RLENESAS

Company confidential

Application Note

DA14580 Porting a Keil uVision
Project to the GNU Tool Chain

AN-B-024

Abstract

Software development for DA14580 is currently done using Keil uVision, which provides an
optimizing ARM compiler and an IDE for the MS Windows platform. The Keil compiler may be used
free of license for code sizes up to 32 KiB, but a license is required for larger images. This limitation,
along with a trend among software developers towards Linux and free and open-source software,
has created the need for a GNU tool chain as an alternative to the Keil compiler. This document
briefly describes the information included in a Keil uVision project. It analyses the equivalent files that
are used with a GNU tool chain. Next, a script is introduced that automates the conversion of a Keil
uVision project into a Makefile. Finally, results are presented on speed and size of two benchmarks
built with different compiler options

ANLB094 LENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

Contents
O NS e 2
1= 0] =SS PSP PS 2
1 Terms and defiNitiONS ... et e e e e e et e e e e e e e s nbe e e eaeae e s 3
A (=) =] 4= o (o] =T TP PPTT T PPPPP 3
I 114 oo 1V (o] £ o o DR TP P PPTT T PPPPP 4
O =T N VAV ST o] o o] o] =T o £ T PP TP PO 4
4.1 Keil UVISION ProjeCt filESooiiiiiieiie e 4
e (=T STt 1] o 1= O PRPPPRT 4
.3 KEIISTAM-UP COUR ...ttt e e e e et e e e e e e e e nneas 4
4.4 Keil COMPIIEr EXIENSIONSoiiiiiiiiee it e e e et e e e e e e e eereas 5
5 Building code with a GNU t00] Chaincooiiiiiii e 5
I I V= 1= 1L P TP PPPPPPPTN 5
51.1 The invariable part of the project build files (common.mKk).............cccoveiiiiinennnnen. 5
5.1.2 The project-dependent part of the project build files (Makefile)ccoeeenee. 13
B2 GINU INKEE SCIIPL....eeeiee itttk ettt e e et bt e e e snb e e e e nbe e e enneas 15
F.3 Start-uUp COUE fOr GCCoiiiiiiiie et s s bb e e e neeas 15
6 Converting a Keil project file into a Makefile.........coooiiiiii e 16
BENCRIMAIKS ... e e et e e e e e e e st e e e e e e e e e snnbereeeaaee e s 17
0 O = 1011 To [T g Yo o F= U= Ty 1Y (= PP PEPRRt 17
T2 DRIYSIONE FESUILSeiiiiiiiie et e e e e et e e e 17
7.3 BLE template ProjeCt FESUILSccooiiiiiiiiiiie e 18
A R O 1= g T = 1 W ote] 4o 01T o | £ S PP PPPPPRRNE 19
T 0] ¢ [od [U E=T [0 o F= 3T UURT TSP 20
S AV A=Y Lo o TN 1= (0] PR PRERR 21
Tables
Table 1: How XML tags are used to fill placeholders in the Makefile template..............ccccceeeenrinnnns 16
Table 2: Dhrystone results with full-fledged system library ..o, 17
Table 3: Dhrystone results with stripped-down system librariesccccccooiviiiieiiii e 18
Table 4: Memory footprint of the BLE template project with full-fledged system libraries 19
Table 5: Memory footprint of the BLE template project with stripped-down system libraries 19
Application Note Revision 1.2 23-Dec-2021

CFR0014 2 of 22 © 2021 Renesas Electronics

N RLENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

1 Terms and definitions

BLE Bluetooth Low Energy

FOSS Free and Open-Source Software
GCC GNU Compiler

GDB GNU Debugger

IDE Integrated Development Environment
KiB Kbyte (1024 bytes)

LTO Link-Time Optimisation

2 References

1. ARM GCC tool chain, release gcc-arm-none-eabi-4 8-2014ql
2. KeiluVision v5.1.0.0

Application Note Revision 1.2 23-Dec-2021

CFR0014 3of 22 © 2021 Renesas Electronics

N RRENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

3 Introduction

Software development for DA14580 is currently done using Keil uVision, which provides an
optimizing ARM compiler and an IDE that runs on an MS Windows platform. The Keil tool chain is
free of license for code sizes up to 32 KiB, but a license is required for larger images. This limitation,
along with the need to have a development suit available for Linux and FOSS, has aroused interest
in using a GNU tool chain as an alternative to the Keil compiler. This document describes how a Keil
uVision project can be ported so that it can be built using a GNU tool chain.

The following tool chains where used to produce the results presented in this document:

e ARM GCC tool chain, release gcc-arm-none-eabi-4 8-2014ql
e KeiluVisionv5.1.0.0

4 Keil uVision projects

4.1 Keil uVision project files

Keil uVision uses files with the extension .uvproj to store all the information of a project. This
includes:

Target configuration

Compilation and linking flags

Debugger options

List of files that comprise the project

The .uvproj files are actually XML files, so their parsing is fairly easy. Within the scope of this
document, only the list of source files are of interest, because the target is fixed (i.e. ARM Cortex MO)
and the compilation/linking flags are tool chain dependent and essentially fixed among all the BLE
applications. The debugger options are irrelevant for a GNU tool chain, as GDB is the norm in this
case.

4.2 Keil scatter files

Keil uses the notion of a scatter file, which describes the memory layout of an executable (i.e. how its
code and data are loaded or allocated in the memory). Scatter files are written in plain text using a
specific syntax. Unfortunately, the GNU linker does not support scatter files; instead, custom linker
scripts can be written to produce the same effect. Currently, only one (common) scatter file is used
by all BLE applications (dk apps/scatterfiles/scatterfile common.sct). Therefore, this common
scatter file was translated into a linker script that can be used by all BLE applications, at least as an
initial version.

4.3 Keil start-up code

After a CPU reset, execution eventually reaches the reset handler, which performs any necessary
initialisations and then jumps to the entry point of the application. The code of the reset handler,
along with the definition of all interrupt handlers, is included in an assembly file, typically named

boot vectors.s. Some of the initialisations carried out by the reset handler are tool chain
dependent, because they involve actions on the binary representation of the scatter file (i.e. copying
of code or data from storage to their actual run-time locations and filling of certain memory areas with
zeroes). Furthermore, the syntax of the ARM assembly varies between assemblers, so the start-up
code needs to be rewritten for the GNU tool chain. Once again, this code is usually invariable among
different projects, so porting needs to be done only once.

Application Note Revision 1.2 23-Dec-2021

CFR0014 4 of 22 © 2021 Renesas Electronics

ANLB094 LENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

4.4 Keil compiler extensions

The Keil compiler is generally compatible with GCC, in terms of the extensions to standard C that it
provides; however, it also supports a few extensions not supported by GCC. There are parts of the
BLE code base that use such extensions. The two most notable cases are:

e The “at” attribute ,e.g.
volatile uint8 descript[EM SYSMEM STZE] _ attribute ((at(EM SYSMEM START)));
A workaround would be to use the section attribute and set a unique section; that
section can be then placed at the desired address (e.g. EM SYSTEM START) with the proper

commands in the scatter file (for Keil) or linker script (for GCC). Example:
volatile uint8 descript[EM SYSMEM SIZE]
__attribute ((section(“atEM SYSMEM START”)));

® The “zero init” attribute ,e.g.
bool sys startup flag attribute ((section("retention mem areaQ"), zero init));
A workaround for GCC would be to use a compilation flag that mutes warnings about unknown
attributes (i.e. CFLAGS+=-Wno-attributes) and include the pertinent section
("retention mem area0")in a zero-initialised segment (i.e. .bss) in the linker script.

In general, the code can be written such that it is compatible with both Keil and GCC (at the expense
of more involved or cumbersome syntax or configuration). In the extreme cases where this would not
be possible, redesigning of the code might be necessary.

5 Building code with a GNU tool chain

5.1 Makefile

Building with a GNU tool chain is typically carried out using make and a Makefile. The Makefileis a
text file, which comprises rules for creating targets (one of which is the final executable image). In
essence, the Makefile is the equivalent of the Keil project file, as far as building is concerned.

In the context of section 4, the Makefile should contain the following:

e The list of source files that constitute the project, as found in the .uvproj file.

e The compilation and linking flags. Most compilation flags can be transferred verbatim from Keil to
GCC. There are more discrepancies in the linking flags. In either case, equivalent flags do exist.
As mentioned before, these flags usually stay constant from one BLE project to the next.

e A reference to the linker script, which replaces Keil’s scatter file. Again, the linker script is usually
the same of all BLE projects.

e The target and debugger configuration: with the GNU tool chain this is done in the compilation
flags and is constant among all projects.

It should be evident that the Makefile consists of a common part, which is expected to be the same
for all BLE projects and a project-dependent part. For clarity, all the common definitions, rules and
recipes are included in the file common.mk and the project-dependent definitions are included in the
Makefile (which includes common.mk). For brevity and in the context of building a project with a GNU
tool chain, the files common.mk and Makefile will hereafter be collectively referred to as project build
files. These files can be found in the directory tools/uvproj2Makefile/ of a BLE code release.

5.1.1 The invariable part of the project build files (common.mk)
The current version of tools/uvproj2Makefile/common.mk is listed below:

< 1> 4

< 2> # Common variables and recipies used by Makefiles.
< 3> # The following variables are defined:

< 4> # CC: C cross-compiler

Application Note Revision 1.2 23-Dec-2021

CFR0014 5 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

< 5> # CPP: Cross-preprocessor

< 6> # OBJCOPY: cross—-objcopy

< 7> # USE NANO: link flags to select newlib-nano
< 8> # USE SEMIHOST: link flags to enable semihosting
< 9> 4 USE NOHOST: link flags to disable semihosting
< 10> # MAP: link flags to create a map file

< 11> # LDSCRIPTS: link flags to use a custom link script, generated from
$ (LINK_SCRIPT) .S

< 12> #

< 13>

< 14> CROSS COMPILE = arm-none-eabi-

< 15> CC = $(CROSS COMPILE)GCC

< 16> CPP = $(CROSS COMPILE) cpp

< 17> OBJCOPY = $(CROSS COMPILE) cbijcopy

< 18> B

< 19> # verbosity switch

< 20>V ?=0

< 21> ifeq ($(V),0)

< 22> V. CC = @echo " CC "ose;

< 23> V CPP = @echo " CPP " 3$@Q;

< 24> V LINK = @echo " LINK " $@;

< 25> V OBJCOPY = @echo " OBJCPY" $@;

< 26> V_CLEAN = @echo " CLEAN ";

< 27> V _SED = @echo " SED "os@;

< 28> V GAWK = @echo " GAWK " $@;

< 29> else

< 30> V. OPT = '-v'

< 31> endif

< 32>

< 33> # Use newlib-nano. To disable it, specify USE NANO=
< 34> USE NANO := --specs=nano.specs

<35>

< 36> # Use semihosting or not

< 37> USE SEMIHOST := --specs=rdimon.specs

< 38> USE NOHOST := ——Specs=nosys.Sspecs

<39

< 40> # Create map file

< 41> MAP = -W1, -Map=5$(0) /1st/$ (TARGET ELF) .map

< 42>

< 43> ARCH FLAGS = -mthumb -mcpu=cortex-m$ (CORTEX M)
< 44> B B
< 45> # general compilation flags

< 46> CFLAGS += $(ARCH FLAGS) $(STARTUP DEFS) -std=gnu99
< 47>

< 48> ifeq ($(V),2)

< 49> CFLAGS += ——-verbose

< 50> LDFLAGS += -Wl,--verbose

< 51> endif

< 52>

< 53> ROM SYMDEF := rom.symdef

< 54> ROM SYMBOLS := rom.symbols

< 55> LINK SCRIPT := 580.lds

< 56>

< 57> LDSCRIPTS := -L. -T $(LINK SCRIPT)

< 58> B

< 59>

< 60> # how to compile C files

< 61> %.0 @ %.cC

< 62> $(V._CC)S(CC) $(CFLAGS) -c $S< -o $S@

< 63> B

Application Note Revision 1.2 23-Dec-2021

CFR0014 6 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

64> # how to compile assembly files

65> %.0 : %.S

06> $(V;CC)$(CC) S (CFLAGS) -c $< -0 3@

67>

68>

69> all: $(0)/$ (TARGET ELF).hex $(0)/$(TARGET ELF).bin

70>

71> clean:

72> $(V_CLEAN) for file in $(OBJ); do rm -f $(V _OPT) "S$file"; done
73> @rm -rf $(V_OPT) $(O)

74> @rm —-f $(V_OPT) $(ROM SYMDEF) $(ROM SYMBOLS) $(LINK SCRIPT)

75>

76> $(0)/

77> @mkdir -p $(V_OPT) $(0)/lst
78>

79> # how to create the main ELF target

80> $(0)/$ (TARGET ELF) .axf: $(0)/ s (ROM_SYMBOLS) S (LINK_SCRIPT) $ (OBJ)
81> $(V _LINK)S$(CC) $(CFLAGS) $(LDFLAGS) $(OBJ) $(patch objs) -o $@
82>

83> # how to create the final hex file

84> $(0)/$ (TARGET ELF) .hex: $(0)/$ (TARGET ELF) .axf

85> $(V_OBJCOPY)$(OBJCOPY) -0 ihex $< $@

86>

87> # how to create the final binary file

88> $(0) /$ (TARGET ELF).bin: $(0)/$ (TARGET ELF) .axf

89> S (V_OBJCOPY)$ (OBJCOPY) -0 binary $< $@

90>

91> # how to create the linker script

92> $ (LINK_SCRIPT) : S (LINK_SCRIPT).S

93> $(V_CPP)S$S(CPP) -P $< -0 S@

94>

95> # how to create a clean, sorted list of known symbols, used by ROM code
96> $(ROM_SYMDEF) : $(ROM MAP FILE)

97> $(V_SED)sed -n -e 's/ */ /gp' $< | sed —e '/"[;#]/d" | \

98> sort | dos2unix > $@

99>

<100> # how to create a file with the known symbols, to be used in the linker script
<101> $(RCM SYMBOLS) : $(ROM SYMDEF)

<102> $(V_GAWK)gawk '{printf "%s = %s ;\n", $$3, S$S1}' $< > s@

ANANNANAANANANANANANANANNNANANANANNNANANANNNANANNANNNANANNA

Lines 4 to 11 list the variables defined in this file that can be used by a project Makefile.

Lines 69 to 102 contain the definitions of targets and receipes. The main targets, which normally
should be used from the command line, are:

e all: it generates the final binary images:
a. $(0)/$(TARGET ELF).axf: the ELF executable.
b. $(0)/$(TARGET ELF) .hex: the executable image in Intel hex format.
C. $(0)/$(TARGET ELF).bin: the executable in raw binary format.

® clean: it cleans all the output and intermediate files.

In addition, common .mk expects to find some project-dependent information in certain variables (e.g.
filenames, paths etc). These variables are described in section 5.1.2.

Finally, the variable $ (v) can be defined in the command line to modify the screen output of the
project build files (the generated binary images are not affected, though):

e Brief output (lines 22 to 28); default behaviour or when invoked, for example, with “make v=0":
> make
SED rom. symdef

Application Note Revision 1.2 23-Dec-2021

CFR0014 7 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

GAWK rom.symbols
CPP 580.1ds

cC ../../../src/plf/refip/src/arch/boot/rvds/system ARMCMO.o

ccC ../../../src/plf/refip/src/arch/main/ble/hardfault handler.o
ccC ../../../src/plf/refip/src/arch/main/ble/arch main.o

cC ../../../src/plf/refip/src/arch/main/ble/arch main.o

In file included from
./../../../src/modules/app/src/app project/template fh/system/app sleep.h:10:0,
from ../../../src/plf/refip/src/arch/main/ble/arch main.c:66:

oo/ ../ /src/plf/refip/src/driver/gpio/gpio.h:119:20: warning: inline function
'GPIO GetPinStatus' declared but never defined [enabled by default]

extern inline bool GPIO GetPinStatus(GPIO PORT port, GPIO PIN pin);

cC startup ARMCMO.o

LINK out/full emb sysram.axf

OBJCPY out/full emb sysram.hex

OBJCPY out/full emb sysram.bin
In this case the Makefile prints only a brief description of the command/action being carried out.
This makes any warnings or error messages stand out and not be missed in a lengthy, verbose
output.

e Normal output (line 30); more verbose output, when invoked, for example, with “make v=1":
> make V=1
mkdir: created directory «out»
mkdir: created directory «out/lst»
sed -n —e 's/ */ /gp' ../../../misc/rom symdef.txt | sed -e '/~[;#]/d' | \
sort | dos2unix > rom.symdef
gawk '{printf "%s = %s ;\n", $3, $1}' rom.symdef > rom.symbols
arm-none-eabi-cpp -P 580.1ds.S -o 580.1ds
arm-none—eabi-GCC -flto —-ffunction-sections -fdata-sections -Os -
fplugin=tree switch shortcut elf -I ./../../../src/dialog/include -I
../src/plf/refip/src/arch -I
../src/plf/refip/src/arch/compiler/rvds -I
../src/plf/refip/src/arch/boot/rvds -I
../src/plf/refip/src/arch/11/rvds -1
../src/plf/refip/src/driver/reqg -1 ./../../../src/modules/common/api -I
../src/modules/dbg/api -I ./../../../src/modules/display/api -I
../src/modules/gtl/api -I ./../../../src/modules/ke/api -1
../src/modules/ke/src -I ./../../../src/modules/nvds/api -I
../src/modules/rf/api -I ./../../../src/modules/rwip/api -I
./../src/ip/ble/11/src/rwble -I ./../../../src/ip/ble/11/src/controller/em —
../../src/ip/ble/11/src/controller/11c -I
../src/ip/ble/11/src/controller/11d -I
../src/ip/ble/11/src/controller/11lm -I
./src/plf/refip/src/driver/led -1
../src/plf/refip/src/driver/timer -1
../src/plf/refip/src/driver/syscntl -I
../src/plf/refip/src/driver/emi -I
./src/plf/refip/src/driver/uvart -I
../src/plf/refip/src/driver/flash -I
../src/plf/refip/src/driver/gpio -I ./../../../src/ip/ble/hl/src/host/att
../../src/ip/ble/hl/src/host/att/attc -I
../src/ip/ble/hl/src/host/att/attm -1
../src/ip/ble/hl/src/host/gap -I
../src/ip/ble/hl/src/host/gap/gapc -I
../src/ip/ble/hl/src/host/gap/gapm -I
../src/ip/ble/hl/src/host/att/atts -I
../src/ip/ble/hl/src/host/gatt -I
../src/ip/ble/hl/src/host/gatt/gatte -1
../src/ip/ble/hl/src/host/gatt/gattm -I

N NN NS
N N N NS
NN TN N N N N N N

—
~_ ¢
~

N N N N N N N N N

N N N N N NN
N N T N N N NN

Application Note Revision 1.2 23-Dec-2021

CFR0014 8 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the
GNU Tool Chain

../src/ip/ble/hl/src/host/12¢c/12cc -1
../src/ip/ble/hl/src/host/12¢c/12cm -1
../src/ip/ble/hl/src/host/smp/smpc -1
../src/ip/ble/hl/src/host/smp/smpm -I
../src/ip/ble/hl/src/profiles -I
../src/ip/ble/hl/src/profiles/accel -I
../src/ip/ble/hl/src/profiles/bas/basc -1
../src/ip/ble/hl/src/profiles/bas/bass -I
../src/ip/ble/hl/src/profiles/blp -1
../src/ip/ble/hl/src/profiles/blp/blpc -I
../src/ip/ble/hl/src/profiles/blp/blps -1
../src/ip/ble/hl/src/profiles/dis/disc -1
../src/ip/ble/hl/src/profiles/dis/diss -I
../src/ip/ble/hl/src/profiles/find/findl -I
./src/ip/ble/hl/src/profiles/find/findt -I
../src/ip/ble/hl/src/profiles/hogp -I
../src/ip/ble/hl/src/profiles/hogp/hogpbh -T
../src/ip/ble/hl/src/profiles/hogp/hogpd -I
../src/ip/ble/hl/src/profiles/hogp/hogprh -1
../src/ip/ble/hl/src/profiles/hrp -1
../src/ip/ble/hl/src/profiles/hrp/hrpc -1
../src/ip/ble/hl/src/profiles/hrp/hrps -1
../src/ip/ble/hl/src/profiles/htp -I
../src/ip/ble/hl/src/profiles/htp/htpc -I
../src/ip/ble/hl/src/profiles/htp/htpt -I
../src/ip/ble/hl/src/profiles/prox/proxm -I
../src/ip/ble/hl/src/profiles/prox/proxr -I
../src/ip/ble/hl/src/profiles/scpp -1
../src/ip/ble/hl/src/profiles/scpp/scppc -1
../src/ip/ble/hl/src/profiles/scpp/scpps -1

\\\\\\\\\\\\\\\\\\\H\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

../src/ip/ble/hl/src/profiles/anp -1
../src/ip/ble/hl/src/profiles/anp/anpc -1
../src/ip/ble/hl/src/profiles/anp/anps -1
../src/ip/ble/hl/src/profiles/cscp -1
../src/ip/ble/hl/src/profiles/cscp/cscpe -1
../src/ip/ble/hl/src/profiles/cscp/cscps -1
../src/ip/ble/hl/src/profiles/glp -1
../src/ip/ble/hl/src/profiles/glp/glpc -1
../src/ip/ble/hl/src/profiles/glp/glps -1
../src/ip/ble/hl/src/profiles/pasp -1
../src/ip/ble/hl/src/profiles/pasp/paspc -1
../src/ip/ble/hl/src/profiles/pasp/pasps -1
../src/ip/ble/hl/src/profiles/rscp -1
../src/ip/ble/hl/src/profiles/rscp/rscpc -1
../src/ip/ble/hl/src/profiles/rscp/rscps -1
../src/ip/ble/hl/src/profiles/tip -1
../src/ip/ble/hl/src/profiles/tip/tipc -I

\\\
\\\

I / / ./../src/plf/refip/src/driver/adc -I
./src/plf/refip/src/driver/wkupct -1
./src/plf/refip/src/driver/battery -1

/.
./..
/. ./src/modules/app/src/app project/template fh -I
/

\\\\

e
../
/.
/.

Company confidential

../src/plf/refip/src/driver/intc -I ./../../../src/ip/ble/hl/src/rwble hl
../../sxc/ip/ble/11/src/hcic -I ./../../../src/ip/ble/hl/src/host/smp -1
../src/modules/app/api -I ./../../../src/modules/gtl/src -I

../src/ip/ble/hl/src/profiles/tip/tips -I ./../../../src/modules/app/src -

./src/modules/app/src/app project/template fh/system -include

dal4580 config.h -Wno-attributes -mthumb -mcpu=cortex-m0 -D STACK SIZE=0x0600 -
D HEAP SIZE=0x0100 -D STARTUP CLEAR BSS MULTIPLE -std=gnu99 -c

.. /src/plf/reflp/src/arch/boot/rvds/system,ARMCMO c -o
../../../src/plf/refip/src/arch/boot/rvds/system ARMCMO.o

Application Note Revision 1.2

23-Dec-2021

CFR0014 9 of 22

© 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

arm-none-eabi-GCC -flto —-ffunction-sections -fdata-sections -Os -
fplugin=tree switch shortcut elf -I ./../../../src/dialog/include -I
../src/plf/refip/src/arch -I
../src/plf/refip/src/arch/compiler/rvds -I
../src/plf/refip/src/arch/boot/rvds -I
../src/plf/refip/src/arch/11/rvds -I
../src/plf/refip/src/driver/reqg -1 ./../../../src/modules/common/api -I
../src/modules/dbg/api -I ./../../../src/modules/display/api -I
../src/modules/gtl/api -I ./../../../src/modules/ke/api -I
../src/modules/ke/src —I ./../../../src/modules/nvds/api —I
../src/modules/rf/api -1 ./. / ./../src/modules/rwip/api -
./src/lp/ble/ll/src/rwble -1 ./../../. /src/lp/ble/ll/src/controller/em -
./ /src/lp/ble/ll/src/controller/llc -I
../src/ip/ble/11/src/controller/11d -I
./src/ip/ble/11/src/controller/11lm -I
../src/plf/refip/src/driver/led -I
../src/plf/refip/src/driver/timer -I
../src/plf/refip/src/driver/syscntl -1
./src/plf/refip/src/driver/emi -I
../src/plf/refip/src/driver/uart -I
../src/plf/refip/src/driver/flash -I
../src/plf/refip/src/driver/gpio -I ./../../../src/ip/ble/hl/src/host/att
../../src/ip/ble/hl/src/host/att/atte -I
../src/ip/ble/hl/src/host/att/attm -I
../src/ip/ble/hl/src/host/gap -I
../src/ip/ble/hl/src/host/gap/gapc -1
../src/ip/ble/hl/src/host/gap/gapm -1
../src/ip/ble/hl/src/host/att/atts -I
../src/ip/ble/hl/src/host/gatt -I
../src/ip/ble/hl/src/host/gatt/gattc -I
../src/ip/ble/hl/src/host/gatt/gattm -I
../src/ip/ble/hl/src/host/12¢c/12cc -1
../src/ip/ble/hl/src/host/12¢/12cm -1
../src/ip/ble/hl/src/host/smp/smpc -I
../src/ip/ble/hl/src/host/smp/smpm —I
../src/ip/ble/hl/src/profiles -1
../src/ip/ble/hl/src/profiles/accel -I
../src/ip/ble/hl/src/profiles/bas/basc -1
../src/ip/ble/hl/src/profiles/bas/bass -I
../src/ip/ble/hl/src/profiles/blp -1
../src/ip/ble/hl/src/profiles/blp/blpc -1
../src/ip/ble/hl/src/profiles/blp/blps -1
../src/ip/ble/hl/src/profiles/dis/disc -I
../src/ip/ble/hl/src/profiles/dis/diss -I
./src/ip/ble/hl/src/profiles/find/findl -I
../src/ip/ble/hl/src/profiles/find/findt -I
../src/ip/ble/hl/src/profiles/hogp -1
../src/ip/ble/hl/src/profiles/hogp/hogpbh -T
../src/ip/ble/hl/src/profiles/hogp/hogpd -1
../src/ip/ble/hl/src/profiles/hogp/hogprh —I
../src/ip/ble/hl/src/profiles/hrp -I
../src/ip/ble/hl/src/profiles/hrp/hrpc -I
../src/ip/ble/hl/src/profiles/hrp/hrps -I
../src/ip/ble/hl/src/profiles/htp -1
../src/ip/ble/hl/src/profiles/htp/htpc -I
../src/ip/ble/hl/src/profiles/htp/htpt -1
./src/ip/ble/hl/src/profiles/prox/proxm —I
../src/ip/ble/hl/src/profiles/prox/proxr -I
../src/ip/ble/hl/src/profiles/scpp -I
../src/ip/ble/hl/src/profiles/scpp/scppc -1

N N N NN
N N N N NN
\\\\\\\\\\

—
N
~

N N N N N N N N N N N N N N N = N N N N N
N N NN N Y N N N N N N N N N N N e)
\\\-

Application Note Revision 1.2 23-Dec-2021

CFR0014 10 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

NV AR

../src/ip/ble/hl/src/profiles/scpp/scpps -1
../src/plf/refip/src/driver/intc -I ./../../../src/ip/ble/hl/src/rwble hl
../../src/ip/ble/11/src/hcic -I ./../../../src/ip/ble/hl/src/host/smp -1
../src/modules/app/api -I ./../../../src/modules/gtl/src -I
../src/ip/ble/hl/src/profiles/anp -1
../src/ip/ble/hl/src/profiles/anp/anpc -1
../src/ip/ble/hl/src/profiles/anp/anps -1
../src/ip/ble/hl/src/profiles/cscp -1
../src/ip/ble/hl/src/profiles/cscp/cscpec -1
../src/ip/ble/hl/src/profiles/cscp/cscps -1
../src/ip/ble/hl/src/profiles/glp -I
../src/ip/ble/hl/src/profiles/glp/glpc -1
../src/ip/ble/hl/src/profiles/glp/glps -I
../src/ip/ble/hl/src/profiles/pasp -1
../src/ip/ble/hl/src/profiles/pasp/paspc -1
../src/ip/ble/hl/src/profiles/pasp/pasps -I
../src/ip/ble/hl/src/profiles/rscp -1
../src/ip/ble/hl/src/profiles/rscp/rscpc -1
../src/ip/ble/hl/src/profiles/rscp/rscps -1
../src/ip/ble/hl/src/profiles/tip -1
../src/ip/ble/hl/src/profiles/tip/tipc -1
../src/ip/ble/hl/src/profiles/tip/tips -I ./../../../src/modules/app/src -
I / / ./../src/plf/refip/src/driver/adc -1
./../src/plf/refip/src/driver/wkupct -I
/../src/plf/refip/src/driver/battery -I

../../src/modules/app/src/app project/template fh -I

. /../src/modules/app/src/app project/template fh/system -include

dal4580 config.h -Wno-attributes -mthumb -mcpu=cortex-m0 -D STACK SIZE=0x0600 -
D HEAP SIZE=0x0100 -D_STARTUP CLEAR BSS MULTIPLE -std=gnu99 -c
../../../src/plf/refip/src/arch/main/ble/hardfault handler.c -o
../../../src/plf/refip/src/arch/main/ble/hardfault handler.o

arm-none-eabi-GCC -flto —-ffunction-sections -fdata-sections -Os -

fplugin=tree switch shortcut elf -I ./../../../src/dialog/include -I
../src/plf/refip/src/arch -I

../src/plf/refip/src/arch/compiler/rvds -I
../src/plf/refip/src/arch/boot/rvds -I

../src/plf/refip/src/arch/11/rvds -I

../src/plf/refip/src/driver/reqg -I ./../../../src/modules/common/api -I
../src/modules/dbg/api -I ./../../../src/modules/display/api -I
../src/modules/gtl/api -I ./../../../src/modules/ke/api -I
../src/modules/ke/src —I /../../../src/modules/nvds/api —I
../src/modules/rf/api -1 ./../../../src/modules/rwip/api -
./src/lp/ble/ll/src/rwble -I ./ /src/lp/ble/ll/src/controller/em -
./../src/ip/ble/11/src/controller/11lc -
./src/ip/ble/11/src/controller/11d -I
../src/ip/ble/11/src/controller/11m -1

../src/plf/refip/src/driver/led -I

../src/plf/refip/src/driver/timer -I

./src/plf/refip/src/driver/syscntl -I

../src/plf/refip/src/driver/emi -I

../src/plf/refip/src/driver/uvart -I

../src/plf/refip/src/driver/flash -I

../src/plf/refip/src/driver/gpio -I ./../../../src/ip/ble/hl/src/host/att
../../src/ip/ble/hl/src/host/att/attc -I
../src/ip/ble/hl/src/host/att/attm -I

../src/ip/ble/hl/src/host/gap -I

../src/ip/ble/hl/src/host/gap/gapc —I

../src/ip/ble/hl/src/host/gap/gapm —I

../src/ip/ble/hl/src/host/att/atts -I

../src/ip/ble/hl/src/host/gatt -I

~

\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\H

\\\\

/.
./.
VAR

/

N N NN
NN SN N S N N N N
\\\\\\\\\\

—
P NG
~

N N = N N T N N
N N N N N N)
\\\\\\\\\\\\\\\\-

Application Note Revision 1.2 23-Dec-2021

CFR0014 11 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

../src/ip/ble/hl/src/host/gatt/gattc -I
../src/ip/ble/hl/src/host/gatt/gattm -I
../src/ip/ble/hl/src/host/12c/12cc -1
./src/ip/ble/hl/src/host/12c/12cm -1
../src/ip/ble/hl/src/host/smp/smpc -I
../src/ip/ble/hl/src/host/smp/smpm —I
../src/ip/ble/hl/src/profiles -I
./src/ip/ble/hl/src/profiles/accel -I
../src/ip/ble/hl/src/profiles/bas/basc -I
../src/ip/ble/hl/src/profiles/bas/bass -I
../src/ip/ble/hl/src/profiles/blp -I
../src/ip/ble/hl/src/profiles/blp/blpc -1
../src/ip/ble/hl/src/profiles/blp/blps -I
../src/ip/ble/hl/src/profiles/dis/disc -I
../src/ip/ble/hl/src/profiles/dis/diss -I
../src/ip/ble/hl/src/profiles/find/findl -I
../src/ip/ble/hl/src/profiles/find/findt -I
../src/ip/ble/hl/src/profiles/hogp -I
../src/ip/ble/hl/src/profiles/hogp/hogpbh -1
../src/ip/ble/hl/src/profiles/hogp/hogpd -1
../src/ip/ble/hl/src/profiles/hogp/hogprh -I
../src/ip/ble/hl/src/profiles/hrp -1
../src/ip/ble/hl/src/profiles/hrp/hrpc -I
../src/ip/ble/hl/src/profiles/hrp/hrps -I
../src/ip/ble/hl/src/profiles/htp -1
../src/ip/ble/hl/src/profiles/htp/htpc -1
../src/ip/ble/hl/src/profiles/htp/htpt -1
../src/ip/ble/hl/src/profiles/prox/proxm -I
../src/ip/ble/hl/src/profiles/prox/proxr -1
../src/ip/ble/hl/src/profiles/scpp -1
../src/ip/ble/hl/src/profiles/scpp/scppc -1
../src/ip/ble/hl/src/profiles/scpp/scpps -1
../src/plf/refip/src/driver/intc -I ./../../../src/ip/ble/hl/src/rwble hl
../../src/ip/ble/11/src/hcic -I ./../../../src/ip/ble/hl/src/host/smp -I
../src/modules/app/api -I ./../../../src/modules/gtl/src -I
../src/ip/ble/hl/src/profiles/anp -I
../src/ip/ble/hl/src/profiles/anp/anpc -1
../src/ip/ble/hl/src/profiles/anp/anps -1
../src/ip/ble/hl/src/profiles/cscp -1
../src/ip/ble/hl/src/profiles/cscp/cscpe -1
../src/ip/ble/hl/src/profiles/cscp/cscps -1
../src/ip/ble/hl/src/profiles/glp -I
../src/ip/ble/hl/src/profiles/glp/glpc -1
../src/ip/ble/hl/src/profiles/glp/glps -I
../src/ip/ble/hl/src/profiles/pasp -I
../src/ip/ble/hl/src/profiles/pasp/paspc -1
../src/ip/ble/hl/src/profiles/pasp/pasps -1
../src/ip/ble/hl/src/profiles/rscp -I
../src/ip/ble/hl/src/profiles/rscp/rscpc -1
../src/ip/ble/hl/src/profiles/rscp/rscps -1
../src/ip/ble/hl/src/profiles/tip -I
../src/ip/ble/hl/src/profiles/tip/tipc -I
../../../src/ip/ble/hl/src/profiles/tip/tips -I ./../../../src/modules/app/src -
I./../../../src/plf/refip/src/driver/adc -I

/. ../../src/plf/refip/src/driver/wkupct -1
Jo./../../src/plf/refip/src/driver/battery -1
./../../../src/modules/app/src/app project/template fh -I
./../../../src/modules/app/src/app project/template fh/system -include
dal4580 config.h -Wno-attributes -mthumb -mcpu=cortex-m0 -D STACK SIZE=0x0600 -
D HEAP SIZE=0x0100 -D STARTUP CLEAR BSS MULTIPLE -std=gnu99 -c

N N N N N N N N B N N N N N N N N N N N N T N N N NN
N N T N N N N N Y N N N N N N N N N NS
N N T N N N N N N N N N Y N N N N N N N N NS

Application Note Revision 1.2 23-Dec-2021

CFR0014 12 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

../../../src/plf/refip/src/arch/main/ble/arch main.c -o

../../../src/plf/refip/src/arch/main/ble/arch main.o

In file included from

./../../../src/modules/app/src/app project/template fh/system/app sleep.h:10:0,
from ../../../src/plf/refip/src/arch/main/ble/arch main.c:66:

S/ /.. /src/plf/refip/src/driver/gpio/gpio.h:119:20: warning: inline function

'GPIO GetPinStatus' declared but never defined [enabled by default]

extern inline bool GPIO GetPinStatus(GPIO PORT port, GPIO PIN pin);

In this case, the exact command (e.g. how the compiler is invoked) is printed out for each action.

It is easy to miss warnings with such lengthy output, but this verbosity level is useful to see what

is really happening or to debug problems with the Makefile.

e Verbose output (lines 49 to 50); very verbose output, when invoked, for example, with “make
v=2". In this case, besides the output generated with “make V=2", extra diagnostic messages are
printed by the compiler and the linker. This verbosity level could be helpful to debug problem with
the tool chain (e.g. library search paths, system library selection etc).

5.1.2 The project-dependent part of the project build files (Makefile)

The common part of the project build files (i.e. the part that is shared between different projects) is
actually invoked by a project-dependent Makefile. A Makefile template
(tools/uvproj2Makefile/Makefile.tmpl) is listed below, which is used to create an actual Makefile
as described in section 6:

OBJ: list of object files to compile and link
TARGET ELF: name of the target (used in the generated images)

11>
12>
13>
14>
15> # output directory

16> O ?= out

17>

18> # stack size

19> STACK SIZE = 0x0600

20> # heap size

21> HEAP SIZE = 0x0100

22>

23> # Startup code

24> CORTEX M := 0

25> STARTUP = Startup_ARMCM$ (CORTEX M) .S

26>

27> # startup configuration

28> STARTUP DEFS += -D_ STACK SIZE=$(STACK SIZE) -D HEAP SIZE=$ (HEAP SIZE)
29> #STARTUP DEFS += -D_ START=main

30> #STARTUP DEFS += -D STARTUP COPY MULTIPLE

31> STARTUP DEFS += -D STARTUP CLEAR BSS MULTIPLE

32>

33> # -0Os —-flto -ffunction-sections -fdata-sections to compile for code size
34> CFLAGS += -flto

35> CFLAGS += —-ffunction-sections -fdata-sections

1> #
2> # The Makefile must define the following variables, which are used by common.mk:
3> # O: output directory
4> # STACK SIZE: number of bytes to reserve for the stack
5> # HEAP SIZE: number of bytes to reserve for the heap
6> # CORTEX M: the Cortex-M model to target
7> # STARTUP DEFS: define's that configure the start-up code
8> # CFLAGS: flags used for compilation AND linking
9> # LDFLAGS: flags used for linking
10> # ROM MAP FILE:ROM map file
#
#
#

ANANNANANANANANANANANANNNANANANANNANANNANNNNANNANNNANNNNA

Application Note Revision 1.2 23-Dec-2021

CFR0014 13 of 22 © 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

36> # Link for code size

37> GC := -Wl1,--gc-sections

38>

39> # optimisation flags

40> CFLAGS += -Os —-fplugin=tree switch shortcut elf

41>

42>

43> # include search paths

44> core inc search paths := \

45> Q@core inc search paths@@

46>

47> app inc search paths := \

48> @Rapp inc search paths@@

49>

50> inc search paths := $(core inc search paths) $(app _inc search paths)

51> CFLAGS += S (foreach d, $(inc_search paths),-I $(d))

52>

53>

54> # global configuration

55> CFLAGS += -include dal4580 config.h

56>

57> ROM MAP FILE := ../../../misc/rom symdef.txt

58>

59> LDFLAGS += $(USE NANO) $(USE NOHOST) $(LDSCRIPTS) $(GC) $ (MAP)

60>

61> # don't complain about unknown attributes (i.e. zero init)

62> CFLAGS += -Wno-attributes

63>

64>

65> # CHECK: this flag prevents the warning

66> # "uses 2-byte wchar t yet the output is to use 4-byte wchar t;
#
#

67> # use of wchar t values across objects may fail"
68> # revisit if things don't work as expected with wchar t strings.
69> LDFLAGS += -W1, -—no-wchar-size-warning

70>

71>

72> # source files

73> core src cfiles := \

74> @Q@core src cfiles@@

75>

76> app src files := \

77> QRapp src files@@

78>

79> src _cfiles := S(core src cfiles) $(app src files)
80>

81> src Sfiles :=\

82>

83> obj cfiles := $(src cfiles:.c=.0)

84> obj Sfiles := S (src_Sfiles:.S=.0)

85>

86> # patch objects

87> patch objs := \

88> Q@patch objs@@

89>

90>

91> startup obj := $(STARTUP:.S=.0)

92>

93>

94> OBJ := $(obj cfiles) $(obj Sfiles) $(startup obj)
95>

ANAANANNANANANANANNANANANANNANAANANANANNANAANANAANANANANANANANNANAANANANNANAANANANANANANAANANNNANANNANNANANANNANNNNA

Application Note Revision 1.2 23-Dec-2021

CFR0014 14 of 22 © 2021 Renesas Electronics

N RRENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

96>

97> # target

98> TARGET ELF := full emb sysram
99>

<100>

<101> include common.mk

AN NN A

The last line of the template includes common.mk, which does all the work, based on the definitions
provided by the Makefile.

Lines 3 to 12 list the variables that each Makefile should define, for proper operation of the invoked
common . mk.

Line 16 provides a default value for the variable $ (0), which signifies the output directory (i.e. where
the final binary images will be stored.

The number of bytes to reserve for the stack and the heap are defined by the variables
$ (STACK SIZE) and $ (HEAP_SIZE), respectively at lines 19 and 21.

The variable $ (CORTEX M) (in line 24) defines the model of the ARM Cortex-M family that the target
has, so that the proper compilation and linking flags are set up. For DA14580 the correct value is 0.

In lines 28 to 31 the variable $ (STARTUP_DEFS) is assigned some definitions that affect the start-up
code (discussed in section 5.3). This is particularly useful when using a variant of the sample start-up
files that come with the GCC ARM tool chain.

The canonical variable for defining the compilation flags (which are also used for linking) is

$ (CFLAGS). Some basic flags are assigned to $ (CFLAGS) in common.mk. More flags are appended by
the Makefile template, to further customise compilation. It is important to point out that the Makefile
should normally only append to $ (CFLAGS), by using “+=" for the assignment, instead of “=" or “:=". If
this guideline is not followed, the base compilation flags set by common.mk will be overwritten,
potentially leading to compilation and/or linking problems or to the generation of improper code.

The analogous variable for the linking is $ (LDFLAGS) . The advice for only appending to $ (LDFLAGS) in
the Makefile applies in this case, too. It should be noted that the recipe (in common .mk) for linking the
executable uses both $ (CFLAGS) and $ (LDFLAGS), in that order.

The variable $ (ROM MAP FILE) is used to define the path to a text file that contains the list of symbols
(functions and variables) of the code that resides in the ROM. This file is included in the code release
and only the path to it might have to be adjusted.

The variable $ (OBJ) is used to list all the object files that should be linked to produce the executable.
The Makefile template first generates several lists of source files (separately for C and assembly
files) and then transforms the source file names into object file names.

Finally, the variable $ (TARGET ELF) provides the base name for the images to be generated. For
example, if $ (TARGET ELF) is set to my app, the images my app.axf (ELF), my app.hex (Intel hex)
and my app.bin (binary) will be created.

5.2 GNU linker script

The user of the GNU linker (1d) may use custom linker scripts to dictate the memory layout of an
executable. These are equivalent to Keil uVision’s scatter files. The linker script template
tools/uvproj2Makefile/580.1ds.S replicates the memory layout defined by the common scatter file
dk apps/scatterfiles/scatterfile common.sct. Itis a template, because it contains some C pre-
processor directives. The project build files, described in section 5.1, create a real linker script named
580.1ds from this template.

5.3 Start-up code for GCC
The start-up code is written in assembly and usually does the following:

1. Initialises some registers, e.g. to set up memory mappings.

Application Note Revision 1.2 23-Dec-2021

CFR0014 15 of 22 © 2021 Renesas Electronics

N RRENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

2. Enforces the memory layout by:

a. Copying code and/or data sections to their execution (in Keil’s terminology) or virtual memory
(in GNU Id terminology) address.

b. Filling certain sections (e.g. .bss) with zeroes.

3. Jumps to the entry point of the application. This typically is the function start () in the system
library, which eventually calls main ().

Evidently, steps 1 and 3 are usually the same between different projects, but step 2 is prone to
change from one project to the next, due to different memory usage. However, generic start-up code
may be found at tools/uvproj2Makefile/startup ARMCMO.S. With the proper value assigned to

$ (STARTUP DEFS) in the Makefile (see 5.1.2), it should cover most cases without any changes in its
code.

In addition, the start-up source file defines handlers for certain IRQs and provides default handlers
for the rest of the IRQs. The default interrupt handlers merely go into an infinite loop.

6 Converting a Keil project file into a Makefile

The process of manually creating a Makefile from a Keil uVision project file should be clear, but it is
tedious and error-prone. Therefore, a script was developed to automate the process; it can be found
at tools/uvproj2Makefile/uvproj2Makefile. It is a Bash shell script, which uses sed to extract
information from the .uvproj file. As noted in section 4.1 the .uvpro]j file is an XML file. However,
uvproj2Makefile does not parse it as an XML document but rather as a text file: it looks for specific
XML tags, though, before attempting to extract the sought information.

The script accepts the following command-line options:
Usage: ./tools/uvproj2Makefile/uvproj2Makefile [options]

-1 UVPROJ input .uvproj file (must be defined)

—-o OUTPUT MAKEFILE output Makefile (default: Makefile.out)
-t MAKEFILE TEMPLATE Makefile template (default: Makefile.tmpl)
-V show version

The script uses a .uvpro] file as input and needs a Makefile template with certain placeholders in it.
The name of the output Makefile is configurable. When it parses a .uvpro] file, the script searches
for certain XML tags, extracts strings and puts them into specific placeholders in the Makefile
template, as described in Table 1.

Table 1: How XML tags are used to fill placeholders in the Makefile template.

XML tag Type of extracted string Placeholder in Makefile template
IncludePath Include search path @@core_inc_search_paths@@
@@app_inc_search_paths@@
Note 1
FileType C source files @@core_src_cfiles@@
Note 3 @@app_src_files@@
Note 1
FileType ELF object files @ @patch_objs@@
Note 3

Note 1 Files are heuristically split into “core” and “application”.

Note 2 C sources files have <FileType>1<\/FileType>.

Note 3 ELF object files have <FileType>3<\V/FileType>.

Usually there is more than one string for each XML tag type; in this case, these multiple strings are

concatenated in the resulting Makefile. In addition, the script attempts to split the C source files and
the include search paths into “core” and “application”, based on a simple heuristic: if a path contains

Application Note Revision 1.2 23-Dec-2021

CFR0014 16 of 22 © 2021 Renesas Electronics

N RRENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

the string “app project” it is classified as “application; otherwise, it is classified as “core.” If this
heuristic fails to classify correctly a path, there is no consequence, as the two sets of paths are
eventually merged back into one set before being used. The split is done only for the clarity of the
Makefile.

7 Benchmarks

This section discusses the results of two benchmarks, which were used to compare the performance
of the ARM GCC and Keil’'s compiler. Probably the most important metric of a BLE application is its
memory footprint, as memory is the most limited resource on a DA14580-based device. The second
metric is the code efficiency in terms of speed. To assess these two metrics, a template BLE project
and the well-known Dhrystone benchmark were used.

7.1 Building parameters

Both compilers provide a large number of parameters to fine-tune the optimisations performed while
building code. Optimisation strategies typically aim at either small size or high speed; higher speed
sometimes leads to increased speed (due to loop unrolling, function inlining etc.). Another
optimisation option is link-time (in GCC’s terminology), or cross-module (in Keil's terminology),
optimisation, which performs optimisations during linking, when all of the object code is available,
rather than the traditional intra-module optimisation. The two strategies can be combined, in theory.
Unfortunately, during testing it was found that combining optimise-for-speed flags with LTO caused
GCC to produce non-working images; it is unclear whether this is a bug or some misconfiguration.
Therefore, when building with ARM GCC, LTO should be used only with the optimise-for-size flag
(i.e. -0s).

A different building option to consider is the variant of the system library to use. The system library
provides the standard C functions, for tasks such as memory copies, string operations, mathematical
functions, file handling etc. However, most embedded systems do not require a full-fledged system
library (e.g. floating-point operations or file handling are redundant). Both ARM GCC and Keil provide
stripped-down system libraries, which are optimised for size. In case of ARM GCC it is called Newlib-
nano, while Keil calls it MicroLIB. The impact of using these variants is evident in the results
presented in the next section.

7.2 Dhrystone results

The Dhrystone benchmark was executed, built with different options, for 300,000 iterations.
Repetition of a run produced the exact same score, which is to be expected for a bare-metal system
without caches, such as DA14580.

Table 2: Dhrystone results with full-fledged system library

ARM GCC Keil pVision 5

Opt. Level Default Os Os+LTO 02 03 Default | O3,size 02 03

Note 1 Note 2 Note 5 Note 3 Note 4 Note 1 Note 6 Note 3 | Note 4
us/loop 102.43 77.43 48.43 42.43 40.57 39.97 55.63 39.97 36.50
Dhrystones 9762 12914 20647 23566 24651 25021 17975 25021 27397
DMIPS 5.56 7.35 11.75 13.41 14.03 14.24 10.23 14.24 15.59
DMIPS/MHz 0.35 0.46 0.73 0.84 0.88 0.89 0.64 0.89 0.97
Binary size 12540 10856 10216 10608 10576 11768 11196 11768 11996

Note 1 Default optimisation

Note 2 Optmise for size

Note 3 High optimise-for-speed level
Note 4 Highest optimise-for-speed level

Application Note Revision 1.2 23-Dec-2021

CFR0014 17 of 22 © 2021 Renesas Electronics

N RRENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

Note 5 Default optimisation combination used in BLE projects with GCC
Note 6 Default optimisation combination used in BLE projects with Keil

Table 2 shows the results for different optimisation options, when the normal full-fledged system
library is used. In addition, the size in bytes of the resulting application is given. The absolute best
numbers for the two basic metrics (speed and size) are highlighted.

Briefly, Keil gives a higher speed than GCC and GCC gives a smaller size, for equivalent building
options. Interestingly, the optimisation flags used by default in BLE projects, give both better speed
and better size in the case of GCC than in the case of Keil. It should be noted that LTO did not have
any effect in the Dhrystone scores and only marginally decreased the binary size with Keil, while it
improved the score considerably with GCC.

In almost all cases, equivalent optimisation flags make a difference of 5 % to 10 % in favour of GCC
or Keil, for both metrics.

Table 3: Dhrystone results with stripped-down system libraries

ARM GCC with Newlib-nano Keil pVision 5 with MicroLIB

Opt. Level Default Os Os+LTO 02 03 Default | O3,size 02 03

Note 1 Note 2 Note 5 Note 3 Note 4 Note 1 Note 6 Note 3 | Note 4
us/loop 102.43 77.43 48.43 42.43 40.57 75.33 107.33 71.90 71.90
Dhrystones 9762 12914 20647 23566 24651 13274 9317 13908 | 13908
DMIPS 5.56 7.35 11.75 13.41 14.03 7.56 5.30 7.92 7.92
DMIPS/MHz 0.35 0.46 0.73 0.84 0.88 0.47 0.33 0.49 0.49
Binary size 8228 6444 5804 6196 6164 8208 7720 8436 8436

Note 1 Default optimisation

Note 2 Optmise for size

Note 3 High optimise-for-speed level

Note 4 Highest optimise-for-speed level

Note 5 Default optimisation combination used in BLE projects with GCC

Note 6 Default optimisation combination used in BLE projects with Keil

Table 3 presents the results when Dhrystone is built with the stripped-down system libraries (Newlib-
nano or MicroLIB). An important difference between GCC and Keil is that Newlib-nano (comes with
GCC) does not have any impact on speed, but MicroLIB (comes with Keil) brings the scores down by
about 50 %. This very high penalty imposed by MicroLIB might have to do with the implementation of
memory and string functions in this particular library. In terms of size, Newlib-nano decreases size by

about 4 KiB, while MicroLIB brings the size down by about 3.5 KiB. In this context, GCC with the
highest optimise-for-speed level (-03) is probably the best trade-off between speed and size.

7.3 BLE template project results

The second test case is the BLE template project (fh project template), which just performs
advertisement. For this application it only makes sense to check the memory footprint, when building
with a different tool chain and with different building options.

Application Note Revision 1.2 23-Dec-2021

CFR0014 18 of 22 © 2021 Renesas Electronics

N RRENESAS

DA14580 Porting a Keil uVision Project to the
GNU Tool Chain

Company confidential

Table 4: Memory footprint of the BLE template project with full-fledged system libraries

ARM GCC Keil yVision 5
Opt. level Os Os 02 03 0O3,size 02 03 03,size 02 03
+LTO +LTO +LTO +LTO
text 14048 | 13184 | 14652 | 14708 | 10256 | 10480 | 10516 9796 9948 9956
data 1176 1172 1180 | 1180 0 0 0 0 0 0
bss 11458 | 11462 | 11460 | 11460 | 13608 | 13608 | 13608 13608 13608 | 13608
total 26682 25818 | 27292 | 27348 | 23864 | 24088 | 24124 23404 23556 | 23564

Table 4 presents the static memory footprint, when using the full-fledged system libraries. In this
case, the sizes when enabling LTO in Keil are also given, as there is a considerable difference with
the non-LTO case. The static memory footprint constitutes of the following parts:

e Text: the code of the application.
Data: the static, initialised data of the application.
BSS: the zero-initialised data of the application; they are not stored in the application image, only

the start and end addresses of the memory area need to be stored.

In this case, Keil with the optimisation flags used by default in the BLE projects plus LTO, give the
smallest memory footprint. In general, Keil's LTO decreases the footprint by about 0.5 KiB. GCC'’s
images have about 4 KiB larger code, 2 KiB less zero-initialised data and introduce over 1 KiB of

initialised data, for equivalent optimisation flags. In total, GCC produces a memory footprint that is

about 10 % to 13 % larger than when building with Keil.

Table 5: Memory footprint of the BLE template project with stripped-down system libraries

ARM GCC with Newlib-nano

Keil pVision 5 with MicroLIB

Opt. level Os Os 02 03 03,size 02 03 03,size 02 03
+LTO +LTO +LTO +LTO
text 13272 | 12416 | 13844 | 13940 | 9592 9812 | 9848 9132 9280 9288
data 208 204 212 212 0 0 0 0 0 0
bss 11458 | 11462 | 11460 | 11460 | 13252 | 13252 | 13252 13252 13252 13252
total 24938 | 24082 | 25516 | 25612 | 22844 | 23064 | 23100 22384 22532 | 22540

Table 5 presents the analogous results when the stripped-down system libraries are used. The
general trend is the same as before, with Keil providing a smaller memory footprint. In general,

MicroLIB decreases the footprint by 1 KiB, while Newlib-nano decreases it by over 1.5 KiB. The
memory footprint of the BLE template project when built with GCC is about 7 % to 10 % larger than
when built with Keil, for equivalent optimisation flags.

7.4

General comments

The two benchmarks used to compare GCC and Keil do not give a clear answer which of the two is
better for every case. However, the differences both in size and in speed are generally around 10 %
for either of them, depending on the case, for equivalent building options. An important note is that
Keil's MicroLIB imposed a 50 % penalty on Dhrystone scores, which might be relevant for some

applications.

Application Note

Revision 1.2

23-Dec-2021

CFR0014

19 of 22

© 2021 Renesas Electronics

N RENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

8 Conclusions

This document described how a BLE Keil uVision project can be replaced by a Makefile, which can
then be used to build the project with GCC. This is an attractive capability, to avoid any licensing
limitations imposed by non-open source tool chains.

A script has been developed to automate this conversion. The resulting Makefile, start-up code and
linker script may require manual fine tuning for better performance or customisation, but they should
be able to generate working images out-of-the-box.

Finally, some benchmarks regarding speed and size were presented, which do not give a clear
choice between GCC and Keil for every case. However, the differences in either speed or size are in
the order of 10 %.

Application Note Revision 1.2 23-Dec-2021

CFR0014 20 of 22 © 2021 Renesas Electronics

AN-B-024

RLENESAS

Company confidential

DA14580 Porting a Keil uVision Project to the
GNU Tool Chain

9 Revision history

Revision Date Description

1.2 23-Dec-2021 Updated logo, disclaimer, copyright.

1.1 16-Jul-2014 Include benchmark results.

1.0 23-May-2014 Initial version.

Application Note Revision 1.2 23-Dec-2021
CFR0014 21 of 22 © 2021 Renesas Electronics

- RLENESAS

DA14580 Porting a Keil uVision Project to the Company confidential
GNU Tool Chain

Status definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or
additions.

APPROVED The content of this document has been approved for publication.

or unmarked

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU
concerning Restriction of Hazardous Substances (ROHS/RoHS2).

Dialog Semiconductor’s statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our
suppliers are available on request.

Application Note Revision 1.2 23-Dec-2021

CFR0014 22 of 22 © 2021 Renesas Electronics

https://support.diasemi.com/

	Abstract
	Contents
	Tables
	1 Terms and definitions
	2 References
	3 Introduction
	4 Keil uVision projects
	4.1 Keil uVision project files
	4.2 Keil scatter files
	4.3 Keil start-up code
	4.4 Keil compiler extensions

	5 Building code with a GNU tool chain
	5.1 Makefile
	5.1.1 The invariable part of the project build files (common.mk)
	5.1.2 The project-dependent part of the project build files (Makefile)

	5.2 GNU linker script
	5.3 Start-up code for GCC

	6 Converting a Keil project file into a Makefile
	7 Benchmarks
	7.1 Building parameters
	7.2 Dhrystone results
	7.3 BLE template project results
	7.4 General comments

	8 Conclusions
	9 Revision history

