクタンス [H]           |
|                     | MTR_LQ               | 0.00632f                                                                     | q軸インダクタンス [H]           |
|                     | MTR_POLE_PAIRS       | 2                                                                            | 極対数                     |
|                     | MTR_ENCD_CPR_MECH    | 2000.0f                                                                      | エンコーダー周分のカウント数<br>(機械角) |

表4.6 マクロ定義一覧(2/3)

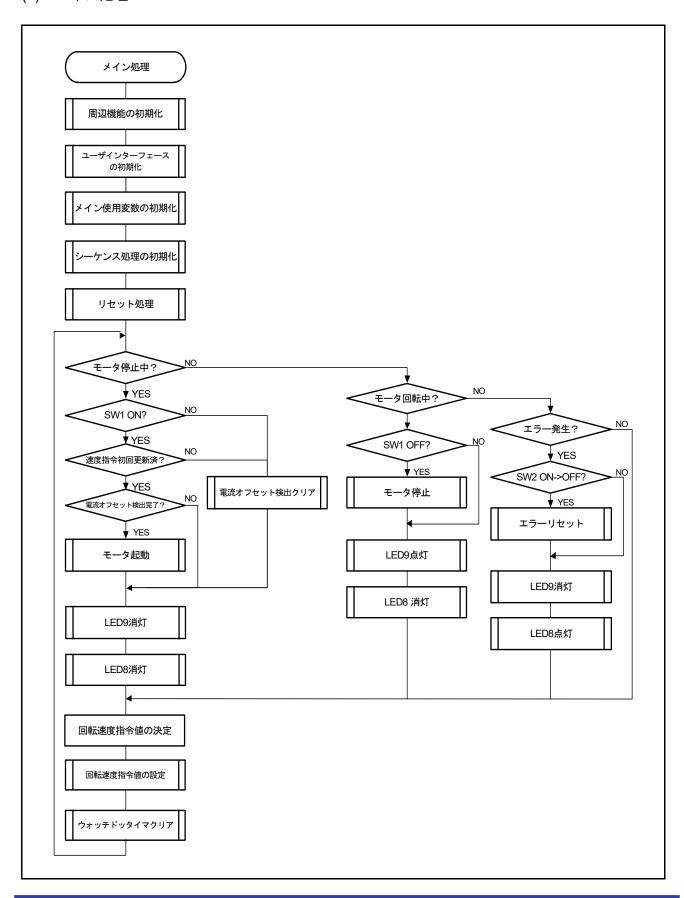
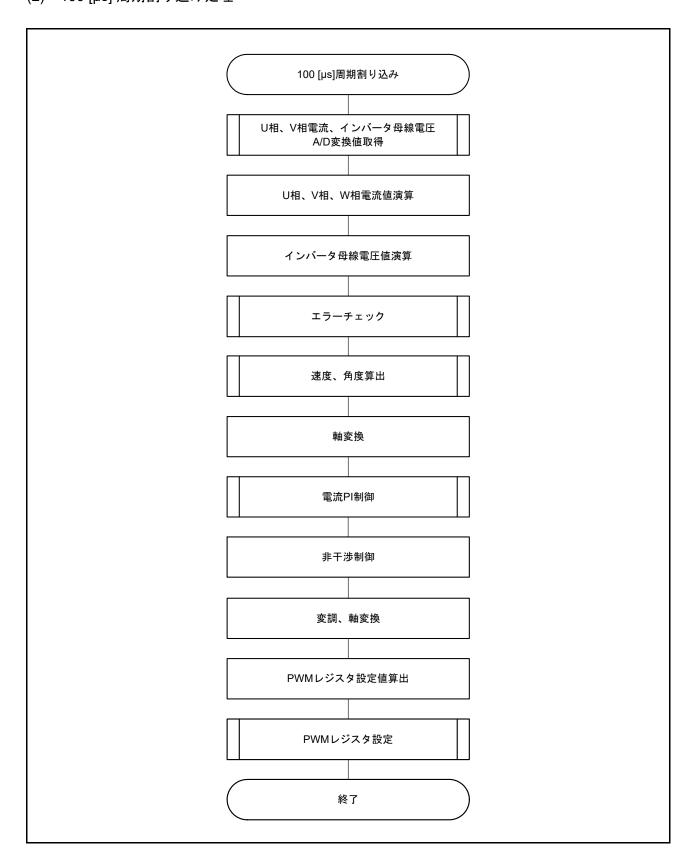
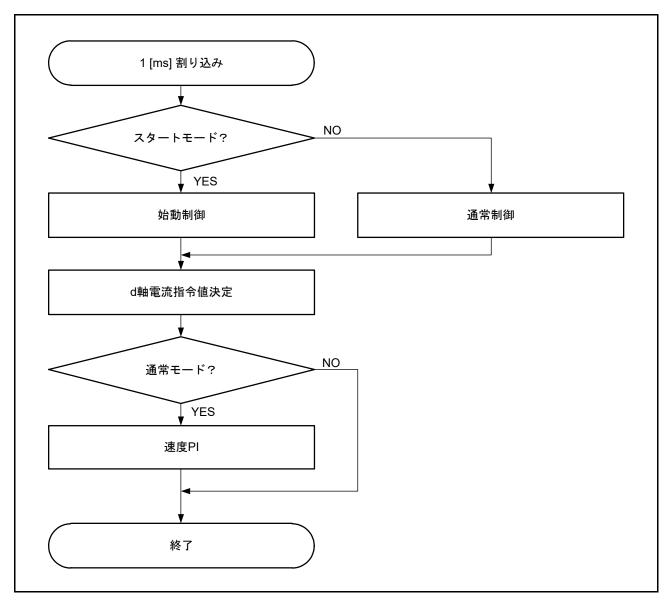

| ファイル名               | マクロ名                          | 定義値                                                    | 備考                           |
|---------------------|-------------------------------|--------------------------------------------------------|------------------------------|
| mtr_ssns_encd_foc.h | MTR_ENCD_CPR_ELE              | MTR_ENCD_CPR_MECH /<br>MTR_POLE_PAIRS                  | エンコーダー周分のカウント数<br>(電気角)      |
|                     | MTR_SPEED_LIMIT               | 600                                                    | 速度リミット値(電気角)[rad/s]          |
|                     | MTR_OVERCURRENT_LIMIT         | 4                                                      | 電流リミット値 [A]                  |
|                     | MTR_OVERVOLTAGE_LIMIT         | 28                                                     | 高電圧リミット値 [V]                 |
|                     | MTR_UNDERVOLTAGE_LIMIT        | 12                                                     | 低電圧リミット値 [V]                 |
|                     | MTR_TWOPI                     | 2*3.14159265f                                          | 2π                           |
|                     | MTR_SQRT_2_3                  | 0.81649658f                                            | √ (2/3)                      |
|                     | MTR_HALFPI                    | 3.14159265f / 2                                        | (1/2)π                       |
|                     | MTR_HALF_VDC                  | 12                                                     | 電源電圧/2 [V]                   |
|                     | MTR_ADC_SCALING               | 7FFh                                                   | ADCオフセット調整用定数                |
|                     | MTR_CURRENT_SCALING           | 75.0f/4095.0f                                          | 電流A/D変換值分解能                  |
|                     | MTR_VDC_SCALING               | 280.0f/4095.0f                                         | インバータ母線電圧A/D変換値分解能           |
|                     | MTR_ID_PI_KP                  | 4                                                      | d軸電流PI制御比例項ゲイン               |
|                     | MTR_ID_PI_KI                  | 0.21                                                   | d軸電流PI制御積分項ゲイン               |
|                     | MTR_IQ_PI_KP                  | 4                                                      | q軸電流PI制御比例項ゲイン               |
|                     | MTR_IQ_PI_KI                  | 0.21                                                   | q軸電流PI制御積分項ゲイン               |
|                     | MTR_SPEED_PI_KP               | 0.025                                                  | 速度PI制御比例項ゲイン                 |
|                     | MTR_SPEED_PI_KI               | 0.00010                                                | 速度PI制御積分項ゲイン                 |
|                     | MTR_SPEED_LPF_K               | 0.1                                                    | 速度LPFゲイン                     |
|                     | MTR_CURRENT_LPF_K             | 0.1                                                    | 電流LPFゲイン                     |
|                     | MTR_LIMIT_VD                  | 11                                                     | d軸電流PI制御出力リミット値 [V]          |
|                     | MTR_LIMIT_VQ                  | 11                                                     | q軸電流PI制御出力リミット値 [V]          |
|                     | MTR_I_LIMIT_VD                | 11                                                     | d軸電流PI制御積分項リミット値 [V]         |
|                     | MTR_I_LIMIT_VQ                | 11                                                     | q軸電流PI制御積分項リミット値 [V]         |
|                     | MTR_LIMIT_IQ                  | 3                                                      | 速度PI制御出力リミット値 [A]            |
|                     | MTR_I_LIMIT_IQ                | 3                                                      | 速度PI制御積分項リミット値 [A]           |
|                     | MTR_MAX_SPEED_RAD             | 314.1593f                                              | MAX速度(電気角) [rad/s]           |
|                     | MTR_MIN_SPEED_RAD             | 0.0f                                                   | MIN速度(電気角) [rad/s]           |
|                     | MTR_START_REF_SPEED_UP_STEP   | ((MTR_MAX_SPEED_RAD -<br>MTR_MIN_SPEED_RAD) / 2048.0f) | 加速度制限用定数                     |
|                     | MTR_START_REF_SPEED_DOWN_STEP | ((MTR_MAX_SPEED_RAD -<br>MTR_MIN_SPEED_RAD) / 2048.0f) | 加速度制限用定数                     |
|                     | MTR_START_OL_ID               | 1.8f                                                   | 始動モード時d軸電流 [A]               |
|                     | MTR_START_OL_ID_UP_TIME       | 128                                                    | d軸電流加算時間[ms]                 |
|                     | MTR_START_OL_REF_ID           | MTR_START_OL_ID                                        | 始動モード時d軸電流指令値 [A]            |
|                     | MTR_START_OL_ID_UP_STEP       | MTR_START_OL_ID/<br>MTR_START_OL_ID_UP_TIME            | 指令d軸電流加算值[A]                 |
|                     | MTR_ANGLE_ADJUST_TIME         | 128                                                    | 位置決め時間 [ms]                  |
|                     | MTR_CHECK_ENCD_PERIOD         | MTR_CTRL_PERIOD                                        | エンコーダタイマカウンタ<br>サンプリング周期 [s] |

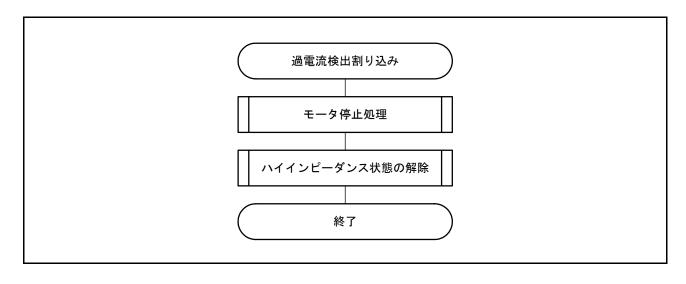
表4.6 マクロ定義一覧(3/3)


| ファイル名               | マクロ名                        | 定義値 | 備考                 |
|---------------------|-----------------------------|-----|--------------------|
| mtr_ssns_encd_foc.h | MTR_BOOT_MODE               | 00h | ブートモード             |
|                     | MTR_OPENLOOP_MODE           | 01h | オープンループモード         |
|                     | MTR_START_MODE              | 02h | スタートモード            |
|                     | MTR_HALL_120_MODE           | 03h | ホールセンサ120度運転モード    |
|                     | MTR_BEMF_120_MODE           | 04h | BEMFセンサレス120度運転モード |
|                     | MTR_ENCD_FOC_MODE           | 05h | エンコーダベクトル運転モード     |
|                     | MTR_LESS_FOC_MODE           | 06h | センサレスベクトル運転モード     |
|                     | MTR_OVER_CURRENT_ERROR      | 01h | 過電流エラー             |
|                     | MTR_OVER_VOLTAGE_ERROR      | 02h | 過電圧エラー             |
|                     | MTR_OVER_SPEED_ERROR        | 03h | 高速度エラー             |
|                     | MTR_TIMEOUT_ERROR           | 04h | タイムアウトエラー          |
|                     | MTR_UNDER_VOLTAGE_ERROR     | 07h | 低電圧エラー             |
|                     | MTR_UNKNOWN_ERROR           | FFh | 未定義エラー             |
|                     | MTR_MODE_STOP               | 00h | 停止状態               |
|                     | MTR_MODE_RUN                | 01h | 回転中                |
|                     | MTR_MODE_ERROR              | 02h | エラー状態              |
|                     | MTR_SIZE_STATE              | 3   | 状態数                |
|                     | MTR_EVENT_STOP              | 00h | モータ停止イベント          |
|                     | MTR_EVENT_RUN               | 01h | モータ起動イベント          |
|                     | MTR_EVENT_ERROR             | 02h | モータエラーイベント         |
|                     | MTR_EVENT_RESET             | 03h | モータリセットイベント        |
|                     | MTR_SIZE_EVENT              | 4   | イベント数              |
|                     | MTR_CURRENT_ADJUST_RUNNING  | 00h | 電流オフセット検出中         |
|                     | MTR_CURRENT_ADJUST_COMPLETE | 01h | 電流オフセット検出完了        |

#### 4.5 制御フロー(フローチャート)


#### (1) メイン処理




## (2) 100 [µs] 周期割り込み処理



## (3) 1 [ms] 割り込み処理



#### (4) 過電流検出割り込み処理



## 5. 参考ドキュメント

- RZ/T1 グループ ユーザーズマニュアル ハードウェア編(R01UH0483JJ0130)
- RZ/T1 Group User's Manual: Solution Kit (R01UH0665EU0104)

## ホームページとサポート窓口

ルネサス エレクトロニクスホームページ

http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/contact/

| 改訂記録      | RZ/T1モーションコントロール・ソリューションキット向け 永久磁石同期モータの |
|-----------|------------------------------------------|
| 0人日1日155人 | エンコーダ利用ベクトル制御(速度制御)編 アプリケーションノート         |

| Rev.  | 発行日        |     | 改訂内容 |
|-------|------------|-----|------|
| IXCV. | 光刊口        | ページ | ポイント |
| 1.00  | 2018.03.05 | _   | 初版発行 |

すべての商標および登録商標は、それぞれの所有者に帰属します。

#### 製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意 事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

#### 1. 未使用端子の処理

【注意】未使用端子は、本文の「未使用端子の処理」に従って処理してください。

CMOS 製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI 周辺のノイズが印加され、LSI 内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。未使用端子は、本文「未使用端子の処理」で説明する指示に従い処理してください。

#### 2. 電源投入時の処置

【注意】電源投入時は、製品の状態は不定です。

電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。

外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。

同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. リザーブアドレス(予約領域)のアクセス禁止

【注意】リザーブアドレス(予約領域)のアクセスを禁止します。

アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレス(予約領域)があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

4. クロックについて

【注意】リセット時は、クロックが安定した後、リセットを解除してください。

プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。

リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、 クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子 (または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定し てから切り替えてください。

5. 製品間の相違について

【注意】型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。

同じグループのマイコンでも型名が違うと、内部 ROM、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ輻射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

## ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の 知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、

家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準: 輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、

金融端末基幹システム、各種安全制御装置等

当社製品は、データシート等により高信頼性、Harsh environment向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 6. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制するRoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社 は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 10. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.4.0-1 2017.11)



ルネサスエレクトロニクス株式会社 ■営業お問合せ窓口

http://www.renesas.com

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24(豊洲フォレシア)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口: https://www.renesas.com/contact/

| © 2018 | Renesas Electronics Corporation. | All rights reserved. |
|--------|----------------------------------|----------------------|
|        |                                  | Colophon 6.0         |

※営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。