

Application Note

I2C to SPI Converter using SLG47011V

SLG47011

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 1
© 2025 Renesas Electronics

This application note shows the implementation of an I2C to SPI converter using the SLG47011V. The

SLG47011V was chosen for this purpose because it contains all the necessary macrocells, such as Shift

Registers, I2C Host Interface, Width Converter, Memory Table, and CNT/DLY. These features make the

SLG47011V a perfect option for implementing an I2C to SPI converter.

Additionally, the SLG47011V offers high flexibility, allowing easy adaptation to various system requirements.

This makes it not only a convenient but also a reliable solution for a wide range of applications.

Contents

1. Introduction .. 2

2. GreenPAK Design .. 2

2.1 Writing SPI data ... 4

2.2 Reading SPI data ... 7

3. Results .. 8

4. Conclusions ... 10

5. Revision History .. 11

References

For related documents and software, please visit: AnalogPAK | Renesas

Download our free Go Configure Software Hub [1] to open the .aap file [2] and view the proposed circuit design.

Use the AnalogPAK development tools [3] to freeze the design into your own customized IC in a matter of

minutes. Renesas Electronics provides a complete library of application notes [4] featuring design examples, as

well as explanations of features and blocks within the Renesas IC.

[1] GreenPAK Go Configure Software Hub, Software Download and User Guide, Renesas Electronics

[2] AN-CM-409 I2C to SPI Converter using SLG47011V.aap, AnalogPAK Design File, Renesas Electronics

[3] GreenPAK Development Tools, AnalogPAK Development Tools Webpage, Renesas Electronics

[4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Renesas Electronics

Author: Andrii Velikhovskyi, Application Engineer, Renesas Electronics

Terms and Definitions

SHR Shift register

CNT/DLY Counter/Delay block

https://www.renesas.com/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/analogpak
https://www.renesas.com/en/software-tool/go-configure-software-hub
https://www.renesas.com/en/document/scd/cm-409-i2c-spi-converter
https://www.renesas.com/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/analogpak/slg47011-greenpak-programmable-mixed-signal-matrix-adc-and-analog-features#design_development
https://www.renesas.com/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_sub_types%5B756%5D=756&doc_file_sub_types%5B761%5D=761&doc_file_sub_types%5B766%5D=766&doc_file_sub_types%5B771%5D=771&doc_file_sub_types%5B776%5D=776&doc_file_sub_types%5B781%5D=781&doc_file_sub_types%5B786%5D=786&doc_file_sub_types%5B791%5D=791&doc_file_sub_types%5B796%5D=796&doc_file_sub_types%5B801%5D=801&doc_file_sub_types%5B806%5D=806&doc_category_tier_1=1570441&doc_category_tier_2=1570446&page=0

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 2

1. Introduction

In modern electronic systems, it’s important for different devices to communicate effectively to achieve the best

performance. A common issue is connecting devices that use different communication protocols, such as I2C

and SPI. To solve this, an I2C to SPI converter can be used, which allows these two types of devices to

communicate with each other. This application note shows how to implement an I2C to SPI converter using the

SLG47011V IC.

The application note focuses on the practical steps for designing and using this converter. By following these

instructions, you can connect I2C and SPI devices, improving compatibility and making electronic systems more

flexible.

2. GreenPAK Design

The SLG47011V includes a Memory Table, Width Converter, I2C host interface and shift registers, which allows

to create an I2C to SPI converter. Figure 1 shows the GreenPAK design for this converter it can both read and

write SPI data through I2C. To write data, the Memory Table is used, which can store up to 4095 12-bit words. If

you fill all 4095 12-bit words, you will no longer be able to transmit more data over SPI. The Width Converter

then transform this data to MOSI SPI signal.

CNT3/DLY3 and LUT7 formed the internal oscillator, ensures writing, reading, and outputting SPI data. By

default, the oscillator is set to 1 MHz, providing a stable and reliable clock source for the system. However, this

frequency can be adjusted by rewriting the CNT3/DLY3 counter data via the I2C interface, providing flexibility in

various applications.

For reading data, the SLG47011V uses six shift registers to store incoming SPI data. This design allows up to

six bytes to be read at a time. CNT4/DLY4 and LUT5 limit the read data to six bytes, ensuring that the data is

correctly read and processed. This internal limitation is important for keeping the data accurate and preventing

overflow. The recording of the input data starts at the beginning. However, there is flexibility in adjusting the start

of the recording by changing the counter data of CNT4/DLY4. For instance, it is possible to configure the design

to start recording six bytes after the fifth byte is read. This feature allows for precise control over data capture,

accommodating various timing and sequencing requirements in complex communication scenarios.

Figure 1. GreenPAK Design

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 3

Figure 2. CNT/DLY marcocells settings

Figure 3. Memory Table and Width Converter marcocells settings

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 4

Figure 4. Design marcocells settings

2.1 Writing SPI data

Let's take a closer look at the SPI writing process. First, we need to write the value ‘0x84’ to the 0x155 register

via I2C, which switches the memory table to RAM mode and makes it possible to write the data that will be sent

via SPI. Table 1 lists the I2C register control data which will help to choose correct register.

Table 1: Channel Selection vs different conditions

Address Byte Register Bit Block Function

0x23 reg<280:287> SHR0 Read current data in Shift Register0

0x25 reg<296:303> SHR1 Read current data in Shift Register1

0xDA reg<1744:1751> SHR2 Read current data in Shift Register2

0xDC reg<1760:1767> SHR3 Read current data in Shift Register3

0xDE reg<1776:1783> SHR4 Read current data in Shift Register4

0xE0 reg<1792:1799> SHR5 Read current data in Shift Register5

0x61
reg<776> I2C Virtual input 0 Set CS signal

reg<777> I2C Virtual input 1 Set write signal

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 5

The data in the memory table is stored in registers 0x200 – 0x21FE. It is important to note that registers in the

memory table are organized in 12-bit segments. For example, you can store 12 bits in the registers at address

0x200 and 0x201, and this applies similarly to each word.

So, if we need to write several 8-bit words into the memory table, the first word will be fully written into the first

12-bit segment, leaving the last 4 bits empty. The first 4 bits of the next 8-bit word will then be written into these

last 4 bits of the first 12-bit segment. The remaining 4 bits of this second 8-bit word will be written into the second

12-bit segment then the third 8-bit word will be fully written to the second 12-bit segment, and so on

Let’s look at an example. Imagine we need to send the following sequence of 8-bit words: 0xAB, 0xCD, and

0xEF. You would start by writing 0xAB into the first 8 bits of register 0x200. Then, the first 4 bits of the next

register, 0x201, would be used to store the first 4 bits of 0xCD. Consequently, the remaining 4 bits of 0xCD

would be stored in the first 4 bits of register 0x202. The last 4 bits of register 0x202 and the first 4 bits of register

0x203 would be used to store the entirety of 0xEF. Figure 5 shows how this example appears in the Memory

Table Data Editor."

This process of overlapping the storage of 8-bit words into 12-bit registers ensures efficient use of memory

space and alignment with the chip’s data transmission protocol.

reg<778> I2C Virtual input 2 Reset the Shift registers

0х155 reg<2728>
Memory table mode

switch
Switch between RAM and ROM mode

0x200-0x21FF reg<4096:69631> Memory table Read data from memory table

0xF4 reg<1952:1959> CNT3/DLY3 counter data Set frequency (default 1MHz)

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 6

Figure 5. Example sequence of storing 8-bit words: 0xAB, 0xCD, and 0xEF in the memory table

This method of data storage requires careful attention to detail, particularly in managing the overlap between

registers. Any miscalculation or oversight can lead to data corruption or misalignment, which would subsequently

result in errors during data transmission over SPI. It is crucial to implement a precise algorithm for handling the

writing process, ensuring that each 8-bit word is correctly partitioned and allocated to the appropriate registers

without overlapping which can cause errors.

Additionally, it is beneficial to implement verification steps to check the integrity of the written data before it is

transmitted via SPI. This can be achieved by reading back the data from the memory table and comparing it with

the intended values. Any discrepancies can be corrected before the final transmission, which will ensure the

reliability and accuracy of the data communication process.

After writing the data to the memory table, we need to write the value ‘0x8F’ to the 0x155 register. This switches

the memory table to ROM mode and enables the ability to output the written data via SPI.

Finally, we write the value ‘0x03’ to the 0x61 register to set the I2C virtual inputs 0 and 1 (CS and write signal,

respectively) to a HIGH level. This initiates the internal 1 MHz oscillator and begins sending SPI data via the

MOSI signal.

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 7

2.2 Reading SPI data

To read data via SPI, we must first set I2C virtual input 2 to a HIGH level and subsequently set input 0 to a HIGH

level. This command set can be sent without an additional time gap between them. Once I2C virtual input 0 is set

to HIGH, the internal clock starts. After 12 cycles of the internal clock, this signal reaches Pin 6, and at this point,

the data read via SPI is written to the shift registers. Table 1 lists the addresses for all shift registers from which

you can read SPI data. After 48 cycles of the internal clock, the data will no longer be written. This means any

data transfer operations must be completed within this 48-cycle window to ensure data integrity. However, even

after this period, the oscillator will continue to operate until I2C virtual input 0 is set to LOW.

To optimize performance, ensure that all necessary preparations are made before initiating the data transfer.

This includes configuring the SPI and I2C interfaces correctly, verifying all timing requirements, and ensuring that

any other system dependencies are met. Additionally, consider implementing error-checking mechanisms to

handle any potential issues that may arise during the data transfer process. This could include verifying the

integrity of the data before and after transfer, monitoring the internal clock cycles to ensure proper timing, and

implementing retries or error correction protocols as necessary. By taking these precautions, we can enhance

the robustness of our system and reduce the likelihood of data corruption or communication failures.

Here is an I2C command example of writing and reading the SPI data

Writing SPI data

[start] [0x08] [w] [0x00] [0x61] [0x00] [stop] //Set CS and write signal to 0, reset the shift registers.

[start] [0x08] [w] [0x01] [0x55] [0x84] [stop] //Set Memory Table to “Storage” mode

[start] [0x08] [w] [0x02] [0x00] [0xB0] [0x0B] [stop] // write the data that will be converted to SPI

[start] [0x08] [w] [0x01] [0x55] [0x8F] [stop] // Set Memory Table to “Addr to Data” mode

[start] [0x08] [w] [0x00] [0x61] [0x07] [stop] // Set CS and write signal to 1, remove reset signal from shift

registers.

Reading SPI data

[start] [0x08] [w] [0x00] [0x23] [start] [0x08] [r] [xxxxxxxx] [stop] // read SHR 0 data.

[start] [0x08] [w] [0x00] [0x25] [start] [0x08] [r] [xxxxxxxx] [stop] // read SHR 1 data.

[start] [0x08] [w] [0x00] [0xDA] [start] [0x08] [r] [xxxxxxxx] [stop] // read SHR 2 data.

After reading the SPI data, the data needs to be processed.

Let’s go through an example. Suppose the SPI device sends the following words: 0x02, 0x80, 0xFE, and 0x50,

which are captured in the shift registers. When this data is read, we get the following results: from SHR0

(address 0x23), we read 0xE5; from SHR2 (address 0x25), 0x0F; and from SHR2 (address 0xDA), 0x28. As we

can see, the SPI data is split between registers: the last 4 bits of the first SPI word (0x2) are written to the first 4

bits of SHR0, while the next 4 bits contain the first 4 bits of the next word (0x08). To retrieve the original SPI

data, we need to merge the shift register data and then split it. Figure 6 illustrates the merged data, with the

expected SPI byte highlighted in red.

Figure 6. Merged data read via SPI data.

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 8

3. Results

Channel 1 (yellow/top line) – PIN# 7 (nCS).

Channel 2 (cyan line) – PIN# 6 (CLK).

Channel 3 (purple line) – PIN# 11 (MOSI).

Channel 4 (blue line) – PIN# 3 (MISO).

1. Design functionality. The process showing communication with the SPI device.

Channel 1 (orange/top line) – PIN# 4 (SDA).

Channel 2 (blue line) – PIN# 5 (SCL).

2. Writing data to the SPI device address via I2C.

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 9

3. Reading data from the SPI device through I2C. The data is stored in SHR0.

4. Reading data from the SPI device through I2C. The data is stored in SHR1.

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 10

5. Reading data from the SPI device through I2C. The data is stored in SHR2.

4. Conclusion

Overall, the SLG47011V offers a robust and flexible solution for I2C to SPI conversion, with its comprehensive

set of features designed to ensure reliable and efficient data transfer. Its ability to store substantial amounts of

data, coupled with flexible timing adjustments and accurate data conversion, makes it an ideal choice for

applications demanding high-performance communication between I2C and SPI interfaces.

I2C to SPI Converter

R19AN0406EE0100 Rev.1.00
May 19, 2025

 Page 11

5. Revision History

Revision Date Description

1.00 May 20, 2025 Initial release.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

