RENESAS Application Note

Renesas RA Family

Application Design using RA8 Series MCU
Decryption on the Fly for OSPI

Introduction

The RA8 MCU has the Octal Serial Peripheral Interface (OSPI). This is the OSPI_B version of the OSPI
peripheral module on the RA8 MCUs. The Decryption On-The-Fly (DOTF) peripheral on the RA8 MCUs
enables secure external storage of application code or data on the OSPI memory. The information can be
stored on the OSPI memory via an independent mechanism, with the decryption key provisioned on the
MCU using the appropriate key injection method. Alternatively, the MCU can internally generate a key and
write encrypted information to the OSPI for secure storage and later usage. The primary advantage to using
DOTF is that code execution and data reading of the external information is performed at about full speed
with seamless background decryption.

This application project provides guidelines on how to use the DOTF with the RA8 MCU Renesas Secure IP
(RSIP) in Compatibility Mode and Protected Mode. Refer to the Renesas RA Family Security Engine
Operational Modes AN (R11AN0498) and Renesas RA Secure Key Injection application project
(R11ANO0496) to understand these two operational modes and how to use them with the MCU.

The example projects included in this application project use the EK-RA8M1 evaluation kit. The procedure
and application described are applicable to other RA8 MCUs that support the DOTF feature. For the
Renesas Secure IP (RSIP) Compatibility Mode, runtime-encrypted data is stored and decrypted using DOTF.
For the RSIP Protected Mode, a securely injected DOTF key is used.

Target Devices

e RA8SM1
e RAS8D1
e RAS8T1

Required Resources
Software and development tools

e e?studio IDE v2024-10
e Renesas Flexible Software Package (FSP) v5.6.0

The links to download the above software are available at https://github.com/renesas/fsp.

e Renesas Flash Programmer (RFP) v3.15 or later
https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-flash-programmer-
programming-gui.html

e Renesas Security Key Management Tool v1.07 or later
https://www.renesas.com/software-tool/security-key-management-tool

e Gpgdwin
http://www.gpg4win.org/

Hardware

o EK-RA8ML1, Evaluation Kit for RABM1 MCU Group (renesas.com/ra/ek-ra8m1)
e Workstation running Windows® 10 and the Tera Term console or similar application
e One USB device cable (type-A male to micro-B male)

R11ANO773EU0100 Rev.1.00 Page 1 of 37
Nov.21.244 RENESAS

https://github.com/renesas/fsp
https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html
https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-flash-programmer-programming-gui.html
https://www.renesas.com/software-tool/security-key-management-tool
http://www.gpg4win.org/
http://www.renesas.com/ra/ek-ra8m1

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Prerequisites and Intended Audience

This application project assumes that the user has experience using the Renesas e? studio IDE. In addition,
knowledge of Renesas RA key injection methods, the Secure Key Management Tool (SKMT), the Renesas
Flash Programmer (RFP) and the RSIP operational modes is required prior to evaluating the RA8 DOTF
system. The reference section has information on the available Application Projects and User Manuals to
gain this knowledge. General knowledge of cryptographic algorithms is highly desired.

R11ANO773EU0100 Rev.1.00 Page 2 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Contents

T g o [UTot i o] o H PP TP PP PP PTPPPPPPPPPPR 1
1. RAB MCU Decryption ONthe FIY ... 5
S R B (@ I o ol 1 (=10t 0 =P PPPPRT 5
1.2 DOTE FRAIUIES......uuiiiiiiiiii ittt s s e e e e e s s et e e e e s s s bbb e e e r e e e s s s sanans 6
1.3 EXample OPEratioNal FIOWooiuiiiiiiiiiieiiiit ettt sttt b e s et e e e b e e e e 7
1.4 DOTE USAQGE NOEScoeiiiiiiiiiiiiiee ettt e ettt e e e e s sttt e e et st e et et e e e s e s s b e et e eeeessasssrrnreeaeeesaannnn 8
1.4.1 ENdianness Of DOTE OPEIALIONuiiieiiiiiie ittt ettt ettt e et e e e bt e e s e nb e e e e e abreeeeanenas 8
1.4.2 Specifical Data Handling Performing Runtime Encryption with DOTF..........covviiiiiiiiiiiiiieieeiieieveieveienenns 8
1.4.3 Setting the Initialization Vector (IV) for DOTF OPEratiONuueeiereeeereeereeeeerereresesersreressrererenensrere. 9
1.4.4 USAQE OF thE AES-CTR ...ooiiiiiiiiiiiiiiiiieeie ettt e e eeeeeeeeeeeasaeesaeesssasesssesssasssssssssesssssnsssnsnsnnennnnnnnnnnnns 9
1.4.5 Use the RSIP and Key Injection in Matching MOGEoiiiiiiiiiiiiiie e 9
1.5 Configuring DOTF Operation USING FSPcoouiiiiiiiiiieiiiiee et 10
1.6 Allocating Data to the OSPI AFBauiiiiiiiee ittt ettt e st e e st e e e e snbe e e e e nnres 10
1.7 USING MUILIPIE DOTE KEYS ...oeeeiiieiiieiieiieeeeteeteeeeeeeeeeeeeeeeeeasasessseessssssesasssssasssssssssasssssssssssssssssssssssnnnnnnnnnnes 11
1.8 RESEITNE OSPIDEVICEoeiiiiiiiiiei ittt e et e st e e et e e e e e e s a e e s anrn e e e e nnnns 11
2. Example Implementation: Using DOTF with RSIP Compatibility Modeccccvvviiiiinnnnnns 11
2.1 Creating the Application with RSIP Compatibility MOUE............uuuumm e 11
2.2 Encrypt the OSPI Data at RUNTIME.........uuuuiiiiiii s 13
2.3 Allocating Plaintext Data t0 the OSPI AIBauuuuuiuiii s 14
2.4 Running the EXample APPIICALIONeiiiiiiiii ittt e e et e e e abbeeeeaae 15
2.4.1 Set up the Hardware and Import the APPIICALIONcoiiiiiiiiiiiiie e 15
2.4.2 Launch the Debug Session and Observe the DEMONSIIAtioNcueeeiiiiiieeiiiiee e 18
3. Example Implementation: Using DOTF with RSIP Protected Modecccooveevvvviiiiiiiiineeeenn, 19
3.1 Tools Used in the DOTF Design with RSIP Protected MOGeccoooiiiiiiiiiiiiiiiiiee e 20
3.2 Creating the Wrapped DOTE KEYuiiiiiiiiiiiiiiiee ittt e ettt ettt st e e sbae e e e sbe e e e s snbbeeeeanbaeeeesnbaeeeeanes 20
3.3 Configure the Application Project with RSIP in Protected Mode............cccueeeiiiiiiiiiiiiieeeeeen 22
K B oTo F- L (oI 1 g (=B I | (T Yol | | PP UPT T ORPPPRT 23
3.5 Allocating Code to the DOTF DeStNAtION AlB@.........uuuiiiiiiiiiiiiiiiieee ettt e e eeaa e 24
3.6 Import and Build the RSIP Protected Mode Example Project...........cccoceiiiiiieiiiieeieinieee e 25
3.6.1 Encrypt the DOTF Destination Area Using the SKMT CLI.......cccciiiiiiiiiiiiie e 25
3.6.2 Encrypt the DOTF Destination Area using SKMT GUI.......ccoiiiiiiiiiiiiiiiiee e 26
3.7 Running the Example APPICALIONooeuiiiiiieee et e et e e e e e e s bnbeeeeaaeeeas 27
3.7.2 Launch the Debug Session using the SKMT CLI Generated IMages.........ccccooviriuiiiieieeeeeiniiiiieeeeeeenn 29
3.7.3 Launch the Debug Session using the SKMT GUI Encryption ResUIt..........ccccoooiiiiiiiiiiiiiiiieeeeeen 31
4. Guidelines for DOTF ProducCtion SUPPOIT.......ccooiiieeoieeeeeee e 32
LT Y o o 1= Lo [OSSPSR 34
R11ANO773EU0100 Rev.1.00 Page 3 of 37

Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

5.1 Update the Linker Script for the Compatibility Mode Example Projectcccoovveeiiiiiee e 34
5.2 Update the Linker Script for the Protected Mode Example Project.........ccooccveeeiiiiciieeeeee e 34
B. REIEIEINCES ...ttt 35
V=T o 1S £ IF= T To ST o o Lo APPSR 36
YAV ES o] T 1151 (o] Y2 P 37
R11ANO773EU0100 Rev.1.00 Page 4 of 37

Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

1. RA8 MCU Decryption on the Fly

This section introduces the architecture of the RA8 DOTF peripheral, its features, the use cases, and the
example operational flow. Some general usage notes are also provided as a reference when designing an

application using DOTF.

1.1 DOTF Architecture
The following block diagram describes the interactions between the DOTF peripheral and the MCU bus
system and other supporting security peripherals.

e RSIP supports both DOTF key injection and key generation
e The dedicated AES-CTR decryption engine performs the decryption for the DOTF operation
e The DOTF controller manages the DOTF operation

The following are descriptions of the five numbered legends (1) through (5). These are the key operations
when designing an application with DOTF enabled.

(1) Encrypted data read operations that go through the AES CTR engine for decryption

(2) Plaintext data read operations that bypass the AES CTR engine

(3) Decrypted data read operations following AES CTR decryption

(4) Data write operations that bypass the DOTF operation

(5) XSPI /O register interface read/write operations bypassing the DOTF operation

CPU Other Bus Masters

SAU/MDAL MSAU

w

h 4

Intermal Main Bus

!

Internal Peripheral Bus

Trust Trust
Zone
RSIP
b 4
| Bus Interface |
| Access Management Circuit | DOTE . .
1 | 1 Controller 3)
Encryption Engine
Symmetric = >
. Hash £
[0 Encryption —
Z— — &
- B A @ @ ®)
Asymmetric v]
Encryption Decryption
DOTF Key
— I T
RAM | »
r
(1
h 4 h 4
XSPI Memory Space IO Space

Figure 1. RA8 Decrypt on the Fly

On the RA8 Cortex-M85 Devices, the OSPI area starts at 0x80000000. The OSPI peripheral interfaces with
external OctaFlash and/or OctaRAM chip(s) can perform data I/O operations. This is the OSPI_B version of

R11ANO773EU0100 Rev.1.00 Page 5 of 37

Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

the OSPI peripheral module for the RA family. When both OctaFlash and OctaRAM devices are interfaced,
they must be connected to dedicated chip-select lines. The devices cannot share a single chip-select line.

On the EK-RA8M1, an OctaFlash is connected to the RA8M1 on channel 1, which starts at 0x90000000 with
a supported address range of 256MB. In this application project, we will use this channel and the on-board
OSPI to demonstrate the DOTF operation.

@x9FFF_FFFF

CS1 (256 MB)
8x9000_0eoe 10 xSPI

Ox8FFF_FFFF Bus
CSO0 (256 MB)

0x8000_0000

Figure 2. OSPI Memory Space
1.2 DOTF Features
The key DOTF features include the following:

o DOTF is supported with both RSIP Protected Mode and Compatibility Mode. To learn about the RSIP
Protected Mode and Compatibility Mode, please refer to the Renesas RA Family Security Engine
Operation Modes application note (R11AN0498). It is important to note that the key storage type must
match the RSIP mode.

o DOTF supports confidential external code and/or data. A mix of plaintext and encrypted code/data is
allowed.

e The external storage data can be pre-stored with a known key or stored at run-time with a generated
key. Any previously injected or internally generated key can be used as the DOTF key.

e Code execution using the external storage and data read from the external storage are transparent to
the application using the DOTF feature.

e DOTF uses the AES-CTR cryptographic algorithm AES128-CTR, AES192-CTR, and AES256-CTR.

e Any range of the valid OSPI area can be defined as a region to be decrypted by the DOTF. Multiple
DOTF destination regions can be configured with distinct DOTF keys.

The following are some major use cases where DOTF can be used. All use cases are supported under both
Protected Mode and Compatibility Mode, but the mechanisms for injecting any pre-shared keys will differ.

e Pre-program code or data with a known key

OEM may have sensitive content that needs to be protected in the OSPI area. The sensitive code or data
can be pre-encrypted and programmed in the OSPI area prior to deliver to the end customer for application
development. This is demonstrated using the RSIP Protected Mode in this application project.

e Store data at run-time with a generated key

R11ANO773EU0100 Rev.1.00 Page 6 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

The application may generate sensitive data that needs to be stored to the OSPI area encrypted. For
example, private patient information may be collected at run time and stored encrypted in the OSPI area.
This is demonstrated using the RSIP Compatibility Mode in this application project.

OSPI writes to the specified DOTF address range are not automatically encrypted. Application code must
encrypt the data prior to writing it using the DOTF decryption key.

1.3 Example Operational Flow

For the first use case mentioned above, the following flow using DOTF with RSIP Protected Mode is
demonstrated in this application project. In this example, the OSPI data encryption is performed by using the
SKMT tool.

Create the Wrapped Encryption Key

I

Inject the Wrapped DOTF Key using RFP

!

Develop application code to enable DOTF over
desired address range using RSIP protected mode

A 4

Encrypt the OSPI data area using SKMT

:

Write encrypted code/data to external memory
using Jlink driver or RFP

!

Access the encrypted data as plaintext data using
DOTF

Figure 3. Example DOTF Operational Flow using RSIP Protected Mode

For runtime data encryption support, refer to the following Compatibility Mode operational flow. The DOTF

RSIP Compatibility Mode example project included in this application project demonstrates this flow. In this
example, the OSPI data encryption is performed at runtime using an application generated plaintext DOTF
key.

R11ANO773EU0100 Rev.1.00 Page 7 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Develop application code with DOTF enabled on
the over desired address range using RSIP
compatibility mode

y
Generate runtime encryption key and encrypt
some plaintext data

v

Initialize OSPI

\ 4

Erase the OSPI area where the encrypted data will
be written

v

Write encrypted data to OSPI

v

Read the encrypted OSPI data area and recover
the plaintext data

Figure 4. Runtime DOTF Key Generation and Data Encryption using RSIP Compatibility Mode

1.4 DOTF Usage Notes
When designing applications with DOTF, please be aware of the following usage notes.

1.4.1 Endianness of DOTF Operation

The RA8 MCU operates in little endian mode while SKMT and DOTF operate in big endian. It is
recommended to provide the DOTF key and Initialization Vector (1V) are provided in byte format, the SKMT
and DOTF operations will automatically use them in big endian format. Refer to the example project for
demonstrations on how to set up the IV and DOTF Key.

1.4.2 Specifical Data Handling Performing Runtime Encryption with DOTF

When encrypting data for use with DOTF at runtime using application code, the byte order of each 16-byte
block must be reversed prior to and after the AES-CTR encryption. This is not needed when using SKMT to
encrypt the OSPI data because this operation is handled by SKMT. Refer to the following flow chart for a
summary of the major steps when performing Runtime Encryption using DOTF.

R11ANO773EU0100 Rev.1.00 Page 8 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Step 1: Reverse the plaintext data to
be encrypted byte wise every 16

byte

y

Step 2: Perform AES-CTR operation
to encrypt the plaintext data

Step 3: Reverse the encryption
result byte wise every 16 byte

y

Step 4: Erase the DOTF destination
area (see Note below)

y

Step 5: Write the result from Step 3
to the DOTF destination area

Figure 5. Runtime Encryption Operational Flow

1.4.3 Setting the Initialization Vector (IV) for DOTF Operation

For the DOTF AES-CTR implementation, the IV comprises a nonce and the counter. The first 100 bits of the
IV are used as the nonce for AES-CTR. The most significant 28 bit of the DOTF destination address of the
data to be encrypted are used as the initial counter. The destination address can be omitted in the encryption
command. If the destination address is omitted, the start address of the encryption range is used in place of
the destination address.

Counter [127:0] = {IV[127:28], DOTF Destination Address[31:4]}
where DOTF Destination Address is the memory mapped address of the encrypted data.

1.4.4 Usage of the AES-CTR

For the RA8 Series MCU DOTF usage, the information must be AES-encrypted using CTR mode. The
configurable key length is 128, 192, 256 bits. No special keys are required — any previously injected or
internally generated AES key of the configured length can be used.

The AES-CTR was selected for its fast performance and flexibility in handling data of any size without
padding. The AES-CTR offers confidentiality for customer data storage. Using DOTF with authentication is
impractical in that it would require a much more complicated system to store the authentication tags. Such a
system requires additional storage space, making it impossible to decrypt the data on a 16-byte boundary
(which is the specification DOTF supports).

When using the DOTF system, users need to be aware that nonce reuse is a vulnerability for CTR
mode. Optimally, use a different nonce for every device.

1.4.5 Use the RSIP and Key Injection in Matching Mode

When using the RA8 series MCU DOTF functionality with key injections, ensure that the secure key storage
(wrapping) type matches the security engine mode being used by the application. For example, if the
application uses the security engine in Protected Mode, ensure that the DOTF keys are securely injected
using the factory boot firmware serial interface or are generated with the security engine operating in
Protected Mode.

R11ANO773EU0100 Rev.1.00 Page 9 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

1.5 Configuring DOTF Operation using FSP

When using the EK-RA8M1 and FSP to develop applications with OSPI, the OSPI hardware configurations
can use the default FSP settings. For DOTF, based on the use cases and the RSIP operational modes, the
following are the key configurations that may need to be updated.

With an e2studio project, open the smart configurator and add the OSPI module using the Stacks tab via
New Stack > Storage > OSPI Flash (r_ospi_b). By default, DOTF is disabled. It can be enabled in
Protected Mode or Compatibility Mode as shown in Figure 6.

Note that FSP uses r ospi_b for the RA8 OSPI driver to differentiate with the OSPI driver for the RA6
MCU series.

Property Yalue

w Common
Memory-mapping Support

Parameter Checking Default (BSP)
DMAC Support Disable
Autocalibration Support Disable
w Module g_ospil OSPI Flash (r_ospi_b) Enable (Protected Mode)
General

Defaults

Figure 6. Select the DOTF Operation Mode

Open the Properties setting of the r ospi b stack. The following are the key configurations for the DOTF.

Table 1 Configuration Properties for DOTF Operation

Default Setting Description Additional Comments
Name g_ospi_dotf DOTF Configuration name. Name must be a valid C symbol
AES Key g_ospi_dotf_key Name of Key variable. Name must be a valid C symbol
AES IV g_ospi_dotf_iv Name of |V variable Name must be a valid C symbol
AES Key 128 Select AES key length. none
Length Options are:128, 192, 256
Key Format Plaintext Plaintext or Wrapped Choose Plaintext if Compatibility Mode

plaintext key is used.

Choose Wrapped if Compatibility Mode or

Protected Mode wrapped key is used.

Decryption start | 0x90000000 OSPI decryption start Value must be an integer between
address address 0x80000000 and Ox9FFFFFFF
Decryption end | Ox90001FFF OSPI decryption end Value must be an integer between
address address 0x80000000 and Ox9FFFFFFF

1.6 Allocating Data to the OSPI Area

When the DOTF region is defined in the FSP OSPI stack, the OSPI area will be separated into encrypted
and plaintext data regions. When designing an application using the DOTF with both encrypted and plaintext
data, the application needs to be aware of the DOTF region and take this into consideration in the design

R11ANO773EU0100 Rev.1.00 Page 10 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

process. Refer to section 2.3 and section 3.5 for how the example projects included in this application note
allocate data to the OSPI area.

1.7 Using Multiple DOTF Keys

FSP APIR OSPI B DOTF Configure can be used to set up multiple DOTF regions with multiple DOTF
keys each targeting a specific DOTF region at run-time. The application code can configure the
ospi b dotf cfg structure to change the DOTF address range and DOTF key at runtime.

/* This structure is used to hold all the DOTF related configuration. */
typedef struct st ospi b dotf cfg
{

ospi b dotf aes key type t key type;

ospi b dotf key format t format;

uint32 t * p start addr;
uint32 t * p_end addr;
uint32 t * p key;

uint32 t * p iv;

} ospiibidgtfichit;

/* OSPI DOTF AES Type. */

typedef enum e ospi b dotf aes key type
{

OSPI B DOTF AES KEY TYPE 128 = 0U,
OSPI_B DOTF AES KEY TYPE 192 = 1U,
OSPI B DOTF AES KEY TYPE 256 = 2U

} ospi b dotf aes key type t;

fsp_err t R_OSPI_B DOTF Configure (spi flash ctrl t * comst p_ctrl, ospi b dotf cfg t *
const p dotf cfgqg)

1.8 Reset the OSPI Device

For the OSPI device on EK-RA8ML1, if the device was entered into 8D-8D-8D mode prior to the initialization
routine, the OSPI device needs a Reset to be successfully initialized. This is handled in the example projects
in the R_BSP_WarmStart function using the BSP_WARM_START_POST_C event.

2. Example Implementation: Using DOTF with RSIP Compatibility Mode

This section explains the establishment of runtime encrypted data and decryption using DOTF with RSIP
operating in Compatibility Mode. The GCC compiler is used for the Compatibility Mode example project. Data
Cache is also enabled to achieve better system performance.

2.1 Creating the Application with RSIP Compatibility Mode

When choosing Compatibility Mode based on the OSPI Common Property (refer to Figure 6), we have the
option of using Plaintext DOTF key or Wrapped DOTF key. In this example project, a run-time generated
Wrapped AES128 key is used as the DOTF key.

This example project uses the MbedTLS (Crypto only) module and the PSA Certified Crypto API for the
runtime DOTF key generation and plaintext data encryption. The MbedTLS (Crypto only) module can be
added using the Stacks tab via New Stack > Security > MbedTLS (Crypto Only).

The Wrapped AES128 key is generated using the PSA Certified Crypto APl: psa generate key. This API
returns the key handle of the Plaintext key. The psa export key PSA Certified Crypto API is used to
generate the RAW key data pointed to by the encryption key buffer as the DOTF key. The application
project provides the IV of the AES CTR algorithms in the buffer named encryption iv. In this example,
the DOTF decryption range is from 0x90000000 to 0x90000FFF.

Figure 7 is the OSPI memory layout for both the DOTF RSIP Compatibility Mode and the DOTF RSIP
Protected Mode example projects.

R11ANO773EU0100 Rev.1.00 Page 11 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for

OSPI
OX9FFFFFFF
Plaintext OSPI
code/data
0x90001000
Encrypted OSPI
code/data
0x90000000

Figure 7. OSPI Memory Map of the Example Projects
Figure 8 is the key DOTF configurations for the Compatibility Mode example project.

v Common

Memory-mapping Support

Parameter Checking Default (BSP)

DMAC Support Disable

Autocalibration Support Disable

DOTF Support I Enable (Compatibility Mode) I
v Module g_ospi_b OSPI Flash (r_ospi_b)

General

Defaults

High-speed Mode

Chip Select Timing Setting

XiP Mode

v DOTF
Name g_ospi_dotf
AES Key encryption_key
AES IV encryption_iv
AES Key Length 128
Key Format Wrapped
Decryption start address 0x90000000
Decryption end address 0Ox90000FFF

Figure 8. Configure the DOTF with Compatibility Mode

Figure 9 is an overview of the software components used in the example application project. The
r sci b uart stack is used for the J-link virtual console to communicate with a PC terminal (eg. Tera
Term). The virtual console can be used to print the system status information, for example, error messages

or time usage information.

R11ANO773EU0100 Rev.1.00
Nov.21.244 RENESAS

Page 12 of 37

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Selected software components

Arm CMSIS Version 6 - Core (M)

RA8M1-EK Board Support Files

Arm PSA Crypto Implementation

Board support package for R7TFASM1AHECBD
Board support package for RASM1

Board support package for RA8M1 - FSP Data
Board support package for RABM1 - Events
Board Support Package Common Files

1/O Port

Octa Serial Peripheral Interface Flash

Secure Cryptography Engine on RA8 (RSIP7) Compatibility Mode
SCI UART

MbedCrypto H/W Acceleration

Direct Memory Access Controller

Figure 9. Software Components Used for Runtime Encryption and DOTF Support

2.2 Encrypt the OSPI Data at Runtime

Refer to the Figure 4 for the general flow of the example runtime OSPI data encryption flow. The following
are some key considerations in the implementation.

¢ In this example implementation, the MbedTLS Crypto module is configured with AES128 CTR encryption
enabled. The Asymmetric algorithms like ECC and RSA are disabled to reduce flash and SRAM usage.

e Set up the AES-CTR algorithm IV. As explained in section 1.4.3, the last 28 bit of the IV is the counter
which is initialized with the first 28 bit of the destination address of the DOTF operation. In this example
project, the destination address is 0x90000000. So, the first 28-bit 0xX9000000 will be the initial value of
the counter (which is the last 28 bit of the V).

The example 1V used in this application project is:

uint8_t encryption_iv[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, Ox0A, 0x0B, 0x0C,
0x09, 0x00, 0x00, 0x00};

In this example project, any nonce (which is the first 100 bit of the IV) would work so long as the initial
counter (which is the last 28 bit of the 1V) is 0x9000000.

o Refer to Figure 5 for the major steps used for the runtime encryption.

e The byte-wise reverse of every 16-byte block is implemented in the following function
(\src\runtime encryption.c)

static void reverse every 16 bytes(volatile uint8 t *array, size t length);

¢ Note *: If DOTF is enabled, then when this area is viewed from the e2studio Memory window, the DOTF
peripheral will automatically “decrypt” whatever data is read from the OSPI. After erasure, this area will
not show as OxFFs, but rather as “decrypted” OXFFs.

& Console | i1 Registers | 4 Search |[2] Problems | Gl Debugger Console | @ Smart Browser | [Memory =
Monitors 2= 3¢ % |0x90000000 : (x90000000 <Hex Integers 3 | £ Mew Renderings...

& 090000000 Address g -3 4 -7 8 - B C-F
2000020096000000 FF2E5923 91889407 DDA41DIC
eaapaapecaREE018 BCBC56B7 DEB21A2A FOC23755 8776C5EF
BRooGE2000008020 DF228F@6 257784E8@ 9828F153 BDDE5991
BRoaaERRoBREEE3E BEFCBAAR EE72BBRR EDD384DD DFF6695B
BREGGERE0BREE81E8 BACD4479 7B184188 CCDOFD&7 78658771
BRaaEEREoBEEEE58 BEEL1E®d 258C4E44 BD256C15 37F9ASER
aaiaielelelaisle el clalalata] 376EA4B1 EFB28C25 Ba70OFFCY 1BEB3EL3
gopoooppRoBRERETE 76333864 36269926 DoDBABES 72408329

Figure 10. Memory View of the DOTF Area After Erasing (DOTF Enabled)

R11ANO773EU0100 Rev.1.00 Page 13 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

In this example runtime encryption implementation, the plaintext data to be encrypted is defined in array
plaintext data to encrypt (\src\runtime operations.c). After this array is encrypted
following the procedure described in Figure 5, it is written to start of the DOTF destination area at
0x90000000.

2.3 Allocating Plaintext Data to the OSPI Area

This example project includes a simple evaluation of the OSPI area access time from the encrypted region
and the plaintext region. By default, the FSP linker script defines one region OSPI_DEVICE_1 with two
subregions for the OSPI flash connected on the EK-RA8M1. This example project updated the default linker
script and memory region configuration so the plaintext data can be allocated to the correct location at
compile time.

Table 2 Linker Script Customization

Default FSP configuration Example project configuration

Linker script \linkers\fsp.ld \linkers\fsp_app.ld

The following is the default OSPI_DEVICE_1 region for application to allocate OSPI data at compile time.
This configuration does not allow compile time OSPI data allocation at specific locations.

* OSPI_DEVICE_1 section to be downloaded via debugger
.OSPI_DEVICE 1 :
{
_ ospi_device_1_start__ = .;
KEEP(*(.ospi_device_1%))
KEEP(*(.code_in_ospi_device_1%))
__ospi_device_1 end__ = .;

} > OSPI_DEVICE_1

Figure 11. Default Memory Section “OSPI_DEVICE_1”
The following is the updated OSPI_DEVICE_1 region.

* OSPI_DEVICE_1 section to be downloaded via debugger */
.OSPI_DEVICE_1 :
{
__ospi_device_1 start__ = .;

KEEP(*(.ospi_device_1%))
. = ORIGIN(OSPI_DEVICE_1) + ©x1eee;
__ospi_device_1_plaintext_start__ = .;

KEEP(*(.code_in_ospi_device_1*))
__ospi_i devlce 1 end_ =.;
} > OSPI_DEVICE_1

Figure 12. Updated Memory Section “OSPI_DEVICE_1”

The subsection .ospi device 1 is used as the DOTF destination region. The
subsection .code _in ospi device 1 is used as the plaintext OSPI data section. Since the OSPI is
configured to use 0x90000000 to 0Xx90000FFF as the DOTF destination region, an offset of 0x1000 is
defined for the plaintext OSPI region to start from 0x90001000. Additionally, a global variable

__ospi device 1 plaintext start pointing to 0x90001000 is defined, which is accessible for the
application code. The application code uses s this variable to access the plaintext data array. The application
code needs to guarantee not writing encrypted data outside the DOTF destination area. The application code
should not write plaintext data to the DOTF destination area either. These rules must be followed for the
DOTF application to operate correctly.

The updated linker script is named as £sp_app.1d and is configured to be used by the example project on
the project Properties page. When the Generate Project Content is clicked, the default linker scripts are
extracted to the workspace in the folders described in Table 6. This is okay as it is not used in the
compilation process.

R11ANO773EU0100 Rev.1.00 Page 14 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for

OSPI

|typEthertext

Resource
Builders
w CfC++ Build
Build Variables
Environment
Logging
Tool Chain Editor
C/C++ General
Project Natures
Project References
Refactoring History
Renesas QF
Run/Debug Settings
Task Tags
Validation

Settings

Configuration: | Debug [Active]

%3 Tool Settings | B3 Toolchainl Build Step-s|

Build Artifact| Binary Parsers| @ Ern

(8 Target Processor

|| Script files (-1

(# Optimization

(2 Warnings

@ Debugging

B3 GMU Arm Cross Assembler

B3 GMU Arm Cross C Compiler
w 53 GMU Arm Cross C Linker

General

Librares

"Yworkspace loc:/${ProjNamel/script/fsp_app

Figure 13. Configure to Use the Custom Linker Script

Figure 14 is the plaintext data allocated to the subsection .code in ospi device 1.

* writes to memory-mapped OSPI region restricted to 64-bit accesses */

uint8_t _ attribute_ ((aligned(8))) plaintext_data[PLAINTEXT_DATA_SIZE] BSP_PLACE_IN_SECTION(

exeo,
ex1e,
ex2e,
ex3e,
x40,
2x50,
2x60,
ex79,
exse,
ex9e,
exAe,
exBe,
exce,
exDe,
@xEe,
@xFe,
exeo,
ex1e,
ex2e,
ex3e,
@x40,
2x50,
ex60,
ex79,
exse,
2x90,
exA0,
2xBe,
exce,
exbe,
@xEe,
axFe,

b

exel,
ex11,
ex21,
B8x31,
ex4l,
8x51,
8x61,
ex71,
ex81,
8x91,
OxAl,
BxB1,
exC1,
exD1,
@xEl,
BxF1,
oxe1,
exl11,
ex21,
B8x31,
ex4l,
8x51,
ox61,
ex71,
8x81,
8x91,
OxAl,
BxB1,
exCl,
exD1,
BxEl,
@xF1,

oxe2,
ex12,
ex22,
ex32,
ox42,
ex52,
ox62,
ex72,
ex82,
ex92,
OxA2,
@xB2,
exC2,
exD2,
@xE2,
@xF2,
ox02,
ex12,
ex22,
ex32,
ox42,
ex52,
ox62,
ex72,
ex82,
ox92,
oxA2,
oxB2,
exc2,
exD2,
exEz2,
@xF2,

2xe3,
ox13,
ex23,
8x33,
@x43,
@x53,
ax63,
ox73,
@x83,
8x93,
@xA3,
@xB3,
exC3,
8xD3,
@xE3,
@xF3,
exe3,
ox13,
ox23,
8x33,
8x43,
@x53,
ex63,
ox73,
8x83,
8x93,
@xA3,
@xB3,
oxC3,
@xD3,
B8xE3,
@xF3,

oxe4,
ox14,
2x24,
2x34,
ox44,
2x54,
ox64,
ox74,
x84,
2x94,
oxA4,
oxB4,
exC4,
oxD4,
@xE4,
@xF4,
ox04,
oxl4,
ox24,
2x34,
oxa4,
2x54,
ox64,
ex74,
ox384,
2x94,
oxA4,
oxB4,
exC4,
exD4,
@xE4,
oxF4,

axes,
ex15,
@x25,
@x35,
@x45,
@x55,
@x65,
@x75,
@x85,
@x95,
@xAS,
@xB5,
@xC5,
@xD5,
@xES,
@xF5,
exes,
ex15,
ax25,
@x35,
9x45,
@x55,
@x65,
@x75,
ax85,
@x95,
@xAS,
@xB5,
axCs,
@xD5,
@xE5,
@xFs,

9x06 ,
ex16,
9x26,
8x36,
Ox46,
@x56,
9x66,
8x76,
8x86,
8x96,
OxA6,
©xB6,
oxC6,
8xD6,
OxE6,
@xF6,
ex06,
ex16,
ox26,
8x36,
ex46,
@x56,
ex66,
8x76,
@x86,
8x96,
exA6,
@xB6,
oxC6,
@xD6,
@xE6,
@xF6,

axe7,
ox17,
ex27,
@x37,
ax47,
@x57,
ax67,
ax77,
@x87,
ax97,
@xA7,
@xB7,
exC7,
@xD7,
@xE7,
@xF7,
oxe7,
ox17,
ox27,
ax37,
9x47,
@x57,
ox67,
ax77,
ax37,
ax97,
oxAT7,
@xB7,
oxC7,
@xD7,
@xE7,
@xF7,

oxe8,
ex18,
9x28,
8x38,
9x48,
@x58,
Ox68,
ex78,
9x88,
8x98,
OxA8,
@xB8,
exC8,
exD8,
OxE8,
@xF8,
exes,
ex18,
ox28,
8x38,
Ox48,
8x58,
ex68,
8x78,
8x88,
8x98,
BxAS,
@xB8,
exCs,
@xD8,
@xEs,
@xF8,

ox@9,
ox19,
ox29,
@x39,
ox49,
@x59,
ox69,
8x79,
ox89,
@x99,
@xAg,
@xB9,
exca,
exD9,
@xE9,
@xFa,
ox@9,
ex19,
ex29,
@x39,
ox49,
ex59,
ax69,
@x79,
ox89,
ex99,
@xA9,
@xB9,
exca,
oxD9,
@xE9,
@xF9,

oxeA,
Bx1A,
Bx2A,
Bx3A,
Bx4A,
Bx5A,
Ox6A,
BxT7A,
Bx8A,
Bx9A,
OxAA,
BxBA,
exCA,
exDA,
@xEA,
BxFA,
OxeA,
Bx1A,
Bx2A,
Bx3A,
Ox4A,
Bx5A,
Bx6A,
BxT7A,
Bx8A,
Bx9A,
OxAA,
BXBA,
@xCA,
@xDA,
BxEA,
@xFA,

oxeB,
@x1B,
ox28B,
@x3B,
ox4B,
@x5B,
@x6B,
@x7B,
@x8B,
@x9B,
@xAB,
@xBB,
@xCB,
@xDB,
@xEB,
@xFB,
@xeB,
@x1B,
@x2B,
@x3B,
ox4B,
@x5B,
@x6B,
@x7B,
@x8B,
@x9B,
@xAB,
@xBB,
@xCB,
@xDB,
@xEB,
@xFB,

exec,
ex1c,
ex2C,
ex3C,
ex4ac,
@x5C,
Bx6C,
ex7C,
Bx8C,
exac,
BxAC,
@xBC,
Bexcc,
exDC,
BxEC,
@xFC,
Bexec,
ex1c,
ex2C,
ex3C,
exac,
@x5C,
ex6C,
ex7C,
@xacC,
ex9c,
BxAC,
@xBC,
excc,
expC,
@xEC,
@xFC,

@xeD,
@x1D,
ex2D,
@x3D,
@x4D,
axsD,
@x6D,
@x7D,
@x38D,
@x9D,
@xAD,
@xBD,
@xcD,
@xDD,
@xED,
axFD,
@xeD,
@x1D,
ex2D,
@x3D,
ex4D,
axsD,
ex6D,
@x7D,
@x8D,
@xsD,
@xAD,
@xBD,
exCD,
@xDD,
@xED,
@xFD,

Ox@E,
Ox1E,
Bx2E,
8x3E,
B@x4E,
@x5E,
Ox6E,
Ox7E,
Bx8E,
@x9E,
BOxAE,
@xBE,
8xCE,
BxDE,
@xEE,
@xFE,
@Ox8E,
@x1E,
Ox2E,
Bx3E,
Ox4E,
@x5E,
@x6E,
BOx7E,
@x8E,
@x9E,
BxAE,
@xBE,
@xCE,
@xDE,
OxEE,
@xFE,

".code_in_ospi_device_1") = {
exer,
ex1F,
8x2F,
8x3F,
Ox4F,
@x5F,
ax6F,
@x7E,
@x3F,
@x9F,
BxAF,
@xBF,
@xCF,
@xDF,
@xEF,
@xFF,
@xer,
@x1F,
@x2F,
8x3F,
@x4F,
@x5F,
@x6F,
@x7E,
@x8F,
@x9F,
@xAF,
@xBE,
@xCF,
exDF,
@xEF,
@xFF,

Figure 14.

Plaintext OSPI Data Buffer

When the project is compiled, this plaintext data array is allocated to 0x90001000, which is the start of the
plaintext data region.

2.4 Running the Example Application

2.4.1 Set up the Hardware and Import the Application
Using the EK-RA8M1 default jumper setting, connect J10 on EK-RA8ML1 to the Development PC using the
USB type-A male to micro-B male cable to provide the power, Debug, and Virtual COM port connections to
the board. Next follow section 2.4.1.1 to Initialize the MCU, then power cycle the EK-RA8M1 and then erase

R11ANO773EU0100 Rev.1.00

Nov.21.244

RENESAS

Page 15 of 37

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

the OSPI follow section 2.4.1.2 and power cycle the EK-RA8ML. After this, the hardware is ready to run the
DOTF applications.

2.4.1.1 Initialize the MCU

For a smooth evaluation, it is recommended to initialize the device using the RDPM or RFP prior to running
this example project.

Open the Renesas Device Partition Manager (RDPM):

Run Renesas Al Window Help

__Renesas Debug Tools > Renesgs Device Partition Manager |

Q. Run Ctrl+F11 @@ TraceX >
'}1'* Debug F11 @I Tracealyzer >

Figure 15. Open the Renesas Device Partition Manager
Next, check Initialize device back to factory default, choose the connection method, then click Run.

For EK-RA8ML1, choose either SCI or SWD as the connection method if the default jumpers are in place
(Refer to the EK-RA8M1 User’s Manual for the default jumper setting). For a custom PCB board, the
Connection Type should be selected based on the Boot Mode interfaces available.

R11ANO773EU0100 Rev.1.00 Page 16 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

{8} Renesas Device Partition Manager O X
@ Enter a value for Action and Emulator type
~
Device Family: Renesas RA
Action
Read current device information Change debug ctate
Set TrustZone secure / non-secure boundari esl Initialize device back to factory default I
Target MCU connection: J-Link ~
Connection Type: I sa b I
Emulator Connection: Serial No e
Serial Noy/IP Address: []
Debugger supply voltage (V): 0
Connection Speed (bps for SCI, Hz for SWD): 9600
Debug state to change to: Secure Software Development
Memory partition sizes
[1Use Renesas Partition Data file
Browse...
Code Flash Secure (KB) 32
Code Flash NSC (KB) 0
Data Flash Secure (KB) 0
SRAM Secure (KB) 8
SRAM NSC (KB) 0
I 1 e
Show Command Line Run
'? m @ Close

Figure 16. Initialize RA8M1 using Renesas Device Partition Manager

Ensure the following output is achieved and power cycle the EK-RA8M1.

Display errorsin - : English -
Connecting...

Loading library : SUCCESSFUL!

Establishing connection : SUCCESSFUL!

Checking the device's TrustZone type : SUCCESSFUL!
CONMECTED,

Initializing device and rolling back Protection Level to PL2...
SUCCESSFUL!

Disconnecting...
DISCONMNECTED.

---------- SUMMARY OF RESULT----------
Connection 1 SUCCESSFUL!
Device initialization : SUCCESSFUL!

Figure 17. MCU Initialization Successful

R11ANO773EU0100 Rev.1.00 Page 17 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

2.4.1.2 Erasethe OSPI
Additionally, perform these actions to erase the OSPI and then power cycle the EK-RA8M1.

e Unzipthe jlink scripts.zip. double clickthe \71ink scripts\erase ospi 8kB.bat to
erase the first 8kB of the OSPI area. Ensure the following output is achieved.

Reset: Reset device via AIRCR.SYSRESETREQ.

ResetTarget() end - Took 56.1ms

Erasing selected range...

J-Link: Flash download: Total time needed: 3.519s (Prepare: ©.299s, Compare: ©.600s, Erase: 3.071s, Program: ©.000s, Ve
ifv: ©.000s. Restore: ©.148s)

J-Link: Flash download:

Flash sectors within Range [6x90060060 - ©x90002000] deleted.

Erasing done.

Reset delay: 168 ms

Reset type NORMAL: Resets core & peripherals via SYSRESETREQ & VECTRESET bit.
ResetTarget() start

Reset: ARMv8M core with Security Extension enabled detected. Switch to secure domain.
Reset: Halt core after reset via DEMCR.VC_CORERESET.

Reset: Reset device via AIRCR.SYSRESETREQ.

ResetTarget() end - Took 58.4ms

J-Link>g

Memory map 'after startup completion point' is active

J-Link>r

Reset delay: © ms

Reset type NORMAL: Resets core & peripherals via SYSRESETREQ & VECTRESET bit.

Memory map 'before startup completion point' is active

ResetTarget() start

Reset: ARMvBM core with Security Extension enabled detected. Switch to secure domain.
Reset: Halt core after reset via DEMCR.VC_CORERESET.

Reset: Reset device via AIRCR.SYSRESETREQ.

ResetTarget() end - Took 68.4ms

Script processing completed.

Figure 18. Erase 8kB OSPI Using the Script
e Must Power cycle the EK-RA8ML1 before the next step.

For other OSPI applications that use more than 8kB OSPI area, execute the erase_entire_ospi.bat to erase
the entire OSPI area. Erasing the entire OSPI device memory takes several minutes.

Next follow the “Importing an Existing Project into e2 studio” section in the FSP User’'s Manual to import the
Protected Mode project dotf rsip compatibility mode ek ra8ml.zip. After the projectis
imported, double-click configuration.xml to open the RA configurator. Click Generate Project Content and
build the application project. There are warnings generated from the third-party libraries.

2.4.2 Launch the Debug Session and Observe the Demonstration

Next, launch the e2studio Debug session. Once the Reset_Handler is hit, launch Tera Term and select the
enumerated COM port (Jlink CDC UART Port).

Tera Term: MNew connection *
O TCPAIP myhost.example.com
History
Telnet 2
SSH SSH2
Other
AUTO
@® Serial Port: |COM3: Intel(R] Active Management Te v|
) = lotaliD] Acti o apa0omon echo
COM22: JLink CDC UART Port [COM22]

Figure 19. Select the JLink Console Connection

Once the COM port is open, navigate to the Setup tab and select Serial port.

R11ANO773EU0100 Rev.1.00 Page 18 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for

OSPI

File Edi

Terminal...
Window...

Font

Keyboard...
Serial port...

Control Window Help

Figure 20. Open the “Serial port” interface

Update the Speed to 115200 and click New setting to commit the update.

Port:
Speed:
Data:
Parity:
Stop bits:

Flow control:

Tera Term: Serial port setup and connection

comz2 v

none v
1 bit v
none v

Transmit delay

EI msecfchar

New setting

Cancel

EI msecfline

Help

Device Friendly Name: JLink CDC UART Port [COMZ22]

Device Instance ID: USBYWID_1366&PID_1024&8MI_00\622B08
Device Manufacturer: SEGGER
Provider Name: SEGGER
Driver Date: 6-6-2019

Driver Yersion: 1.34.0.44950

Figure 21. Configure the Tera Term

Resume the Debug session. Similar output as shown in Figure 22 should be observed in the Tera Term
terminal. Time used to access the DOTF area is comparable with the time used to access the plaintext OSPI
area. The blue LED should be blinking after the evaluation is done.

iCompatibility Mode: Time to access
Compatibility Mode: Time to access
Compatibility Mode: Time to access
Compatibility Mode: Time to access
iCompatibility Mode: Time to access
Compatibility Mode: Time to

ICompatibility Mode: Time to

Compatibility Mode: Time to

Compatibility Mode: Time to access
Compatibility Mode: Time to access
Compatibhility Mode: Time used to access

[DOTF RSIP Compatibility Mode evaluation

the encrypted
the plaintext
the encrypted
the plaintext
the encrypted
the plaintext
the encrypted
the plaintext
the encrypted
the plaintext

the encrypted

0SPI
0SPI
08SPI
0SPI
0SPI
0SPI
0SPI
0SPI
0SPI
0SPI
0SPI

data
data
data
data
data
data
data
data
data
data
data

finished successfully.

using DOTF: 26 microseconds;
without using DOTF: 26 micro
using DOTF: 26 microseconds;
without using DOTF: 26 micro
using DOTF: 26 microseconds;
without using DOTF: 26 micro
using DOTF: 26 microseconds;
without using DOTF: 26 micro
using DOTF: 26 microseconds;
without using DOTF: 26 micro

using DOTF: 26 microseconds;

seconds;

seconds;

seconds;

seconds;

seconds;

Figure 22. Access Plaintext and DOTF Decrypted Data in Compatibility Mode

3. Example Implementation: Using DOTF with RSIP Protected Mode

This section describes the establishment of a DOTF application using RSIP Protected Mode. A wrapped
AES128 key is generated and injected as the DOTF key. SKMT is used to encrypt the function allocated to

R11ANO773EU0100 Rev.1.00
Nov.21.244

RENESAS

Page 19 of 37

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

the OSPI area. The LLVM embedded toolchain for Arm version 18.1.3 is used in this example project. Data
Cache is also enabled to achieve better system performance.

3.1 Tools Used in the DOTF Design with RSIP Protected Mode
There are three tools used in the DOTF design with RSIP Protected Mode besides the IDE.

e Gpg4win
This tool is used in the process of the Wrapped UFPK. It is used to establish a PGP encrypted
communication channel between user and the Renesas Key Wrap server. Using this tool, the user can
generate a user PGP key pair, perform key exchange with the Renesas DLM server, and assist the
reception of the W-UFPK.

e Renesas Security Key Management Tool (SKMT)
This tool is used to encrypt the plaintext data or code as an .srec file which can be included in the
e2studio Debug configuration and programmed to the MCU using the J-Link driver. In this Application
Note, two ways of encrypting the DOTF region code are demonstrated. Both methods use the SKMT tool
to encrypt the DOTF region code, the difference is whether the Graphic User Interface is used (as
demonstrated in section 3.6) or the Command Line Interface (CLI) is used (as demonstrated in section
3.7).

e Renesas Flash Programmer (RFP)
This tool is used to inject the Wrapped DOTF key through the MCU boot interfaces (SCI UART, USB or
SWD/JTAG). RFP is used as a demonstration for the general operation of secure key injection.

3.2 Creating the Wrapped DOTF Key

A wrapped AES128 key is generated as the DOTF key. The process of generating the wrapped DOTF key
uses the same procedure as wrapping a user key. This can be achieved following the procedure below.

For the convenience of evaluating the DOTF operation, the wrapped DOTF Key that matches the included
example project is included in the application project: the DOTF_AES_ 128 RA8M1.rkey can be used in
section 3.6.2.2. If the included wrapped DOTF key is used, there is no need to generate another wrapped
DOTF key and this entire section can be skipped.

1. Generate the Wrapped User Factory Programming Key (refer to section Wrapping the User Factory
Programming Key Using the Renesas Key Wrap Service in R11AN0785)

2. Generate the Wrapped AES128 bit key for the RSIP protected mode.
1) Select RA Family, RSIP-E51A Security Functions and Protected Mode

R11ANO773EU0100 Rev.1.00 Page 20 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

ﬁ Security Key Management Tool = a X
File View Help

Overview |Generate UFPK Generate KUK Wrap Key TSIP UPDATE FSBL DOTF SFP

LENESAS

Security Key Management Tool

This tool is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for
secure injection and update.

Keys are securely injected via a User Factory Programming Key (UFPK), which must be wrapped by the Renesas
Key Wrap Service to obtain a wrapped UFPK (W-UFPK).

Keys are securely updated via a Key-Update Key (KUK), which must be securely injected.

Please refer to the specific MCU/MPU documentation for more information about supported security features.

Select MCU/MPU and security engine : | RA Family, RSIP-E51A Security Functions and Protected Mode v

Please select the target MCU or MPU before continuing.

Figure 23. Select RSIP Protected Mode

2) Under the Wrap Key tab, select AES-128 bits as the Key Type. Browse for the UFPK and W-
UFPK, select Use specified value and name the wrapped key (eg.
DOTF_AES_128 RA8MLl.rkey)

File View Help

Overview Generate UFPK Generate KUK | Wrap Key | TSIP Update FSBL ~ DOTF/OTFD SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type Key Data

(O DLM/AL AL2_KEY (® AES 128 bits v ARCA
O KUK (ORSA 2048 bits, public TDES
(O OEM Root public (OECC secp256r1, public

QOHMAC |SHA256-HMAC

W"BB‘“E Key

(® UFPK UFPK File : CARAZ_DOTR\ufpk.key Brqwse...
W-UFPK File: | C\RA8_DOTF\ufpk.key_enc.key Brqwse...

OKUK Browse...

v

Generate random value

(®) Use specified value (16 hex bytes, big endian format) | 00000000000000000000000009000000 I

OQutput

Format : || RFP v File: | c:\RA2_DOTR\DOTF _AES_128_RABMT.rkey | ‘ Browse...

Figure 24. Select AES-128 and Provide WUFPK

3) Next, provide Key Data and then click Generate File. The wrapped AES key is now generated.

R11ANO773EU0100 Rev.1.00 Page 21 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Overview Generate UFPK Generate KUK] Wrap Key |TSIP Update FSBL DOTF/OTFD SFP

Keys must be wrapped by the UFPK for secure injection or by the KUK for secure update.

Key Type Key Data

O File Browse...
© Raw FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO
(O Random - Output File Browse...

Wrapping Key

(® UFPK UFPK File: C:A\RAB_DOTR\ufpk.key Browse...

W-UFPK File: | C:\RAS_DOTF\ufpk.key_enc.key Browse...
O KUK Browse...
v

(O Generate random value
(®) Use specified value (16 hex bytes, big endian format) | 00000000000000000000000009000000

Output
Format: |RFP ~ | File: ‘ C:\RAB_DOTR\DOTF_AES_128_RABM1.rkey ‘ Browse...
Little QOutput additional data
. 10000 ¥ Name
I
IV: 00000000000000000000000005000000 A

Encrypted key: 62C862EE929BDADGF5132600D5E5221EEEBFCEB418B899855D16B1DCI74C704B
OPERATION SUCCESSFUL

Figure 25. Generate the Wrapped DOTF Key

3.3 Configure the Application Project with RSIP in Protected Mode

When using DOTF with the RSIP Protected Mode, the Wrapped Key Format must be used. The OSPI
memory map of the DOTF RSIP Protected Mode example project is same as the DOTF RSIP Compatibility
Mode example project as shown in Figure 7.

R11ANO773EU0100 Rev.1.00 Page 22 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

4 g_ioport I/0 Port
(r_ioport)

@

42 g_rsip RSIP Protected 4 g_transferD Transfer
Meode (r_rsip) (r_dmac) No ELC

Trigger
® ®

ary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

slems | &) Console | [Properties X @ Smart Browser | L1} Smart Manual

ii_b OSPI Flash (r_ospi_b)

gs ~ Property Value
B | v Common
» Memory-mapping Support

Parameter Checking Default (BSP)
DMAC Support Enable
Autocalibration Support Disable
IDOTF Support Enable (Protected Mnde]l
v Module g_ospi_b OSPI Flash (r_ospi_b)
» General
> Defaults

» High-speed Mode
> Chip Select Timing Setting

5> XiP Mode

v DOTE
Name g_ospi_dotf
AES Key encryption_key
AESIV encryption_iv
AES Key Length 128
Key Format Wrapped
Decryption start address 0%x90000000
Decryption end address 0x90000FFF

Figure 26. Configure the DOTF with Protected Mode

As in the Compatibility Mode example project, the r_sci_b_uart module is used for the J-link virtual console
to communicate with a PC end terminal (eg. Tera Term). The virtual console can be used to print the system
status information, for example error message or time usage information.

Selected software components

Arm CMSIS Version 6 - Core (M)

RA8M1-EK Board Support Files

Board support package for R7TFASM1AHECBD
Board support package for RASM1

Board support package for RABM1 - FSP Data
Board Support Package Common Files

Direct Memory Access Controller

1/O Port

Octa Serial Peripheral Interface Flash

Secure Cryptography Engine on RA8 (RSIP-E51A) Protected Mode
SCI UART

Figure 27. Software Components used for DOTF example with RSIP Protected Mode

3.4 Update the Linker Script

In this example application project, the wrapped DOTF key will be injected to the beginning of the Data Flash
region (refer to section 3.7.1.2), which starts at 0x27000000. By default, e2studio erases the Code and Data

R11ANO773EU0100 Rev.1.00 Page 23 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

flash prior to downloading the application image. To avoid erasing the injected DOTF key, the linker script is
updated to disable the data_flash erase by defining the .data_ flash region as “(NOLOAD)”.

/* Data flash. */
.data flash (NOLOAD):

. = ORIGIN(DATA_FLASH);
__tz DATA FLASH S = .;
_ Data_Flash_Start = .;
KEEP(*(.data_flash*))|
__Data_Flash_gnd = .;

__tz_DATA_FLASH_N = DEFINED(DATA_FLASH_NS_START) ? ABSOLUTE(DATA_FLASH_NS_START) : _ RESERVE_NS_RAM ? ABSOLUTE(DATA_FLASH_START + DATA_FLASH_LENGTH) : ALIGN(1024);
} > DATA_FLASH

Figure 28. Set NOLOAD for the dash_flash section

The updated linker script fsp_app.lld is configured to be used in the example project.

i) Tool Settings | & Toolchain Build Steps Build Artifact | |n§ Binary Parsers

& cru Entry point: | -W,-e_PowerON_Reset

Linker script

Additional input files

Figure 29. Set NOLOAD for the dash_flash section

3.5 Allocating Code to the DOTF Destination Area

The DOTF demonstration project using the RSIP Protected Mode allows evaluation of DOTF for both data
storage and code execution, but only one at a time. The protected mode project enables DOTF evaluation of
executing encrypted code in the OSPI area.

When allocating code to the OSPI regions, only one continuous region can be used. The DOTF RSIP
Protected Mode example project uses the default “.0SPI_DEVICE 1” region linker script configuration as
shown in Figure 11. Either of the two subsections “.ospi device 1”"or“.code in ospi device 1”can
be used to allocate the code to the OSPI area as long as all the functions are allocated to one of these two
subregions.

The application code needs to guarantee not allocating encrypted data or code outside the DOTF destination
area, and the application code should not allocate plaintext data or code to the DOTF destination area.
These rules must be followed for the DOTF application to operate correctly.

In the DOTF RSIP Protected Mode example project, one function fibonacci is allocated to the encrypted
OSPI area.

uint32_t fibonacci(uint32_t num) _ attribute_ ((noinline)) _ attribute_ ((aligned(4@96))) BSP_PLACE_IN_SECTION(".cspi_device_1");

Figure 30. Allocate a Function to DOTF Destination Area (to be Encrypted by SKMT)

When the project is compiled, the plaintext data of this function is allocated to 0x90000000 in the .srec file.
The SKMT is then used to encrypt this area and generate the encrypted version of this function. The
encrypted function will then be programmed to the encrypted OSPI area through the e2studio Debugging
process.

The same functionality is implemented in another function named fibonacci?2. Itis allocated to the
beginning of the plaintext OSPI area.

uint32_t fibomacci2(uint32_t num) _ attribute_ ((noinline)) _ attribute_ ((aligned(4096))) BSP_PLACE_IN_SECTION(".ospi_device_1");

Figure 31. Allocate a Function to OSPI Plaintext Area

R11ANO773EU0100 Rev.1.00 Page 24 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

When the project is compiled, this plaintext function is allocated to 0x90001000.

3.6 Import and Build the RSIP Protected Mode Example Project

Follow the “Importing an Existing Project into e2 studio” section in the FSP User's Manual to import the
Protected Mode project dotf rsip protected mode ek ra8ml.zip. After the project is imported,
double-click configuration.xml to open the RA configurator. Click Generate Project Content and build the
application project. There are some warnings from the third-party libraries.

3.6.1 Encrypt the DOTF Destination Area Using the SKMT CLI
The example project dotf rsip protected mode ek ra8ml integrated a custom builder that is
included in the project as shown in Figure 32.

| type filter text Builders - > 8
Re?uurce Configure the builders for the project:
Builders
C/C++ Build |osh DDSC Builder New..
C/C++ General lo1h CDT Builder
Project Natures ash Scanner Configuration Builder Import...
Project References |1 DDSC Bundle Builder Edit...
Renesas QF Prncess DOTF Enc
Run/Debug Settings b Compilation Database Builder Remove
Task Tags
Validation
Up
) £dit Configuration O X
Down
Edit launch configuration properties O
Create a configuration that will run a program during builds -=ﬁ
Name: ‘ Process DOTF Enc
Main Refresh | /i Environment | {3 Build Options
Location: A
| ${workspace_loc:\${project_path}}/dotf_enc_data/process_dotf_enc.bat ‘
Browse Workspace... ' Browse File System... Variables...
Working Directory:
S{workspace_loc:${project_path}}
Browse Workspace... | Browse File System... Variables...
Al ts:
. rguments y
Show Command Line Revert Apply
‘?) Apply and Close Cancel

Figure 32. Add a Custom Builder

Figure 33 is the content of the process dotf enc.bat file. The srec_cat.exe is used to generate the
OSPI area image before encryption: ra_app image ospi_area.srec and the code flash image:
ra_app_ image wo_ospi area.srec. The skmt.exe is then used to encrypt the OSPI data which is
intended for the DOTF destination. This process generates an OSPI image

R11ANO773EU0100 Rev.1.00 Page 25 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

(ra_app image ospi area encrypted and plaintext.srec)which includes the encrypted DOTF
destination area data as well as the plaintext OSPI area. This .srec file can be programmed to the OSPI
DOTF area with a Debug session or an OEM third party tool.

cd dotf_enc_data

srec_cat.exe ..\Debug\dotf_rsip_protected_mode_ek_ra8ml.srec -crop @x00000000 ©x7FFFFFFF -o ra_app_image_wo_ospi_area.srec

srec_cat.exe ..\Debug\dotf_rsip_protected_mode_ek_ra8ml.srec -crop @x80000008 Ox9FFFFFFF -o ra_app_image_ospi_area.srec

dotf_cli_v1@7\skmt.exe /encdotf /keytype "AES-128" /enckey "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF@" /nonce ™ 9" /startaddr
"90000000" /endaddr "90@OOFFF" /prg "./ra_app_image_ospi_area.srec" /incplain /output "./ra_app_image_ospi_area_encrypted_and_plaintext.srecﬂ

Figure 33. Functionality of the Custom Builder (process_dotf_enc.bat)

The \dotf enc data folder includes the srec _cat.exe, the skmt.exe and its supporting utilities.

v (= dotf_enc_data

v (= dotf_cli_v107
address
clrcompression.dll
clrjit.dll
corecir.dll

EDEDEDED |

mscordaccore.dll
10 skmt.exe

[process_dotf_enc.bat

Figure 34. Include the skmt.exe in the e2studio Project

With the custom builder enabled, compile the application. The custom builder will generate
ra_app image ospi area encrypted and plaintext.srec and
ra_app_image wo_oOspi area.srec.

C:\RA8_DOTF\github\RA8_DOTF\protected_mode\dotf_rsip_protected_mode_ek_ra8ml>cd dotf_enc_data

C:\RA8_DOTF\github\RA8_DOTF\protected_mode\dotf_rsip_protected_mode_ek_ra8ml\dotf_enc_data>srec_cat.exe ..\Debug\dotf_rsip_protected_mode_ek_ra8ml.srec -
crop ©x@0880009 Ox7FFFFFFF -o ra_app_image_wo_ospi_area.srec

C:\RA8_DOTF\github\RA8_DOTF\protected_mode\dotf_rsip_protected_mode_ek_ra8ml\dotf_enc_data>srec_cat.exe ..\Debug\dotf_rsip_protected_mode_ek_ras8ml.srec -
crop ©x80000000 Ox9FFFFFFF -o ra_app_image_ospi_area.srec

C:\RA8_DOTF\github\RA8_DOTF\protected_mode\dotf_rsip_protected_mode_ek_ra8ml\dotf_enc_data>dotf_cli_v107\skmt.exe /encdotf /keytype "AES-128" /enckey
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFR" /nonce " /startaddr "90000000" /endaddr "9@@@@FFF" /prg "./ra_app_image_ospi_area.srec”
/incplain /output "./ra_app_image_ospi_area_encrypted_and_plaintext.srec"

Output File: C:\RA8_DOTF\github\RA8S_DOTF\protected_mode\dotf_rsip_protected_mode_ek_ra8ml\dotf_enc_data\ra_app_image_ospi_area_encrypted_and_plaintext.srec
Key: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO

Counter:

|
d

Figure 35. Custom Builder Execution Result

3.6.2 Encrypt the DOTF Destination Area using SKMT GUI

Figure 36 is an example of using the SKMT GUI to encrypt a section of data between 0x90000000 and
0x90000FFF. The Image Encryption Key uses a Raw 128-bit key and a specified 128 bit IV is used. The
Image Encryption Key and IV must match the Wrapped DOTF Key and the IV used in the key wrapping. The
image encryption key and the same IV must be accessible from the application project for the DOTF to
function. The DOTF accesses the wrapped key via its location in the application project. When RSIP
protected mode is used, the location of the wrapped key is as global variables for the OSPI driver to access.
The generated dotf rsip protected mode ek ra8ml.mot includes the code flash content, the
encrypted DOTF destination area content as well as the plaintext OSPI area content.

R11ANO773EU0100 Rev.1.00 Page 26 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for

OSPI

Overview Generate UFPK Generate KUK Wrap Key TSIP Update FSBL | DOTF/OTFD JSFp

To use Decryption On-The-Fly/On-The-Fly Decryption, the external memory such as OSPI or xSPI must be
programmed with encrypted code/data.Refer to the device Hardware User Manual for more information.

dotf_rsip_protected_mode_ek_ra8m1.srec ‘ Browse...

Plaintext Image : I _rsip_protected_mode_ek_ra8m1\Debu

Image Address Range to Encrypt Destination Address
(O Encrypt all data (® Same as Plaintext Image

| T® Encrypt address range l () Specific address (hex)

Start address to encrypt (hex) :§| 90000000

End address to encrypt (hex) : §| 90000FFF

Image Encryption Key
AES-128 ~

() File
@ Raw | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO

Browse...

v

Fg Use specified value (16 hex bytes, most significant 100 bits used) | 00000000000000000000000009000000 I

Encrypted Image: I {e\dotf_rsip_protected_mode_ek_ra8m1\dotf_rsip_protected_mode_ek_ra8m1.mot ‘ Browse...

Output Image Address and Contents
(®) Retain original addresses Include plaintext image data that is outside the encrypted address range

(O Start at address 0

Generate Encrypted Firmware Image

Output File: C:\RA8_DOTF\github\RA8_DOTF\protected_mode
\dotf_rsip_protected_mode_ek_raB8m1\dotf_rsip_protected_mode_ek_raBm1.mot
Key: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO

Counter:

OPERATION SUCCESSFUL

Figure 36. Use SKMT to Encrypt the Data for the DOTF Destination Area

3.7 Running the Example Application

3.7.1.1 Set up the Hardware
First follow sections 2.4.1, 2.4.1.1 and 2.4.1.2 to set up the hardware, initialize the MCU, and erase the OSPI

flash.

3.7.1.2 Injecting the Wrapped DOTF Key
To run the Protected Mode example project, the Wrapped DOTF Key must be first injected into the MCU.

Connect the USB Debug J10 on the EK-RA8ML1 to the development PC. Launch RFP and click File > New
Project. Assign the name of the project, select the Tool and Interface for Communication, then click

Connect.

R11AN0773EU0100 Rev.1.00
RENESAS

Nov.21.244

Page 27 of 37

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

s Create New Project — X
J]

Project Information

Microcontroller: RA v
Project Name: Iraﬂﬁﬂ I
Project Folder: IC:'\.Users'\.MyPC\Documerrts'\.Renesas Flash ngl Browse...
Communication
Tool: | J-Link v Ilnterface: SWD v
Tool Details... Num: AutoSelect

Figure 37. Establish an RFP Project to Communicate with the MCU Boot Interface

Once the connection is established, navigate to the Operation tab. Select the Add/Remove Files button.

Operation Settings Block Settings Fash Options Connect Settings Unique Code

Project Information
Current Project: ra8m1.mj
Microcontroller: R7FABM1AHECBD

Program and User Key Files

|! Add/Remove Files.. ! I

Figure 38. Select the Wrapped DOTF Key

Browse the .rkey file generated in section 3.2 or select the included DOTF_AES_128 RA8M1.rkey file and
set the Address to 27000000 (which is the start to the Data Flash first sector).

& rile Details —

Add File(s)... Remove Selected File(s)
File Name Type Address/Offset
s File Offset
[
File: |\c-\RAa_DoTF\DOTF_AEs_ua_HASM1.rkey |
. rddress: [Zo0000] Conce

OK

Figure 39. Choose the Data Flash Areato Inject the DOTF key

Configure the following Operation Settings.

R11ANO773EU0100 Rev.1.00 Page 28 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

File Target Device Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code

Command Erase Options
Erase Erase Selected Blocks v
Program Program & Verify Options
Verify [] Erase Before Program
e Rash Opti Verify by reading the device
rogram Fla jons
[] Verify Flash Options
[] Checksum

Checksim Tune

Figure 40. Operation Setting for Injecting the Wrapped DOTF Key
On the Operation page, click Start to Inject the Wrapped DOTF Key

File Target Device Help
Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code
Project Information

Current Project: ra8m1.mj
Microcontroller: R7FABM1AHECBD

Program and User Key Files
I/c\RAS_DOTF\DOTF_AES_ 128 RABM1 rkey/0x27000000 |
CRC-32: 9BDCBEF6 Add/Remove Files...

Erasing the selected blocks

[Code Flash 1] 0x02000000 - 0x021F7FFF size : 2016 K
[Data Flash 1] 0x27000000 - 0x27002FFF size: 12K

Command

Erase >> Program >> Verify

Writing data to the target device
[User Keys] 0x27000000

Verifying datal
[User Keys] 0x27000000
Setting the target device

Disconnecting the tool
Operation completed.

Clear status and message

Figure 41. Inject the Wrapped AES128 Key as DOTF Key

3.7.2 Launch the Debug Session using the SKMT CLI Generated Images

By default, the RSIP Protected Mode example project Debug configuration uses the encryption result
generated in section 3.6.1.

R11ANO773EU0100 Rev.1.00 Page 29 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for

OSPI

Name: | dotf_rsip_protected_mode_ek_ra8m1.elf

Main | 35 Debugger [Startup Source | [] Common
Initialization Commands
[JReset and Delay (seconds)

[Halt

Load image and symbols

Filename

Program Binary [dotf_rsip_protected_mode_ek_ra8m1.elf]
ra_app_image_ospi_area_encrypted_and_plaintext.srec [C:\R]
ra_app_image_wo_ospi_area.srec [C:\RAB_DOTR\K2\dotf_rsi

h:8_DOTF\K2\dotf_rsip_protected_mode_ek_ra8m1\dotf_enc_data]

| protected_mode_ek_ra8m1\dotf_enc_data]

<

Runtime Options

[Set program counter at (hex):
Set breakpoint at:

main

[“1Resume

Load type
Symbels only
Image only

Image only

Offset (hex) Add...

Close

Figure 42. Configure the Debug Configuration

Start the Debug session and use the Tera Term to observe the execution result following the instructions in
section 2.4.2. A result similar to Figure 43 should be observed. The blue LED should be blinking after the

evaluation is done.

Protected Mode: Time used

in executing the encrypted Fibonacci

OSPI using DOTF: 2186 nanoseconds;

Protected Mode: Time used
03Pl without DOTF:

in executing the plaintext Fibhonacci

1952 panoseconds;

the Fibonacci

Protected Mode: Time used in executing
OSPI using DOTF: 343 nanoseconds;

Protected Mode: Time used in executing
OSPI without DOTF: 358 nanoseconds;

Protected Mode: Time used in executing
OSPI using DOTF: 341 nanoseconds;

Protected Mode: Time used in executing
OSPI without DOTF: 352 nanoseconds;

Protected Mode: Time used in executing
OSPI using DOTF: 341 nanoseconds;

Protected Mode: Time used in executing
OSPI without DOTF: 352 nanoseconds;

Protected Mode: Time used in executing
OSPI using DOTF: 341 nanoseconds;

Protected Mode: Time used in executing
OSPI without DOTF: 3%2 nanoseconds;

Protected Mode: Time used in executing
OSPI using DOTF: 341 nanoseconds;

DOTF RSIP protected mode evaluation is

encrypted
the plaintext
the encrypted
the plaintext
the encrypted
the plaintext
the encrypted
the plaintext
the encrypted

successful.

Fibonacci

Fibonacci

Fibonacci

Fibhonacci

Fibonacci

Fibhonacci

Fibonacci

Fibhonacci

calculation

calculation

calculation

calculation

calculation

calculation

calculation

calculation

calculation

calculation

calculation

function

function

function

function

function

function

function

function

function

function

function

Figure 43. Code Execution Result DOTF RSIP Protected Mode

The Cortex-M85 Instruction Cache (I Cache) is always enabled by FSP BSP which boosts the MCU
performance for code execution. The | Cache contributed to achieving similar code execution result when
DOTF is used compared with plaintext OSPI code execution. Note that the first couple of executions take
longer time as the Instructions need to be fetched and stored in the Instruction Cache. In addition, the
Branch Prediction also needs time to stabilize to be more accurate.

R11ANO773EU0100 Rev.1.00
Nov.21.244

RENESAS

Page 30 of 37

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

If we invalidate the | Cache prior to the OSPI operations, we can see the overhead of DOTF on the OSPI
code execution. Add the SCB_InvalidateICache function call to the example project (hal entry ()
function in hal entry.c):

SCB InvalidateICache();

1

ResetCycleCcuntert);
execute plaintext fun_ospi();
[scB_InvalidateICache();

Reset[ycleCcuntErE);
execute_encrypted_func_ospi();

Figure 44. Invalidate the I-Cache to Evaluate the DOTF Overhead

Recompile and run the example project. Similar results as shown in can be observed in the terminal output.
We can see when DOTF is enabled, this example project shows the OSPI performs at about 80% of the
plaintext OSPI code execution speed. Keep in mind this result will vary based on the specific application that
is evaluated.

Protected Mode: Time used in executing the plaintext Fibonacci calculation function
OSPI without DOTF: 3886 nanoseconds;

Protected Mode: Time used in executing the encrypted Fibonacci calculation function
OSPI using DOTF: 2389 nanoseconds;

Protected Mode: Time used in executing the plaintext Fibonacci calculation function
OSPI without DOTF: 3886 nanoseconds;

Protected Mode: Time used in executing the encrypted Fibonacci calculation function
0SPI using DOTF: 2385 nanoseconds;

Protected Mode: Time used in executing the plaintext Fibonacci calculation function
OSPI without DOTF: 3886 nanoseconds;

Protected Mode: Time used in executing the encrypted Fibonacci calculation function
OSPI using DOTF: 2393 nanoseconds;

Protected Mode: Time used in executing the plaintext Fibonacci calculation function
OSPI without DOTF: 3886 nanoseconds;

Protected Mode: Time used in executing the encrypted Fibonacci calculation function
OSPI using DOTF: 2385 nanoseconds;

Protected Mode: Time used in executing the plaintext Fibonacci calculation function
OSPI without DOTF: 3886 nanoseconds;

Protected Mode: Time used in executing the encrypted Fibonacci calculation function
OSPI using DOTF: 2385 nanoseconds;

Protected Mode: Time used in executing the plaintext Fibonacci calculation function
OSPI without DOTF: 3886 nanoseconds;

Protected Mode: Time used in executing the encrypted Fibonacci calculation function
OSPI using DOTF: 2393 nanoseconds;

DOTF RSIP protected mode evaluation is successful.

Figure 45. Testing Result for DOTF Overhead Evaluation

3.7.3 Launch the Debug Session using the SKMT GUI Encryption Result

To evaluate the encryption result generated from section 3.6.2, update the Debug configuration as shown in
Figure 46.

R11ANO773EU0100 Rev.1.00 Page 31 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Name: I dotf_rsip_protected_mode_ek_raBm1.elf

[5] Main | %5 Debugger m [C] Common | &/ Source
Initialization Commands
[JReset and Delay (seconds): 0
[JHalt

Load image and symbols

Filename Load type Offset (hex) On connec Add
Program Binary [dotf rsip_protected_mode_ek_ra8m.elf] Symbols onlx Yes
[] ra_app_image_ospi_area_encrypted_and_plaintext.srec [C:\RA8_DOTF\K2\dotf_rsip_protected_mode_ek_ra8m1\dotf_enc_data] Image only 0 Yes Edit...
[] ra_app_image_wo_ospi_area.srec [C:\RA8_DOTF\K2\detf_rsip_protected_mode_ek_ra8m1\dotf_enc_data] Image cnly 0 Yes Remove
dotf_rsip_protected_mode_ek_ra8m1.mot [C:\RA8_DOTR\K2\dotf_rsip_protected_mode_ek_ra8m1] Image only 0 Yes
Move up
Move down
< >
Runtime Options
D Set program counter at (hex):
Set breakpoint at:
[T Y
Revert Apply

Figure 46. Update the RSIP Protected Mode DOTF Example Project Debug Configuration

Next Start the Debug session and use Tera Term to observe the execution result. A result similar to Figure
43 should be observed.

4. Guidelines for DOTF Production Support

The demonstrations in this application project assume the MCU addressing space is known. In a production
environment, a third-party tool will program the OSPI chip independently of the MCU without prior knowledge
of the MCU addressing space.

In this case, the encrypted OSPI data should be output to a separate file. Addressing in that file must use the
addresses of the OSPI flash chip address space, NOT the MCU address space.

Using the use case of Figure 36 as an example, the following update should be performed when producing
the encrypted data for the OSPI area that will be programmed by a third-party tool. Note that the MCU
address space is required when specifying the address range to encrypt since this address is incorporated
into the encryption algorithm.

R11ANO773EU0100 Rev.1.00 Page 32 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

e UFPK G e KUK Wrap Key TSIP Update FSBL DOTF/OTFD SFp

Overvi G

To use Decryption On-The-Fly/On-The-Fly Decryption, the external memory such as OSPI or xSP| must be
pregrammed with encrypted code/data.Refer to the device Hardware User Manual for more information.

Plaintext Image : rsip_protected_mode_ek_ra8m1\Debug\dotf_rsip_protected_mode_ek_ra8m1.srec ‘ Browse...

Image Address Range to Encrypt Destination Address

O Encrypt all data (® Same as Plaintext Image
@® Encrypt address range O Specific address (hex)
Start address to encrypt (hex) : | 90000000

End address to encrypt (hex) : | 90000FFF

Image Encryption Key
AES-128 v
Browse...

O File
® Raw ‘ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO ‘

v

(O Generate random value
00000000000000000000000009000000 ‘

(® Use specified value (16 hex bytes, most significant 100 bits used)

Encrypted Image : :etted_mnde_ek_ra&m1\dotf_rsip_prnteded_mnde_ek_raBm1_en(rypted_nspi.mnt‘ Browse...

Output Image Address and Contents
O Retain original addresses Include plaintext image data that is outside the encrypted address range

(@) Start at address 0

Generate Encrypted Firmware Image

Qutput File: C:\RA8_DOTF\github\RA8_DOTF\protected_mode (]
\dotf_rsip_protected_mode_ek_ra8m1\dotf_rsip_protected_mode_ek_ra8m1_encrypted_ospi.mot
Key: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO
Counter:
v

OPERATION SUCCESSFUL

Figure 47. Example: Generate Encrypted OSPI Data for Third-party Tool

Page 33 of 37

R11ANO773EU0100 Rev.1.00
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

5. Appendix

5.1 Update the Linker Script for the Compatibility Mode Example Project

The included Compatibility Mode example project uses GCC compiler. As shown in Figure 12, the default
FSP linker script is updated to help OSPI data allocation.

To achieve the same goal when LLVM is used, the same linker script updates as the GCC compiler should
be performed.

To achieve the same goal when AC6 is used, the following linker script updates should be performed.

LOAD_REGION_OSPI_DEVICE_1 OSPI_DEVICE_1_START OSPI_DEVICE_1_PRV_LENGTH
_ tz_OSPI_DEVICE 1_S OSPI_DEVICE_1_S_START EMPTY 0
OSPI_DEVICE 1 +0 FIXED

*(.03pi device 1%
— —
. = OSPI_DEVICE 1 START + 0x1000; /* Offset by 0x1000 starting from OSPI_DEVICE_ 1 START*/

o3pi device 1 plaintext start = .;

.code 1n oSpli device

__tz_OSPI_DEVICE 1_N OSPI_DEVICE_1_NS_START EMPTY 0

Figure 48. Update the AC6 Linker Script for the Compatibility Mode Project

5.2 Update the Linker Script for the Protected Mode Example Project

The included Protected Mode example project uses LLVM compiler. As shown in Figure 28, the default FSP
linker script is updated to keep the injected wrapped DOTF key during the Debug session launch process.

To achieve the same goal when GCC is used, the following linker script updates should be performed. Key
word (NOLOAD) is added similar to the LLVM linker script update.

L| fsp_app.ld X

641 KEEP(*(.ns_buffer*))
642 } > RAM

644 /* Data flash. */
645 .data_flash (NOLOAD):
547 ‘ . = ORIGIN(DATA_FLASH);
643 __tz DATA_FLASH S = .;
54 __Data_Flash_Start = .;
KEEP(*(.data_flash*))

__Data_Flash_End = .;

__tz_DATA_FLASH_N = DEFINED(DATA_FLASH_NS_START) > ABSOLUTE(DATA_FLASH_NS_START) : _ RESERVE_NS_RAM
554 } > DATA_FLASH

Figure 49. Update the GCC Linker Script for the Project Mode Project

To achieve the same goal when AC6 is used, the following linker script updates should be performed.
NOLOAD key word is used similar to the LLVM linker script update.

R11ANO773EU0100 Rev.1.00 Page 34 of 37
Nov.21.244 RENESAS

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for

OSPI
ILCAD_REGZCN_DA:A_FLASH DATA FLASH START DATA FLASH LENGTH NCLCAI# I

__tz DATA FLASH S DATA FLASH S_START EMPTY 0

.:ICILFLASH +0

A *(.data_flash¥*)

;tz_:ATA_FLASH_EJ DATA_FLASH_NS_START EMPTY 0

Figure 50. Update the AC6 Linker Script for the Project Mode Project

6. References

oukrwnE

Flexible Software Package (FSP) User's Manual

Renesas RA8M1 Group User's Manual: Hardware

Renesas RA Family RA8 MCU Series Device Lifecycle Management (R11ANQ0785)
Renesas RA Family MCU Injecting and Updating Secure User Keys (R11AN0496)
Renesas RA Family MCU Injection Plaintext User Keys (R11AN0473)

Renesas RA Family MCU Renesas RA Family Security Engine Operational Modes (R11AN0498)

R11ANO773EU0100 Rev.1.00
Nov.21.244 RENESAS

Page 35 of 37

https://www.renesas.com/us/en/products/software-tools/software-os-middleware-driver/software-package/ra-fsp.html#documents
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra8m1-480-mhz-arm-cortex-m85-based-microcontroller-helium-and-trustzone#documents

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

7. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA8M1 Resources renesas.com/ra/ek-ra8m1
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11ANO773EU0100 Rev.1.00 Page 36 of 37

Nov.21.244 RENESAS

https://www.renesas.com/ra/ek-ra8m1
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Application Design using RA8 Series MCU Decryption on the Fly for
OSPI

Revision History

Description

Rev. Date Page Summary

1.00 Nov.21.24 — Initial release

R11ANO773EU0100 Rev.1.00 Page 37 of 37
Nov.21.244 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	1. RA8 MCU Decryption on the Fly
	1.1 DOTF Architecture
	1.2 DOTF Features
	1.3 Example Operational Flow
	1.4 DOTF Usage Notes
	1.4.1 Endianness of DOTF Operation
	1.4.2 Specifical Data Handling Performing Runtime Encryption with DOTF
	1.4.3 Setting the Initialization Vector (IV) for DOTF Operation
	1.4.4 Usage of the AES-CTR
	1.4.5 Use the RSIP and Key Injection in Matching Mode

	1.5 Configuring DOTF Operation using FSP
	1.6 Allocating Data to the OSPI Area
	1.7 Using Multiple DOTF Keys
	1.8 Reset the OSPI Device

	2. Example Implementation: Using DOTF with RSIP Compatibility Mode
	2.1 Creating the Application with RSIP Compatibility Mode
	2.2 Encrypt the OSPI Data at Runtime
	2.3 Allocating Plaintext Data to the OSPI Area
	2.4 Running the Example Application
	2.4.1 Set up the Hardware and Import the Application
	2.4.1.1 Initialize the MCU
	2.4.1.2 Erase the OSPI

	2.4.2 Launch the Debug Session and Observe the Demonstration

	3. Example Implementation: Using DOTF with RSIP Protected Mode
	3.1 Tools Used in the DOTF Design with RSIP Protected Mode
	3.2 Creating the Wrapped DOTF Key
	3.3 Configure the Application Project with RSIP in Protected Mode
	3.4 Update the Linker Script
	3.5 Allocating Code to the DOTF Destination Area
	3.6 Import and Build the RSIP Protected Mode Example Project
	3.6.1 Encrypt the DOTF Destination Area Using the SKMT CLI
	3.6.2 Encrypt the DOTF Destination Area using SKMT GUI

	3.7 Running the Example Application
	3.7.1.1 Set up the Hardware
	3.7.1.2 Injecting the Wrapped DOTF Key
	3.7.2 Launch the Debug Session using the SKMT CLI Generated Images
	3.7.3 Launch the Debug Session using the SKMT GUI Encryption Result

	4. Guidelines for DOTF Production Support
	5. Appendix
	5.1 Update the Linker Script for the Compatibility Mode Example Project
	5.2 Update the Linker Script for the Protected Mode Example Project

	6. References
	7. Website and Support
	Revision History

