RLENESAS

Company confidential

Application Note
DA1468x Using Ozone/J-link for
Software Debugging
AN-B-040

Abstract

This Application Note describes the features and usage of the Ozone Debugger, SEGGER'’s
source-level debugger for embedded systems.

LENESAS

Company confidential

23-Dec-2021

AN-B-040
DA1468x Using Ozone/J-link for Software
Debugging
Contents
F N 01 £ = (o S PR UPPUPPRRRTN
CONTENTS .
I GUIES e
TADIES oo
1 Terms and definitioNSeeeiiiiiiii e
2 REFEIENCES oo
3 INTrOAUCTION .o
4 INSTAlALION....eeiiii e
4.1 The Ozone DebUJQEr.......ccciiviiiiiiiiiieiiiee e
5 Using the Ozone DebUgQErcoiiiiiiiiiiiieiiiiieeee e
5.1 ProjeCt Wizard...........ccccuuieiiieeeie e
5.2 Debug Session........ccuuiiiiiiiiii e
6 Running the Debugger.......cccovvveiiiicci e
6.1 USEI ACLIONS ..coiiiiiiiiiiiiiee et
6.2 HOKEYS ...
6.3 ACHONS ...
6.4 Omissible ArguUMENLSccuviiiiiiiiiiiie e
7 BreakpointS ..o
7.1 Toggling Breakpointsccccvvrrieeeesiiiiiieeieee e seiiineeeenn
7.2 Data Breakpointccocceiiiiiiiiiiiiicnieee e
7.3 Breakpoint PropertieS.........ccccccvvvvieeeesiiiiiieeeeee e seivveeeenns
7.4 Breakpoint WiNAOWccooiiiiiiiiiieeniiiieiee e
7.5 Instruction BreakpointS..........cccovceieiiiiieiiiiiiec e,
7.6 Code Breakpoints.........cccceiiiiiiiiiiiie e
7.7 Function Breakpointscccceerieiiieiiiieee e
7.8 Conditional Breakpoints.........ccccccceeeeeiiiiciiiiiieee e,
7.9 Breakpoint Implementationcccocvveiiiiiieieniieee e,
7.10 Data Breakpointcccceviiieieiiieieee e
7.10.1 Editing Breakpoints..........cccooeuvvieeeeeeiiniiiiiieeeenn.
7.10.2 Breakpoint Attributescccoeeiviiee i
8 MEBMOIY .o
8.1 GENENC MEMOIY...cccoi ittt
8.2 Memory WINAOWccuuuiiiiiiiiiiiiiiieee e
8.3 Data SECHON.....cciiiie i
8.4 TOOIDAN ...
9 Debug WINAOWSoeeiiieeiiiciiieece e
9.1 MaAIN MENU .eeiiiiiiiei e
9.2 TOOIDAIS ...
9.3 StAtUS Barouiiiiiiiiiiiiiiiiiiiiiiii
9.3.1 Status MeSSageuuvvvrrrrrriiiiiiiiiiiiiiieiiieeneneannns
9.3.2 Caret POSItIONueiiiieiiiiiiiieeee e
Application Note Revision 1.3
CFR0014 2 of 66

© 2021 Renesas Electronics

RENESAS

Company confidential

23-Dec-2021

AN-B-040
DA1468x Using Ozone/J-link for Software
Debugging
9.3.3 Connection Statecoccveveviiieee e
9.4 Debug Information Windows............cccceeiiiiiiieeniieeeeinnen.
941 ContexXt MENUuuuvieiiiiiiiiiiiiiiiiiiiiieiieeee
9.4.2 Display FOrmat..........cccccoviieieiiiiiee e
9.4.3 Data Readbackccccovvvveeeiiiiiee e
9.4.4 Change Level High lighting...........ccccceviiienennnee.
9.4.5 Table WINdOWSccvvvvveieeiieeece e
9.4.6 WiINdows Layoutcooeeiiiiiiiiiiieeeeniiieeeenn
9.5 Code WINAOWS......cciiiiiiieiee et
9.5.1 Program Counter Trackingcccoccvveeeeeiinennnen.
9.5.2 Active Code WiNdOW...........coccuvieeeeeeenniiiiieennn.
9.5.3 SIdEDAr ..vvvviiee e
954 Sidebar ICoNS..........ceeviiiiiiii e
9.5.5 Code Line Highlightingccocceiiiiiiiniiineeee
9.6 DIAIOGS ..
9.6.1 User Preference Dialogccccoevcveeeiviiieeeninnen.
9.7 System Variable Editor...........cccccccveeeeiiiiiiiieieee e,
0.8 SOUICE VIBWET ...ttt
9.9 Disassembly WINAOWcueeeiiiiiiiiiiiiiee e
9.9.1 Mixed Mode Disassembly..........ccccoeeeeieiiinnnnnen.
9.10 CoNSO0Ie WINAOWcuviiiiiieeiiiiiiiiiieeee e
9.10.1 Command Feedback Messages............cccueeee...
9.10.2 J-Link MESSAJES.......eeeeiriiiieaiiiiieeiiiie e
9.10.3 Script Function Messagescccvvveeeeriireeennne
9.11 FUuNCtions WINAOWcoeiiiiiiiiiiiiiieee e
9.12 Threads Window- FreeRTOSccccccevvvvviiiiieeeee e
10 REQISTEIS w.eiiiiiiiiiie ettt
10.1 Register WiNdOWccceeeiiiiiiiiiiiiie e cciineeee e siianeee e
10.2 SVD FIIES w.veiieiiiiie ettt
10.3 REQISLEr GIOUPS ..ceiiiiiiieeiiiiiiee et ettt e e
10.4 Processor Operating Modecccoeeviiiiiiieeeieeeinniiieeeenn
10.5 Source File WINAOWcooiiiiiiiiiieeiiiiiiieeeee e
10.6 Local Data WiNAOWceeeeviiiieeiiiiiee e siiee e
10.7 Global Data WINAOWooievviiiiiieeeieiiiieeeee e
10.8 Terminal WINAOWccceeviiiiiiiiiiiie e
11 DeDUGGING ettt
11.1 Projects 37
11.1.1 Required Project Settings........ccccovcvveeeiniiieeennne
11.2 Program Files........ccoveeiiieiiiiieeece e
11.2.1 Supported File TYPES.....ccvvevriiiieiiieie e
11.2.2 Symbol Information...........ccccvvveeeeiiiiciiiineeeeene
11.2.3 Automatic Download.............cccceeeiiiiiiiiiiiinnennnne
11.2.4 Data ENdiannesscccccceeeiiiieeeiniiieeesniieee e
11.3 Start Debuggingccveeeveeiiiiiiieeece e
Application Note Revision 1.3
CFR0014 30f 66

© 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

IO 70 R @ o | o U=t o T 1Y o To [PP 39

11.3.1.1 Download ad RESELuuviiiieiiiicieiieee e 39

11.3.1.2 [[0 Y @ o = o S SRR 39

11.3.1.3 Attach to RUNNING Programocceeiiiiiiiieiiiiee e 41

11.3.1.4 Attach and Halt Programcccccceeoiiiiiiieiiee e 41

11.3.2 Initial Program OPEratiON..........cccicuueiieiiiiiie ittt 41

B = o 0 1 o T o1 SRR 41
Source Viewer: The PC line can be brought into view via the window’s context menu

entry “GoTo PC”, or by executing View.PCLiINe.ccccccoovvvivieeiee i 41

11.4.1 Setting EXECULION POINTcoiuiiiiiiiiiiie e 41

ST 1= o T8 To o [To @0 g 11 o] SRR 42

N R (=T AP P PP PPPPPPPPPPPPPPPPPPPPRY 42

R T (o TP PP TP PPPPPPPRPRPIN 42

D11.5.3 RESUIMIE ..eieiiiiiiiiieeieietettteeeteeeeeeeeeseae et e ee e e e se e s e s e st s s s e s s s s e e s et s se s e e s e e s e s eesseeeeneennsnnnnnnnes 43

O S - | PSSP 43

B I o 0o | =] = (P 43

11.6.1 Data SYMDOIS ..ccoiiiiiiiiieiiie e e 43

11.6.2 Instruction EXECUtiON HISTOYccuiiiiiiiiiie it 44

11.6.3 VAIUE TOOIIPSeeeeeeeeieee ettt e ettt e e e e et b e e e e e e e e saanbeeeeeeeeeaaannes 44

A o T U0 1 V= I -1 = SRR 44

11.7.1 MGCU REQISIEIS ...uteiiiiieeiiiiiiiiiie e e e e e sestte ittt e e e s s sttt e e e e e e s s st e aeeeeeeessannteaeeeaeessannnnes 44

11.7.2 MCU MEIMOIYciiiiiiiiee ittt e e et e e e s s e s et et e e s se s e e e e e e e e s naenens 44

11.7.3 Memory ACCESS WIdthuviiiiieii e 44

11.8 Inspecting RUNNING PrOGIAMcooiiiiiiiiiiiiiie ettt e e e e e e bbbt e e e e e e e e snbsaeeeaaaeaean 44

12 Static Program ENTITIESooi ittt e e e e e e nba e e eaa e e e s 45

2 R U o 1o SRS 45

12,01 SOUICE FlES...ueiiiiiiiiii ettt s st e e e et e e e e nreas 45

12.2 Program OULPUL..........ooiieiiiiiiii et e et r e e e e e s e e e e e e s e st e e e e e e e e e e sanrnreeeeeeenens 45

2 111 @ PP 45

12.2.11 ConfiguIING SWO ...ccooiiiiiiiieeiee e 45

12.2.2 SEMINOSHING ...eeeiiiiiiiiie et e e s e e e naeas 46

12.2.2.1 Configuring SEMINOSHINGvvviieeiiiiieccc e 46

12.3 Real TIME TOIMMINGL....coii it e e e e e e e e s e e e e e e e s aennbnreeeaaaeaean 46

12.3.1 RTT CONfIQUIALION ...ooeeeiiiiiiiiieee et e e e e e e e s s e s e e e e e e e aeannes 46

12.4 WaLChiNG VariabIEscooiiiiiiiee e e e e e e e 46

12.5 Program FileS DOWNIOA.eeiiiiiiiiiiiiie ettt e e sbee e e aeee 47

12,6 PAth IMACIOSttt e e e e ettt e e e e e e s ab b b e e e e e e e e e snnbnbeeeaaaeaan 47

RS IS Tod o1 4 o T 1 (=1 = Lo USSR 47

131 SCHPL FIIES oottt e e it e e s bbb e e e s st e e e e aabneeeeaae 48

13.1.1 SCrptiNg LANQUAGEcoceiieiieeee ettt e e ettt e e e e e e st ae e e e e e e s e sanbaaeeeaeeeannnnnes 48

13.1.2 SCHPE FUNCHIONSeeiiiie ettt ettt e e e e e et e e e e e e s e aaanbeeeeaaeeeaennees 48

13.1.2.1 Event Handler FUNCLIONSoovviiiiiii e 48

13.1.2.2 USEI FUNCHIONS. ..cciiiiiiieiiee ettt a e 49

13.2 Process Replacement FUNCLIONSccoiiiiiiiiiiiiie ittt 49

R J 0 AN o I T H T i o T PR 49

Application Note Revision 1.3 23-Dec-2021

CFR0014 4 of 66 © 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
13,3 STAITUP SEOUEBINICE .. eeiiiiiiie ettt e e e e e s e e et e e e b e bt e e e e e e e ee b a e e e e e e eeetabnneeaaaes 49
13.3.1 TArget CONNEBCTeiiiiieiiieite ettt e e e e s e e e e e e s nannee 50
13.3.11 Frequency Adaptive Connection ROULINEccooviiiiiiiiieieeniiinns 50
13.3.2 TaArget RESET 50
13.3.2.1 Reset Routine for RAM DebUQcuvvvveiiiiiiiiiiiieee e 50
13.3.3 TargetDOWNIOADccoiiuiiiiiiiiiiie ittt 51
134 VAlUE DESCHIPIONS ... uteieei ittt ettt ettt ettt ettt e e ettt e e e eh bt e e e sab et e e e sabb e e e e sabaeeessabbeeesanbaeeeeanes 52
13.5 FreqUENCY DESCIIPION ... ittt e ettt e e e e et e e e e e e st b be e e e e e e e s annbebeeeaaeeaan 52
13.5.1 LOCAEON DESCIIPIONcciuutiiieiitiiee ittt e e sttt e ettt et e s anbe e e s anbe e e e e s 52
SRS TZ A o] (o 0T gl =T Tod ¢ o] (o) PSR 52
13.5.3 FONE DESCHPIONteiiieiieee ettt ettt s e e e e b e e e e 52
13.6 SYSIEM CONSIANTSeeiiiiiiiiiiiiee ittt e e e e e e e e s s e e e e e e e s aanrn e e e e eeeaeas 52
13.6.1 HOSE INTEITACES......eeeiiiee ittt e e e e e e ee e e e e e s eanees 52
13.6.2 TaArget INLEITACES.uiiiiiiiii it s 53
13.6.3 BO0O0IEAN VAIUES.......oeiiiiiiiiieiiiiii ettt 53
13.6.4 DiSPIAY FOIMALSeeiiiiiiiiieiiiiie ettt s e e e e 53
13.6.5 Memory ACCESS WIdth.........uvviiiiiiiiieir e e e e sranees 53
13.6.6 ACCESS TYPES .eeeeeiueiiuenirereneneteueaeeeseeeaesssesssesessseaeseessesssssesssesssssssessessnsssnennnnnnnnnnnes 54
13.6.7 CONNECHON MOUES......ccoiiiiieiiiee et e e e s e s e e e e e e s e snnbereeeeeeesnnnnnes 54
13.6.8 RESEEMOUES.ttt e e e e e e e e e e e e aanees 54
13.6.9 Breakpoint IMplementation TYPEScocuuiie i 54
13.6.10 Stepping Behaviour Configuration Optionscccceeeeiiiiiiiiieeee s 55
I U T T Y o3 4o 1= PSRRI 55
I R 1 L= o 1T ST P TP PPPPT 55
I o |1 Ao 1o SRS 55
I Y I e Yo 1o] TP EP TP PPPPT 56
144 ULIIIEY ACHIONS.eeeeeiietiiee ettt ettt e e e sa bt e e e ekt et e e e aa b e e e e s sabe e e e e aabeeeeesnbneeeeanes 56
A5 VIEW ACHIONS ... eteeee ittt ettt ettt ettt e e ettt e e e sttt e e e sate e e e e asbe e e e e asbeeeeessbeeeessnbneeeesnbeeeeeanbaeeeeane 56
I G o To | o F= T A od 1 T 1 PRSPPI 57
A VAV o (o Y A 1T 1 1R 57
14.8 DEDUQG ACHONSttt e ettt e e e e e e s bbbttt e e e e e e s anbbbeeeaaeeeesannbnbeeeaaaeaaan 57
I T B I Yo 1o o PRSP 58
14.10 BreakpOoint ACLONSiiie i ittt e e e e e et e e e e e e st e e e e e e e s et e e e e aaeessantateeeaaeeessanntaraeeeaaennan 58
LS I o [od 11 1=] o L= PSPPSR 59
Appendix A Control FUNCLIONS ... e 59
Al ACHONS TADIE ...t e e e e e e e e e e aneee 59
REVISTION NESTOTY .ttt ettt e e e e e sttt e e e e e s e ababe e e e e e e e e snnbnbeeeaaaeaan 65
Figures
Figure 1: WINAOWS INSTAIIEYeeiiiiiii ittt e e e et e e e e e e e e snbereeeaaae e s 9
Figure 2 Smart SNIPPEtS NOME PAGE.uuiiiiiiiiitiie et e e e e e e b e e e e e e e an 10
FIgure 3 NeW ProjECE WIZAIU.ccoiii ittt e e e e s e e e e e e e st e e e e e e e e snntnrneeeaeeeean 11
FIgure 4 CONNECHON SEIINGS ...uvvriiieeii ittt e e e s e re e e e e e e s et e e e e e e e s s saaabaeeeeaeessantnrreeeaeeaaas 11
Application Note Revision 1.3 23-Dec-2021

CFR0014 5 of 66 © 2021 Renesas Electronics

B0 RRENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Figure 5 Eclipse Debug ConfigUIation.............coiiiiiiiiiieie e e e e e e e s tnrre e e e e e e e ssnrnrneeeaeeeean 12
LT 8L T = L= U 1= SRR 13
Figure 7 BreakpOint WINGOWccoiiiiiiiiiiie e s e e s s s e e e e s s s e e e e e e e s snnnnbeeeeeaeeeannnnnnneeeeeeanan 15
FIgUre 8 MemOrY WINAOW........uuviiiiieeis it e e e s s s st e e e e e s st e e e e e e e s st e e e e e e e s s snabeeeeeeeeesnntnrneeeaeeanan 18
FIQUIE 9 Main WINOOW.......coiiiiiiii ettt ettt et s bt e e et e e e e bt e e e e nbee e s ennbeas 20
FIQUIE 10 PrefErenCeSoii ettt e b e e e e bt e e e e bb e e s ennbeas 25
Figure 11 System VariabIesooiiiiiiiiii et 25
FIQUIE 12 SOUICE VIBWET ...ttt ettt ettt e ettt e e ek e e e ek et e e et bt e e e e b b e e e e e nbe e e e annneas 26
Figure 13 DiSassembIy WINGOWcooiuiiiiiiiiieiiie ettt e e e e 27
Figure 14 Mixed Mode output in the Disassembly WINAOW ... 28
FIGUre 15 CONSO0IE WINGOWveiiiiiiiiiiiiieie ettt e e e e e st e e e e e e e s aba e e e e e e e e e anbnbeeeeaaeaean 29
FIgure 16 FUNCHONS WINOOWcoiiiiiiiiiiiiiei ettt ettt e et e e e e e e e iba e e e e e e e e snbnbeeeaaae e s 30
Figure 17 Threads WINAOW ACHVALIONSccieeiiiiiiiiiieiee et e e e e s s e e e e e e s st e e e e e e e s snnrnrneeeeeeeean 31
Figure 18 Threads WINGOWcuiiiiiiiiiiieeece e e s s e e e e e s s s e e e e e e e s e s e e e aeeessnnntaeeeeeeeesnnntnrneeeaeeaean 31
Figure 19 RegISEr WINUOWveiiieieii it e e st e e e e e e s s s e e e e e e e e s s st e e e e e e e e s snnntnrneeeaeeaean 32
Figure 20 SoUICe File WINGOWueiiiiiiiiieiiie ettt ettt e e e e e s 34
FIQUIE 21 LOCAI DALAeveeeeiiieee ettt ettt et e e bttt e st e e s e b e e e e b bt e e e e nbe e e e ennbeas 35
FIGUIe 22 GIODAI DALAccoiiiiiiiiiiiiee ettt e e e e e s areas 36
Figure 23 Terminal WINGOW..........oouiiiiiiiee ettt e e e e e e s e e e enneas 36
Figure 24 Start-up Sequence FIOW CRart...........oooiiiiiiii e 41
Figure 25 WatChed Data WINOGOW.uiiiiiiiieeiiie ettt e e e e 47
Tables

Table 1: EXECULING USEI ACHONSccoiiiiiiiiiiite ettt e st e e ssnr e e e snneeee s 13
Table 2 Toggling BreaKpOintS.t e e e e e e e e e ee e e e e e saaeeee 14
Table 3 Break point AMIDULESeieiiiiieeii e e et e e e e e e s abb e e ee e e e e e sanneee 15
Table 4 EXECULING USEI ACLIONSuuiiiiiie ittt ettt ettt e e e e e s ettt e e e e e e s aabnbeeeaaaeeesannees 24
Table 5 Code Line HIGhIIGNLSeuiiiiie e a e e e r e e e e e e s nnnes 24
Table 6 INStruction roW INFOMMEALIONoiiiiiiii it 27
Table 7 FUNCHON AIDULES.iei it e e e e s r e e e e e s st e e e e e e e snsnsnteneeeeeeesnnnnnes 30
Table 8 OPErating MOUEScooi ittt et ettt e e sttt e e sbb et e e sbee e e e sntbeeesneeeee s 33
Table 9 Debugging WOTK FIOWoiiiiiiii et e et e e e e sneeeee s 37
Table 10 ProjECt SEIINGSeeiiiiiieeiiiiiie ettt et e e st et e e sbb et e e sbe et e e anbe e e e snnneee s 37
Table 11 Download and Reset Program SEQUENCEoocuuiiiiiiiieieiiieee ettt et sinee e e sanneee s 39
Table 12 INItial OPEIALIONS.cci ittt e e st et e e sbb et e e sbe et e e abbeeeesnnreee s 41
Table 13 Program SEEPPING. ittt ettt ettt e e e e e e s e aaab b e et e e e e e e s e aabbbeeeeeaeeeaaaabnbeeeeaaeeesannnees 42
Table 14 Program Inspection Limitations, while program iS running............cccouueeeieieininiiiieeeneee e 45
TabIe 15 PAtN MACIOScciiiiiiiiiiiieee ettt ettt et e st e e st e e s bt e e s e e e e nnnre e s 47
Table 16 Event HandIler FUNCHONSouiiiiiiiie ettt st nnne e 48
Table 17 Process Replacement FUNCLIONS...........oiiiiiiiiiiiiiiie e e e e e sarre e e e e e e e seannes 49
Table 18 Default Startup SEQUENCEccoi ittt e s e e e e e e s et e e e e e e s s snnbaeeeeaeeesannnnes 49
Table 19 HOSE INTEITACESveviiie ettt e e e e e e e e e s e e e e e e e e snnnnbeneeeeeeesnnnnnes 52
Table 20 Target INTEITACESooo ittt et e e bbe e e e snneeee s 53
Table 21 BOOIEAN VAIUEScoceeeiieiiieiieiie e e sttt e e e st e e e e e e e st e e e e e e s sannssbeeeaeaeeesassnteneneeeeesnnnnnns 53
Table 22 DiSPlay FOIMMALS.ooi ittt et e et e e sbb et e e abbeeeesnnneee s 53
Table 23 MemOory ACCESS WILNSueiiiiiiiii ettt 53
TADIE 24 ACCESS TYPES ..ottt e e ettt e e e bt e e s b e et e e st b et e e aabbe et e sabbe e e e abbbeeesnnneee s 54
Table 25 CONNECHION MOUESoiiiiiiiiei ittt ettt sb et snn e e e snneeee s 54
TaDIE 26 RESEE IMOUES ...ttt ettt s et e st e s et e s e e e nnnne e s 54
Table 27 Breakpoint IMplementation TYPES......uuuiiii e e e e e e e e e e s ree e e e e e e e sennnes 54
LI Lo LA TS (=Y o] o T Vo N = Vo LSRR 55
TADIE 29 FHlE ACHIONS ...ttt ettt e sk b e b e e ket e sa b e e e sbb e e snbeeebeeesnreeennneen 55
TabIE 30 EIt ACHONS. ...c..eeiiiieieie ettt ss e n et e st e s e e e nn e e s e e e ne e e nnne e e nnne e e 55
TaDIE 31 ELF ACHONS ...ttt ettt ettt e e s e nne e s e e n e e nnre e nnn e e 56
Application Note Revision 1.3 23-Dec-2021

CFR0014 6 of 66 © 2021 Renesas Electronics

R RLENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

TabIe 32 ULIlItY ACHIONS ...oiiiiiiii ettt sttt e et e e st e e e e sttt e e e sabbe e e e sssbeeesnnneeeean 56
TaADIE 33 VIBW ACHIONS ..ottt sttt ettt e e sttt e e s bttt e e sttt e e sbbe e e e snbbbeeesnaeeee s 56
Table 34 TOOIDAr ACLIONS.oiiiiiieie ittt et e e sttt e e sttt e e sbee e e e snbeeaesnneeee s 57
Table 35 WINAOW ACHONSciiiiiiiie ittt sttt et sb et e ettt e e st e e e e ssbe e e e e sabbeeeesnbbeeeesnsbeeeesnneeeean 57
TabIe 36 DEDUQY ACLIONSeeiiiieei ittt e et e e e e e s e eeee e e e s st eeeaeessaasssteeeeeeeessasnsnteneeeaeeesannsens 58
TabBIE 37 J-LINK ACHONS ...ttt ettt e ettt e e sttt e e sabb et e e sbbbeeesnnreee s 58
Table 38 BreakpOiNt ACHIONS.iiieieieeiie e e ie st et e e e s e e e e e e s s s st eeeeeeeessasstaeereeeessassssrenereaeessnnnsne 58
Table 39 CONLrOl FUNCHIONScoiiiiiiieee ettt ettt e e e e e s e snb ettt e e e e e e s e nbnbeeeeeaeeesannnes 59
Application Note Revision 1.3 23-Dec-2021

CFR0014 7 of 66 © 2021 Renesas Electronics

LENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
1 Terms and definitions
Big-endian Memory organization where the least significant byte of a word is at
a higher address than the most significant byte.
Little-endian Memory organization where the least significant byte of a word is at
a lower address than the most significant byte.
Debugger Ozone Debugger.
Halword 16-bit unit of information.
Host PC that hosts and executes Ozone Debugger.
JTAG Joint Test Action Group.
MCU Microcontroller Unit.
J-Link OB J-Link debug probe that is integrated into MCU hardware.
Remapping Changing the address of physical memory or devices after the
application has started executing.
RTOS Real Time Operating System.
Target Target Device.

2 References

[1] J - Link Debugger User Guide, SEGGER
[2] UM-B-044-DA1468x Software Platform Reference. User manual, Dialog Semiconductor
[3] UM-B-057-SmartSnippets_Studio_user_guide, Dialog Semiconductor.

Application Note Revision 1.3 23-Dec-2021

CFR0014 8 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

3 Introduction

Ozone Debugger is a full-featured graphical debugger for embedded applications. Using the Ozone
Debugger it is possible to debug any embedded application on C source and assembly level. The
Ozone Debugger can load applications built with any toolchain / IDE or debug the target's resident
application without any source. The Ozone Debugger includes all needed debug information
windows and makes use of the best performance of J-Link debug probes. The user interface is
designed to be used intuitively and is fully configurable. All windows can be moved, re-sized and
closed to fit the need of any developer.

4 Installation

4.1 The Ozone Debugger

In order to download the Latest Release Version of The Ozone debugger, please visit the following
link:

https://www.segger.com/ozone.html

It contains software packages for Windows, Mac OS X and Linux operating systems accordingly.
The Ozone Debugger for Windows ships as an executable file that installs the debugger into a user-
specified destination folder. The installer consists of four pages and guides the user through the
installation process.

-

(4B} Ozone V2.16h Setup o B ([

Choose Install Location
Choose the folder in which to install Ozone V2. 16h. L\\T g
L=

Setup will install ©zone W2, 16h in the following folder. To install in a different folder, dick
Browse and select another folder. Clid: Mext to continue.

Destination Folder

:'\Program Files (x86)\SEGGER \Ozone V2. 16h

Space reguired: 31.6MB
Space available: 23.2GE

< Back][Mext =] [Cancel

Figure 1: Windows Installer

Application Note Revision 1.3 23-Dec-2021

CFR0014 9 of 66 © 2021 Renesas Electronics

https://www.segger.com/ozone.html

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

After installation, the Ozone Debugger can be started by double-clicking on the executable file that is
located in the destination folder. Alternatively, the debugger can be started from the SmartSnippets
Studio home page.

& C/Ces - SmamtSnippets Studio 172567
fie [dt Sourte FRefactor Navigete Segrch Project 2un Window MHelp

= & Wecome L? = "
7 2
Teol
s
L
w il
e 3 SmartSnippets
Toolbox
Configuraton =
SmartSeippets SOK Root

ChUsers\Aant Klsnendorst\workspace_SmartSnppets_Studio

[change|

Sebectod Development Kit

D& 1468k Oevelopment X2 Pro =

AP1 Documentation Software Resources Product Documentation

Load test projects i workspace

Dalag

Open | Brtrate |

Figure 2 Smart Snippets home page

5 Using the Ozone Debugger

Running the Ozone Debugger for the first time, there is a default user interface layout and the project
wizard pops up. It will continue to do so, as soon as the first projected was created or opened.

5.1 Project Wizard
This is a graphical facility to specify the required settings needed to start a debug session.
Device

User is asked to select the MCU to be debugged on. A complete list of MCU’s grouped by vendors is
available under the browse button.

Peripheral File

The user may optionally specify a peripheral register set description file that describes the memory-
mapped register set of the selected MCU. If a valid description file is specified, peripheral registers
will be observable and editable via the debugger's Register Window.

Application Note Revision 1.3 23-Dec-2021

CFR0014 10 of 66 © 2021 Renesas Electronics

B0t RLENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

" New Project Wizard x|

Target Device
Choose a Target Device

Device
| Cortex-Mp [

Peripherals (optional)

| o

= Back Mext = | Cancel |

Figure 3 New Project Wizard

Target Interface

It specifies how the J-Link debug probe is connected to the MCU. The Ozone Debugger supports
JTAG and SWD target interfaces. This must be compatible and in line with the Eclipse, Debug
Configuration Settings. See Figure 5.

" New Project Wizard x|

Connection Settings
Choose a Target and Host Interface

Target Interface Target Interface Speed
[swo =l [immz =l
Host Interface Serial No (optional)
fos = |
< Back Mext = Cancel

Figure 4 Connection Settings

Application Note Revision 1.3 23-Dec-2021

CFR0014 11 of 66 © 2021 Renesas Electronics

AN-B-040

LENESAS

DA1468x Using Ozone/J-link for Software

Debugging

[N Debug Configurations

Create, manage, and run configurations

Company confidential

ble_ancs_demo_attach
ble_ancs_demo_qgspi
ble_bms_demo_attach
ble_bms_demo_gspi
ble_central_attach
ble_central_gspi
ble_external_host_attach
ble_external_host_qgspi
ble_multi_link_demo_attach
ble_multi_link_demao_gspi
ble_peripheral_attach
ble_peripheral_gspi
ble_sps_demo_attach
ble_sps_demo_gspi
ble_suota_demo_attach_img1
ble_suota_demo_attach_ima2
ble_suota_demo_gspi
freertos_charger
freertos_charger_attach
freertos_charger_gspi
freertos_deepsleep

Filter matched 81 of 81 items

freertos_deepsleep_attach _ILI
4 I I »

¥ Start the J-Link GDE server locally

+ = —*|
ES b 4 | H 5 - Mame: Ible_adv_demo_qspi
|| Main :ﬁ& Debugger =3 Siﬁrmﬂ E:/ Sourcew E Common}
ble_adv_demo_gspi ||| - ink GoB server Setup el

[~ Connect to running target

Ewecutable:

| $fink_path}/${jiink_gdbserver}

Browse... | Varigble:

Device name: | Cortex-M0

Supported device ne

Browse

Endianness: * Little " Big

Connection: {+ usB P (USB serial or IP namefaddress)
Interface: + swD " ITAG

Initial speed: * Auto " Adaptive (" Fixed I— kHz

GDBport: 2331

SWO port: I? ¥ verify downloads W Initialize registers on s
Telnet port: I? ¥ Local hostonly [Silent

Log file: Ijlink.log

Other options: I singlerun

¥ Allocate console for the GDE server

V¥ Allocate console for semihosting and SWO

|—GDB Client Setup

1

_

Reverk: | Apply |

©)

Target Interface speed

Debug I Close

Figure 5 Eclipse Debug Configuration

This parameter controls the communication speed with the MCU. The range of the accepted values
is from 1 kHz to 50 MHz usually, the target interface speed can be increased after initial connection,
when certain peripheral registers of the MCU were initialized. In case the connection fails, it is
advised to retry connecting at a low or adaptive target interface speed.

Host Interface

This field specifies how the J-Link debug probe is connected to the PC hosting the debugger. All of
the J-Link models provide a USB interface, also an additional Ethernet interface which is useful for
debugging an embedded application from a remote host-PC, is also available in a number of models.

Serial No

In case of multiple debug probes connection to the host PC via USB, the user may enter the serial
number of the debug probe, which wants to use. If no serial no is provided, then he needs to specify
the serial no via a dialog that pops up upon starting of the debug session. In case of Ethernet
selection as host interface the field is changed to IP Address and the user may enter the IP address
of the debug probe to connect to.

Application Note

Revision 1.3

23-Dec-2021

CFRO0014

12 of 66

© 2021 Renesas Electronics

LENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
" New Project Wizard x|
Data File
Choose the Program to be debugged
Data File (optional)
Itsﬁ:lk_appsfexam|:|IEsfhle_adv_demnfDEbug_QSPIthE_adu_demD.EIF I
< Back Finish Cancel
Figure 6 Data File
Data File

This field allows the user to specify the program that wants to debug. The file has to contain symbol
information, and only ELF or compatible program files getting accepted. A program file with no
symbol information causes a limited functionality of the Ozone Debugger.

5.2 Debug Session

The debug session is started by clicking on the green start button in the debug tool bar or by hitting
the shortcut F5. Please wait a moment for the startup-procedure to complete. After the startup
procedure is complete, the user may start to debug the application program using the controls of the
Debug Menu.

6 Running the Debugger

6.1 User Actions

Below you can find a table with the possible option Execution Methods.

Table 1: Executing User Actions

Executing Method Description

Menu A user action can be executed by clicking on its menu item.

Toolbar A user action can be executed by clicking on its tool button.

HotKey A user action can be executed by pressing its hotkey.

Command Prompt A user action can be executed by entering its command
into the command prompt.

Script Function A user action can be executed by placing its command
into a script function.

Application Note Revision 1.3 23-Dec-2021

CFR0014 13 of 66 © 2021 Renesas Electronics

RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

AN-B-040

6.2 Hotkeys

Multiple local user actions may share the same hotkey. As a consequence, a local user action can
only be triggered via its hotkey when the window containing the action is visible and has the input
focus. On the contrary, global user actions have unique hotkeys that can be triggered without
restriction.

6.3 Actions

Several user actions execute a dialog. The fact that a user action executed a dialog is indicated by
three dots that follow the action’s name within user interface menus.

6.4 Omissible Arguments

When a required argument is omitted from a user action command, an input dialog will pop up, which
allows the user to complete the missing argument.

7 Breakpoints

7.1 Toggling Breakpoints

Table 2 Toggling Breakpoints

Highlights Description

for (inti = 0) { The code line contains the program execution point (PC).

Function(x,y); The code line contains the call site of a function on the call
stack.

for (inti=0){ The code line is the selected line.

Breakpoints on arbitrary addresses and code lines can be toggled using the actions Break.Set,
Break.SetOnSrc, Break.Clear and Break.ClearOnSrc.

The code windows allow users to disable and enable the breakpoint on the selected code line by
pressing the hotkey F8. Breakpoints on arbitrary addresses and code lines can be enabled and
disabled using actions Break.Enable, Break.Disable, Break.EnableOnSrc and
Break.DisableOnSrc.

7.2 Data Breakpoint

The Data Breakpoint Dialog allows users to place data breakpoints on global program variables and
individual memory addresses. The dialog can be accessed from the context menu of the Data
Breakpoint Window.

Data Location: The data location pane allows users to specify the memory address to be monitored

for 10 accesses. When the "From Symbol" field is checked, the memory address is adapted from the
data location of a global variable. Otherwise, the memory addresses need to be specified manually.

Application Note Revision 1.3 23-Dec-2021

CFR0014 14 of 66 © 2021 Renesas Electronics

B0n RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Access Condition: The access condition pane allows users to specify the type and size of a
memory access that triggers the data breakpoint.

Value Condition: The value condition pane allows users to specify the 10-value required triggering
the data breakpoint.

7.3 Breakpoint Properties

The Breakpoint Properties Dialog allows users to edit advanced breakpoint properties such as the
trigger condition and the implementation type. The dialog can be accessed via the context menu of
the Source Viewer, Disassembly Window or Breakpoint Window. Advanced breakpoint properties
can also be set programmatically using actions Break.Edit and Break.SetType.

7.4 Breakpoint Window

The Ozone Debugger’s Breakpoint Window allows users to observe and edit breakpoints.

Breakpoints *
D |Address |on | context |tne | File Type / |TaskFilter |
0 08003870 OS_MUTEX_GET (lock, OS_MUTEX FOREVER) ; 134 ad_nvms_direct.c Pending -
1 08009628 O5_RSSERT(0); L] ad_nvms_direct.c Pending ~
2 0800COAS break; 220 main.c Pending ~
3 080088CO rezd public zddressi(); 227 ad_ble.c Pending ~
4 080098638 pm_stay_aliwvel); 103 ad_nvms_direct.c Pending
g Q8003680 uintg t *sector = NULL; 155 ad_nvms_direct.c Pending ~
3 05008324 if (current_op == RD_BLE OF CODE_STRCE_MSGE) { 415 ad_ble.c Pending ~
7 08008582 05_QUEUZ_GET (adapter_if.cmd g, &sreceived msg, 0); 405 ad_ble.c Pending ~
3 08008918 ble_mgr_notify adapter_blocked(false); 382 ad_ble.c Pending ~ |
9 0B0095FC size = part->data.sector_count * FLASH SECTOR_SIZE - addr; 146 ad_nvms_direct.c Pending ~
I1u <inlined> [V return part->data.start sector * FLASH SECTOR SIZE + adde; 123 ad nvme direct.c Pending _d
4 »

Figure 7 Breakpoint Window

The Breakpoint Window shares multiple features with other table-based debug information Windows.
It displays the following information about breakpoints:

Table 3 Break point Attributes

Attribute Description
ID ID of the breakpoint
Address Memory Address
On Enabled/ Disabled
Context Source code or assembler code line associated with the
breakpoint
Line Source code line number associated with the breakpoint
File File name of the source code containing the breakpoint
Type Implementation Type
Application Note Revision 1.3 23-Dec-2021

CFR0014 15 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Attribute Description

Task Filter Name/ ID of the RTOS task that triggers the breakpoint

Skip Count Amount of times, breakpoint skipped

The Breakpoint Dialog allows users to place breakpoints on:
1. Memory addresses of machine instructions
2. Source code lines

3. Functions

A code breakpoint that is set within an in lined function is marked as "in lined" within the Breakpoint
Window. An in lined breakpoint can be expanded to reveal its instruction breakpoints.

Advanced breakpoint properties such as the trigger condition and additional trigger actions of a
breakpoint can be set via the Breakpoints Properties Dialog or via the user action Break.Edit.

7.5 Instruction Breakpoints

A breakpoint that is set on the memory address of a machine instruction is referred to as an
instruction breakpoint.

Instruction breakpoints can be edited within the Disassembly Window, the Breakpoint Window or
using actions Break.Set, Break.Clear, Break.enable, Brake.Disable and Break.ClearAll.

7.6 Code Breakpoints

A breakpoint that is set on a source code line is referred to as a code breakpoint.
Technically, a code breakpoint is set on the memory address of the first machine instruction affiliated
with the source code line.

Code breakpoints can be edited within the Source Viewer, the Breakpoint Window or actions
Break.SetOnSrc, Break.ClearOnSrc, Break.EnableOnSrc, Break.DisableOnSrc and
Break.ClearAll.

7.7 Function Breakpoints

A break point that is se on the 1% machine instruction of a function is referred to as a function
breakpoint.

7.8 Conditional Breakpoints

Each instruction, code or function breakpoint can be assigned a trigger condition and a trigger action
that is evaluated/performed when the breakpoint is hit. The trigger condition and trigger action are set
via the Breakpoint Properties Dialog or programmatically via the user action Break.Edit.

7.9 Breakpoint Implementation

The concrete way in which a breakpoint is implemented in MCU hardware or as software interrupt —
can be configured via the Breakpoint Properties Dialog or programmatically via the user action
Break.SetType .Furthermore, the default breakpoint implementation type is stored as a system
variable.

Application Note Revision 1.3 23-Dec-2021

CFR0014 16 of 66 © 2021 Renesas Electronics

RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

AN-B-040

7.10 Data Breakpoint

Data breakpoints/watch points monitor memory areas for specific types of |10 accesses. When a
memory access occurs that matched the data breakpoint’s trigger condition, the program is halted.
Data breakpoints can be used to monitor program variables that reside in MCU memory.

7.10.1 Editing Breakpoints
In order to set and edit data breakpoints, you have the following options:
1. Data Breakpoint Dialog
2. Data Breakpoint Window
3. User Actions
a. Break.Set-OnData
b. Break.ClearOnData
c. Break.EnableOnData
d. Break.DisableOnData
e. Break.CleanAllOnData

7.10.2 Breakpoint Attributes
Address: Memory address that is monitored for 10 events.

Address Mask: Specifies which bits of the address are ignored when monitoring access events. By
means of the address mask, a single data breakpoint can be set to monitor accesses to several
individual memory addresses. More precisely, when n bits are set in the address mask, the data
breakpoint monitors 2n many memory addresses.

Symbol: Variable or function parameter whose data location corresponds to the memory address of
the data breakpoint.

On: Indicates if the data breakpoint is enabled or disabled.

Access Type: Type of 10 access that is monitored by the data breakpoint

Access Size: The number of bytes that needed, to be accessed in order to trigger the data
breakpoint. For example, a data breakpoint with an access size of 4 bytes (word) will only be
triggered when a word is written to one of the monitored memory locations. It will not be triggered

when, say, a byte is written.

Match Value: Value condition required to trigger the data breakpoint. A data breakpoint will only be
triggered when the match value is written to or read from one of the monitored memory addresses.

Value Mask: Indicates which bits of the match value are ignored when monitoring access events. A
value mask of OXFFFFFFFF disables the value condition.

All types of breakpoints can be modified both while the debugger is online and offline. Any

modifications made to breakpoints while the debugger is disconnected from the MCU will be applied
when the debug session is started.

Application Note Revision 1.3 23-Dec-2021

CFR0014 17 of 66 © 2021 Renesas Electronics

B0n RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

8 Memory

8.1 Generic Memory

The Generic Memory Dialog is a multi-functional dialog that is used to:
1. Dump MCU memory data to a binary file.
2. Download data from a binary file to MCU memory.
3. Filla memory area with a specific value.

All values entered into the Generic Memory Dialog are interpreted as hexadecimal numbers, even
when not prefixed with "0x".

Using Generic Memory dialog you can perform the following actions:

1. Save Memory Data: The destination binary file (*.bin) into which memory data should be
stored. By clicking on the dotted button, a file dialog is displayed that lets users select the
destination file. The address of the first byte stored to the destination file. Also you can
specify the number of bytes stored to the destination file.

2. Load Memory Data: The binary file (*.bin) whose contents are to be written to MCU
memory. By clicking on the dotted button, a file dialog is displayed that let users choose the
data file. The download address, i.e. the memory. The address that should store the first byte
of the data content. And the number of bytes that should be written to MCU memory starting
at the download address.

3. Fill Memory: Here you have the ability to specify, the Fill value, the start address of the
memory area and also the size of the memory area.

8.2 Memory Window

The Ozone Debugger’s Memory Window displays MCU memory content.

Memoryl @ 60
00000080 ES 3B 00 08 FS 3B 00 08 15 17 00 08 3D 17 00 08 &;..10;
Q0000070 8D 34 00 0B A1 =24 00 08 8% 1& 00 EB C1 17 00 08 T
Qo0o0Q0080 €5 17 00 0B 35 S5E 00 08 DS 3¢ 00 08 59 S5E 00 0B e...9 .- .-
0oo0000s0 45 1F 00 08 DS O3 00 O DS 03 00 08 DS 03 o0 08 =...8...0...8...
000000R0 DS O3 00 08 7D 3C 00 08 71 15 00 08 75 &3 00 08 0. ..}
0O0000BO EBS 37 00 08 DS O3 00 O &3 4F 00 08 DS 03 oo o8 227..0
000000CO 0D 58 01 08 41 SR 01 08 33 54 01 08 RS 57 01 08 _E. _AZ_ _3T._.
Q000000D0 55 54 01 0B 7D 55 01 08 E1 55 01 08 &5 5& 01 08 T
00000DEOD 45 57 01 08 1% 5C 01 08 1D 54 01 08 31 01 00 08 E
Q00000F0 31 01 OO0 OB 21 01 00 08 31 01 00 08 AD CO 2D AB 1..
00000100 31 01 00 08 31 01 00 08 31 01 00 08 31 01 00 08 1...
1
1

00000110 31 01 0O 085 21 01 OO0 OB 31 01 00 OB 21 01 00 0B
00000120 31 01 00 08 31 01 00 08 31 01 00 08 31 01 00 08 -1 - -
00000120 OO0 BE 00 BE 00 00 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 00 00 3 3.
00000140 10 BS5 06 4C 23 78 00 2B 07 D1 05 4B 00 ZB 0Z DO _p_th_+_ﬁ_K_+_B
00000150 04 48 00 E0O 00 BF 01 23 23 70 10 BD 88 01 FC 07 .H.&.;.ffp.%. . 1.
00000160 00 00 00 00 2C &C 01 08 0B BS 08 4B 00 2B 03 DO ____, l1.._ u.E.+.B _:J

S
S

Figure 8 Memory Window

Application Note Revision 1.3 23-Dec-2021

CFR0014 18 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

8.3 Data Section
The Memory Window’s data sections display memory content in two different formats.

Hex Section: The Memory Window’s central data section displays memory content as hexadecimal
blocks. The amount of hexadecimal digits that are displayed per block can be adjusted to 2, 4 or 8
nibbles per block. In the illustration above, the display mode is set to 2 nibbles (or 1 byte) per block.
ASCII Section: The data section on the right side of the Memory Window displays the ASCII-
encoded textual interpretation of MCU memory data.

8.4 Toolbar

The Memory Window’s toolbar provides quick access to the window’s options. All toolbar actions can
also be accessed via the window’s context menu. The toolbar elements are described below.

1. Address Bar: provides a quick way of modifying the viewport address

2. Access Width: allows users to specify the memory access width. The access width
determines whether memory is accessed in chunks of bytes (access width half words
(access width 2) or words (access width 4).

3. Display Mode: let users choose the display mode. There are three display modes that differ
in the amount of hexadecimal figures (nibbles) that are displayed per block in the window’s
hex section. The display mode can be set to 1, 2 or 4 bytes per hexadecimal block, which
corresponds to 2, 4, or 8 nibbles per block.

Fill Memory: D Opens the Fill Memory Dialog.
< .
Save Memory Data: = Open the Save Memory Dialog.

A .
Load Memory Data: = Opens the Load Memory Dialog.

N o g A

Update Interval: = Displays the Auto Refresh Dialog.

9 Debug Windows

The Ozone Debugger’'s Main Window contest of the following elements, listed by their location within
the window from top to bottom:

1. Main Menu

2. Tool Bar

3. Content Area
4

Status Bar

Application Note Revision 1.3 23-Dec-2021

CFR0014 19 of 66 © 2021 Renesas Electronics

LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging
BLEY
AEEERIREN v %Y v ey W e W et WY e % f =
oo *| prie ~ T A ::i
® Al i L
) - .
& .
8 A —— :
=
= " ® WATTU_T PAST_AGEI|OOOET & BATTITICN T TRAST. MANTA T aau -
B
2 otisa par3->ana. ssast, smtis + VARS, SBSSCH G118 + i
g
w Mathy bl bl paes_Lewk ldeen partitlen b Spest
=
R —
::»wu O_MUTDS_PIT ieck
et TR
W gt SEOMAD t ed_mems_direct_teddiecust partitiiat *patr. sicehd_x sdac, wized_p *pes =
Lo ez 223
m ”:::: 4;- A MR R AR b RN RANA SARLAL_ANLRs T FLAEN SRTTom mizm | o :' .'J
S ' L = pesk-DEeds sedlel Gasdl * TLASE ERCTON 1IN - Adddg
et oL 2
0 -:;,’V)"--’) Me of ' T Raguiors X
o . suvase o4 Flsch undipers_siinionrh; sbiely. bnuf, olouly = | 1]
X7 | - G U R
- Ry, . : §
cooped C1 e oeoe_sckindbor— n LasTevIIT)
oated = iack oo sk bober WmaTiz 1 ad_oma_fiTect_sTite|aTIucy parTitiza_y cpess. sirsdd_t esd: et sazek r * 3
coopsed Tl oern sk by L3
weloed Cibied oe_sRadbe o st & ME0
R N T N
N =
= =
T | B e P P s 2l 2
D Senlndee "l _nems_deecic 1407 o’
2 pic (9]
S S 3 o, <6 B v o . —
=l R e —
039 O L | Dowemtend 3 100

Figure 9 Main Window

In its center, the Main Window hosts the source code document viewer or Source Viewer for short.
The Source Viewer is surrounded by three content areas to the left, right and on the bottom. In these
areas, users may arrange debug information windows as desired.

9.1 Main Menu

The Ozone Debugger’s Main Window provides a Main Menu that categorizes all user actions into five
functional groups. It is possible to control the debugger from the Main Menu alone.

The File Menu hosts actions that perform file system and related operations. It provides the following
options.

New: Actions to create a new project and to run the Project Wizard.
Open: Opens a project, program, data, source file.

Save Project as: Saves the current project to the file system.

Save All: Saves all modified workspace files.

Recent Projects: List of recently used projects.

The Edit Menu hosts three dialog actions that allow users to edit Ozone’s Debugger graphical and
behavioral settings.

Ozone Settings: Allows users to specify the hardware setup, i.e. the MCU model and
debugging interface.

Preferences: Opens the User Preference Dialog that allows users to configure Ozone’s
Debugger graphical user interface.

Application Note Revision 1.3 23-Dec-2021

CFR0014 20 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

System Variables: Opens the System Variable Editor that allows users to configure
behavioral settings of the debugger.

The View menu hosts actions that add debug information windows and toolbars to the Main Window.

Views: The View Menu contains an entry for each debug information window. By clicking on
an entry, the corresponding window is added to the Main Window at the last used position.

embOS: If an RTOS-awareness-Plugin has been set using action Project.SetOSPlugin,
a submenu is added to the View Menu that hosts additional debug information
windows provided by the RTOS-awareness-Plugin.

Toolbars: Hosts three checkable actions that define whether the file-, debug- and help-
toolbars are visible.

Debug controls program execution.
Start/Stop Debugging: Starts-Stop debug session.
Continue/Halt: Resume or Halts program’s execution.

Reset: Resets the program using the last employed reset mode.

Step Over: Steps over the current source code line or machine instruction, depending on the
active code window.

Step Into: Steps into the current subroutine or performs a single instruction step, depending
on the active code window.

Step Out: Steps out of the current subroutine.

Help: It hosts the debugger’s About Dialog and the debugger’s user manual.

9.2 Toolbars

File, debug and view menu groups, have affiliated toolbars.

9.3 Status Bar
Ozone’s Debugger status bar displays information about the debugger’s current state.
The status bar is divided into three sections:

1. Status message and progress bar

2. Cursor position

3. Connection state

9.3.1 Status Message

The status message on the left side of the status bar, informs about the following objects:
1. Program State
2. Operation Status
3. Context Help.

Application Note Revision 1.3 23-Dec-2021

CFR0014 21 of 66 © 2021 Renesas Electronics

B0n RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

9.3.2 Caret Position

Indicates the location of the input cursor within the active Source Viewer document.

9.3.3 Connection State

Informs, about the debugger’s connection state. Also data transmission speed between J-Link probe
and debugger is displayed.

9.4 Debug Information Windows

There are 15 debug information windows that cover different functional areas of the debugger.

94.1 Context Menu

Each debug information window owns a context menu that provides access to the window’s options.
The context menu is opened by right-clicking on the window.

The Source Viewer’s context menu is divided into four sections:

Actions that perform an operation associated with the selected source code line.
Actions that expand and collapse particular source code lines.

Actions that scroll the document to a particular position.

Other actions that do not fit the above categories.

Eal A

It provides you the following options:

Set/Clear Breakpoints
Edit Breakpoint

Set Next Statement
Run to Cursor

View Disassembly
Expand/ Collapse Line
Expand/ Collapse all Lines
Goto PC

. Goto Line

10. Select ALL

11. Find

CoNOOA~WONE

9.4.2 Display Format

Allows user to change the value display format of a particular (or all) items hosted by the window. If
supported, the value display format can be changed via the window’s context menu or via the user
actions Window.SetDisplayFormat and Edit.DisplayFormat.

9.4.3 Data Readback

Allow the user of editing of MCU memory or register data. When a hardware value is edited, the
modified bytes are read back from the MCU before updating the user interface. This mechanism
ensures that the MCUs data state is displayed correctly by all windows at all times.

944 Change Level High lighting

Changes level of highlighting of the following:

1. Registers

Application Note Revision 1.3 23-Dec-2021

CFR0014 22 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

2. Memory

3. Local Data

4. Global Data
5. Watched Data

9.4.5 Table Windows
Provides a common set of features.

Several of Ozone’s Debugger debug information windows are based on a joint table layout that
provides a common set of features.

The following debug information windows are table-based:
1. Breakpoints

Data Breakpoint

Functions

Call Stack

Global Data

Registers

N o o bk~ wbd

Source Files

9.4.6 Windows Layout

Debug information windows can be added, removed from and arranged on the Main Window.

9.5 Code windows

There are two debug information windows that display program code: the Source Viewer and the
Disassembly Window. These windows display the program’s source code and assembler code,
respectively. Both windows share multiple properties which are described below.

9.5.1 Program Counter Tracking

Ozone’s Debugger code windows automatically scroll to the position of the PC line when the user
steps or halts the program. In case of the Source Viewer, the document containing the PC line is
automatically opened if required.

952 Active Code Window

Either the Source Viewer or the Disassembly Window is the active code window. The active code
window determines the debugger’s stepping behavior.

9.5.3 Sidebar

Each code window hosts a sidebar on its left side. The sidebar displays icons that provide additional
information about code lines. Breakpoints can be toggled by clicking on the sidebar. If desired, the
sidebar can be hidden.

Application Note Revision 1.3 23-Dec-2021

CFR0014 23 of 66 © 2021 Renesas Electronics

AN-B-040

LENESAS

DA1468x Using Ozone/J-link for Software Company confidential

Debugging

954 Sidebar Icons

The following table gives an overview of the sidebar icons and their meaning:

Table 4 Executing User Actions

Icon | Description

The code line does not contain executable code.

The code line contains executable code.

A breakpoint is set on the code line.

The code line contains the PC instruction and will be executed next.

The code line contains a call site of a function on the call stack.

The code line contains the PC instruction and a breakpoint is set on the line.

LRV

The code line contains a call site and a breakpoint is set on the line.

9.55 Code Line Highlighting
Each code window applies distinct highlights to particular code lines.
Table 5 Code Line Highlights

Highlights Description
for (inti=0){ The code line contains the program execution point (PC).
Function(x,y); The code line contains the call site of a function on the call stack.
for (inti=0){ The code line is the selected line.

9.6 Dialogs

9.6.1 User Preference Dialog

The User Preference Dialog provides multiple options that allow users to customize the graphical
user interface of the Ozone Debugger. In particular, fonts, colors and toggleable items such as line
numbers and sidebars can be customized.

Application Note

Revision 1.3 23-Dec-2021

CFRO0014

24 of 66 © 2021 Renesas Electronics

R RLENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging
& Preferences il

E}Ef_‘,? General
General -> Source Viewer

- || Application

@ Source Viewer

|34 Disassembly Window
- x| Functions Window

- 22| Terminal Window

- | ||| Table Windows

B @ Appearance

'—'? Application I Show Line Expansion Bar
- | &) Source Viewer

- |3] Disassembly Window
= ||| Table Windows

Options

v Show Sidebar

I¥ Lok Header Bar

I Tab Spacing j I2 j

Figure 10 Preferences

9.7 System Variable Editor

The Ozone Debugger defines a set of 15 system variables that control behavioral aspects of the
debugger. The System Variable Editor lets users observe and edit these variables in a tabular
fashion.

x

Mame P | Value | Description I:

VAR_ACCESS_WIDTH Auto Access * | Memory Access Width

VAR _BREAK_AT_THIS_SYMBOL " main " Break at this Symbol on Debug Session Start

VAR _BREAKPOINT _TYPE . Any * Breakpoint Implementation Type

VAR _COMMECT_MODE " Dowrload & Reset Program + Connection Mode

VAR_RESET_MODE " Reset &Break At Symbaol * Reset Mode

VAR_RTT_EMAEBLED o + | Enable [Disable Real Time Terminal IO

VAR _SEMIHOSTING_EMAELED o + | Enable [Disable Semihosting IO

VAR._SWO_CPU_SPEED . auto . SWO CPU Speed

VAR _SWO_EMABLED o ¥ | Enable / Disable Serial Wire Qutput

VAR_SWO_SPEED auto " Serial Wire Output Speed

VAR_TIF_SCAM_CHAIN_LEN © " ITAG Scan-Chain Length |

VAR_TIF_SCAM_CHAIN_POS O - | ITAG Scan-Chain Position

VAR_TIF_SPEED C 1MHz ~ Target Interface Speed =]

Figure 11 System Variables

Application Note Revision 1.3 23-Dec-2021

CFR0014 25 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

9.8 Source Viewer

The Source Code Viewer allows users to observe program execution on the source-code level, set
source-code breakpoints and specify the next statement to be executed. Individual source code lines
can be expanded to reveal the affiliated assembler code instructions.

_t\rpes.h * Y_reg_ble_em_wp\r.h x Y_reg_blecore.h x th_dma.c ® Yad_ble.c * Ymain.c x "'\ ¥
= [part_addr =

® 1353 [# uint8_t *sector = NULL; ;I

180 int off;

16l uint3Z_t chunk size;

1s2 uint3Z_t sector sStart;

163 uint3Z_t sector_offset;

154 [# int written = 0;

185

1&g #* Make sure write is not cutside partitiom */

167 [if (addr + size > part->data.sector count * FLASH SECTOR SIZE) |

168 [size = part-»data.sector_count * FLASH SECTOR_SIZE - addr;

183 1

170

171 part_lockipart);

172

1732 [H while (writtem < size) {

174 [# sector_start = addr & ~(FLASH SECTOR_SIZE - 1);

175 [sector_offset = addr - sector_start;

17& [H chunk size = FLRSH SECTOR_SIZE - sector_cffset;

177 [if {chunk_size ¥ size - written) {

178 chunk_size = size - written;

173 }

180

121 [+ off = ad_£flash_update_possikble (part_addr(part, addr), buf, chunk_size);

182

183 /* Mo write needed in this sector, same data */

184 [if {off == (int) chunk size) {

185 gote advance;

186 }

187

188 /* Write without erase possikle */

185 [if {off »= 0 {

150 [zize t w = off + ad_flash write(part_addripart, addr + off),

131 [# buf + off, chunk_ size - ofi);

1352 [# 05_AS5ERT (w == chunk_size);

133 gotoe advance;

134 1

135

136 /* If entire sector is to be written, no need to read old data */

137 [+ if {addr == sector_start && chunk size = FLASH SECTOR SIZE) {

138 [# ad_flash erase_region(part_addr(part, sector_start), FLA&SH SECTOR_SIZE);

155 [# 2d flash write (part addripart, sector start), buf, FLRSH SECTOR SIZE); LI

Figure 12 Source Viewer

9.9 Disassembly Window

Ozone’s Debugger Disassembly Window displays the assembler code interpretation of MCU memory
content. The window automatically scrolls to the position of the program counter when the program is
stepped; this allows users to follow program execution on the machine instruction level.

Application Note Revision 1.3 23-Dec-2021

CFR0014 26 of 66 © 2021 Renesas Electronics

RENESAS

AN-B-040

DA1468x Using Ozone/J-link for Software Company confidential

Debugging

Disassembly »

= FFFFFFFE RARD ;|
[afufafufalafala] 28000 STRH RO, [RO] —

ZPRDC->EP RDC CTIRL REG = 0O;
hw timer0.c , Line3é
hw_wkup.c , Line37
hw_irgen.c , Lines3
hw _timerd.c , Line55
if {ecfg) {
hw_tempsens.c , Line37
hw_trng.c , Liness
hw_wkup.
hw_whkup.
hw_gapi. , Line73
hw_trng. , Line74
queue.c , Line7&
hw_uart.c Lina77
hw iZc.c , Line73
ble common.c , Line20
hw uart.c , LineB8¢
rwble.c , Line34
queue_.c , Line34
gqueue.c , Line33
for (i = 0; i < 5; i++) {
queue .~ , Linel04
hw _uart.c , Lineld5
hw_coex.c , Linelds ;I

o i i

Line58
Line72

nmnmnn

Figure 13 Disassembly Window

The Disassembly Window shares multiple features with Ozone’s Debugger second code window, the
Source Viewer.

Each text row within the Disassembly Window displays information about a particular ARM machine
instruction. The instruction information is divided into 4 parts:

Table 6 Instruction row information

Address Encoding Mnemonic Operands

08000152 0304F107 ADD R3, R7, #0x04

9.9.1 Mixed Mode Disassembly

The Disassembly Window’s "Mixed Mode" display option changes standard output in the following
manner:
1. If a machine instruction is associated with a source code line, the source code line is
displayed above the machine instruction row.
2. Absolute and relative branch offsets such as "0x4" are replaced with label offsets such as
"main+0x4" where possible.

Application Note Revision 1.3 23-Dec-2021

CFR0014 27 of 66 © 2021 Renesas Electronics

AN-B-040

LENESAS

DA1468x Using Ozone/J-link for Software

Debugging

Disassembly
= FFFFFFFE
faQufulululalala]
00000002
00000004
000a00004a
00000008
00000004
ooaoaooc
O000000E
0000010
00000012
00000014
0000001a
00000018
00000014
00a0001c
O000001E
00000020
00000022
00000024
0000002 4a
00000028
00000024
0o0ao0aozc
O000002ZE
00000030
00000032

L lalalitalitil

2000
a7FC
0351
08090
&001
O7FD
a0l3
O7FD
00aa
a0aa
a0aa
0000
00aa
a0aa
a0aa
0000
00aa
a0aa
a0aa
0000
00aa
a0aa
03E1
08090
00aa
a0aa

Lalatalal

RO, [RO]
D4, R7, £31
Bl, Rz, £13
B0, RO, £32
Bl, [RO]
BS, R7, £31
B1, [R2]
B5, R7, £31
B0, RO

RO, RO

RO, RO

B0, RO

B0, RO

RO, RO

RO, RO

B0, RO

B0, RO

RO, RO

RO, RO

B0, RO

B0, RO

RO, RO

Bl, R4, £15
B0, RO, £32
B0, RO

RO, RO

Company confidential

|»

Figure 14 Mixed Mode output in the Disassembly Window

The result is depicted above. The mixed mode display option can be activated from the context menu
of the Disassembly Window or via the user action Edit.Preference using parameter

PREF_MIXED_MODE_ASM.

9.10 Console Window

The Ozone’s Debugger Console Window displays both application- and user-induced logging output.

Application Note

Revision 1.3

23-Dec-2021

CFRO0014

28 of 66

© 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Consaole x

Project.SetDevice {"Cortex-M0");

Project.SetHostIF ("USB", ™);

Project.SetTargetlF ("SWD™);

Project.5etTIFSpeed ("1 MHz™);

File. Open {"C: fblack_orca_sdk/projects/dk_appsfexamples,ble_adv_demo/Debug_0J
Debug. Start();

J-Link: Device CORTEX-MO selected.

J-Link: Found SWD-DP with ID 0x0BB 11477

J-Link: Found Cortex-M0 rop0, LitHe endian.

J-Link: FPUnit: 4 code (BP) slots and O literal slots

Jink: CoreSight components:

J-Link: ROMTRI 0 @ EQOFFO00

J-Link: ROMTRI O [0]: FFFOFD00, CID: B105EQ0D, PID: 000BBOOE 5CS
J-Link: ROMThIl 0 [1]: FFFO2000, CID: B105E000, PID: O00BBOOA DWT
J-Link: ROMTRI 0 [2]: FFFO3000, CID: B105E00D, PID: 000BEOOE FPB
J-Link: connected to device

. 2

Figure 15 Console Window

Command prompt: The Console Window contains a command prompt at its bottom side that allows
users to execute any user action that has a text command. It is possible to control the debugger from
the command prompt alone.

Message Types: The type of a console message depends on its origin. There are three different
message sources and hence there are three different message types.

9.10.1 Command Feedback Messages

When a user action is executed — be it via the Console Window’s command prompt or any of the
other ways described in "Executing User Actions" on page 22 — the action’s command text is added
to the Console Window’s logging output. This process is termed command feedback. When the
command is entered erroneously, the command feedback is highlighted in red.

Window.Show("Console");
9.10.2 J-Link Messages
Control and status messages emitted by the J-Link firmware are a distinct message type.
J-Link: Device STM32F13ZE selected.

9.10.3 Script Function Messages

The user action Util.Log outputs a user supplied message to the Console Window. Util.Log can be
used to output logging messages from inside script functions.

Executing Script Function "BeforeTargetConnect".

Application Note Revision 1.3 23-Dec-2021

CFR0014 29 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

9.11 Functions Window

Ozone’s Debugger Functions Window lists the functions defined within the application program.

Functions *
Mame 4 | Line | File | Addressil
__DMB 331 core_cminstr.h
__get PRIMASE 478 core_cmFunc.h
__get_PRIMASE 478 core_cmFunc.h
__get_PRIMASK 478 core_cmFunc.h
__get_PRIMASK 478 core_cmFunc.h
__get_PRIMASK 478 core_cmFunc.h
__get_PRIMASK 478 core_cmFunc.h
__get_PRIMASK 478 core_cmFunc.h
__get_PRIMASE 478 core_cmFunc.h
__NOP 3Z5 core_cminstr.h
__set_PRIMASK 433 core_cmFunc.h
__zet_ PRIMASE 433 core_cmFunc.h —
‘ | o]

Figure 16 Functions Window

The Functions Window displays the following information about functions:

Table 7 Function Attributes

Attribute Description

Name Name of function

Line Line No of the function’s first source code line

File Source code, that contains function

Address Range | Memory - address range covered by the function’s machine code.

9.12 Threads Window- FreeRTOS

The Ozone Debugger is capable of OS-aware debugging, which allows, monitoring the task list of the
OS and examine the current state of all tasks, including its call stack, locals and registers.

To enable awareness for FreeRTOS, add following line to your debugger project.
Project.SetOSPIlugin (“FreeRTOSPIlugin.dll”);
After loading the project the Thread Window can be opened via

View -> FreeRTOS-> Threads.

Application Note Revision 1.3 23-Dec-2021

CFR0014 30 of 66 © 2021 Renesas Electronics

AN-B-040

LENESAS

DA1468x Using Ozone/J-link for Software

Debugging

File Edit | view Debug Help

Company confidential

| & P Breakpaints Cirl+8 |FERIER=
Call G Ctrl+H
[o T CGeeh L #m @ [c] 5]
— =| Call 5tack Ctrl+
[nstruction =l
Conszole Ctrl+E
Data Breakpoints Ctrl+P
fon tr t ted
] Disa bly = = on trace not suppor ‘
Instruction Trace Ctrl+I
3reakpoints /| Find Results Ctrl+Z
ID < |Ade fx Functions Ctrl-+J | Line | File
0 071 Global Data Ctrl+3 L1 clocksl); 1157 SYS_power_mar.c
1 ot Local Data Ctrl+L €23 hw_spi.c
2 ool e Chrl4M T3z hw_uart.c
3 aaf . 7. B7
B — Reaqisters Ctrl+R. E'?
4| |c| Source Files Ctrl+Y |
=unctions Terminal Ctrl+T
Name Watched Data Crl-+n - | T | =5
+ __disahl 340 core_cmFunc.h
5 _DMB reacs 351 core_cminstrh
+# __enabh Toolbars 3Z3 core_cmFunc.h
¥ get PRIMAGK 473 core_cmFunc.h
_ get PRIMASE 478 core_cmFunc.h
Il et ONTRAACLK A0 S s
Figure 17 Threads Window Activations
Threads s
D | Priarity | Name | Status |Tmeout | Stack Info (Free / Size)
= 2 Idle (0} IDLE Rurining 280 fMN/A
3 Highest (4) Tmr Blocked (E) 4097 264 fM/A
5 Low (1) bleM Suspended 344 NfA
& Low (1) BLE Suspended 312 JMN/SA
4 Low (1) blea Suspended 364/ N/A
1 | 0
Figure 18 Threads Window
Application Note Revision 1.3 23-Dec-2021

CFRO0014

31 of 66

© 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

10 Registers

10.1 Register Window

Ozone’s Debugger Register Window displays the core, peripheral and FPU registers of the selected
MCU.

Registers =

Mame Value

|=] o Curr, CPU Regs
RO 0x00005150
R1 Ox07FDe035
RZ2 OxFFFFFFFF
R3 OxFFFFFFFF
R4 OxFFFFFFEFF
RS OxFFFFFFFF
R& 0xFFFFFFFF
R7 OxFFEEFEFFEF
R3 OxFFEFFFFF
RS OxFFEFFFFFF
R10 OxFFFFFFFF
R11 OxFFFFFFFF
R12 OxFFFFFFEFF
R13 0x00005150
R14 0xFFFFFFEFS
R15 ORFFEFFEFFFE

BPSH 0x4 (nZcw)

EPSE 0x01000000

|+ == All CPU Reqgs

Figure 19 Register Window

10.2 SVD Files

The Register Window relies on System View Description files (*.svd) that describe the register set of
the selected MCU. The SVD standard is widely adopted — many MCU vendors provide SVD register
set description files for their MCUs.

Core Registers: The Ozone Debugger ships with an SVD file for each supported ARM architecture
profile. When users select an MCU within the debugger, the register window is automatically
initialized with the proper SVD file so that core, FPU and coprocessor registers are displayed
correctly.

Peripheral Registers: The SVD file describing the peripheral register set of the selected MCU must
be specified manually. For this purpose, the user action Project.SetPeripheralFile is provided. The

Application Note Revision 1.3 23-Dec-2021

CFR0014 32 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Ozone Debugger does not ship with peripheral SVD files out of the box; users have to obtain the file
from their MCU vendor.

10.3 Register Groups
The Register Window, partitions MCU registers into 4 different groups.

Current CPU Registers: CPU registers that are in use given the current operating mode of the
MCU.

All CPU Registers: All CPU registers, i.e. the combination of all operating mode registers.

FPU Registers: Floating point registers. This category is only available when the MCU possesses a
floating point unit.

Peripheral Registers: Memory mapped registers. This category is only available when a peripheral
register set description file was specified.

Bit Fields: A register that does not contain a single value but rather one or multiple bit fields can be
expanded or collapsed within the Register Window so that its bit fields are shown or hidden. Bit fields
can be edited just like normal register values.

Flag Strings: Bit field register that contains only bit fields of length 1 (flags) displays the state of its
flags as a symbol string. These symbol strings are composed in the following way: the first letter of a
flag’s name is displayed uppercase when the flag is set and lowercase when it is not set.

10.4 Processor Operating Mode

The MCUs current operating mode is displayed as the value of the current CPU registers group (see
the figure on page 68). An ARM processor can be in any of 7 operating modes:

Table 8 Operating Modes

USR | SVS ABT IQR FIQ SYS UND

User | Supervisor | Abort Interrupt Fast Interrupt | System Undefined

10.5 Source File Window

Ozone’s Debugger Source Files Window lists the source files that were used to generate the
application program.

Application Note Revision 1.3 23-Dec-2021

CFR0014 33 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Source Files x
File /| status | Path -
_ansi.h | | induded c:fprogram files (x86)/dialog semiconductor fsmartsnippets /cdtfoth
_default_types.h | | induded c:fprogram files (x36)/dialog semiconductor fsmartsnippets /cdtfoth
_intsup.h | | incduded c:fprogram files (x36) /dialog semiconductor fsmartsnippets /cdtfoth
_reg_ble_em_cs.h | | induded C:fblack_orca_sdk/sdkfinterfaces blefsrc/stack plfiblack_orca/fsre
_reg_ble_em_rx_buffer.h | |induded C:fblack_orca_sdk/sdkfinterfaces ble/fsrc/stack plfjblack_orcafsrc
_reg_ble_em_rx_desc.h | |induded C:fblack_orca_sdk/sdkfinterfaces ble/src/stack plfjblack_orcafsrc
_reg_ble_em_tx_buffer.h | |induded C:fblack_orca_sdk/sdkfinterfaces ble/src/stadk plfiblack_orcafsre
_reqg_ble_em_tw_desc.h | | incuded C:fbladk_orca_sdk/sdk/finterfaces blefsrcfstack/plfblack_orcafsre
_reg_ble_em_wpb.h | | induded C:fbladk_orca_sdk/sdk/finterfaces ble/fsrcfstadk/pifblack_orcafsro
_req_ble_em_wpw.h | | induded C:fbladk_orca_sdk/sdk/finterfaces blefsrc/stadk/plfblack_orcafsrg
_req_blecaore.h | | incduded C:fbladk_orca_sdk/sdk/finterfaces blefsrc/stack/plfblack_orcafsro
_reg_commaon_em_et.h | | induded C:fblack_orca_sdk/sdkfinterfaces blefsrc/stack plfiblack_orca/fsre
_types.h | |induded c:fprogram files {(x86) /dialog semiconductor fsmartsnippets fcdtfoth
_types.h | |induded c:fprogram files (x86) dialog semiconductor fsmartsnippets fodtfoth
ad_ble.c |#t] compiled C:/black_orca_sdk/sdk/finterfaces ble src/adapter fad_ble.c
ad_hle.h | | incuded C:fbladk_orca_sdk/sdk/interfaces blefindude fadapter fad_ble.h
ad_ble_config.h | | induded C:blad:_orca_sdk/sdk/interfaces blefindude fadapter fad_ble_con
ad_ble_msg.h | | induded C:fbladk_orca_sdk/sdk/finterfaces blefindude fadapter fad_ble_msc
ad_defs.h | | incduded cijblack_orca_sdkfsdk/bsp/adapters fincdudefad_defs.h

ad_flash.c |t compiled C:jblack_orca_sdk/sdk/bsp/adapters srcfad_flash.c

ad_flash.h | |induded c:/black_orca_sdkfsdk/bsp/adapters/findudefad_flash.h

ad_nvms.c |#t] compiled C:/black_orca_sdk/sdk/bsp/adapters fsrcfad_nvms.c

.:r‘ nvms.h included reihlack nrr;I arkiadk han/fadantersfincdude fad_nvms. b _}d

Figure 20 Source File Window

Source file Information

The Source Files Window displays — alongside the file name and path — the following additional
information about source files:

1. Status: Indicates how the compiler used the source file to generate the application program.

A source file that contains program code is displayed as a "compiled" file. A source file that
was used to extract type definitions is displayed as an "included" file.

2. Address Range: Memory- address range covered by the source file’s program code.
Unresolved Source Files
A source file that the debugger could not locate on the file system is indicated by a yellow icon within

the Source Files Window. The Ozone Debugger supplies users with multiple options to locate
missing source files.

Application Note Revision 1.3 23-Dec-2021

CFR0014 34 of 66 © 2021 Renesas Electronics

N RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

10.6 Local Data Window

The Ozone’s Debugger Local Data Window displays the local symbols (variables and function
parameters) of a function.

Local Data T £
' Name - | Value Location Type -
= c 0x20002444 R7 uchar®

| [0] 0x0 200024A4 uchar

| ch 0%20 R9 uint

| Oxl11 R6& uint

| i ox21 R4 uint |

Figure 21 Local Data

Current Function tracking
The list of local symbols is updated each time the program execution point enters a function.

Call Site Symbols

The Local Data Window allows users to inspect the local variables of any function on the call stack.
To change the Local Data Window’s output to an arbitrary function on the call stack, the function
must be selected within the Source Viewer or the Call Stack Window. Once the program is stepped,
output will switch back to the current function.

Auto Mode
The Local Data Window provides an "auto mode" display option; when this option is active, the

window displays all global variables referenced within the current function alongside the function’s
local variables. Auto mode is active by default and can be toggled from the window’s context menu.

10.7 Global Data Window

Ozone’s Debugger Global Data Window displays the global variables defined within the application
program.

Application Note Revision 1.3 23-Dec-2021

CFR0014 35 of 66 © 2021 Renesas Electronics

LENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Global Data =
Mame S| value | Location H
| __dialog_interrupt_pricrities s 1T+ Gl 0200DBRTC
ad_ble_blocked 07FDLOFS
ad_msg_wgueue O7FDAZTC
ad_nvms_direct_driver OS00EL1E0
ad_nvms_direct_ro_driver 0B00EL158
ad_nvms_ves_driver 0S00EL1BD
adapter_if OxBESASASLE O7FDAOED
adapter_if O7FDRIZ0
adv_data "KL 14 it 0B00EZ1C
app_task 0xASASASAS 07FDROEC
area_offset 07FDDR44
[+l =ras civs NTRMNE AT il
1 | Llj

Figure 22 Global Data

Editable Values
The global data Window supports the editing of variable values.

Display Format
The Global Data Window supports the editing of variable values

Data Breakpoint Indicators
A breakpoint icon preceding a global variable’s name indicates that a data breakpoint is set on the
variable.

10.8 Terminal Window

Ozone’s Debugger Terminal Window provides bi-directional text IO between the debugger and the
application program (debugee). In the upstream direction, the window displays text messages output
by the application program. In the downstream direction, a command prompt is provided to send
textual data to the debugee.

Terminal x

»» Disabled output of control characters
»» Jutput wvia 5W0 actiwve
*» Failed to activate RealTime ID. Flease
»» RealTime ID inactive

'—‘% 2

Figure 23 Terminal Window

Supported IO Techniques

Application Note Revision 1.3 23-Dec-2021

CFR0014 36 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Terminal Window supports three communication techniques for transmission of textual data from the
debugger to the debugee and vice versa.

1. SWO: The Terminal Window can capture and display texual date that is sent by the
application program to the debugger via the MCUs Serial Wire Output — SWO interface.

2. Semihosting: The Ozone Debugger is able to communicate with the application program via
the Semihosting mechanism. Advanced applications on the Host- PC, such as reading from
files can be performed.

3. RTT: Real Time Terminal is a bi- directional data transmission technique based on a shared
MCU memory buffer. RTT provides a significantly higher data retransmission speed,
compere to the other two techniques.

Terminal Prompt

The terminal window’s command prompt is used to reply to semi hosting or RTT user input requests
and to send textual data to the application program. The terminal prompt is located at the bottom of
the terminal window.

11 Debugging

The following table summarizes the debugging work flow. Phases 1 and 2 are executed only once,
while phases 3 and 4 are executed repeatedly until the bug is found.

Table 9 Debugging work flow

Debugging Work Flow Phases
Phase 1 Opening- Creating a project
Phase 2 Starting debug session
Phase 3 Modifying program’s execution point
Phase 4 Inspecting program state

11.1 Projects

An Ozone Debugger project (.jdebug) stores settings that configure the debugger so that it is ready
to debug an application program on a particular hardware setup (microcontroller and debug
interface). When a project is opened or created, the debugger is initialized with the project settings.

11.1.1 Required Project Settings

A valid project file must specify the following settings:

Table 10 Project Settings

Project Settings | Description

Name Name of function

Application Note Revision 1.3 23-Dec-2021

CFR0014 37 of 66 © 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Project Settings | Description

Line Line No of the function’s first source code line

File Source code, that contains function

Address Range Memory - address range covered by the function’s machine code.

11.2 Program Files

The program to be debugged (debugee) is specified as part of the project settings or is opened
manually from the GUI.

11.2.1 Supported File Types

The Ozone Debugger supports the following program file types:
1. EIf or compatible files (*.elf, *.out, *.axf)
2. Motorola s- record files (*.srec, *.mot)
3. Intex hex files (*.hex)
4. Binary data files (*.bin)

11.2.2 Symbol Information

Only ELF or compatible program files contain symbol information. When specifying a program or
data file of different type, source-level debugging features will be unavailable. In addition, all
debugger functionality requiring symbol information, will be available.

The Ozone Debugger provides many facilities that allow insight into programs that do not contain
symbol information. With the aid of the Disassembly Window, program execution can be observed
and controlled on a machine code level. The MCU's memory and register state can be observed and
modified via the Memory and Register Windows.

Furthermore, many advanced debugging features such as instruction trace and terminal IO are
operational even when the program file does not provide symbol information.

Visible Effects

When an ELF file is opened, the program’s main function is displayed within the Source Viewer.
Furthermore, all debug information windows that display static program entries are initialized. Those
are the functions: Window, Source File Window and Global Data Window.

11.2.3 Automatic Download

When a program or data file is opened while a debug session is running, the file contents will be
automatically downloaded to target memory. The file contents will overwrite any existing program or
data at the download location.

Application Note Revision 1.3 23-Dec-2021

CFR0014 38 of 66 © 2021 Renesas Electronics

RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

AN-B-040

11.2.4 Data Endianness

When an ELF file is opened, the Ozone Debugger senses the program'’s file data endianness, and
configures itself for that data encoding. The endianness mode of the attached MCU is set to the
program file’s data endianness if supported by the MCU. The MCU’s endianness mode can also be
specified manually via Ozone’s Settings Dialog.

11.3 Start Debugging

When a project was opened or created and a program file was specified, the next step in the
debugging work flow is to start the debug session. The debug session is started with Debug.Start
from the Debug Menu or by hitting F5.

11.3.1 Connection Mode

The operations that are performed during the start-up sequence depend on the value of the
connection mode parameter (Debug.SetConnectMode). The different connection modes are
described below.

11.3.1.1 Download ad Reset

The default connection mode “Download and Reset Program” performs the following operations:

Table 11 Download and Reset Program Sequence

Start-up Phase Description

Phase 1: Connect Software connection to the MCU is established via J-Link
probe.

Phase 2: Breakpoints Pending breakpoints that were set in offline mode are applied

Phase 3: Reset Hardware reset of the MCU

Phase 4: Download He application program is downloaded to MCU memory

Phase 5: Finish The initial program operation is performed

11.3.1.2 Flow Chart

Below you can see the different phases of the "Debug & Download Program" startup sequence and
how it interoperates with script functions. Phases 2 (Breakpoints) and 5 (Initial Program Operation) of
the startup sequence are not displayed in the chart as these phases cannot be re-implemented and
do not trigger any event handler functions.

Application Note Revision 1.3 23-Dec-2021

CFR0014 39 of 66 © 2021 Renesas Electronics

B0t RLENESAS

DA1468x Using Ozone/J-link for Software
Debugging

Company confidential

Debugging Work Flow

Replacement Funtions and Standard
Alternative Invocation Execution

\

Called Event Handlers

Debug.Start

c
)
k=]
3
c
§
o
Debug.Start Start debug session
:> » Before TargetConnect
Target.Connect Connect to Target
> After TargetConnect
a @
4]
e » Before TargetReset
\ 4
Target.Reset Reset Target
> After TargetReset
3 @
é »| | Before TargetDownload
g
Target.Download Download File to Target
»| | After TargetDownload
End
A 1
CFR x

40 0T bb

© Z0Z1 Renesas Electronics

LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

AN-B-040

Figure 24 Start-up Sequence Flow Chart

11.3.1.3 Attach to Running Program

This connection mode attaches the debugger to the application program by performing phases 1 and
2 of the default startup sequence

11.3.1.4 Attach and Halt Program

The connection mode performs the same operation as “Attach to Running Program” and additionally
halts the program.

11.3.2 Initial Program Operation

When the connection mode is set to “Download & Reset Program”, the debugger finishes the star up
sequence in one of the following ways, depending on the reset mode.

Table 12 Initial Operations

Reset Mode Initial Program Operation

Reset and Break at Program resets and advanced to a particular function.
Symbol

Reset and Halt Program is halted at the reset vector

Reset and Run Program is restarted

11.4 Execution Point

The current position of the program execution is referred to as the execution point. The execution
point is identified by the memory address of the machine instruction that is going to be executed
next.

The application program’s execution point is displayed both within the source viewer and within the
Disassembly Window, where it is referred as the “PC line”.

Source Viewer: The PC line can be brought into view via the window’s context menu entry “GoTo
PC”, or by executing View.PCLine.

Disassembly Window: The PC line can be brought into view via the window’s context menu entry
“Goto PC”, or by executing the user action View.PC.

11.4.1 Setting Execution Point

The execution point can be set to arbitrary source code lines or machine instructions via user actions
Debug.RunTo, Debug.SetNextSTmnt and Debug.SetNextPC.

Application Note Revision 1.3 23-Dec-2021

CFR0014 41 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Debug.RunTo: It advances program execution to a particular function, source code line or instruction
address, depending on the command line parameter given. All instructions between the current PC
and the destination are executed. Both code windows provide a context menu entry “Run to Cursor”
that advance program execution to the selected code line.

Debug.SetNextSTmnt: It advances program execution to a particular source code line or function.
The action sets the execution point directly; all instructions between the current execution point and
the destination location will be skipped.

Debug.SetNextPC: It advances program execution to a particular instruction address. The action
sets the execution point directly; all instructions between the current execution point and the
destination execution point will be skipped.

11.5 Debugging Controls

11.5.1 Reset

Reset: The program can be reset via user action Debug.Reset. The action can be executed from the
Debug Menu or pressing F4.

Reset Mode: The reset behavior depends on the value of the reset mode parameter. The reset
mode specifies which of the three initial program operations is performed after the MCU has been
hardware-reset.

Setting Reset Mode: The reset mode can be set via user action Debug.SetResetMode, via System
Variable Editor or via the Reset Menu. The symbol to break at can be specified by settings System
Variable “WVAR_BREAK_AT_THIS_SYMBOL”".

11.5.2 Step

The Ozone Debugger provides three user actions that step the program in defined ways.

The debugger’s stepping behavior also depends on whether the Source Viewer or the Disassembly
Window is the active code window (see “Active Code Window” on page 30). Table 5.7 considers
each situation and describes the resulting behavior.

Table 13 Program Stepping

Active Code Window

Action Source Viewer Disassembly Window
Debua.Steplnt Steps the program to the next source Advances the program by a single machine
ebug.stepinto | code Jine. If the current source code line instruction by executing the current
calls a function, the function is entered. instruction (single step).
Application Note Revision 1.3 23-Dec-2021

CFR0014 42 of 66 © 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Active Code Window
Action Source Viewer Disassembly Window
Steps the program to the next source Performs a single step with the
code line. If the current source code line particularity that branch with link
Debug.StepOver | calls a function, the function is instructions (BL) are overstepped,
overstepped, i.e. executed but not i.e. instructions are executed until the PC
entered. assumes the address following that of the
branch.
Debud.StepOut Steps the program out of the current Steps the program out of the current
ebug.stepOu function to the source code line following function to the machine instruction
the function’s call site. following the function’s call site.

11.5.3 Resume

Each program can be resumed via the user action Debug.Continue. The action can be executed
from Dialog Menu or by pressing F5.

11.5.4 Halt

Each program can be halted via the user action Debug.halt. The action can be executed from the
Debug Menu or by pressing F6.

11.6 Program State

Users can inspect and modify the state of the application program when it is halted at an arbitrary
execution point.

11.6.1 Data Symbols

Ozone’s Debugger symbol windows allow users to observe and edit data symbols (variables and
function parameters). In addition, data symbols can be read and written programmatically via user
actions.

Local Symbols: Local Data Window allows users to observe and manipulate the local symbols that
are in scope at the execution point

Call Site Symbols: The Local Data Window can display the local symbols of any function on the call
stack. By selecting a called function within the Call Stack Window or within the Source Viewer, the
local symbols of that function are displayed.

Global Variables: The Global Data Window allows users to observe and edit global program
variables.

Watched Variables: Any program variable can be put under, and removed from, explicit observation
via the user actions Window.Add and Window.Remove. Observed variables are displayed within
the Watched Data Window

Data Location: The register or memory location of a data symbol can be displayed by executing the
user action View.Data. The action is available from the context menu of the symbol window.

Application Note Revision 1.3 23-Dec-2021

CFR0014 43 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

11.6.2 Instruction Execution History

Ozone’s Debugger Instruction Trace Window allows users to inspect the machine instructions that
were executed between two consecutive execution points.

The user action View.InstrTrace is provided to display arbitrary positions within the instruction
execution stack.

11.6.3 Value Tooltips

Holding the mouse cursor over an active variable within the Source Viewer, a tooltip will pop up that
displays the variable’s value. An active variable is a variable that is displayed within the Local Data
Window.

11.7 Hardware State

11.7.1 MCU Registers

MCU Register can be inspected and edited via Ozone’s Debugger Register Window. The user
actions Target.GetReg and Target.SetReg are provided to allow the readout or manipulation of
MCU registers from script functions or at the command prompt

11.7.2 MCU Memory

MCU Memory can be inspected and edited via Ozone’s Debugger Memory Window. Using the
following user actions you can read and manipulate MCU memory from script functions or from the
command prompt.

Target.ReadUS8
Target.ReadU16
Target.ReadU32
Target.WriteU8
Target.WriteU16
Target.WriteU32

11.7.3 Memory Access Width

The access width that the J-Link firmware employs when reading or writing memory strides of
arbitrary size, can be specified via the user action Width.

11.8 Inspecting Running Program

When the program execution is running, program inspection and manipulation is limited, with the
limitation described below:

Application Note Revision 1.3 23-Dec-2021

CFR0014 44 of 66 © 2021 Renesas Electronics

RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

AN-B-040

Table 14 Program Inspection Limitations, while program is running

Limitations Description

No register 10 Register values are not updated and cannot be editing.

Freezed global variables Global variables are not updated and cannot be edited.

No memory 10 The Memory Window is only updated when the auto refresh feature is

active and the MCU supports background memory access.

No call stack, instruction trace | The Call Stack Window, Local Data Window and Instruction
and local data Trace Window do not display content.

All other features, such as terminal-10 and breakpoint manipulation, remain operational while the
application program is running.

12 Static Program Entities

Static program entities are objects that do not change with the execution point.

12.1 Functions

Ozone’s Debugger Functions Window displays the functions defined within the application program.
By double-clicking on a function, the function is displayed within the Source Viewer.

12.1.1 Source Files

Ozone’s Debugger Source Files Window displays the source code files that were used to build the
application program. By double clicking on a source code file, the file is opened within the Source
Viewer. The Source Files Window features a context menu entry that allows users to locate missing
source files.

12.2 Program Output

The Ozone Debugger supports printf style debugging of the application program. An application
program may send text messages to the debugger by employing one or multiple of the 10 techniques
described below. Text output from the application program is shown within the Terminal Window.

1221 SWO

The Terminal Window can capture and display data that is sent by the application program to the
debugger via the MCUs Serial Wire Output (SWO) interface. SWO is an unidirectional technology; it
cannot be used to send data from the debugger to a debugee.

12.2.1.1 Configuring SWO

Text-10 via SWO must be configured both within the application program and within the Ozone
Debugger.

Application Note Revision 1.3 23-Dec-2021

CFR0014 45 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Within the Ozone Debugger, it is configured via the user action Project.SetSwo or via the Terminal
Settings Dialog. Furthermore, the SWO interface must be enabled by checking the Terminal
Window’s context menu item "Capture SWO IO".

12.2.2 Semihosting

The Ozone Debugger is able to communicate with the application program via the Semihosting
mechanism. Next to providing bi-directional text I/O via the Terminal Window, the application
program can employ Semihosting to perform advanced operations on the Host-PC such as reading
from files.

12.2.2.1 Configuring Semihosting

Text-10 via the Semihosting mechanism does not need to be configured within the Ozone Debugger.
However, the application program must apply special assembler code to emit semihosted text
messages. The semi hosting interface can be enabled or disabled via the user action
Project.SetSemihostin or via the Terminal Window’s context menu item "Capture Semihosting 10".

12.3 Real Time Terminal

SEGGER'’S RTT is a bi-directional data transmission technique based on a shared MCU memory
buffer. Compared to SWO and semihosting, RT provides a significantly higher data transmission
speed.

12.3.1 RTT Configuration

Text-10 via SEGGER’s Real Time Terminal technology does not need to be configured within the
Ozone Debugger. The debugger will automatically sense whether the application program supports
RTT. If RTT support is detected, the debugger automatically starts to capture data on the RTT
interface. On the application program side, a special global program variable must be provided.

12.4 Watching Variables

A program variable can be watched, i.e. added to the Watched Data Window, in any of the ways
described below. A variable can be removed from the watch list via the user action Window.Remove
or via the Watched Data Window’s context menu.

Watch Dialog: The Watch Dialog can be opened from the window’s context menu and allows users
to input the name of the variable to be watched.

Source Viewer: The Source Viewer’s text selection context menu contains an entry that allows users
to add the selected text to the Watched Data Window where it is interpreted as a variable name.

Symbol Windows: The Global Data Window and the Local Data Window each provide a context
menu entry that adds the selected variable to the Watched Data Window.

User Action: the user action Window.Add is provided to add variables to the Watched Data Window
programmatically.

Application Note Revision 1.3 23-Dec-2021

CFR0014 46 of 66 © 2021 Renesas Electronics

LENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Watched Data =
Expression < [value Location | Size | Type

f om_sys_dk_init) 0s004200 |0 static void{enum sysclk type)
__dialog_interrupt_priorities " dpgal" 08018898 17 const char[17]
adapter_if 0x7FDIC20 O07FDSET74 4 const struct ad ble interface t*
adv_data .. 0g0lsexne 21 const uchar[21]

f om_ahb_set_dock_divider() 0g004ces |1 static Bool {enum zshbdiv type)

f cm_apb_set_dock_divider() 08004C0C |0 static void(enum spkdiv_type)

I om_lp_dk_init]) 08005010 0 static void()

Figure 25 Watched Data Window

12.5 Program Files Download

The data contents of a program file can be downloaded to MCU memory without opening the file in
the debugger. For this purpose, the user action Exec.Download is provided. The program file that is
currently open in the debugger can be downloaded to MCU memory via the user action

Debug.Download.

12.6 Path Macros

The following path macros can be used wherever input of a file path is required.

Table 15 Path Macros

Variable Description

$(DocDir) The document directory "/doc".

$(PluginDir) The plugin directory "/plugins/”.

$(ConfigDir) The configuration directory "/config”.

$(LibraryDir) The library directory "/lib".

$(ProjectDir) The project file directory.

$(InstallDir) The directory where the Ozone Debugger was installed to.
$(ExecutableDir) The directory of Ozone’s Debugger executable file.
$(AppDir) The directory of the program file.

$(AppBundleDir) The application bundle directory (Mac OSX).

13 Scripting Interface

The scripting interface allows users to reprogram key operations within the Ozone Debugger.

Application Note

Revision 1.3 23-Dec-2021

CFRO0014

47 of 66 © 2021 Renesas Electronics

RENESAS

Company confidential

AN-B-040

DA1468x Using Ozone/J-link for Software
Debugging

13.1 Script Files

The Ozone Debugger project files (*.jdebug) contain user-implemented script functions that the
debugger executes upon entry of defined events or debug operations. By implementing script
functions, users are able to reprogram key operations within JLink

Debugger such as the hardware reset sequence that puts the MCU into its initial state.

13.1.1 Scripting Language

Project files are written in a simplified C language that supports most C language constructs such as
functions and control structures.

13.1.2 Script Functions

Project file script functions belong to three different categories: event handler functions, process
replacement functions and user functions. Each script function may contain simplified C code that
configures the debugger in some way or replaces a default operation of the debugging work flow.

13.1.2.1 Event Handler Functions

The Ozone Debugger defines a set of 11 event handler functions that the debugger executes upon

the entry of defined debugging events. Table 6.1 lists the event handler functions and their
associated events. The event handler function "OnProjectLoad" is obligatory.

Table 16 Event Handler Functions

Event Handler Function

Description

void OnProjectLoad();

Executed when the project file is open.

void BeforeTargetReset();

Executed before the MCU is reset.

void AfterTargetReset();

Executed after the MCU was reset.

void BeforeTargetDownload();

Executed before the program file is downloaded.

void AfterTargetDownload();

Executed after the program file was downloaded.

void BeforeTargetConnect();

Executed before a J-Link connection to the MCU is established.

void AfterTargetConnect();

Executed after a J-Link connection to the MCU was established.

void BeforeTargetDisconnect();

Executed before the debugger disconnects from the MCU.

void AfterTargetDisconnect();

Executed after the debugger disconnected from the MCU.

void AfterTargetHalt();

Executed after the MCU processor was halted.

void BeforeTargetResume();

Executed before the MCU processor is resumed.

Example:

Implementation of the event handler function “AfterTargetReset()". A peripheral register at memory

address 0x40004002 is initialized after the MCU was reset.

Void AfterTargetReset(void) {

Target.WriteU32 (0x40004002, OXFF);

Application Note

Revision 1.3

CFR0014

48 of 66 © 2021 Renesas Electronics

23-Dec-2021

RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

}

13.1.2.2 User Functions

AN-B-040

Users are free to add custom functions to the project file. These "helper” or user functions are not
called by the debugger directly; instead, user functions need to be called from other script functions.

13.2 Process Replacement Functions

The Ozone Debugger defines 4 script functions that can be implemented within the project file to
replace the default implementations of certain debugging operations.

Table 17 Process Replacement Functions

Process Replacement Function Description
void DebugStart(); Replaces the default debug session startup routine.
void TargetReset(); Replaces the default MCU hardware reset routine as performed
’ by the J-Link firmware.
void TargetConnect(); Replaces the default MCU connection routine as performed by the
J-Link firmware.
void TargetDownload(); Replaces the default program download routine as performed by
' the J-Link firmware.

13.2.1 API Functions

In the context of Ozone’s Debugger scripting functionality, any user action that has a text command
is referred to as an API function. API functions can be used to trigger debugging operations or to
send and receive data to/from the debugger. In short, API functions resemble the debugger’'s
programming interface (or API).

13.3 Startup Sequence

Table 18 Default Startup Sequence

Startup Phase Description Script Function
Phase 1: Connect A software connection to the MCU is established TargetConnect
via a J-Link probe.
Phase 2: Breakpoints Pending (data) breakpoints that were set in offline
mode are applied.
Phase 3: Reset A hardware reset of the MCU is performed. TargetReset
Phase 4: Download The application program is downloaded to TargetDownload
MCU memory.
Phase 5: Finish The initial program operation is performed
Application Note Revision 1.3 23-Dec-2021

CFR0014 49 of 66 © 2021 Renesas Electronics

ANLB040 LENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

13.3.1 Target Connect

When the script function "TargetConnect" is present in the project file, the debugger’s default MCU
connection behavior is replaced with the operation defined by the script function.

13.3.1.1 Frequency Adaptive Connection Routine

As an example application which requires a custom connection routine that we can use in case MCU
only supports data transition within a narrow frequency band, a custom connection routine can be
implemented that retries connecting to the MCU at different target interface speeds until a supported
speed is found.

void TargetConnect (void) {
int Result;
Util.Log(“Prforming custom connecion rouine.”);
for (i=0; i<100; i++) {
Edit.SysVar (VAR_TIF_SPEED, i * 1000);
Result= Exec.Connect();
If (Result == 0) {

break; /* success*/

13.3.2 Target Reset

When the script function "TargetReset" is defined within the project file, the debugger’s default MCU
hardware reset operation is replaced with the operation defined by the script function.

13.3.2.1 Reset Routine for RAM Debug

A typical example where the J-Link hardware reset routine must be replaced with a custom reset
routine is when the application program is downloaded to a memory address other than zero, for
example the RAM base address.

The J-Link firmware does not know about the application program’s location in MCU memory and
assumes it is located at address 0 (or at address OxFFFF0000 when high vectors are enabled).

As the application program’s reset code (or the initial values of the PC and SP registers for Cortex-M
MCUSs) is stored within the first few data bytes of the application program, the J-Link firmware is not
able to reset the program correctly when it is not downloaded to memory address 0.

A custom reset routine for RAM debug typically first executes the default J-Link hardware reset
routine. This ensures that tasks such as pulling the MCUs reset pin and halting the processor are
performed. Next, a custom reset routine needs to initialize the PC and SP registers so that the MCU
is ready to execute the first program instruction.

Application Note Revision 1.3 23-Dec-2021

CFR0014 50 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

void TargetReset (void) {
unsigned int SP;
unsigned int PC;

unsigned int ProgramAddr;

Util.Log(“Performing custom hardware reset for RAM DEBUG.”);
ProgramAddr = 0x20000000
/* 1. Perform default J-Link firmware reset operation */

Exec.Reset();

[* 2. Initialize SP */
S= Target.ReadU32 (ProgramAddr);
Target.SetReg(“SP”, SP);

/* 3. Initialize PC */
PC= Target.ReadU32 (ProgramAddr+ 4);
Target.SetReg (“PC”, PC);

13.3.3 TargetDownload

When the script function "TargetDownload" is present in the project file, the debugger’s default
program download behavior is replaced with the operation defined by the script function.

An application that requires the implementation of a custom download routine is when one or multiple
additional program images (or data files) need to be downloaded to MCU memory along with the
application program. A corresponding implementation of the script function "TargetDownload" is
illustrated below.

void TargetDownload (void) {
Util.Log(“Downloading Program.”);
/* 1. Download the application program */

Debug.Download();

[*2. Download the additional program image*/
Target.LoadMemory(“C:\AdditionalProgramDta.hex”, 0x20000400);

Application Note Revision 1.3 23-Dec-2021

CFR0014 51 of 66 © 2021 Renesas Electronics

B0 RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

13.4 Value Descriptors
13.5 Frequency Descriptor

Frequency Descriptor

A frequency parameter without a dimension is interpreted as a Hz value. The permitted dimensions
to be used with frequency descriptors are Hz, kHz, MHz and GHz. The capitalization of the
dimension is irrelevant. The dimensions can also be specified using the letters h, k, M and G. The
decimal point can also be specified as a comma.

Frequency parameters need to be specified in any of the following ways:
e 103000
e 103000 Hz
e 103.5kHz or 103.5k
e 0.13MHz or 0.14M
e 11GHz or1.1G

13.5.1 Location Descriptor

A source code location descriptor defines a character position within a source code document. It has
the following format:

“File name: line number: [column number]”
13.5.2 Colour Descriptor

Colour parameters are specified in any of the following ways:

steelblue (SVG colour keyword)
#RGB (hexadecimal triple)

13.5.3 Font Descriptor

Font parameters must be specified in the following format (please note the comma separation):
“Font Family, Point Size [pt], Font Style”

13.6 System Constants
The Ozone Debugger defines a set of global integer constants that can be used as parameters for
script functions and user actions.

13.6.1 Host Interfaces

Table 19 Host Interfaces

Constant Description
USB Use this value when the J-Link debug probe is connected to the
host-PC via USB.

Application Note Revision 1.3 23-Dec-2021

CFR0014 52 of 66 © 2021 Renesas Electronics

LENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Constant Description
P Use this value when the J-Link debug probe is connected to the
host-PC via Ethernet.

13.6.2 Target Interfaces

Table 20 Target Interfaces

Constant Description

ITAG Use this value when the J-Link debug probe is connected to the
MCU via JTAG.

SWD Use this value when the J-Link debug probe is connected to the
MCU via SWD.

13.6.3 Boolean Values

Table 21 Boolean Values

Constant

Description

Yes, True, Active, On, Enabled

The option is set.

No, Off, False, Inactive, Disabled

The option is not set.

13.6.4 Display Formats
Table 22 Display Formats

Constant

Description

DISPLAY_FORMAT_BINARY

Displays integer values in binary notation.

DISPLAY_FORMAT_DECIMAL

Displays integer values in decimal notiation.

DISPLAY_FORMAT_HEXADECIMAL

Displays integer values in hexadecimal notation.

DISPLAY_FORMAT_CHARACTER

Displays the text representation of the value.

13.6.5 Memory Access Width
Table 23 Memory Access Widths

Constant Description
AW_AUTO Automatic Access.
AW BYTE Byte Access.

AW HALF WORD Half word access.
AW_WORD Word access.

Application Note

Revision 1.3 23-Dec-2021

CFRO0014

53 of 66 © 2021 Renesas Electronics

B0n RENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging

13.6.6 Access Types
Table 24 Access Types

Constant Description

AT READ ONLY Read-only access.

AT WRITE ONLY Write — only access.
AT READ WRITE Read and write access.
AT NO ACCESS Access not permitted.

13.6.7 Connection Modes

Table 25 Connection Modes

Constant Description

CM_DOWNLOAD_RESET The debugger connects to the MCU and resets it. The
program is downloaded to MCU memory and program
execution is advanced to the main function.

CM_ATTACH The debugger connects to the MCU and attaches itself to
the executing program.
CM_ATTACH_HALT The debugger connects to the MCU, attaches itself to the

executing program and halts program execution.

13.6.8 Reset Modes
Table 26 Reset Modes

Constant Description

RM_RESET_HALT Resets the MCU and halts the program at the reset
vector.

RM_BREAK_AT_SYMBOL Resets the MCU and advances program execution to the

function specified by system variable
VAR BREAK AT THIS SYMBOL
RM_RESET_AND_RUN Reset the MCU and starts executing the program.

13.6.9 Breakpoint Implementation Types

Table 27 Breakpoint Implementation Types

Constant Description

BP TYPE ANY The debugger chooses the implementation type.

BP TYPE HARD The breakpoint is implemented using the MCU’s hardware
— — breakpoint unit.

BP TYPE SOFT The breakpoint is implemented by amending the program code
B - with particular instructions.

Application Note Revision 1.3 23-Dec-2021

CFR0014 54 of 66 © 2021 Renesas Electronics

AN-B-040

DA1468x Using Ozone/J-link for Software

Debugging

LENESAS

13.6.10 Stepping Behaviour Configuration Options

Table 28 Stepping Flags

Constant

Description

SF_ALLOW_INVISIBLE_BREAKPOINTS

Allows stepping operations to enhance stepping performance
by employing invisible breakpoints.

SF_HALT_AT_CIRCULAR_INSTR_SEQU
ENCE

Halts the program when a circular instruction sequence is
detected during a stepping operation.

SF_STEP_OVER_CIRCULAR_INSTR_SE
QUENCE

Allows stepping operations to enhance stepping performance
by stepping over circular instruction sequences.

14 User Actions

14.1 File Actions

Actions that perform file system and related operations.

Table 29 File Actions

Actions

Description

File.NewProject

Creates a new project.

File.NewProjectWizard

Opens the Project Wizards

File.Open Opens a file

File.Load Loads a file

File.Close Closes a source code document
File.CloseAll Closes all open source code docs

File.CloseAllButThis

Closes all but the active source code document.

File.Find

Searches a text pattern in all source code documents.

File.SaveProjectAs

Saves the project file under a new file path.

File.SaveAll

Saves all modified files.

File.Exit

Closes the application.

14.2 Edit Actions

Actions, used to edit the behavioural and appearance settings of the debugger.

Table 30 Edit Actions

Actions

Description

Edit.JLinkSettings

Displays the J-Link Settings Dialog.

Edit. TerminalSettings

Displays the Terminal Settings Dialog.

Edit.Preferences

Displays the User Preference Dialog.

Application Note

Revision 1.3

CFR0014

55 of 66

Company confidential

23-Dec-2021

© 2021 Renesas Electronics

B0n RENESAS

DA1468x Using Ozone/J-link for Software

Company confidential

Debugging
Actions Description
Edit.SysVars Displays the System Variable Editor.
Edit.Preference Edits a user preference.
Edit.SysVar Edits a system variable.
Edit.Color Edits an application color.
Edit.Font Edits an application font.
Edit.Find Displays the Find Dialog.
Edit.DisplayFormat Edits an object’s value display format.

14.3 ELF Actions

ELF Program file, information actions.

Table 31 ELF Actions

Actions Description

Elf.GetBaseAddr Returns the program file’s download address.
EIf.GetEntryPointPC Returns the initial value of the program counter.
EIf.GetEntryFuncPC Returns the first PC of the program’s entry (main) function.
EIf.GetExprValue Evaluates a C-language expression.

EIf. GetEndianess Returns the program file’s byte order.

14.4 Utility Actions

Script Function utility actions.

Table 32 Utility Actions

Actions Description
Util.Sleep Pauses the current operation for a given amount of time.
Util.Log Prints a message to the console window.

145 View Actions

Actions that navigate to particular objects displayed on the graphical user interface.

Table 33 View Actions

Actions Description

View.Data Displays the data location of a program variable.
Application Note Revision 1.3 23-Dec-2021
CFR0014 56 of 66 © 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Actions Description

View.Source Displays the source code location of an object.

View.Disassembly

Displays the assembler code of an object.

View.InstrTrace

Displays a position in the instruction execution history.

View.Memory

Displays a memory location.

Displays a text line in the active document.

View.Line
View.PC Displays the PC instruction in the Disassembly Window.
View.PCLine Displays the PC line in the Source Viewer.

View.NextResult

Displays the next search result item.

View.PrevResult

Displays the previous search result item.

View.NextObsvPoint

Displays the next position in the navigation history.

View.PrevObsvPoint

Displays the previous position in the navigation history.

14.6 Toolbar Actions

Actions, that modify the state of toolbars.

Table 34 Toolbar Actions

Actions

Description

Toolbar.Show

Displays a toolbar.

Toolbar.Close

Hides a toolbar.

14.7 Window Actions
Table 35 Window Actions

Actions

Description

Window.Show

Shows a window.

Window.Close

Closes a window.

Window.SetDisplayFormat

Sets a window's number format.

Window.Add

Adds a program variable to a window.

Window. Remove

Removes a program variable from a window.

Window.Clear

Clears a window.

Watch.Add

Adds a program variable to the Watched Data Window.

14.8 Debug Actions

Actions that modify the program execution point and that configure the debugger’s connection, reset

and stepping behavior.

Application Note

Revision 1.3

23-Dec-2021

CFR0014

57 of 66

© 2021 Renesas Electronics

AN-B-040

LENESAS

DA1468x Using Ozone/J-link for Software

Debugging

Table 36 Debug Actions

Company confidential

Actions Description
Debug.Start Starts the debug session.
Debug.Stop Stops the debug session.

Debug.Connect

Establishes a J-Link connection to the MCU.

Debug.Disconnect

Disconnects the J-Link connection to the MCU.

Debug.Download

Downloads the program file to the MCU.

Debug.Continue

Resumes program execution.

Debug.Halt

Halts program execution.

Debug.Reset

Reset the program.

Debug.Stepinto

Steps into the current function.

Debug.StepOver

Steps over the current function.

Debug.StepOut

Steps out of the current function.

Debug.SetNextPC

Sets the next machine instruction to be executed.

Debug.SetNextStmnt

Sets the next source statement to be executed.

Debug.RunTo

Advances program execution to a particular location.

Debg.SetResetMode

Sets the reset mode.

Debug.SetConnectMode

Sets the connection mode.

Debug.SetSteppingMode

Sets the stepping mode.

14.9 J-Link Actions

Actions, performing basic J-Link operations.

Table 37 J-Link Actions

Actions

Description

Exec.Connect

Establishes a J-Link connection to the MCU.

Exec.Exec

Executes a J-Link firmware hardware reset of the MCU.

Exec.Download

Downloads a program or a data file to MCU memory.

Exec.Command

Executes a J-Link command.

14.10 Breakpoint Actions

Actions, which modify the debugger’s breakpoint state.

Table 38 Breakpoint Actions

Application Note

Revision 1.3

23-Dec-2021

CFR0014

58 of 66

© 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging

Actions Description

Break.Set Sets an instruction breakpoint.

Break.SetEx

Sets an instruction breakpoint.

Break.Clear

Clears an instruction breakpoint.

Break.Enable

Enables an instruction breakpoint.

Break.Disable

Disables an instruction breakpoint.

Break.SetOnSrc

Sets a code breakpoint.

Break.SetOnSrcEx

Sets a code breakpoint.

Break.ClearOnSrc

Clears a code breakpoint.

Break.EnableOnSrc

Enables a code breakpoint.

Break.DisableOnSrc

Disables a code breakpoint.

Break.ClearAll

Clears all instruction and code breakpoints.

Break.Edit Edits a breakpoints advanced properties.
Break.SetType Sets a breakpoint’s implementation type.
Break.SetOnData Sets a data breakpoint.

Break.ClearOnData

Clears a data breakpoint.

Break.EnableOnData

Enables a data breakpoint.

Break.DisableOnData

Disables a data breakpoint.

Break.SetOnSymbol

Sets a data breakpoint on a global variable.

Break.ClearOnSymbol

Clears a data breakpoint on a global variable.

Break.EnableOnSymbol

Enables a data breakpoint on a global variable.

Break.DisableOnSymbol

Disables a data breakpoint on a global variable.

Break.ClearAllOnData

Clears all data breakpoints.

15 Conclusions

The Ozone Debugger is a source-level debugger for embedded software applications running on
ARM-Microcontroller units. It was developed with three design goals in mind: user-friendliness, high
performance and advanced feature set.
The Ozone Debugger is tightly coupled with SEGGER's set of J-Link debug probes to ensure optimal
performance and user experience. An on-demand updating philosophy and extensive use of data
caches minimize communication with the MCU. In addition, a job scheduling mechanism ensures
time critical communication is performed first and obsolete communication is removed from the
schedule. Add to this J-Link's instruction set simulation capability and you get one of the fastest
stepping debuggers for embedded systems on the market.

Appendix A Control Functions

A.1 Actions Table

Table 39 Control Functions

Application Note

Revision 1.3

23-Dec-2021

CFR0014

59 of 66

© 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Actions Description
File Actions

int File.NewProject();

New Project Creation

int File.NewProjectWizard();

Opens the Project Wizard

int File.Open(const char* FileName);

Opens File

int File.Find(const char* FindWhat);

Searches a text pattern

int File.Load(const char* FileName, U32 Address);

Loads a file

int File.Close(const char* FileName);

Closes Document

int File.CloseAll();

Closes all open documents

int File.CloseAllButThis();

Closes all but the active document

int File.SaveProjectAs(const char* FileName);

Saves the project file under a new file path

int File.SaveAll();

Saves all modified files

int File.Exit();

Closes the application

Edit Actions

int Edit.JLinkSettings();

Displays the J-Link Settings Dialog

int Edit. TerminalSettings();

Displays the Terminal Settings Dialog

int Edit.Preferences();

Displays the User Preference Dialog

int Edit.SysVars();

Displays the System Variable Editor

int Edit.Preference(int ID, int Value);

Edits a user preference

int Edit.Find(const char* FindWhat);

Searches a text pattern in the active
document

int Edit.SysVar(int ID, int Value);

Edits a system variable

int Edit.Color(int ID, int Value);

Edits an application color

int Edit.Font(int ID, const char* Font);

Edits an application font

int Edit.DisplayFormat(const char* sObject, int
Format);

Edits an object’s value display format.

Window Actions

int Window.Show(const char* WindowName);

Shows a window

int Window.Close(const char* WindowName);

Closes a window

int Window.SetDisplayFormat(const char*
WindowName, int Format);

Set's a window’s value display format

int Window.Add(const char* WindowName, const
char* VariableName);

Adds a variable to a window

int Window.Remove(const char* WindowName,
const char* VariableName);

Removes a variable from a window

int Edit. TerminalSettings();

Clears a window.

int Watch.Add();

Adds a program variable to the list of
observed variables

Toolbar Actions

int Toolbar.Show(const char* ToolbarName);

Displays a toolbar

Application Note

Revision 1.3

23-Dec-2021

CFR0014 60 of 66

© 2021 Renesas Electronics

LENESAS

Company confidential

AN-B-040

DA1468x Using Ozone/J-link for Software
Debugging

Actions Description

int Toolbar.Show(const char* ToolbarName);

Hides a toolbar

View Actions

int View.Disassembly(const char* GenValStr);

Displays the assembler code of a function or
source code statement within the
Disassembly

Window

int View.Memory(unsigned int Address);

Displays a memory location within the
Memory Window

int View.InstrTrace(int StackPos);

Displays a position in the history (stack) of
executed machine instructions

int View.Data(const char* VariableName);

Displays the data location of a global or local
program variable within the Register
Window or the Memory Window

int View.Data(const char* VariableName);

Displays the data location of a global or local
program variable within the Register
Window or the Memory Window

int View.Line(unsigned int Line);

Displays a text line in the active document.

int View.PC();

Displays the program’s execution point
within the Disassembly Window

int View.PCLine();

Displays the program’s execution point
within the Source Viewer

int View.NextResult();

Displays the next search result.

int View.PrevResult();

Displays the previous search result.

int View.NextObsvPoint();

Displays the next site within the source code
navigation history.

int View.PrevObsvPoint();

Displays the previous site within the source
code navigation history.

Debug Actions

int Debug.Start();

Starts the debug session

int Debug.Stop();

Stops the debug session

int Debug.Connect();

Establishes a J-Link connection to the MCU
and starts the debug session in the
default way

int Debug.SetConnectMode(int Mode);

Sets the connection mode

int Debug.Disconnect();

Disconnects the debugger from the MCU

int Debug.Continue();

Resumes program execution

int Debug.Halt();

Halts program execution

int Debug.Reset();

Resets the MCU and the application
program

int Debug.SetResetMode(int Mode);

Sets the reset mode

int Debug.Steplinto();

Steps into the current subroutine

int Debug.StepOver();

Steps over the current subroutine

int Debug.StepOut();

Steps out of the current subroutine

int Debug.SetSteppingMode(int Mode);

Sets the program stepping behaviour

int Debug.SetNextPC(unsigned int Address);

Sets the execution point to a particular
machine instruction

int Debug.Download();

Downloads the application program to the
MCU

Application Note

Revision 1.3

CFR0014

61 of 66

23-Dec-2021

© 2021 Renesas Electronics

LENESAS

Company confidential

AN-B-040

DA1468x Using Ozone/J-link for Software
Debugging

Actions Description

int Debug.SetNextStmnt(const char* Statement);

Sets the execution point to a particular
source code line

int Debug.RunTo(const char* sLocation);

Advances the program execution point to a
particular source code line, function or
instruction address

Help Acti

ons

int Help.About();

Shows the About Dialog

int Help.Commands();

Prints the command help to the Console
Window

int Help.Manual();

Opens Ozone’s Debugger user manual
within the default PDF viewer

Project Ac

tions

int Project.SetDevice(const char* DeviceName);

Specifies the model name of the MCU

int Project.SetHostIF(const char* HostlF, const
char* HostID);

Specifies the host interface

int Project.SetTargetlF(const char* TargetlF);

Specifies the target interface

int Project.SetTIFSpeed(const char* Frequency);

Specifies the target interface speed

int Project.SetTIFScanChain(int DRPre, int IRPre);

Configures the target interface JTAG scan
chain parameters

int Project.SetBPType(int Type);

Specifies the default breakpoint
implementation type

int Project.SetOSPlugin(const char*
sFilePathOrName);

Specifies the file path or name of the plugin
that adds RTOS-awareness to the
debugger.

int Project.SetRTT(int OnOff);

Configures the Real Time Terminal (RTT) 10
interface

int Project.SetSWO(int OnOff, const char*
SWOFreq, char* CPUFreq);

Configures the Serial Wite Output (SWO) 10
interface

int Project.SetSemihosting(int OnOff);

Configures the Semihosting IO interface

int Project.AddSvdFile(const char* File);

Adds a register set description file to be
used with the Registers Window

int Project.SetRootPath(const char* RootPath);

Sets the project’s root path

int Project.AddFileAlias(const char* FilePath,
const char* AliasPath);

Sets a file path alias

int Project. AddPathSubstitute(const char* SubStr,
const char* Alias);

Replaces a substring within file paths

int Project.AddSearchPath(const char*
SearchPath);

int Project.AddSearchPath(const char*
SearchPath);

Project Ac

tions

int Util.Sleep(int milliseconds);

Pauses the current operation for a given
amount of time

int Util.Log(const char* Message);

Prints a message to the Console Window

Target Actions

int Target.SetReg(const char* RegName,
unsigned int Value);

Writes an MCU register

U32 Target.GetReg(const char* RegName);

Reads an MCU register

Application Note

Revision 1.3

CFR0014

62 of 66

23-Dec-2021

© 2021 Renesas Electronics

LENESAS

Company confidential

AN-B-040

DA1468x Using Ozone/J-link for Software
Debugging

Actions Description

int Target.WriteU32(U32 Address, U32 Value);

Writes a word to MCU memory

int Target.WriteU16(U32 Address, U16 Value);

Writes a half word to MCU memory

int Target.WriteU8(U32 Address, U8 Value);

Writes a byte to MCU memory

U32 Target.ReadU32(U32 Address);

Reads a word from MCU memory

U16 Target.ReadU16(U32 Address);

Reads a half word from MCU memory

U32 Target.ReadU8(U32 Address);

Reads a byte from MCU memory

int Target.SetAccessWidth(U32 AccessWidth);

Specifies the memory access width

int Target.SetEndianess(int BigEndian);

Sets the endianess of the selected MCU

int Target.FillMemory(U32 Address, U32 Size, U8
Fillvalue);

Fills a block of MCU memory with a
particular value

int Target.SaveMemory(const char* FilePath, U32
Address, U32 Size);

Saves a block of MCU memory to a binary
data file

int Target.LoadMemory(const char* FileName,
U32 Address);

Downloads the contents of a binary data file
to MCU memory

J-Link Actions

int Exec.Connect();

Establishes a J-Link connection to the MCU
and triggers the default startup sequence

int Exec.Reset();

Performs a hardware reset of the MCU

int Exec.Download(const char* FilePath);

Downloads the contents of a program or
data file to MCU memory

int Exec.Command(const char* sCommand);

Executes a J-Link command

Breakpoints Actions

int Break.Set(U32 Address);

Sets an instruction breakpoint

int Break.SetEx(U32 Address, int Type);

Sets an instruction breakpoint of a particular
implementation type

int Break.SetOnSrc(const char* GenValStr);

Sets a code breakpoint

int Break.SetOnSrc(const char* sLocation, int
Type);

Sets a code breakpoint of a particular
implementation type

int Break.SetType(U32 ID, U32 Type);

Sets a breakpoint’s implementation type

int Break.Clear(U32 Address);

Clears an instruction breakpoint

int Break.ClearOnSrc(const char* GenValStr);

Clears a code breakpoint

int Break.Enable(U32 Address);

Enables an instruction breakpoint

int Break.Disable(U32 Address);

Disables an instruction breakpoint

int Break.EnableOnSrc(const char* GenValStr);

Enables a code breakpoint

int Break.DisableOnSrc(const char* GenValStr);

Edits a breakpoints advanced properties

int Break.Edit(int BpID, const char* sCondition, int
DoTriggerOnChange,
int SkipCount, const char* sTaskFilter,

const char* sConsoleMsg, const char*
sMsgBoxMsg);

Edits a breakpoints advanced properties

Application Note

Revision 1.3

CFR0014

63 of 66

23-Dec-2021

© 2021 Renesas Electronics

RENESAS

AN-B-040
DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Actions Description
int Break.SetOnData(U32 Address, U32 Sets a data breakpoint
AddressMask, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.ClearOnData(U32 Address, U32 Clears a data breakpoint
AddressMask, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.ClearAll(); Clears all breakpoints
int Break.ClearAllOnData(); Clears all data breakpoints
int Break.EnableOnData(U32 Address, U32 Enables a data breakpoint
AddressMask, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.DisableOnData(U32 Address, U32 Disables a data breakpoint
AddressMask, U8 AccessType,
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.SetOnSymbol(const char* SymbolName, | Sets a data breakpoint on a global variable
U8 AccessType,
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.ClearOnSymbol(const char* Clears a data breakpoint on a global
SymbolName, U8 AccessType, variable
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.EnableOnSymbol(const char* Enables a data breakpoint on a global
SymbolName, U8 AccessType, variable
U8 AccessSize, U32 MatchValue, U32
ValueMask);
int Break.DisableOnSymbol(const char* Disables a data breakpoint on a global
SymbolName, U8 AccessType, variable
U8 AccessSize, U32 MatchValue, U32
ValueMask);
EIf Actions
int EIf. GetBaseAddr(); Returns the program file’s download
address
int EIf.GetEntryPointPC(); Returns the initial PC of program execution
int EIf. GetEntryFuncPC(); Return the initial PC of the program’s entry
(or main) function
int EIf. GetExprValue(const char* sExpression); Evaluates a C-language expression
int EIf. GetEndianess(const char* sExpression); Returns the program file’s data encoding
scheme
Application Note Revision 1.3 23-Dec-2021
CFR0014 64 of 66 © 2021 Renesas Electronics

B0t RLENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Revision history
Revision Date Description
1.2 23-Dec-2021 Updated logo, disclaimer, copyright.
1.1 22-04-2016 Adding Start-Up Sequence flow chart, Supported 10 Techniques.
1.0 08-02-2016 Initial version.
Application Note Revision 1.3 23-Dec-2021

CFR0014 65 of 66 © 2021 Renesas Electronics

R RLENESAS

DA1468x Using Ozone/J-link for Software Company confidential
Debugging
Status definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.
APPROVED The content of this document has been approved for publication.
or unmarked

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU
concerning Restriction of Hazardous Substances (ROHS/RoHS?2).

Dialog Semiconductor’s statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our
suppliers are available on request.

Application Note Revision 1.3 23-Dec-2021

CFR0014 66 of 66 © 2021 Renesas Electronics

https://support.diasemi.com/

	Abstract
	Contents
	Figures
	Tables
	1 Terms and definitions
	2 References
	3 Introduction
	4 Installation
	4.1 The Ozone Debugger

	5 Using the Ozone Debugger
	5.1 Project Wizard
	5.2 Debug Session

	6 Running the Debugger
	6.1 User Actions
	6.2 Hotkeys
	6.3 Actions
	6.4 Omissible Arguments

	7 Breakpoints
	7.1 Toggling Breakpoints
	7.2 Data Breakpoint
	7.3 Breakpoint Properties
	7.4 Breakpoint Window
	7.5 Instruction Breakpoints
	7.6 Code Breakpoints
	7.7 Function Breakpoints
	7.8 Conditional Breakpoints
	7.9 Breakpoint Implementation
	7.10 Data Breakpoint
	7.10.1 Editing Breakpoints
	7.10.2 Breakpoint Attributes

	8 Memory
	8.1 Generic Memory
	8.2 Memory Window
	8.3 Data Section
	8.4 Toolbar

	9 Debug Windows
	9.1 Main Menu
	9.2 Toolbars
	9.3 Status Bar
	9.3.1 Status Message
	9.3.2 Caret Position
	9.3.3 Connection State

	9.4 Debug Information Windows
	9.4.1 Context Menu
	9.4.2 Display Format
	9.4.3 Data Readback
	9.4.4 Change Level High lighting
	9.4.5 Table Windows
	9.4.6 Windows Layout

	9.5 Code windows
	9.5.1 Program Counter Tracking
	9.5.2 Active Code Window
	9.5.3 Sidebar
	9.5.4 Sidebar Icons
	9.5.5 Code Line Highlighting

	9.6 Dialogs
	9.6.1 User Preference Dialog

	9.7 System Variable Editor
	9.8 Source Viewer
	9.9 Disassembly Window
	9.9.1 Mixed Mode Disassembly

	9.10 Console Window
	9.10.1 Command Feedback Messages
	9.10.2 J-Link Messages
	9.10.3 Script Function Messages

	9.11 Functions Window
	9.12 Threads Window- FreeRTOS

	10 Registers
	10.1 Register Window
	10.2 SVD Files
	10.3 Register Groups
	10.4 Processor Operating Mode
	10.5 Source File Window
	10.6 Local Data Window
	10.7 Global Data Window
	10.8 Terminal Window

	11 Debugging
	11.1 Projects
	11.1.1 Required Project Settings

	11.2 Program Files
	11.2.1 Supported File Types
	11.2.2 Symbol Information
	11.2.3 Automatic Download
	11.2.4 Data Endianness

	11.3 Start Debugging
	11.3.1 Connection Mode
	11.3.1.1 Download ad Reset
	11.3.1.2 Flow Chart
	11.3.1.3 Attach to Running Program
	11.3.1.4 Attach and Halt Program

	11.3.2 Initial Program Operation

	11.4 Execution Point
	Source Viewer: The PC line can be brought into view via the window’s context menu entry “GoTo PC”, or by executing View.PCLine.
	11.4.1 Setting Execution Point

	11.5 Debugging Controls
	11.5.1 Reset
	11.5.2 Step
	11.5.3 Resume
	11.5.4 Halt

	11.6 Program State
	11.6.1 Data Symbols
	11.6.2 Instruction Execution History
	11.6.3 Value Tooltips

	11.7 Hardware State
	11.7.1 MCU Registers
	11.7.2 MCU Memory
	11.7.3 Memory Access Width

	11.8 Inspecting Running Program

	12 Static Program Entities
	12.1 Functions
	12.1.1 Source Files

	12.2 Program Output
	12.2.1 SWO
	12.2.1.1 Configuring SWO

	12.2.2 Semihosting
	12.2.2.1 Configuring Semihosting

	12.3 Real Time Terminal
	12.3.1 RTT Configuration

	12.4 Watching Variables
	12.5 Program Files Download
	12.6 Path Macros

	13 Scripting Interface
	13.1 Script Files
	13.1.1 Scripting Language
	13.1.2 Script Functions
	13.1.2.1 Event Handler Functions
	13.1.2.2 User Functions

	13.2 Process Replacement Functions
	13.2.1 API Functions

	13.3 Startup Sequence
	13.3.1 Target Connect
	13.3.1.1 Frequency Adaptive Connection Routine

	13.3.2 Target Reset
	13.3.2.1 Reset Routine for RAM Debug

	13.3.3 TargetDownload

	13.4 Value Descriptors
	13.5 Frequency Descriptor
	13.5.1 Location Descriptor
	13.5.2 Colour Descriptor
	13.5.3 Font Descriptor

	13.6 System Constants
	13.6.1 Host Interfaces
	13.6.2 Target Interfaces
	13.6.3 Boolean Values
	13.6.4 Display Formats
	13.6.5 Memory Access Width
	13.6.6 Access Types
	13.6.7 Connection Modes
	13.6.8 Reset Modes
	13.6.9 Breakpoint Implementation Types
	13.6.10 Stepping Behaviour Configuration Options

	14 User Actions
	14.1 File Actions
	14.2 Edit Actions
	14.3 ELF Actions
	14.4 Utility Actions
	14.5 View Actions
	14.6 Toolbar Actions
	14.7 Window Actions
	14.8 Debug Actions
	14.9 J-Link Actions
	14.10 Breakpoint Actions

	15 Conclusions
	Appendix A Control Functions
	A.1 Actions Table

	Revision history

