RE N ESAS Application Note

Renesas RA Family

Developing with RA8 Dual Core MCU

Introduction

This application project highlights the performance advantages of the dual-core RA8P1 Series, which
includes the Cortex-M85 (CM85) core operating at 1 GHz and the Cortex-M33(CM33) core at 250 MHz. It
discusses the dual-core architecture and provides use cases that illustrate how to effectively partition tasks
between the two cores. Additionally, it addresses development and debugging processes specific to dual-
core systems. This application note outlines the creation of applications that enhance performance with
Renesas RA8 dual-core MCUs, utilizing both the CM85 core with Helium™ and the CM33 core at the same
time.

It provides guidance on the necessary steps to create an application for the RA8 dual-core MCU, including.

¢ Application highlights

e Use cases block diagram

e Tool configuration

e Example projects confirmation

Required Resources
The following resources are referenced throughout this application note.
Development Tools and Software

e ¢? studio version: 2025-04.1 (25.4.1)

e LLVM Embedded Toolchain for Arm v18.1.3

e Renesas Flexible Software Package (FSP) v6.0.0 or later.
Target Devices

Below are the Renesas MCU products to which the information within this document is applicable:
Hardware

e EK-RA8P1-v1.0

e The description in the application note uses PC running Windows® 10 OS as an example. Refer to the
corresponding user manual for the Development Tools and Software for a complete list of Operating
Systems supported.

e One USB device cable (type-C) is used to connect the EK-RA8P1 and the PC.

Reference Manuals

o RA Flexible Software Package Documentation Release v6.0.0
o Renesas RA8P1 Group User's Manual Hardware Rev.1.1
o EK-RA8P1-v1.0 Schematics

RO1AN7881EU0100 Rev.1.00 Page 1 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Contents

1. Example Application OVEIVIEWcoiii i e e e e eennn s 4
D AN B D 1U = 1 @] =0 1 PR 4
3. Create RA8 Dual Core Application with Renesas €2Studio...........cc.ccecueeeeueeeeieeeeeeeee e e 4
3.1 Create A Solution Project for RA8P1 Dual Core MCUcooouiiiiiiiie et 4
3.2 Debug and Run RA8 Dual Core Project on Cortex®-CM85 Core and Cortex®-CM33 Core.................... 8
4. Developing Application Using RA8 Dual Core MCU...........ccooiiiiiiiiiiiiiiie e, 14
4.1 Partition the system and maximize performancCeoooiiiiiiiiiiiiiiee e 14
4.2 Using Inter-Processor Communication in AppliCationc..coiiiiiiiiiiiiieii e 14
4.2.1 UsiNg INter-ProCesSOr INTEITUPLSoiiueiiiiiiiiie ittt e e e e e s snneee s 14
4.2.2 Using Inter-Processor Communication FIFO MeSSages.coccuuiiiiiiiiiiiiiiiieeiiiee e 15
4.3 Using Shared Memory and Resources in RA8 Dual Core MCUcooiiiiiiieiee e 15
4.3.1 Using Share Memory and Resources in FSP Flat Projectscccccooiiiiiiiiiie e, 15
4.3.2 Using Share Memory and Resources in RTOS Based Projectscccooecviieeiieciiicciiiieeee e, 18
4.4 Utilize Caches and TCM In RA8 Dual Core Applications..........ccoouiiiiiiiiiiiiiiiic e 18
4.4.1 Tightly Coupled Memory (TCM)Soooiiiieiiiie ettt e st e e s nae e e s anne e e e s annneeens 18
4.41 Improve Performance USING ITCM........ooo ittt 19
4.4.2 Improve Performance USiNg DTCM ...ttt e e e e e e 22
4.4.3 Improve Performance USINg CTCM ...ttt e e e e e e e e e e e 23
4.4.4 Improve Performance by Utilizing Data Cache Cortex®-CM85 Core...........cccccvveeiiiiiiiieenieeeeeie, 25
4.4.5 Using Neural Processing Unit (NPU)ooiiiiiiiii et 25
T Y o] o] [e7=1 1 o] o = {0 =T e £ 27
5.1 IPC - Share MemOry PrOJECLeoiiiiiiiiiiie ettt et e e e e e e st e e e e e e e s nnnbeeeeaee s 27
5.1.1 Implement Inter-Processor Communication in Application.ccccceeiiiiii i 29
5.1.2 Implement Share Memory between Two Cores in Application.cccooiuiiiiiiiii i 30
5.2 RTOS/IPC/Share Memory/TCM ProjECtSccoiiiuiiii ittt sttt e e st ee s nneeee e e 34
6. Verify the e2StUdio PrOJECEScc.eoiuiiiiieiie ettt ettt ae s 35
6.1 IMPOIt TRE PrOJECES ...t e e e e e e e s eeaee s 35
8.2 BUIIA PrOJECES. ..ot e e e e e e e e r e e e e s 35
6.2.1 Compile Project Developed 0n CIM85 COreoueiiiiiieeiiieeie et a e e neeeeeeae e 36
6.2.2 Compile Project Developed 0n CIM33 COreoooueiiiiiieaeieee ittt e e e e e anneeeeaeee s 37
6.3 Download and RUN ProOjECES ...ttt e e e e e e e e e e eeeaeeeas 38
7. Verify the FreeRTOS-Based Projectscooiiiiiiiiiiiiice e 42
% B 1] o T A I g TSN o o] (=T £ RS SSRR 42
7 = 1V o N o (o] =T - T PP PRPUPPPRRN 42
7.3 Download and RUN PrOJECES........u e 43
LG TR =) 1= =Y Lo =Y 46
RO1AN7881EU0100 Rev.1.00 Page 2 of 48

June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

REVISION HISTOTY ... et e e e e e e e e e e e e e e e e e e aaaaans 48

RO1AN7881EU0100 Rev.1.00 Page 3 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

1. Example Application Overview

The example application projects included in this document outline the fundamental procedures for
developing an application on the RA8 dual-core MCU using Renesas FSP. They demonstrate methods for
partitioning tasks between CPU cores by utilizing the Inter-Processor Communication (IPC) module, sharing
memory and resources to enhance performance on dual-core MCUs. They also illustrate the uses of tightly
coupled memory (TCM) and cache in a dual-core MCU.

2. RAS8 Dual Core MCU

The RAS8 dual-core is an asymmetric architecture with a High-performance 1 GHz Arm® Cortex®-M85 core
and 250 MHz Arm® Cortex®-M33 core, enabling the concurrent execution of multiple tasks by leveraging
both cores with the following key features.

1GHz Arm® Cortex®-M85 Core,
RA8P1 + 250MHz Arm® Cortex®-M33 Core ';%I lAERTh“’:I 'IJ'BPU | :'V'CSI JTAG |
™| oundary Scan
g Ethos™-U55 NPU
% 3
£ @ Memory ™ Analog (D Timers HMI
(=}
E Code NVM 16-bit ADC 32-bit GPTE (High Resolution) (4ch) Graphics LCDC w/ RGB iff
(MRAM 0 5/1MB, Flash 4/8MB) (2units, 2.3ch 3ch-SiH x2) 32-bt GPTE (10ch) 20 DRW
Data SRAM w/ ECC (1.6MB) 12-bit DAC (2ch) 32ULPT (2ch)
TCM (256KB for Cortex-M85 High-speed Comparator (4ch) 16-bit AGT 2 b MIFIDSI | MIPICSI-2
+ 128KB for Cortex-M33) T -oit (2ch) CEU 16bit Camera Interface
emperature Senser WOT (2ch
ID-Cache (32KB for Cortex-M85 VDT (2ch)
+ 32KB for Cortex-M33) RTC
@ Security
* 32-bit Single/Dual-core MCU ¢® Communication {é} System @ Safety AES (128/1921256), CHACHA20
= 1GHz Arm® Cortex®-M85 core with REA 4K, ECC
Helium & TrustZone Gigabit Ethernet MAC DMA (8ch x2) Memory Protection Unit TRNG
= 250MHz Arm® Cortex®-M33 core with wI TSN (x2) + 2 port switch DTC (x2) SRAM Parity Check SHA-2 (224/256/384/512), SHA-3
TrustZone (supported on dual-core CAN-FD (x2) Clock Generation ECC in SRAM Secure Debug
version only)] USB2.0 FS (x1), USBHS (x1) On-chip Oscillator G ktOE First Stage Boot Loader
* 4MB & 8MB Flash options SDHIMMC (x2) DC-DC Converter Accuracy Messurement OTP (Immutable storage)
» 22nm High-Performance Process 13C {x1). 12C (x3) Low Power Modes CRC Calculator TrustZone | EFP support
. ?beajg% 199@5@6%& e SCI(x10) ELC woT CMAC/HMAC/GMAC
TJ - 40%01 1055(: BSOMH +2;())MH SPI (x2) Interrupt Controller Data Operation Circuit DPA/SPA Side Ch. Protection
]=- 0 (z z) 0SPI (x2, XIP&DOTF) VBAT MRAM Area Protection
= Operating Voltage 851 x2 & PDM 3ch x1 ADC Self Test * Pack
. dacKage
1.62V-3.63V 32.bit Extemal Memory Bus Pemanent Lock Function g
Programmable Voltage Detector BGA 224/ 289/ 303

Figure 1. Example of Key Features in RA8P1 MCU
3. Create RA8 Dual Core Application with Renesas e?studio

When creating a project, you need to select the project type, provide a name and location, and configure the
project settings. The primary settings include the FSP version, target board, toolchain version, and debugger,
as shown in Figure 3. This section offers step-by-step instructions for creating a dual-core project featuring a
Blinky solution project. An FSP solution project includes a solution project along with separate projects for
CPUO and CPU1. The solution project establishes the overall memory configuration for both CPU cores,
allowing users to define and configure memory partitions for all projects within the solution.

3.1 Create A Solution Project for RA8P1 Dual Core MCU

For RA8P1 MCU applications, follow these steps to create a dual-core project on e2 studio. This section is
based on the Bare Metal-Blinky project template. Another option available when creating a project is the
Bare Metal-Minimal template.

Launch e? studio, click File > New > Renesas C/C++ Project > Renesas RA, and select Renesas RA FSP
Solution > Next.

RO1AN7881EU0100 Rev.1.00 Page 4 of 48
June.30.25 RENESAS

Renesas RA Family

Developing with Developing with RA8 Dual Core MCU MCU

e studio

File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help
I New Alt+Shift+N > Renesas C/C++ Project >| Renesas Debug |

Open File... L Makefile Project with Existing Code l Renesas RA |
L) Open Projects from File System... [€] C/C++ Project

> [Project..
~:| Convert to a C/C++ Project (Adds C/C++ Nature)
— Source Folder
FEiE &) New C/C++ Project O X
€| Source File
Ctrl 5 | |h| Header File
7 File from Template
& Class
2 8 Example.. -
5| Renesas RA C/C++ Project
Convert Line Delimiters To > UIEE C/C++ FEEE Create an executable or static library C/C++ project for Renesas RA.
Print... Ctrl+P
| [Renesas RA FSP Solution
4 Export.. m Creqte an FSP Selution ‘far Renesas RA comprising a Solution
Project and C/C++ projects for each processor core (FSP 6.0.0 and

Properties Alt+Enter

Switch Workspace >

Restart

Exit

< >

@

< Back Finish Cancel

Figure 2. Example of Creating a Dual Core Project with RA FSP Solution
Assign a name for this new project such as ek_ra8p1_blinky, then > Next.

Selecting from the Device and Tools Selection. Select Board type as EK-RA8P1, the LLVM Embedded
Toolchain for Arm for Toolchains, and J-Link ARM for Debugger, then > Next.

Renesas RA FSP Solution

Device and Tools Selection

Device Selection
£SP Version: |6.00) Board Description
Evaluation kit for RASP1 MCU Group ~
Board: EK-RA8P1 ~ o
Visit https//renesas.com/ra/ek-ra8p1to
Device: R7KABP1KFLCAC get kit user's manual, quick start guide, v
language: @C (OC++ Device Details
‘ TrustZone Yes :
IDE Project Type Debugger
e? studio managed build > J-Link ARM &
Toolchains
LLVM Embedded Toolchain for Arm
GNU ARM Embedded
18.1.3 ™ Manage Toolchains...
® < Back nish Cancel

Figure 3. Example of Project Selections
Select Bare Metal — Blinky template for this example and click Finish.

RO1AN7881EU0100 Rev.1.00

Page 5 of 48
June.30.25

RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

&8 Renesas RA C/C++ Project a X

Renesas RA C/C++ Project _—_—

Project Template Selection

Project Template Selection

@ (3 Bare Metal - Blinky
e Bare metal FSP project that includgs BSP and will blink LEDs if available. This project will initialize clocks, pins, stacks, and the C
runtime environment.

O Q' Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and the C runtime environment.

Code Generation Settings
Use Renesas Code Formatter

(”:‘ < Back Next > Cancel

Figure 4. Blinky Project Template Selection

Note that a dual-core project should be successfully created and built automatically after this step. It consists
of three project folders, as shown in Figure 5.

The solution folder named ek_ra8p1_blinky is the solution project.
The CPUO project folder named ek_ra8p1_blinky_CPUO is the project for CPUO.
The CPU1 project folder named ek_ra8p1_blinky _CPU1 is the project for CPU1.

File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help

|.vl§é_§>v ‘@\| ml*ﬁ....-%"%'

o
a

Project Explorer % = & 7 = O {& [ek_ra8p1_blinky] Solution Configuration 3 = O

v B CJCs s Project: SOIUtlon Pro‘le‘:t Generate Project Content

(22 ek ragp1_blinky_CPUD MList of CPU projects in
(%2 ek _ra8p1_blinky_CPU1 v his solution RENESAS

build
% solutionxml Board:

15 ek_ra8p1_blinky_CPUO CPU I'.OS R7TKABPTKFLCAC
15 ek_ra8p1_blinky_CPU1 proj ; ~ clang_am
Toelchain Version: 18.1.3

FSP Version: 6.0.0
Location: fek_ra8p1_blinky -

EO

Summary | Memaories

Figure 5. Example of Dual-Core Project Creation Success

RO1AN7881EU0100 Rev.1.00 Page 6 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

A call to the FSP inline function R_BSP_SecondaryCoreStart() in the hal_entry() activates the CPU1, as
illustrated in Figure 6.

void hal_entry (void)
#if BSP_TZ_SECURE_BUILD
/* Enter non-secure code */
R_BSP_NonSecureEnter();
#endif

/* Define the units to be used with the software delay function */
const bsp_delay units_t bsp_delay_units = BSP_DELAY UNITS_MILLISECONDS;

/* Set the blink frequency (must be <= bsp_delay_units / 2) */
const uint32_t freq_in_hz = 1;

/* Calculate the delay in terms of bsp_delay _units */
const uint32_t delay = bsp_delay units / (freg_in_hz * 2); Start CPU1

/* LED type structure */
bsp_leds_t leds = g_bsp_leds;

I}

/* Wake up 2nd core if this is first core and we are inside a multicore project. */

#if |[(® == _RA_CORE) &% (1 == BSP_MULTICORE_PROJECT)
R_BSP_SecondaryCoreStart();
#endif

/* If this board has no LEDs then trap here */
if (@ == leds.led count)

while (1)
// There are no LEDs on this board

}

/* Holds level to set for pins */

bsp_io_level_t pin_level = BSP_IO0_LFVEL_LOW;

Figure 6. Example of Starting CPU1 in hal_entry.c within the Blinky Project.

In this blinky example, CPUO blinks the LED1, and CPU1 blinks the LED2 on the board. This feature allows
users to easily identify which core is currently toggling the LEDs, as shown in, as shown in Figure 7.

while (1)
{

/* Enable access to the PFS registers. If using r_ioport module then register protection is automatica
* handled. This code uses BSP IO functions to show how it is used.

xll_,'
R_BSP_PinAccessEnable();

#if BSP_NUMBER_OF_CORES == 1

/* Update all board LEDs */
for (uint32_t i = @; i < leds.led_count; i++)

{
/* Get pin to toggle */
uint32_t pin = leds.p_leds[i]; Toggle a single LED based
/* Write to this pin */ on CPU number
R_BSP_PinWrite((bsp_io port_pin_t) pin, pin_level);
¥
#else
/* Update LED that is at the index of this core. */
R_BSP_PinWrite((bsp_io_port_pin_t) leds.p_leds[_RA_CORE], pin_level);
#endif
/* Protect PFS registers */
R_BSP_PinAccessDisable();
Figure 7. Corresponding Blinky LED Implementation in hal_entry.c.
RO1AN7881EU0100 Rev.1.00 Page 7 of 48

June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

When rebuilding the project, do it in the following order:
e Build the CPUO project first.
e Then build the CPU1 project.

Or simplify it by right-clicking on the dual-core solution project and selecting Build Project. The auto-build
process will take place in this order: first, the CPUQ project will be built, and then the CPU1 project will follow.

File Edit Source Refactor Mavigate Search Project RenesasViews Ru

|[® - & -iw - 5 Q-
Project Explorer X = & 7 8 = O & [ek_ra8p1_blinky] Solutior
= ek_ra8p1_blinky 55
=5 ek ra8p1 blinky, ~ New N
=% ek _ra8p1_blinky Go Into
Show In Alt+Shift+W >
& Copy Ctrl+C
Paste Ctrl+V
¥ Delete Delete
Move...
Rename... 2
e Import.
£y Export..
Renesas FSP 5
Build Project Cirl+B
Refresh 7T

Figure 8. Example of Building the Dual-Core solution project.

Ensure that the project builds successfully for both cores and that the corresponding application images (ELF
files) are generated in the Debug/ directory (e.g., Debug/*.elf).

3.2 Debug and Run RA8 Dual Core Project on Cortex®-CM85 Core and Cortex®-
CM33 Core

To debug dual cores simultaneously, first use either Renesas Flash Programmer or Renesas Device
Partition Manager to perform an initialization operation on your MCU to ensure that it is set to protection level
2 and that the trusted zone boundary has not been previously configured. If the trusted zone boundary has
been configured, you will need to reset it to establish a proper environment for debugging. Once the
initialization is complete, you can proceed to configure the dual-core settings and start the debugging
process effectively. If you fail to complete this step, you might face difficulties in downloading your project
images and initiating the debug process.

Initialize the device using the Renesas Device Partition Manager.

RO1AN7881EU0100 Rev.1.00 Page 8 of 48
June.30.25 RENESAS

Renesas RA Family

Developing with Developing with RA8 Dual Core MCU MCU

Renesas !iews@ Renesas Al Window Help

v Q - IRenesas Debug Tools Renesas Device Partition Manager I
f?;-, Run Ctrl+F11 TraceX >
%6 Debug F11 &) Tracealyzer >
C++ Exceptions
e Q Renesas Device Partition Manager O X
Run History
0 Run As

Run Configurations...

Debug History
45 Debug As

(D Enter a value for Action and Emulator type

Debug Configurations... Deviceltamily:|fEgE
Q. Bxternal Tools Action
Read current device information Change debug state
Set TrustZone secure / non-secure boundaries
Target MCU connection: J-Link v
Connection Type: SwD v
Emulator Connection: Serial No ~
Serial No/IP Address: []
Debugger supply voltage (V): 0
Connection Speed (bps for SCI, Hz for SWD): 9600
Debug state to change to: Secure Software Development
Memory partition sizes ~
Show Command Line Run
@ | ﬁ Close
Figure 9. Initialize MCU with RDPM
Figure 10 shows the message displayed after successful device initialization.
Q Renesas Device Partition Manager O X
SRAM NSC (KB) 0 o
Display errors in : English
Connecting...
Loading library : SUCCESSFUL!
Establishing connection : SUCCESSFUL!
Checking the device's TrustZone type : SUCCESSFUL!
CONNECTED.
Initializing device and rolling back Protection Level to PL2...
SUCCESSFUL!
Disconnecting...
DISCONNECTED.
---------- SUMMARY OF RESULT----------
Connection : SUCCESSFUL!
ice initialization : SUCCESSFUL!
------------- END SUMMARY-------------
W
Show Command Line Run
@ u ﬁ Close
Figure 10. Successful Device Initialization Message on RDPM
RO1AN7881EU0100 Rev.1.00 Page 9 of 48

June.30.25

RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

To initialize the device using Renesas Flash Programmer:

1. Open the Renesas Flash Programmer software.

2. Create a new project and establish a connection to the target MCU.
3. Navigate to the Target Device tab.
4

Click Initialize Device to perform the initialization operation.

File | Target Device

’ Read Device Information
Operati lash Options Connect Settings Unique Code
Read Memory...
Prl Read Flash Options
Initialize Device
DLM Transition...

Program and User Key Files

Add/Remove Files...

Command

Program >> Verify

Start

Figure 11. Initialize MCU with RFP

The Status Message will be displayed on the console as Figure 12.

File Target Device Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code

Project Information
Current Project: RABP1 mij
Microcontroller: R7KABP1ZFLCAC

Program and User Key Files

Add/Remove Files...

Command

Program == Verify

Start OK

Device Code: 07 A
Current state: OEM_PL2

Current Authentication Lewvel: AL2
AL2 Key Injection: Mo

AL1 Key Injection: Mo

FMa Key Injection: Mo

CEM Root Public Key 0 Ihjection: Mo
CEM Foot Public Key 1 Injection: Ma
QEM Boot Public Key 2 Injection: Mo
CEM Root Public Key 3 Injection: Mo

Erazing the target device
Ectting the target device

Disconnecting the tool
Dperation completed. hd

Clear status and message

Figure 12. Successful Device Initialization Message on RFP.

RO1AN7881EU0100 Rev.1.00 Page 10 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

After initializing the device with RDPM or RFP, access the Debug Configuration. Select

ek _ra8p1_blinky_CPU1 Debug_Multicore, then navigate to the Debugger tab and click on Connection

Settings. Ensure that the TrustZone boundary settings are disabled.

& Debug Configurations

Create, manage, and run configurations

O x

»

¢ [= 7
1Bl < = 3€| = v Name: | ek_ra8p1_blinky_CPU1 Debug_Multicore

|t'x‘09f ter text ‘ [5] Main| %% Debugger| B> Startup| [5] Common | % Source
[E] C/C++ Application

[€] ¢/C++ Remote Application Debug hardware: J-link ARM ~ | Target Device: | R7TKASP1KF_CPUO

EASE Script
[c] GDB Hardware Debugging GDB Settings | Connection Settings| Debug Tool Settings
?‘ GDB Simulator Debugglng (RHSSO) rrevent o o e Livis Lore Tes

~ [Launch Group Secure Vector Address

ek_ra8p1_blinky_CPU1 Debug_Multicare Launch ¢ Non-secure Vector Address
v [t7] Renesas GDB Hardware Debugging Hot Plug No
[ek_ra8p1_blinky_CPUO Debug_Flat Disconnection Mode Continue
[£7] ek raBp1_blinky CPU1 Debug Attach v swv
| ek_ragp1_blinky_CPUT Debug_Multicore Core clock (MHz) 0
€] Renesas Simulator Debugging (RX, RL78) v TrustZone
[Set TrustZone secure/non-secure boundaries No]
Authenticate device to Authentication Level (AL) None
Authentication key
<
< >

)) Revert
Filter matched 12 of 14 items

~
v
v
v
v
v
> ~
Apply
Close

Figure 13. Example of Disabling TrustZone Boundary Setting

The e2studio provides efficient debug capability that allows debugging both core projects simultaneously.
You can achieve this by using a "Launch Group" that combines both individual launch configurations. When

e2studio generates the CPU1 project, it automatically creates this launch group.

Open the Debug Configurations dialog, select the Debug Multicore Launch Group that was created, and click

Debug to begin the debug session.

& Debug Configurations

Create, manage, and run configurations

Launch several other configurations sequentially

[€] GDB Hardware Debugging
27 GDB Simulator Debugging (RHA50)
v @ Launch Group
@ ek_ra8p1_blinky_CPU1 Debug_Multicore Launch Group
T R GrE HaTOware Tenug Ty
=] ek_ra8p1_blinky_CPUO Debug_Flat
[c7] ek_ra8p1_blinky_CPU1 Debug_Attach
[£7] ek_ra8p1_blinky_CPU1 Debug_Multicore
[£"] Renesas Simulator Debugging (RX, RL78)

¢ @ = 3 | = - -
= = Name: | ek _ra8p1_blinky_CPU1 Debug_Multicore Launch Group |
‘ type filter text ‘ & Launches | [} Common
[€]¢/C++ Application [Name Mode o
S Up
E]crees Rémote Application [£"] Renesas GDB Hardware Debugging:ek ra8p1_blinky_CPU1 Debug_Multicore | Inherit
EASE Script [£7] Renesas GDB Hardware Debugging::ek ra8p1_blinky_CPU1 Debug_Attach Inherit Dow!

< >
<
. Revert
Filter matched 12 of 14 items
@

Apply

Close

Figure 14. Example of Debug Multicore Launch Group

In the Debug Information tab, the debug session for the CPUO project is launched and connected first,
followed by the CPU1 project. The debugger will halt at the Reset_Handler() of the CPUOQ ELF file. When
you click the Resume button twice, CPUO will start executing. After passing the main() function, the LED1

on the target board should start blinking, indicating successful operation.

RO1AN7881EU0100 Rev.1.00
June.30.25 RENESAS

Page 11 of 48

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Eile Edit Source Refactor Mavigate Search Project Renesas Views Run Renesas Al Windo
BRI BRI R -Q~il~ismw-~
Debug X B %|i» § = O

v @ ek_raBp1_blinky_CPU1 Debug_Multicore Launch Group [Launch Group]
» arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)
» arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)
v e ek ra8pl blinky CPU1 Debug Multicore [Renesas GDE Hardware Debugging]
v T& ek_ra8p1_blinky_CPUQ.elf [1] [cores: 0]
~ f® Thread #1 1 (single core) [core: 0] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap)
= Reset_Handler() at startup.c:48 0x2000c5c
= arm-none-capl-gap w1
» Renesas GDB server (Host)
v [c7] ek ra8p1_blinky_CPU1 Debug_Attach [Renesas GDB Hardware Debugging)
v jj,— ek_ra8p1_blinky_CPU1.elf [1] [cores: 0]
»& Thread #1 1 (single core) [core: 0] (Running)
» arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)

Figure 15. Example of Startup Debug State for Dual-Core Execution.

As shown in Figure 16, once CPUO invokes R_BSP_SecondaryCoreStart(), the CPU1 debug session fully
activates, enabling standard debugging control.

Press the Resume button to continue execution; LED2 will start blinking, indicating that CPU1 has
successfully started up.

Eile Edit Source Refactor Mavigate Search Project RenesasViews Run Renesas Al Windc
QeI BNIRRP R Rilavismw-
Debug B %[> § = O

~v [ek_radp1_blinky_CPU1 Debug_Multicore Launch Group [Launch Group]
» arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)
» arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)
v o ek_ra8p1_blinky_CPU1 Debug_Multicore [Renesas GDB Hardware Debugging]
v } ek_ra8p1_blinky_CPUC.elf [1] [cores: 0]
»& Thread #1 1 (single core) [core: 0] (Running)
» arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)
w E_| ek _raBp1_blinky_CPU1 Debug_Attach [Renesas GDB Hardware Debugging]
v TE ek_ra8p1_blinky_CPU1.elf [1] [cores: 0]
v f® Thread #1 1 (single core) [core: 0] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap)
= Reset_Handler() at startup.c:48 0x2080650
o arm-none-eabi-gdb (T12.1)
» Renesas GDB server (Host)

Figure 16. Example of Debug State after R_BSP_SecondaryCoreStart()

After completing your first multicore debug session for your project pair, you can easily start additional debug
sessions by selecting the appropriate Launch Group option from the drop-down menu.

RO1AN7881EU0100 Rev.1.00 Page 12 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Project Renesas Views Run Renesas Al Window Help

Q. -

2 1ekragpl_blinky_CPU1T Debug_Multicore Launch Group
?_l 2 ek_ra8p’1_blinky_CPU1 Debug_Attach

E_I 3 ek_ra8p1_blinky_CPU1 Debug_Multicore

Debug As >
Debug Configurations...
Organize Favorites...

Figure 17. Example of Quick Access Using the Debug Drop-Down Menu

RO1AN7881EU0100 Rev.1.00 Page 13 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

4. Developing Application Using RA8 Dual Core MCU

When planning and designing an application that utilizes RA8 dual-core MCUs, it is crucial to consider
several factors to maximize performance.

e Divide the application into multiple tasks that each CPU can process independently.

e Use the IPC (Inter-Process Communication) module to facilitate communication between tasks
running on different cores. Additionally, manage shared resources carefully to prevent conflicts,
maintain data integrity, and optimize the overall efficiency of the application.

e Utilize ITCM, DTCM, CTCM, and STCM to enhance performance.
e Leverage instruction and data cache to further improve performance.

e Assign heavier tasks, such as graphics-related operations, digital signal processing (DSP), and
artificial intelligence/machine learning (Al/ML), to the CM85 core. This core can take advantage of
its higher clock frequency, the M-Profile Vector Extension (MVE). In contrast, lighter tasks, including
data acquisition (sensor inputs) and user messages (UART input/output), should be managed by
the CM33 core.

4.1 Partition the system and maximize performance

We distribute real-time control, Al/ML, and graphics tasks across the CPU cores to leverage the dual-core
architecture. For example, we can divide a typical graphics application between the two CPUs as follows.

e CPUO manages the graphics module, JPEG decoder, and SDRAM access.

e CPU1 handles inputs/outputs and the user interface, including data acquisition, touch controllers,
and output controls.

4.2 Using Inter-Processor Communication in Application

Inter-processor communication (IPC) allows for the sharing of hardware resources and the exchange of data
between the two processors within the MCU. IPC also supports communication by generating interrupt
events that help synchronize and coordinate actions among the processors.

This section highlights the key components of IPC, including:
o Data exchange
e Task synchronization
o Efficient resource sharing

4.2.1 Using Inter-Processor Interrupts

Inter-processor interrupts consist of both maskable and non-maskable types. As illustrated in Figure 18, a
typical scenario involves one core managing event monitoring and sending a notification to a second core to
trigger the necessary processing.

For implementation details regarding inter-processor interrupts in the application, refer to section 5.1.1.

RO1AN7881EU0100 Rev.1.00 Page 14 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

CPUO running state
Task 1 <
IPC-Maskable
Interrupts
Task 2 <
Task 3 <
IPC-Non-Maskable
Interrupt
CPUO Low Power State CPU1 Running State

Figure 18. Example of CPUO Notifications Using IPC Interrupts

4.2.2 Using Inter-Processor Communication FIFO Messages.

The IPC has four FIFOs. IPC00 and IPCO01 are FIFOs that transmit data from CPU1 to CPUOQ, and IPC10
and IPC11 are FIFOs that transmit data from CPUOQ to CPU1. It has 4 FIFO stages and a transfer data size
of 32 bits.

Figure 19 illustrates the data exchange mechanism using IPC Message FIFOs.

! CPUO L IPC P CPU1 !
! Wite | \ | Read 5
' ! ! Message FIFO Vo '
- Task 1 Ly - > -
: 2 | 7| CPUO Write - CPU1 Read | | | Task T !
: Read | : L1 Write :
H i ' Message FIFO o H
' s L L L T '
: Task2 |« o CPUO Read - CPU1 Write [* | ! Task 2 ;

Figure 19. Example of Data Exchange with IPC-Messages FIFO

For implementation details on using IPC Message FIFOs in application development, refer to Section 5.1.

4.3 Using Shared Memory and Resources in RA8 Dual Core MCU

Shared memory is one of the most efficient methods of exchanging large amounts of data between two cores
in a dual-core system. This mechanism allows two cores to directly access a common memory area to
read/write data, but concurrency control is required to avoid race conditions and data corruption.

4.3.1 Using Share Memory and Resources in FSP Flat Projects

When two cores need to exchange high-speed, large amounts of data (e.g., video streaming), shared
memory is the ideal choice because of its higher speed compared to other IPC methods. However,

RO1AN7881EU0100 Rev.1.00 Page 15 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

appropriate synchronization mechanisms are needed to avoid race conditions. Figure 20 demonstrates a
method for data exchange and notifications to ensure synchronized access to a shared memory region.

: b IPC | :
; Get/Release : : | Get/Release E
v| Task1 1€ T —> Semaphore < ; »| Task 1 !
4 i ' y |
E «—— Maskable interrupt —E——)': E
i : »| Shared memory ¢ .

1 Read/Write ! ' ' ' Read/Write

: CPUO b b cPU1 |

Figure 20. Example of Shared Memory Data Exchange and Synchronization
When implementing shared memory in a dual-core system, several key considerations must be addressed.

e Memory Allocation: A dedicated memory region should be reserved and configured as shared memory
that is accessible by both cores.

e Synchronization Mechanism: Appropriate synchronization methods, such as mutexes, semaphores, or
hardware flags, are necessary to prevent data corruption and ensure correct access sequencing.

o Data Exchange: One core writes data to the shared memory region while the other core reads it as
needed, facilitating coordinated communication between the cores.

Figure 21 illustrates the exclusive control flow that occurs when two CPUs execute a semaphore and send
core notifications through an inter-processor maskable interrupt.

Refer to 5.1 for instructions on implementing shared memory in the application.

RO1AN7881EU0100 Rev.1.00 Page 16 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

CPUO Take semaphore

No

Take
Success?,

CPUO stores the message into the shared memory

!

Set interrupt request to CPU1

CPU1 !

CPU1 loads the message from the shared memory !

L H

Set interrupt request to CPUO
. 2 :
: cCPUD
E CPUO release semaphore '

Figure 21. Example of Application Exclusive Control Flow

When using a dual-core system, dedicating certain services to a single core can optimize performance and
avoid resource duplication. This strategy ensures that each core can concentrate on its designated tasks
without interference, resulting in enhanced efficiency. By effectively managing workloads, users can enjoy
smoother performance and faster response times in applications. This method also assists in optimizing
code size and addressing resource-sharing challenges. When a task needs these services, it can send a
request through the inter-processor communication channel.

Some types of services are shared between the two cores and handled on one core, such as peripheral
device management (UART/SPI/I2C), file system management, and network stack management. Figure 22
illustrates the shared UART peripheral, which is managed by CPU1, while CPUO accesses the UART service
via IPC mechanisms.

This architecture is also demonstrated in the accompanying sample application.

RO1AN7881EU0100 Rev.1.00 Page 17 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

...

| CPUO : ' CPU1 ;
E Task 1 : E Task 1 :
] ¢ |IPC-maskable Interrupt !
! ! ¢ |PC message FIFO . UART :
| i ' > Resource i
E . : Wement .
' Task 2 j ! Task 2 E

Figure 22. Example of Share Resource - UART diagram

4.3.2 Using Share Memory and Resources in RTOS Based Projects

You can create a message queue wrap based on the IPC module in Renesas FSP to communicate and
transfer data between the two cores. Refer to RTOS/IPC/Share Memory/TCM Projects for more details.

4.4 Utilize Caches and TCM In RA8 Dual Core Applications

For optimal performance, Tightly Coupled Memory (TCM) and cache can be leveraged in conjunction with
Helium™ technology.

TCM typically offers deterministic, single-cycle access, minimizing latency in time-critical operations.

Placing performance-critical code and frequently accessed data in TCM ensures faster and more predictable
execution.

441 Tightly Coupled Memory (TCM)s
With the RA8 dual core MCU, each CPU has its own dedicated TCM resource.

e CPUO: Instruction Tightly Coupled Memory (ITCM); Data Tightly Coupled Memory (DTCM).
e CPU1: C-AHB Tightly Coupled Memory (CTCM); S-AHB Tightly Coupled Memory (STCM).
The 256 KB TCM memory in CPUO consists of 128 KB ITCM and 128 KB DTCM.

The 128 KB TCM memory in CPU1 consists of 64 KB CTCM and 64 KB STCM.

Note: Accessing TCMs is not available in CPU Deep Sleep mode, Software Standby mode, and Deep
Software Standby mode.

Figure 23 shows TCM in the local MCU subsystem.

RO1AN7881EU0100 Rev.1.00 Page 18 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

from bus matrix from bus matrix

Cortex-M85 ~ SAHB BN Cortex-m33
C-AHB S-AHB

M-AXI

L 4 r

|C-Cache |S-Cache|

Bus matrix

Peripheral bus

WDTO

Figure 23. Example of TCM Memory in Local MCU Subsystem

4.4.1 Improve Performance Using ITCM

To achieve optimal performance for time-critical functions, specific program instructions can be placed in
Instruction Tightly Coupled Memory (ITCM). This configuration can be adjusted using the Linker Section
settings in e?studio.

The following example illustrates how to allocate the arm_cmplx_mag_+32 function to ITCM memory within
the RA8P1_DSP_example project using the Linker Sections Configuration interface.

1. Open the project in e? studio.

2. In the Project Explorer, double-click on configuration.xml.

3. Navigate to the Linker Sections tab (refer to Figure 24).

4. Assign the function arm_cmplx_mag_f32 to the designated ITCM section (Figure 25 to Figure 27).
RO1AN7881EU0100 Rev.1.00 Page 19 of 48

June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help
Br-{-BiaifrQ-

Project Explorer < = B {3 [RASP1_DSP_example_cpul] FSP Configuration < = 0
ESY §
= RABP1_DSP_example
i @5 RA8BP1_DSP example _cpul
_1;"‘ e User Mappings % | New User Mapping =

Linker Section Mapping Configuration Generate Project Content

[l Includes Input Section(s) Cutput Section
B ra

[ra_gen

&9 sic

&= Debug

= ra_cfg 1

= script

Lo configuration.xml

|=/ JLinkLog.log Default Mappings
= ra_cfg.ixt
|%] RA8P1_DSP_example _cpuO C
|= RA8P1_DSP_example_cpul C
(2) Developer Assistance

5 RABP1_DSP example cpuT

Input Section(s) Output Section
*(.bss.g_heap) RAM Uninitialized
#(.bss.g_main_stack) RAM Uninitialized

2
N

Y

Summary BSP | Clocks | Pins | Interrupts | Event LinksStacks Components

Figure 24. Open Linker Sections Tab
Click New User Mapping > ITCM > Code initialized from > ITCM code from FLASH.

4.¢ [RASP1_DSP_example_cpu0] FSP Configuration < = 8 outline X

. . - - .] There is no active editor that provides an outline.
Linker Section Mapping Configuration Generate Praject Content

User Mappings 5| New User Mapping

Input Section(s) Qutput Section ERAEA] ’
DICM >
FLASH >

I ITCM > Code initialized from > I ITCM code from OSPI0_CS1
OSPIO_CS0 > Data initialized from > ITCM code from OSPI1_CS1
OSPI0_CS1 > ITCM Uninitialized ITCM code from DATA_FLASH
OSPI1_CS0 > ITCM Zeroed | ITCM code from FLASH |
OSPI1_CS1 >
RAM >
SDRAM >
Default Mappings

Input Section(s) Output Section

*(.bss.g_heap) RAM Uninitialized

*(.bss.g_main_stack) RAM Uninitialized

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks Components

Figure 25. Example of Defining a New Section Mapping for ITCM

A new user mapping window appears. The input section name must adhere to a specific format. For sections
that include instruction code, ensure the input section name follows the required naming convention,
“.text.<Function Name>". Figure 26 illustrates an example of placing the arm_cmp1lx_mag_+32 function in
ITCM memory.

RO1AN7881EU0100 Rev.1.00 Page 20 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Q New User Mapping i

[.text.arm_cmplx_mag_f32]

Cancel

Figure 26. Example of Defining Input Section Name for Instruction Code

After completing the configuration shown in Figure 27, follow these steps to apply the changes: Click on
"Generate Project Content" and then select "Build Project" to generate the code and compile the updated
project configuration.

;,,r [RABP1_DSP_example_cpu0] FSP Configuration ~ B

o

Linker Section Mapping Configuration Generate Project Content

User Mappings % | New User Mapping > #_| Remove
| Input Section(s) Qutput Section

§*(.te)ct.arm_cmpl)(_mag_fEZ) ITCM code from FLASH I

< >
Default Mappings

Input Section(s) Output Section

*(.bss.g_heap) RAM Uninitialized

*(.bss.g_main_stack) RAM Uninitialized

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Figure 27. Example of Successful Setup for Function in ITCM section.

Upon a successful build, the placement of code or data in the specified memory section can be verified by
inspecting the map file located at Debug/* . map. This file provides a detailed memory layout, including
section assignments. Refer to Figure 28 for example illustrating the correct mapping of configured sections.

VMA Address 0 2000070 d LMA Address flash$$

(ITCM Address) @ 2000070 (MRAM Address) itcm_from_flash$$Base = .
@ 2000070 itcm_from_flash$$lLoad = LOADADDR
@ 2000070 / s -/ rafarm/CMSIS-DSP/Source/ComplexMa
B 2000070 %] 1 $t.0
do 1 | arm_cmplx_mag_f32 |
cc 200013c Q 1 $d.1
de 2000148 %] 1 . = ALIGN (8)

Figure 28. Example of Verifying Code Placement in ITCM

RO1AN7881EU0100 Rev.1.00 Page 21 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

4.4.2 Improve Performance Using DTCM

To improve runtime performance, data buffers may be allocated in the Data Tightly Coupled Memory
(DTCM) region. Management of these buffers can be performed through the Linker Sections tab in the
e?studio configuration for the project.

The following procedure demonstrates how to locate the testinput_f32_10khz buffer used in the
RA8P1_DSP_example project (as shown in Figure 29) in DTCM memory by utilizing the Linker Sections
Configuration interface:

Click the Linker Sections tab > New User Mapping > DTCM > Data initialized from ... > DTCM data from
FLASH, as shown in Figure 30.

This configuration ensures that the buffer is copied from MRAM to DTCM at startup and enables faster data
access during execution.

Test Input signal contains 18KHz signal + Uniformly distributed white noise

B B L o e e e e e e e e ——— ® [
!

float32_t testInput_+32_10khz[2048] =

L

-08.865129623856441, 0.000000000000008, -2.655020678073846, 0.0000000000
-2.899160484012034, 0.000000000000000, 2.563004262857762, ©.00000000000000
0.048366940168201, ©.000000000000000, -0.145696461188734, 0.00600000000000
-1.176633086028377, 0.000000000000000, 3.690223557991855, ©.00000000000000
2.739754205367484, ©.000000000000000, -0.062610418524552, 0.00600000000000
1.195839415434387, 0.000000000000000, -2.177388969045026, 0.00000000000000

Figure 29. Example of Placing testinput_f32_10khz Buffer to DTCM

{54 [RABP1_DSP_example_cpu] FSP Configuration = 8 outline X

. There is no active editor that provides an outline.
Linker Section Mapping Configuration Generate Project Content

User Mappings |'_5 New User Mapping l % Remnve
DATA_FLASH > |
Input Section(s) Output Section m Code initialized from > |
| (textarm_cmplx mag f32) ITCM code from FLASH FLASH > | Data initialized from >] DTCM data from OSPIO_CS1
ITCM > DTCM Uninitialized DTCM data from OSPI1_CS1
OSPIO_CSO > DTCM Zeroed DTCM data from DATA_FLASH
OSPI0_CS1 > l DTCM data from FLASH l
OSPI1_CSO >
OSPI1_CS1 >
< RAM >
SDRAM >
Default Mappings
Input Section(s) Qutput Section
*(.bss.g_heap) RAM Uninitialized
*(.bss.g_main_stack) RAM Uninitialized
< >

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Compaonents

Figure 30. Example of Defining a New Section Mapping for DTCM

Next, assign “Input section name” corresponding to the initialized data. Use the following format for section
naming: .data.<buffer_name>

For example, to map the initialized buffer testinput_f32_10khz, specify the input section
as. .data.testInput_f32_10khz.

Refer to Figure 31 for a visual example of this configuration.

RO1AN7881EU0100 Rev.1.00 Page 22 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Q New User Mapping X

Enter the input section name or glob pattern for the new mapping:

| data.testinput_32_10khz|

Figure 31. Example of Defining Input Section Name for Initialized Data

After finishing the configuration illustrated in Figure 32, click on Generate Project Content, and then choose
Build Project to apply the changes and compile the updated project.

{°F “[RASP1_DSP_example_cpu0] FSP Configuration < = 0

o

Linker Section Mapping Configuration Generate Project Content

User Mappings % | New User Mapping =

Input Section(s) Output Section
§*(.text.arm_cmplx_mag_f32) ITCM code from FLASH
|*(data.testinput_f32_10khz) DTCM data from FLASH |

< >

Default Mappings

Input Section(s) Output Section
*(.bss.g_heap) RAM Uninitialized
*(bss.g_main_stack) RAM Uninitialized

.

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks

Figure 32. Successful Setup for Data in DTCM Section

Upon a successful build, the placement of code or data in the specified memory section can be verified by
inspecting the map file located at Debug/* . map. This file provides a detailed memory layout, including
section assignments. Refer to Figure 33 for examples illustrating the correct mapping of configured sections.

VMA address
(DTCM address) LMA address
(MRAM address) am_from_flash$$Base = .

2000000 2000140 am_from_flash$$lLoad = LOADADDR (_ ram_from_flash$%$)
&B@BBB 2@@61£1E5A6@ 4 L/src/apm il _hin cddata.testInput 32 10khz)
22000000 2000140 2000 1 testInput 32 10khz
22002000 2002140 4 4 ./src/arm_f+t_bin_example t32.0:(.data.fftSize)

Figure 33. Example of Verifying Test Input Data Placement in DTCM

4.4.3 Improve Performance Using CTCM

To achieve optimal performance for time-critical functions on CPU1, specific program instructions can be
placed in CTCM. This configuration can be performed using the Linker Sections settings available in the
configuration.xml of the CPU1 project within e?studio. By explicitly mapping selected functions to CTCM, the
application benefits from reduced instruction fetch latency and improved execution speed.

RO1AN7881EU0100 Rev.1.00 Page 23 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

The following procedure demonstrates how to place the ipc_callback() function into CTCM on CPU1
using the Linker Sections configuration interface in e?studio. This approach ensures that the callback routine
executes at high speed and has deterministic memory access, thereby enhancing response time during
inter-processor communication events.

1. Open the project in e? studio.

2. In the Project Explorer, double-click on configuration.xml.

3. Nauvigate to the Linker Sections tab.

4. Assign the function ipc_callback() to the designated CTCM section (Figure 34 and Figure 35).

O There is no active editor that provides an outline

Linker Section M ing Confi ti
inker Section Mapping Configuration Generate Project Content

User Mappings [% | New User Mappin~ - I

CTcM > Code initialized from > CTCM code from OSPI0_CS1

Input Section(s) Output Section DATA_FLASH > Data initialized from ¥ CTCM code from OSPI1_CS1
FLASH » CTCM Uninitialized CTCM code from DATA_FLASH
OSPID_CS0 » CTCM Zeroed | CTCM code from FLASH |
OSPI0_CS1 >
OSPI1_CS0 H]
OSPI1_CS1 H]
RAM >
SDRAM H]

STCM >

Default Mappings
Input Section(s) Output Section
*(.bss.g_heap) RAM Uninitialized
*(.bss.g_main_stack) RAM Uninitialized

Figure 34. Example of Defining a New Section Mapping for CTCM

Q Mew User Mapping et

Enter the input section name or glob pattern for the new mapping:

textipc_callback

0K Cancel

Figure 35. Example of Defining Input Section Name for Instruction Code on CPU1

After completing the configuration, click on "Generate Project Content," and then select "Build Project" to
generate the code and compile the updated project configuration. Once the build is successful, you can
verify the placement of code or data in the specified memory section by inspecting the map file located at
Debug/*.map, as illustrated in Figure 36.

RO1AN7881EU0100 Rev.1.00 Page 24 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

VMA Address
CTCM Address

2080080 2] _from_flash$$Base = .

2080080 MRAM Addressh_from flash$$load - LOADADDR (_ ctcm from flash$s)
2080080 2 4 Srart/ipc_squeue.o: (.text.ipc_callback)
0 :

2080080 112 LMA Address Eashﬁ!!

oo

2080080 1 4
1] 22 1
o ShE b @ 1 o]
58 2080048 o 1 $t.6

Figure 36. Example of Successfully Allocate ipc_callback to CTCM

4.4.4 Improve Performance by Utilizing Data Cache Cortex®-CM85 Core

In the default configuration for RA8 devices, the FSP always enables the CM85 Instruction Cache (I-Cache)
and manages its coherency as necessary. The FSP also allows for the optional enabling of the CM85 Data
Cache (D-Cache) in the BSP configuration settings, as illustrated in Figure 37, although it is disabled by
default. When utilizing any type of cache within a system, it's worth thinking about coherency. For further
details, refer to the Cortex-M85 Caches documentation.

EK-RA8P1

Property Value
series 8

~ RABP1 Device Options
OFS Regqisters

Settings

~ RABP1 Family

SDRAM

Security

Clocks

v Cache settings
Data cache Enabled

Enable inline BSP IRQ functions Enabled

Main Oscillator Wait Time 8163 cycles
v RA Common

Main stack size (bytes) 0x1000

Heap size (bytes) 0

Figure 37. Example of CM85 Data Cache (D-Cache) Enabled

4.4.5 Using Neural Processing Unit (NPU)

The RA8P1 dual core MCU integrates Ethos-U55, which offers support for transformer-based models at the
edge, the foundation for newer language and vision models, and scales from 32 to 256 MAC units, enabling
higher-performance edge Al use cases in a sustainable way. Offering the same toolchain as previous Ethos-
U generations, partners can benefit from seamless migration and leverage investments in Arm-based
machine learning (ML) tools. The Ethos-U NPU works alongside the host CPU, providing efficient Al/ML
acceleration for applications like computer vision, speech recognition, and anomaly detection.

By offloading ML computations from the CPU to the Ethos NPU, the system achieves higher performance
and energy efficiency, enabling Al at the edge without a significant power overhead. Figure 38 and Figure 39
are an NPU block diagram and an example of Ethos configuration in Renesas FSP.

RO1AN7881EU0100 Rev.1.00 Page 25 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

NPU
Clock and Weight
power module decorder
A
3 v
NPU_IRQ
Internal bus Central control MAC unit
v
Internal bus
Internal bus DMAC < >
g Shared
memory
Qutput unit N

Figure 38. NPU Block Diagram

Bz
s
I I
4 Arm Ethos-U Core [2%) 4% Arm CMSIS NN Library
Driver Wrapper . Source
(rm_ethosu)
©) O] ©)
s s
I [
4% Arm Ethos-U Core 4% Arm CMSIS DSP Library
Driver Source
(€)) €))
rFy

% Add Arm CMSIS DSP
Acceleration [Optional]

Figure 39. Example of Ethos Support in Renesas FSP

Refer to the following application notes for developing Al applications on RA8 Dual Core MCUs: "Reference
System Design for Vision Al Design using Ethos-U NPU", document No. R11AN0995, and "Using the Ethos-
U NPU with RA8 MCUs", document No. ROTAN7712.

RO1AN7881EU0100 Rev.1.00 Page 26 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

5. Application Projects
5.1 IPC - Share Memory Project
The implementation of this application project adheres to the following specifications.

CPU1 is responsible for managing the user interface and logging data to the terminal. CPUO will handle real-
time control and sensor data processing.

The task distribution across both cores is depicted in Figure 40.
The peripheral resources utilized in this application project are listed in Table 5.1 below.

Table 5.1. List of the resources used in the project

CPUO CPU1
Inter-Processor Communication (IPCO & IPC1) Inter-Processor Communication (IPCO & IPC1)
Hardware Semaphore Hardware Semaphore
Real-Time-Clock control Serial communication interface UART

12bit-A/D Converter — Temprature Sensor
I/O Port control — User LEDs

In this sample application, all runtime information is transmitted to the Tera Term terminal console via the
SCI-UART interface, which is managed by CPU1.

Meanwhile, CPUQ is responsible for handling the real-time clock (RTC), sensor data acquisition, and user
LED control.

Figure 41 shows the functionality of this application.

Yy 4 ™

Data Logging
Terminal

vy p. A

h 4

Sensor Data Processing

™ ' ™

User Interface

Real-Time Clock Control
Management

A

Y

CPUO CPU1

A
v

Shared Memory < »

A
Y

Inter-Processor Communication (IPC)

h 4

Figure 40. Task Partition on Dual Core BareMetal Example

RO1AN7881EU0100 Rev.1.00 Page 27 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

: CPUO

|
|
|
System initializes coreQ

|
| On Hold

Y
|

‘L |

Start SECOND GOrE frreeeeersensenseemmemseeneasberinseniesaas Lo »! Syste?uirr::ializes

¥

IPC initialization

¥

,,,,,,, SCI_UART Initializes

v

|
|
|
|
|
|
IPC initialization |
|
[
|
|
|

Real Time clock
module initializes

v

ADC_TSN Print out MENU
initializes
<
o <«

Is user input 1 ?
set date and time;

Is user input 22
(set alarm)

Is user input 37
(start/stop ADC)

RTC
periodic 1s
Qccurs?,

Write Date and Time to

N Write alarm value to IPC-FIFO
sharing buffer

Write Real Time Clock to
share output buffer every User Led Toggle
second

v

|
|
|
|
|
|
|
|
|
|
|
|
|
|
Write Temperature data value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

to IPC - FIFO every second

Read Real Time Clock
from share output buffer

Get Date and Get alarm value i
Time from share Stop Scan
buffer from IPC -FIFO
Read Temperature data
value from IPC - FIFO
Y Y
Set Date and l
Time to RTC Set RTC alarm Start Scan
Print out

Real Date and Time and
Temperature value every
second to terminal

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
No
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 41. Application Using IPC/semaphore and shared-memory Feature.

Table 5.2 summarizes the IPC and hardware semaphore APIs utilized in this application. These APIls
facilitate inter-core communication and synchronization between the processors in the dual-core system.

Table 5.2. Inter Processor Comunication APls

RO1AN7881EU0100 Rev.1.00 Page 28 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Functions Description
R_IPC_Open Configure an IPC instance
R_BSP_IpcNmiEnable Assign the user callback for IPC-NMI
R_IPC_MessageSend Send the message to IPC-Message FIFO
R_IPC_EventGenerate Generate IPC maskable interrupt to another core
R_BSP_IpcSemaphoreTake Take hardware semaphore
R_BSP_IpcSemaphoreGive Release hardware semaphore
R_BSP_IpcNmiRequestSet Trigger non-maskable interrupt to another core

5.1.1 Implement Inter-Processor Communication in Application.

Inter-Processor Communication (IPC) facilitates both hardware resource sharing and data exchange
between two processors within the same CPU system.

The IPC module supports up to 16 hardware semaphores, enabling efficient synchronization between cores.

Additionally, IPC is capable of generating interrupt-driven events to support inter-core signaling, including
both maskable and non-maskable interrupts (NMIs).

Figure 42 and Figure 43 illustrate the implementation of IPC maskable interrupts and IPC non-maskable
interrupts in an application.

! ek_ra8p1_dualcore_CPU1
¢+ ek_ra8p1_dualcore_CPUO —raspi_ -
E ® * IPCO callback
| = void ipc@_callback(ipc_callback_args_t *p_args)
1 { -
i switch (p_args->event) { | | Copy the Date and Time value from input to shared memory for set up at CPU@® */
' ® case IPC EVENT IRQO: ' ' memcpy (share_mem->time_buf, &g_rx_buffer, BUFFER_SIZE_DOWN);
i = case IPC_EVENT_IRQI:
i { ” : i /* Use IPC-MI trigger CPU@ read from share memory and set up date and time */
H g time_set_notify = SET_FLAG; [+ ' ' R_IPC_EventGenerate(&g_ipc®_ctrl, IPC GENERATE_EVENT IRQ1);
H break; H H
| } . i
) Case IPC_EVENT_IROZ: I i
! case IPC_EVENT_IRQ3: | \ i
' @ case IPC_EVENT MESSAGE_RECEIVED: [!
' default:
i break;
:)
! }
Figure 42. Example of IPC Maskable Interrupt Sample Application
ek_ra8p1_dualcore_CPUO ; ek_ra8p1_dualcore_CPU1
Enable IPC-NMI and assign a callback processing before IPC-NMI
request from another core
* Enable IPC Non maskable interrupt and assign the callback */
R_BSP_IpcNmiEnable(nmi_ipc_callback); :
@ * IPC Non-Maskable-Interrupt] I
= static void nmi_ipc_callback (void) : ~ o R)
{ & * IPC NMI to CPU@ for stop ADC_TSN */
} g_tsn_scan_rq = (g_tsn_scan_rq == SCAN_TSN) ? STOP_SCAN_TSN : SCAN_TSN; :‘ : err = R_BSP_IchmiRequestSet (),

Figure 43. Example of IPC Non-Maskable Interrupt Sample Application.

In this application, one-way FIFOs are also used to exchange simple data between the two CPUs.
Specifically, temperature data is sent from CPUOQ to CPU1, while the user alarm setting value is sent from
CPU1 to CPUQ, as illustrated in Figure 44.

RO1AN7881EU0100 Rev.1.00 Page 29 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

ek_ra8p1_dualcore_CPUO P ek_ra8p1_dualcore_CPU1
& * IPC1 Callback
= void ipel_callback(ipc_callback_args_t *p_args)
: {
/* Send temprature data base on request */ ; = switch(p_args->event)
if (g_tsn_scan_rq == @ && g_ready_to_read) [{
P + case IPC_EVENT_IRQO:[]
/* Read temprature sensor data each second */ [® case JPC _EVENT IRQ1:[]
tsn_read_data(&g_adc_data); ‘ ' case IPC_EVENT_MESSAGE_RECEIVED:
P {
/* Send temperature sensor data to CPUl for display *"I L » temp_val = p_args->message;
err = R_IPC_MessageSend(&g_ipcl ctrl, g_adc_data); | I ~ temp_val_get = SET_FLAG;
TF (FoP SUCCESS 1= err) P break; -
{ P H
/* IPC Failure Message */ o S efault:
APP_PRINT("\r\nR_IPC_MessageSend failed.\r\n"); Pl break;
}
' }
@ * IPCO® callbacl(]
= wvoid ipc@_callback(ipc_callback_args_t *p_args)
{

S switch (p_args->event) {
® case TPC_EVENT_IRQo:

@ case TPC_EVENT_IRQ1:[]

& case TPC_EVENT_IRQ2:[]

& case TPC_EVENT_IRQ3:[]

S case IPC_EVENT_MESSAGE_RECEIVED:

/* Wait until an invalid data input to terminal */
uint32_t alarm_sec = check_alarm_input();

val_alarm = (uint8_t)p_args->message;
g_alarm_set_notify = SET_FLAG;

* Send alarm in second to CPU@ for set up RTC */
R_IPC_MessageSend (&g_ipc@_ctrl, alarm_sec);

A

break;
}
= default:
break;

Figure 44. Example of IPC Message-FIFO Sample Application

5.1.2 Implement Share Memory between Two Cores in Application.

To implement a shared memory mechanism between two cores, a dedicated memory region must be
explicitly defined within the solution project. In this application, the shared memory is allocated to the last 32
KB of CPUO’s RAM. The configuration procedure for defining this memory region is described in the following
steps:

Change the RAM size of RAM_CPUO_S to 0xE2000.

RO1AN7881EU0100 Rev.1.00 Page 30 of 48
June.30.25 RENESAS

Renesas RA Family

Developing with Developing with RA8 Dual Core MCU MCU

Memories

Name
[RAM_NS
~ [RAM
RAM_CPUD_S
RAM_CPUD_C
RZ
re Memories
0 fLASI
0 FLASI Name
0 pata [0 RAM_NS
A patr v~ [RAM

[J SDRre = RAM_CPUO_S
[ospic = RAM_CPUO_C
[ospIc = RAM_CPU1_S
0 osprr = RAM_CPUT C
[ospr- [FLASH_NS
[opTIC [0 FLASH
Summary |v 0 DATAFLASHNS
~1 [DATA_FLASH
[0 SDRAM
0 ospio_cso
[J ospi0_Cs1
[ospi1_cso

A neoin rer

Summary | Memaories

Start Size Core

0x32000000 0x1D4000

0x22000000 0x1D4000

0x22000000 CPUD

0x220EA000 CPUD
Start
0x32000000 0x18%4000
0x22000000 0x10%000
0x22000000
0x220EA000 0x0
0x220EA000 OxEADOD
0x221D4000 0x0
0x12000000 0x100000
0x02000000 0x100000
0x37000000 %0
0x27000000 0x0
0x68000000 0x8000000
0x80000000 0x10000000
0x30000000 0x10000000
0x70000000 0x8000000
M 7annnnnn Mweannnnnn

¥

Generate Project Content

Security R

Add Partition
Non-secure
Secure Remove Partition
Secure

Clear Partitions
Non-secure Callable

Generate Project Content
T ~
Core Security Add Partition
MNon-secure
Secure Remove Partition
CPUD Secure I
Clear Partitions
CPUOD MNon-secure Callable
CPU1 Secure
CPU1 Non-secure Callable Sort Partitions
Non-secure
Secure
MNon-secure
Secure

Figure 45. Example of RAM_CPUO_S Size Modification

Click to RAM > Add Partition.

Memories
Name Start Size Care
[1 RAM_NS 0x32000000 0x 104000
~v|[] rRAM 0x22000000 0x1D4000 |
= RAM_CPUD_S 0x22000000 OxE2000 CPUO
= RAM_CPUD_C 0x220EAQ00 0x0 CPUO
= RAM_CPU1_S 0x220EAQ00 OxEAO000 CPUT
= RAM_CPU1_C 0x221D4000 0x0 CPUT
[0 FLASH_NS 0x12000000 0x100000
[0 FLASH 0x02000000 0x100000
[] DATA_FLASH_NS 0x37000000 0x0
[] DATA_FLASH 0x27000000 Ox0
] sDraMm 0x63000000 0x8000000
[0 osplo_cso 0x80000000 0x 10000000
[ospio_cs1 0x90000000 0x 10000000
[ospii_cso 0x70000000 0x8000000
[ospi1_cs1 0x78000000 0x8000000
0x02CIF040 Oxd

[J OPTION_SETTING_OFSO
<

Summary | Memories

o

Generate Project Content

. ey
Security Add Partition

MNon-secure

Secure

Secure

MNon-secure Callable

Secure

MNon-secure Callable ort Partitions
MNon-secure

Secure

Mon-secure

Secure

Secure

Figure 46. Example of Adding Partition for Shared Memory Region

In the New Partition pop-up window, as in Figure 47, complete all required fields and click OK.

RO1AN7881EU0100 Rev.1.00

June.30.25

RENESAS

Page 31 of 48

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Q New Partition O X

Memory resource
Name: RAM

Start: 0x22000000
Size: Ox1D4000

Memory partition
Name: | SHARED_MEM |

Start: | 0x220E2000 |

Size: | 0x8000 |

Care: CPUD o

Security: | Secure e

Figure 47. Example of Defining a Shared Memory Partition

If an error message appears indicating, "Partition does not follow address order," this means that the
memory partitions are not arranged in a strictly increasing address sequence.

To resolve this issue, click Sort Partitions to reorder them correctly, as illustrated in Figure 48. This ensures
proper memory mapping and prevents address conflicts during the build process.

. O
Memories Generate Project Content
Name Start Size Core Security &

D RAM_NS 0x32000000 0x1D4000 MNon-secure

v @ RAM 0x22000000 0x1D4000 Secure
= RAM_CPUD S 0x22000000 0xE2000 CPUO Secure o
Clear Partitions

@ RAM_CPUODC 0x220EADOO O0x0 CPUO Mon-secure Callable
€ RAM_CPU1_S 0x220EAQ00 OxEAQD0 CPU1 Secure
@ RAM_CPU1_C 0x221D4000 0x0 CPU1 Non-secure Callable
€ SHARED_MEM 0x220E2000 0x8000 CPUOD Secure

U FLASH_NS 0x12000000 0x100000 MNon-secure

[0 FLASH 0x02000000 0x100000 Secure

U DATA_FLASH_NS 0x37000000 0x0 MNon-secure

[] DATA_FLASH 027000000 0x0 Secure

[sDrRaM 0x68000000 0x8000000

Figure 48. Example of Shortening Partitions in RAM

The successfully set up partitions are shown in Figure 49 below.

RO1AN7881EU0100 Rev.1.00 Page 32 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

o

Memories Generate Project Content
MName Start Size Core Security a
RAM_NS 0x32000000 Ox1D4000 Non-secure
[0 RAM 0x22000000 0x1D4000 Secure Remove Partition
= RAM_CPUD_S 0x22000000 0xE2000 CPUO Secure -
— Clear Partitions
==, SHARED_MEM 0x220E2000 0x8000 CPUD Secure
= RAM_CPUD_C Ox220EAQ00 0x0 CPUO MNon-secure Callable
= RAM_CPU1_S 0x220EAQ00 OxEAQQCQ CPU1 Secure Sart Partitions
= RAM_CPU1_C 0x221D4000 0x0 CPUT MNaon-secure Callable
[FLASH_NS (12000000 100000 Non-secure
[0 FLASH 0x02000000 0x100000 Secure
U DATA_FLASH_NS 0x37000000 0x0 Non-secure
[] DATA_FLASH 0x27000000 0x0 Secure
A cnram MAE2NNNNNN MannNNNNN

Figure 49. Example of Successful Setup of Shared Memory Partitions
After completing the configuration, click Generate Project Content.
Next, right-click the solution project and select Build Project to compile the changes.

Upon a successful build, verify the creation of the shared memory partition by double-clicking the . sbd file
located at <solution_project>/build/*. sbd. This file confirms the correct partitioning of the shared
memory region.

MName Start Size Core Security &
U RAM_MS 0x32000000 0x 104000 Non-secure
v [J RAM 0x22000000 0x1D4000 Secure
= RAM_CPUO_S 0x22000000 0xE2000 CPUO Secure
= SHARED_MEM 0x220E2000 (%8000 CPUO Secure
= RAM_CPUD C Ox220EAQ00 Ox0 CPUD Non-secure Callable
= RAM_CPU1_S 0x220EADQQ OxEAD0O CPU1 Secure
= RAM_CPU1 C Ox22104000 Ox0 CPuN Mon-secure Callable
U FLASH_NS Ox12000000 0100000 MNon-secure
[0 FLASH 0x02000000 0x100000 Secure
U DATA_FLASH_NS O0x37000000 Ox0 Mon-secure v

Summary Peripherals | Symbols

Figure 50. Example of Successful Creation of Shared Memory Partitions

From this point forward, the application can allocate buffers within the shared memory area. The
implementation process is illustrated in Figure 51. This configuration guarantees that buffers reside in the
shared memory space, enabling seamless data exchange between the two cores.

R AR O R R KR RO KA R O K R RR KRR K R ORR K ORK HRRRHK RO ROK R K

* Global Variables

PR 3 A R OO ROR A OO OR R R HORORRR K A OOROR R KK RO R R RO

uint8 t g periodic_irg flag = RESET_FLAG;

uint8 t g alarm irq flag = RESFT _FLAG:

share_mem_t share_memory|BSP_PLACE_IN SECTION(".shared mem") |= {.buf out = {RESET_VALUE},
.length = RESET_VALUE,
.time_buf = {RESET VALUE}};

Figure 51. Example of Placing the Sharing Buffer in the Shared Memory

The fundamental principle of shared memory management is to guarantee exclusive access by a single CPU
at any given time. This application employs a combination of hardware semaphores and inter-processor
maskable interrupts (Mls) to coordinate and control access arbitration between the cores efficiently.

RO1AN7881EU0100 Rev.1.00 Page 33 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU
5.2 RTOSI/IPC/Share Memory/TCM Projects

These example projects leverage the RTOS, IPC module, 10 interfaces, and TCM memory with data cache
enabled to facilitate communication between two CPU cores.

The application is adapted from the official Arm CMSIS-DSP FFT example to run on CPUO (CM85 core), with
computational tasks executed within TCM to maximize performance. FFT results are transmitted to the
second core through an RTOS queue based on the on-chip IPC module. The second core then outputs the
results via UART to a terminal interface.

When porting CMSIS-DSP examples from Arm, refer to application note RO1AN5865EU for detailed
integration guidelines.

In this implementation, a FreeRTOS-based queue is integrated with a hardware IPC message FIFO to
manage message transactions between the two cores, as illustrated in Figure 52.

:/ CPU1 Receive application

Buffer receive

CPUO Send application

i Buffer Send

APl send call API Receive data call

Software Queue Middleware ™ ." Software Queue Middleware “<
' Transmission Free RTOS Queue on E ' Transmission Free RTOS Queue on
: management CMB85 core block H : management CM33 core block
FSP Get Queue Take when Release after Notify P T d
IPC's send APl full status Receive queue is Ready each data processed Queue is full rocess any data
Renesas Flexible software
[HSEM 01] package FSP/HAL

IPC-Maskable Interrupts

IPC-32bit-FIFO
01

[CM85 Core J { CM33 Core }

Figure 52. FreeRTOS-based Inter-core Messaging via IPC Hardware

In the provided example, FreeRTOS queues are used in combination with hardware IPC to implement data
transactions in a dual-core system.

Alternatively, FreeRTOS message buffers or stream buffers can also be employed for inter-core
communication depending on the use case and data flow requirements.

RO1AN7881EU0100 Rev.1.00 Page 34 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

6. Verify the e?studio Projects

The e?studio project employs a split project development model to support dual-core application
development. Each core project is created as a separate one, utilizing Inter-Processor Communication (IPC)
to enable efficient communication and shared memory management between the two cores.

To build and run the example application project ek _ra8p1_dualcore in e?studio, please follow the procedure
outlined below.

6.1 Import The Projects
1. Launch e?studio IDE.

2. Select any workspace in Workspace launcher.
3. Close the Welcome window.
4. Select File > Import.
5. Select Existing Projects into Workspace from the Import dialog box.
6. Select archive file “ek_ra8p1_dualcore.zip” in the file named ra8x_dual_core.zip.
7. Select solution project and developed project samples on each core as shown below, click Finish
&) import d X
Import Projects S
Select a directory to search for existing Eclipse projects. f j/
() Select root directory: Browse...
@ Select archive file: Ch\ek_ra8p1_dualcorezip V| ' Browse...
Projects:
ek_ra8p1_dualcore_CPUD (ek_raBp1_dualcore_CPUD/) Select All
ek_ra8p1_dualcore_CPU1 (ek_ra8p1_dualcore_CPU1/}
Deselect All
ek_ra8p1_dualcore (ek_ra8p1_dualcore/)
Refresh
Options

Search for nested projects

Copy projects into workspace
[] Close newly imported projects upon completion
[Hide projects that already exist in the workspace

Working sets
[] Add project to working sets New...

Select...

® < Back Next = Cancel

Figure 53. Example of Importing Projects into Workspace.

6.2 Build Projects

The easiest method is to click on the solution project (ek_ra8p1_dualcore) and select the “Build Project".
Building the projects individually requires building the CPUO project first, then the CPU1 project.

RO1AN7881EU0100 Rev.1.00 Page 35 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

6.2.1 Compile Project Developed on CM85 Core
Double-click on configuration.xml located in the ek_ra8pl_dualcore_CPU® project > Click “Generate
Project Content.

File Edit Source Refactor Mavigate Search Project RenesasViews Run Renesas Al Window Help
|® -4 B O ¥ Q-

I:tp 7 & = B & ekragpl_dualcore_CPUO] FSP Configuration X

Project Explorer X = O
= ek ra8p1_dualcore

v ek_ra8p1_dualcore_CPUO [Debug]

0

Stacks Configuration Generate Project Content

s Includes
@B ra Threads [=] HAL/Common Stacks < | New Stack >
= ra_gen v & HAL/C
_ = ommaon o) B .
B o - . % g_ioport I/0 Port @ g_adc0 ADC Driver on & g_ipc
E2 src
- ¥ g_ioport /O Port (r_ioport) (r_ioport) r_adc_b
= Debug @ g_adc0 ADC Driver on r_adc_b
= ra_cfg @ g_ipc0 IPC (r_ipc) @ @ @
(%= script @ g_ipel IPC (r_ipc)
@ g_rtc Realtime Clock (r_rtc)
|%] ek ra8p1_dualcore CPUO Debug_Flatlaunch & g_ipc_sem_smem IPC Semaphare
- ra_cfg.t @ g_ipc_sem_input IPC Semaphare
(?) Developer Assistance
T_ré ek_ra8p1_dualcore_CPU1
Objects
< >

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Figure 54. Example of Generating Project Content on CPUO Project

After generating the project content, right-click on ek_ra8p1_dualcore_CPUQ, then select Build Project to
compile the CPUO core application.

File Edit Source Refactor Mavigate New > pw Help
ﬁ;vﬁgv B &| O Go Into
Open in New Window
) = & 57
Project Explorer FS Y Show In Alt=Shift«W > on X
E ek ragpi_dualcore Show in Local Terminal >
[V B ek_ra8p1_dualcore_CPUO [Debug]l
- 5] Copy Ctrl+C
[si Includes
8 ra Paste Cul+V k [F
@8 ra_gen K Delete Delete
e Source >
pc)
2 src
~ Move...
= Debug
~ Rename... F2
= ra_cfg
(= script L Import..
%% configurationxml 1 Export..
|X| ek_ra8p1_dualcore_CPUO Debug_ Renesas FSP 4
=l ra_cfg.txt | BuildProject |
(2) Developer Assistance Clean Project
Tlé ek_raBp1_dualcore_CPU1 Refresh E5
Close Project
Close Unrelated Projects
Build Targets >
Index >
P e emat .

Figure 55. Example of Building CPUO Dual-Core Project

Verify that the build completes successfully by checking the output in the Build Log console.

RO1AN7881EU0100 Rev.1.00
June.30.25

Re Page 36 of 48
RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

6.2.2 Compile Project Developed on CM33 Core

In the ek_ra8pl_dualcore_CPU1 project, double-click on configuration.xml, then click Generate
Project Content to apply the configuration settings for the CPU1 core.

File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help
B -4 -8 : HF-Q-

Project Explorer X = <§> i § = 0 ,r [ek_ra8p1_dualcore_CPU1] FSP Configuration X = O
= ek ra8p1_dualcore

= ek_ra8p1_dualcore_CPUO
[’ =] ek_raBp1_duaIcore_CPU1|

Stacks Configuration

Generate Project Content

) Includes Threads = HAL/Common Stacks % | New Stack >
2 src v 5; HAL/Common o on & 5 UART b
N " rt rt rti rt;
script 4 g_ioport I/O Port (r_ioport) b ?rflizzgrt)/ ° g-ua (rsci.b-vart
4 g_uart8 UART (r_sci_b_uart) -
%] ek_ra8p1_dualcore_CPU1 Debug_Attach.laur 4 g_ipc0 IPC (r_ipo) 6] @
X| ek_ra8p1_dualcore_CPU1 Debug_Multicore.l: 4 g_ipc IPC (r_ipc) A L]
X| ek_ra8p1_dualcore_CPU1 Debug_Multicore L 4 g_ipc_sem_smem IPC Semaphore : ;
S 2 cigt Py T 4 g_transfer0 Transfer & g_transfer! Transfer
o e] g_ipc_sem_input IPC Semaphore (r_dtc) SCIS TXI (r_dtc) SCI8 RXI (Receive
(2) Developer Assistance (Transmit data empty) data full)
@ @
Objects
< >

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Linker Sections | Stacks | Components

Figure 56. Example of Generate Project Content on CPU1 Project

After the content is generated, right-click on ek_ra8p1_dualcore_CPU1, then select Build Project to
compile the CPU1 core application.

File Edit Source Refactor Mavigate New > ow Help
B - 5& - Bie | . Go Into
Project Explarer = <'l==:> 7 Open in New Window on
Show In Alt+Shift+W >
= ek radpl_dualcore Show in Local Terminal >
= ek _ra8p1_dualcore_CPUD
[vrlé ek_rasp1_dualcore_CPU1 [Debugl = SOW Ctrl+?
| Includes aste R = -
8 ra ¥ Delete Delete
(2 ra_gen Source 5
2 src Move..
€ Debug Rename... F2 (
2 ra_cfg 1 Import..
(= script 2 Export..
4% configurationxml Renesas FSP ’
X| ek_ra8p1_dualcore_CPU1 Debug,
X| ek_ra8p1_dualcore_CPU1 Debug, Clean Project I
X| ek_ra8p1_dualcore_CPU1 Debug. | Refresh F5
=| ra_cfg.txt Close Project I
" Developer Assistance Close Unrelated Projects

Figure 57. Example of Build CPU1 Dual Core Project
Ensure that the build completes successfully by checking the output in the Build Log console.

Alternatively, the build process for both cores can be executed through the solution project. Right-click on the
ek_ra8pl_dualcore solution project and select Build Project, as shown in Figure 58. This command will
sequentially build all projects within the solution, following the order: CPUO — CPU1.

RO1AN7881EU0100 Rev.1.00 Page 37 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

File Edit Navigate Search Project RenesasViews Run Renesas Al Window

| ® K- BiE % Q-

Project Explorer X = O Tr [ek_ra8p1_dualcore] Solution Cor
=& 57 8 .
=S ° Memories
Y = ek ra8p1_dualcore
v &, C/C++ Projects New >
E3 ek_radp1_du Go Into
ik
(2 ekragpldu gpoyn Alt+Shift+W >
= build Show in Local Terminal >

o)
o solutionxml

" =| Copy Ctrl+C
= ek ra8p1_dualcore
£ Paste Ctrl+V
I~ ek_ra8p1_dualcore
Delete Delete
Move...
Rename... F2
=g Import..
iy Export..
Renesas FSP »

Build Project Ctrl+B

Dnfrnch rc

Figure 58. Example of Build RA Solution Project Dual Core

6.3 Download and Run Projects

As described in the debug settings in Section 3.2, the device must be initialized in the OEM_PL2 state, and
TrustZone boundary settings are not required for this configuration.

To start a dual-core debug session, open the Debug Configurations dialog as shown in Figure 59.

Select "ek_ra8p1_dualcore_ CPU1 Debug_Multicore Launch Group,” then click Debug as illustrated in Figure
60 to simultaneously launch debug sessions for both cores.

File Edit Mavigate Search Project Renesas Views Run Renesas Al Window Help

E RS =HoIE"

Project Explorer < (no launch history) re_CPUQ] FSP Configuration <
Debug As > .
I=F ek_ra8p1_dualcore I Debug Configurations.. I ration
=5 ek _ra8p1_dualcore_CPU(Szl ez

Tgé ek_ra8p1_dualcore_CPU1 Threads =

4 ‘,f HAL/Common
& g_ioport IO Port (r_ioport)
4 g_adc0 ADC Driver on r_adc_b
4 g_ipc0 IPC (r_ipc)
4 g_ipct IPC (r_ipc)
P g_rtc Realtime Clock (r_rtc)
4 g_ipc_sem_smem IPC Semaphore
& g_ipc_sem_input IPC Semaphore

Objects

< > Summary | BSP | Clocks | Pins | Interrupts | Event Links | L

Figure 59. Example of Select Debug configuration on Toolbars

RO1AN7881EU0100 Rev.1.00 Page 38 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Q Debug Configurations O X

Create, manage, and run configurations

Launch several other configurations sequentially

<> e T=n) — -
P < = X | = MName: | ek_ra8p1_dualcore_CPU1 Debug_Multicore Launch Group
| type filter text | L Launches =] common
't | C/C++ Application Name Mode
] C/CH+ Rz_emote Application '] Renesas GDB Hardware Debugging:ek_ra8p1_ Inherit
EASE Script '] Renesas GDB Hardware Debugging:ek_ra8p1_ Inherit

't | GDB Hardware Debugging
E_| GDB Simulator Debugging (RH850)
vl Launch Group
2 ek_radp1_dualcore_CPU1 Debug_Multicore Launch Group]
w || Renesas GDE Hardware Debugging
= ek_ra8p1_dualcore_CPUQ Debug_Flat
E_| ek_ra8p1_dualcore_CPU1 Debug_Attach
= ek_raB8p1_dualcore_CPU1 Debug_Multicore
't | Renesas Simulator Debugging (RX, RL78)

i i Revert Apply
Filter matched 12 of 14 items

®

Figure 60. Example of Debug with Multicore Launch Group

The debugging information will appear on the debug console. Before clicking Resume to start application
execution, it is necessary to configure the Tera Term terminal to monitor the output and verify application

behavior.
To set up the terminal, follow the steps below:
1. Open Tera Term (Figure 61).

2. Select the appropriate J-Link CDC UART Port from the serial connection options to establish
communication with the target device (Figure 62).

Enable Local Echo by navigating to Setup > Terminal and checking the Local Echo option (Figure 62).

4. Configure the terminal settings by selecting Setup > Serial Port, then adjust the baud rate and other
serial parameters according to the project requirements (Figure 63).

Tera Term: New connection X

OTCPIP myhost.example.com

History

22

Telnet

SSH SSH2

Other

UNSPEC

® Serial Port: ICOM3 lnteI(R] Acth.re Management Tec |

COM13B JLink CDC UART Por‘l (COM133)

Figure 61. Example of Connect to Tera Term terminal

RO1AN7881EU0100 Rev.1.00 Page 39 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

€ COM138 - Tera Term VT - u] b ‘
File Edit | Setup Control Window Help
Terminal...
Window..
Font...
Tera Term: Terminal setup X
Keyboard...
I port... . n ;
Serial port Terminal size New-line
SSH... 180] X |24 Receive: CR v
SSH Authentication... i .
Term size = win size Transmit: cR v Cancel
SSH Forwarding...
SSH KeyGenerator... Auto window resize
TCP/IP... Help
General... Terminal ID: VT100 v
Additional settings..
Answerback: [Auto switch (VT<->TEK)
Coding (receive) Coding (transmit)
UTF-8 v UTF-8 v
locale: ‘american CodePage: (65001

Figure 62. Example of Enable Local echo Tera Term Terminal

v COM138 - Tera Term VT - O X
File Edit| Setup | Control Window Help
Terminal...

Window..

Font.,

Keyboard...

Serial port...

Proxy...
SSH...

SSH Authentication...
SSH Forwarding...
SSH KeyGenerator...
TCP/IP...

Tera Term: Serial port setup

Port: COM138 v

Data: 8 bit v Cancel
General.
Additional settings... Parity: none
Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

Figure 63. Example of Serial Port Set Up in Tera Term Terminal

After completing the TeraTerm terminal setup, return to e?studio and click Resume three times to start the
application execution.

The initial screen layout should appear as shown in Figure 64.

T COM152 - Tera Term VT — O >
File Edit Setup Control Window Help

Set RIC Calendar Date and Time.
Set RTC alarm to toggle the LED at a specific second.
Stops/Start Scan Temperature

Figure 64. Initial Terminal Layout of the Application

Depending on the selected user input options, the terminal layout will dynamically change. Figure 65
illustrates the various terminal layouts corresponding to different user inputs.

RO1AN7881EU0100 Rev.1.00 Page 40 of 48
June.30.25 RENESAS

Renesas RA Family

Developing with Developing with RA8 Dual Core MCU MCU

Temperature log in
“ 4Degree Celsius

Real-time Clock
Calendar Date and Time

Help

Date 25: @6 A
Time 15: 25

emperature: 20.70 deg C
Set RIC Calendar Date and Time.
Set RIC alarm to toggle the LED at a specific second.
Stops/Start Scan Temperature

er Input :

.=~
L]

Banner information

[INFO1: Scanning Temperature... and User input

[INFO1: The LED will change its state when alarm occurs

Runtime log Information

Figure 65. Overview of Application Terminal Layout

Note: The RTC alarm will be activated when the alarm setting for seconds matches the seconds counter in
the RTC.

To operate the application project, follow this sequence: option 1 — option 2 — option 3. This sequence is
necessary because both the temperature printing and the RTC alarm are triggered by the RTC timer.

RO1AN7881EU0100 Rev.1.00 Page 41 of 48

June.30.25 RENESAS

Renesas RA Family

Developing with Developing with RA8 Dual Core MCU MCU

7. Verify the FreeRTOS-Based Projects

7.1 Import The Projects
1. Launch eZstudio IDE.

Noakwd

Select any workspace in Workspace launcher.

Close the Welcome window.

Select File > Import.

Select Existing Projects into Workspace from the Import dialog box.
Select archive file “dsp_example_dual_core.zip” in the file named ra8x_dual_core.zip.
Select solution project and developed project samples on each core as shown below, click Finish.

Q Import

Import Projects

Select a directory to search for existing Eclipse projects.

(O select root directory:

O X

Browse...

@ Select archive file: I C\dsp_example_dual_core.zip I

V| E Browse...

Projects:

RABP1_DSP_example_cpu0 (dsp_example_dual_core/RA8P1_DSP_example_cpu0/)
RABP1_DSP_example_cpul (dsp_example_dual_core/RA8P1_DSP_example_cpul/)
RABP1_DSP_example (dsp_example_dual_core/RASP1_DSP_example/)

Select All

Deselect All

Refresh

Options
Search for nested projects
Copy projects into workspace
[Close newly imported projects upon completion

[Hide projects that already exist in the workspace
Working sets

[] Add project to working sets

Select...

® < Back Mext = Cancel

Figure 66. Example of Build DSP Example Project.

7.2 Build Projects

Build the projects sequentially in the order CPUO — CPU1, as detailed in Section 6.2. Alternatively, right-
click on the solution project and select Build Project to compile all contained projects at once, as illustrated in

Figure 67.

RO1AN7881EU0100 Rev.1.00

June.30.25

RENESAS

Page 42 of 48

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

File Edit Source Refactor Mavigate Search Project RenesasViews Run |
| - \ - E (-} '%{; - % -
Project Explorer X =

=" RA8P1_DSP_example|
| _example New >
=% RABP1_DSP_example Go Into

= 7
&

ooo

= 08

Show In Alt+Shift+W >
Show in Local Terminal >

2] Copy Ctrl+C
Paste Ctrl+V

& Delete Delete
Move...

Rename... F2

Import...

L. E

Export...
Renesas FSP >

Build Project Ctrl+B

Refresh F5
Close Project
Close Unrelated Projects

Figure 67. Example of Build DSP Example Project.

Ensure that the build completes successfully for both CPUO and CPU1 projects by verifying the build status
in the Build Log console.

7.3 Download and Run Projects

As described in Section 3.2, the device must be initialized in the OEM_PL2 state, with no TrustZone
boundary settings required.

To start debugging both cores simultaneously:
1. Open Debug Configurations as shown in Figure 68.
2. Select “RA8P1_DSP_example_cpu1 Debug_Multicore Launch Group.” as shown in Figure 69.

3. Click Debug to launch the dual-core debug session.

Eile Edit Source Refactor Mavigate Search Project Renesas Vi

(%~ & -8 sl -

Project Explorer X (no launch history)

= RASP1_DSP_example Debug As >

vy = RASP1_DSP_example_cf Debug Configurations...
1 Binaries Organize Favorites...

[rtH Includes
(2 ra

= ra_gen
(2 src

= Debug
= ra_cfg
= script

Figure 68. Example of Open Debug Configuration in DSP Example

RO1AN7881EU0100 Rev.1.00 Page 43 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

ﬁ Debug Configurations O s
Create, manage, and run configurations '
Launch several other configurations sequentially J]
T [ef ¢ %| =i Name: | RA8BP1_DSP_example_cpul Debug_Multicore Launch Group
type filter text | & Launches | [Common
'c | C/C++ Application Name Mode Actig
c | C/C++ Remote Application [£] Renesas GDB Hardware Debugging:RA8P1_D¢ Inherit

EASE Script [£¥] Renesas GDB Hardware Debugging:RA8P1_D¢ Inherit

't | GDB Hardware Debugging
£ GDB Simulator Debugaging (RHB50)
W ﬂ | aunch (Groun
[n'ﬂ. RA8P1_DSP_example_cpul Debug_Multicore Launch Group]
+ [£7 Renesas GDB Hardware Debugging
=] RA8P1_DSP_example_cpul Debug_Flat
= RASP1_DSP_example_cpul Debug_Attach
't RA8P1_DSP_example_cpul Debug_Multicore >
7 Renesas Simulator Debugging (RX, RL78)

Apply

]
m
T

Filter matched 12 of 14 items

@ Close

Figure 69. Example of Debug DSP Dual Core DSP Example

Open the serial terminal and connect to the J-Link CDC UART Port with the following settings: Baud rate
115200 bps, 8-bit data, none parity, 1 stop bit, and no flow control. The Figure 70 and Figure 71 illustrate the

connection process and configuration steps using Tera Term terminal.

Tera Term: New connection

myhost.example.com

O TCPIP

History
22
lelnet
SSH SSH2
Other
UNSPEC

Port: \com InteI(R) Actlve ManagementTec v|

Figure 70. Example of Connect to JLink CDC UART Port

RO1AN7881EU0100 Rev.1.00 Page 44 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

[l

Tera Term: Serial port setup x

Port: COM154 ~

Data: 8 bit v Cancel
Parity: none

Stop bits: 1 bit N Help
Flow control: none

Transmit delay

0 msecichar 0 mseciline

Figure 71. Example of Set Up Tera Term Serial Terminal

Return to e? studio and press Resume P three times to execute the application across both cores. Upon
completion, the CMSIS-DSP FFT example will output its status to the terminal, as illustrated in Figure 72.

v
File Edit Setup Control Window Help

he DSFP application has finished execution.
ress =1 button to start application ...

186888 H=
? He
eak Frequency Bin 213

eak Freguency 28868 .88 H=
eak Magnitude 32757

213
ARM_MATH_SUCCESS
195828 cycles (DUT>
1?25.82 Cus>

ezt Status
PU Cycle=z Used

he DSFP application has finished execution.
ress =1 button to start application ...

Figure 72. The Successfully Result Log CMSIS-DSP FFT Example

RO1AN7881EU0100 Rev.1.00 Page 45 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

8. References
The following documents were used in creating this Quick Design Guide:

¢ RA8P1 Group User's Manual: Hardware, document No. RO1UH1064

o RA8P1 Memory Architecture App Note, document No RO1AN7880

¢ Reference System Design for Vision Al Design using Ethos-U NPU, document No. R11AN0995

e Using the Ethos-U NPU with RA8 MCUs, document No. RO1AN7712

e Arm Cortex®-M85 Processor Technical Reference Manual, document No. 101924, available from Arm

RO1AN7881EU0100 Rev.1.00 Page 46 of 48
June.30.25 RENESAS

Renesas RA Family Developing with Developing with RA8 Dual Core MCU MCU

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

RA Product Information www.renesas.com/ra

RA Product Support Forum www.renesas.com/ra/forum

RA Flexible Software Package www.renesas.com/FSP

Renesas Support Wwww.renesas.com/support

RO1AN7881EU0100 Rev.1.00 Page 47 of 48

June.30.25 RENESAS

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

Developing with Developing with RA8 Dual Core MCU MCU

Revision History

Description
Rev. Date Page Summary
1.00 June.30.25 - Initial release
RO1AN7881EU0100 Rev.1.00 Page 48 of 48
June.30.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

1.

12.

13.
14,

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Example Application Overview
	2. RA8 Dual Core MCU
	3. Create RA8 Dual Core Application with Renesas e2studio
	3.1 Create A Solution Project for RA8P1 Dual Core MCU
	3.2 Debug and Run RA8 Dual Core Project on Cortex®-CM85 Core and Cortex®-CM33 Core

	4. Developing Application Using RA8 Dual Core MCU
	4.1 Partition the system and maximize performance
	4.2 Using Inter-Processor Communication in Application
	4.2.1 Using Inter-Processor Interrupts
	4.2.2 Using Inter-Processor Communication FIFO Messages.

	4.3 Using Shared Memory and Resources in RA8 Dual Core MCU
	4.3.1 Using Share Memory and Resources in FSP Flat Projects
	4.3.2 Using Share Memory and Resources in RTOS Based Projects

	4.4 Utilize Caches and TCM In RA8 Dual Core Applications
	4.4.1 Tightly Coupled Memory (TCM)s
	4.4.1 Improve Performance Using ITCM
	4.4.2 Improve Performance Using DTCM
	4.4.3 Improve Performance Using CTCM
	4.4.4 Improve Performance by Utilizing Data Cache Cortex®-CM85 Core
	4.4.5 Using Neural Processing Unit (NPU)

	5. Application Projects
	5.1 IPC - Share Memory Project
	5.1.1 Implement Inter-Processor Communication in Application.
	5.1.2 Implement Share Memory between Two Cores in Application.

	5.2 RTOS/IPC/Share Memory/TCM Projects

	6. Verify the e2studio Projects
	6.1 Import The Projects
	6.2 Build Projects
	6.2.1 Compile Project Developed on CM85 Core
	6.2.2 Compile Project Developed on CM33 Core

	6.3 Download and Run Projects

	7. Verify the FreeRTOS-Based Projects
	7.1 Import The Projects
	7.2 Build Projects
	7.3 Download and Run Projects

	8. References
	Revision History

