LENESAS

AN-1200 True Random Number Generator Hardware

In cryptographic applications such as key generation and signing, there is a need for random
numbers. There are many methods which hardware or firmware can use to generate pseudo-
random numbers. However, pseudo-random number generators are deterministic: if the internal
state of the generator is known, then the output of the generator is entirely predictable. This
makes pseudo-random number generators inappropriate for cryptographic applications. These
applications require a true random number generator (TRNG).

A TRNG uses unpredictable physical phenomena to generate random numbers. An example of a
TRNG would be to amplify thermal noise from a resistor, then use an analog-to-digital convertor to
convert this noise into numbers. Such a system usually requires a lot of discrete components due
to the large gain needed. Because thermal noise is the result of chaotic microscopic effects, this
generator will generate unpredictable numbers. This unpredictability is referred to as entropy.
Entropy can be measured in bits, for example, a fair coin toss will produce 1 bit of entropy, as
there are two equally possible outcomes. Independent sources of entropy add, so tossing 8
independent, fair coins will produce 8 bits of entropy. A biased coin that always lands on heads will
produce 0 bits of entropy, since a fully biased coin is completely predictable.

A good TRNG will be able to quickly generate enough bits of entropy, so that cryptographic keys or
secrets cannot be feasibly guessed. A bad random number generator can compromise a
cryptographic system. For example, a faulty random number generator was the cause of several
thefts of the cryptocurrency Bitcoin [1].

Entropy source

The true random number generator described in this application note uses free-running ring
oscillators. These ring oscillators are constructed using an odd number of inverters constructed out
of LUTs. The oscillators are free-running in the sense that they are not locked to other clocks, and
will accumulate jitter - see Figure 1 for a frequency-domain representation of the jitter from a
single oscillator. This jitter is a result of many unpredictable effects, including thermal noise, so a
generator constructed out of ring oscillators is justified in being called a true random number
generator.

ot e

1000Hz 3000Hz 5000Hz 7000Hz 10000Hz 12000Hz 15000Hz 17000Hz 20000Hz 22000Hz

Figure 1. FFT of the output of a single ring oscillator implemented in a GreenPAK™ device. This ring oscillator
oscillates at a nominal frequency of about 19 MHz, and the output has been digitally sampled at 48 kbit/s.
Because the oscillator’s frequency is far above the Nyquist frequency, the oscillator signal has been aliased to
~7.5 kHz. The jitter in this ring oscillator is visible, as the peak is not infinitely thin, as would be the case for
an ideal, jitter-free oscillator. Instead, the peak has a 3 dB bandwidth of about 2 kHz.

© 2022 Renesas Electronics Corporation

LENESAS

To increase the amount of entropy available, and to make the design more robust, many ring
oscillators should be used. Because the oscillators are independent, they will randomly drift in and
out of phase of each other. The oscillators can be sampled by periodically taking the XOR of all
their outputs, which represents the oscillators’ relative phase. This is not the most efficient way to
sample oscillators, as many oscillations are required before the oscillators will drift out of phase
with each other. However, it is a simple method that does not require the use of many ring
oscillators — a higher-throughput design could require over 100 oscillators [2].

Whitening

A perfect entropy source generates a stream of bits which have a white power spectrum (equal
power in all frequencies; the spectrum is flat) and which are statistically unbiased (nearly equal
ones and zeroes). Real entropy sources are imperfect - they generate a bitstream which is
statistically poor in some way. For example, noise in circuits often has a power spectrum which is
not white. Indeed, Figure 1 shows that the ring oscillators used in this application note have a noise
power spectrum which is not flat. Asymmetries in a circuit (e.g. due to a difference in rising and
falling propagation delays) could cause the output to become biased. Statistically imperfect entropy
sources are still useful, but they require post-processing. This post-processing is referred to as
whitening.

To illustrate the need for whitening, imagine that someone wishes to extract entropy from a series
of coin tosses. They are using a hypothetical set of 16 coins — 8 of which are fair, 8 of which are
completely biased, and will always land on heads. For the sake of analogy, this hypothetical person
is also unable to distinguish the fair coins from the biased coins. Flipping all 16 of these coins will
lead to a partially predictable result, as there are guaranteed to be at least 8 heads appearing.
However, there should still be a total of 8 bits of entropy. A whitener can be used to take the
results of the 16 coin tosses, and process these results to obtain 8 random bits.

Figure 2. Example of a 4-bit LFSR, implemented using 4 D flip flops and a XOR gate (this particular LFSR is
only an example; it is not used in the TRNG implementation). This LFSR will produce the following output:
11110001001101011110001001101011110001001101011110.

Inspection of this pseudo-random bitstream reveals that it repeats every 15 bits.

The whitener used in this application note is a linear feedback shift register (LFSR). A LFSR is easy
to construct in hardware and consists of a shift register, with some of the register contents XORed
together and fed back into the input of the shift register — see Figure 2 for an example of this. On
its own, the output of a LFSR will be a repeating pseudo-random sequence of bits. Careful choice of
what registers to XOR together means that the cycle length of this pseudo-random sequence will be

of maximal cycle length. The maximum possible cycle length of a n-bit shift register is 2" - 1. A
table of the suitable XOR choices is given in [3]. A large, maximal LFSR will produce a bitstream
which is unbiased and white.

A LFSR will produce a bitstream with good statistical properties, but on its own, it is still only pseudo-
random. For this application note, the feedback of the LFSR is also XORed with the raw output of the
ring oscillators. The LFSR’s internal state will now be influenced by the ring oscillators, converting
the LFSR from a pseudo-random number generator into a true random number generator. Even with
this modification, the overall feedback structure of a large, maximal LFSR ensures that its output is
still unbiased and white. Hence an LFSR, used in this way, fulfils the function of a whitener.

© 2022 Renesas Electronics Corporation

LENESAS

Realization with GreenPAK designer: ring oscillators

Matrix 0 ring oscillators

A

B B B

®

A XOR_OUT

- e s X —
) ENO. oo TR L . S

Matrix 1 ring oscillators

-9

XOR_OUT

..

Figure 3. Ring oscillator implementations. The top image shows the four oscillators implemented on the matrix
0 side. The bottom image shows the two oscillators implemented on the matrix 1 side.

There are enough LUTs in the SLG46620V for six ring oscillators. Their implementation is shown in
Figure 3. Each ring oscillator starts with a NAND gate instead of a simple inverter. Connected to
each NAND gate is a global enable signal (net ENO for matrix 0, net EN1 for matrix 1). When this
enable signal is low, all the NAND gates will output high, regardless of the state of the other input.
This will cause the ring oscillators to stop oscillating and enter a static, well-defined state. When
this enable signal is high, the NAND gate effectively functions as another inverter.

All the ring oscillators are constructed out of 3 inverters, except for one of the rings, which has an
extra buffer. All the rings are constructed out of unique combinations of 2-bit LUTs, 3-bit LUTs, 4-
bit LUTs, and the INVO/INV1 blocks. This is a crucial design choice. Experimentation has revealed
that if any two rings are constructed out of the same types of blocks, they will have very similar
oscillation frequencies. The frequencies are so similar, that small amounts of crosstalk between the
oscillators (probably a result of switching noise) will eventually cause the oscillators to phase-lock
together. This phenomenon (generally referred to as injection locking) will cause a catastrophic
failure in entropy generation, as the oscillators will constantly be exactly in phase with each other. 2-
bit LUTs, 3-bit LUTs, 4-bit LUTs, and the INVO/INV1 blocks all have different propagation delays, so
using unique combinations of these types of blocks guarantees that the oscillator frequencies will be
different.

The output of each ring oscillator is latched on the rising edge of the RAW_CLK signal. This follows
the advice of [4], where it was observed that failing to latch oscillator outputs causes setup and
hold time violations on the input to XOR gates. This approach also helps to reduce switching noise,

© 2022 Renesas Electronics Corporation

LENESAS

minimizing the amount of harmful crosstalk between oscillators.

Each ring oscillator was measured to have a spectrum like that shown in Figure 1, with a noise
bandwidth of about 2 kHz. The rate of entropy can be calculated using Hartley’s law:

C=2Blog. M

where C is the bitrate, B is the bandwidth and M is the number of distinguishable states. Using B =
2 kHz, and M = 2 (since the output of a ring oscillator is either a 0 or a 1) results in a bitrate of 4
kbit/s. Hence each ring oscillator contributes 4 kbit/s of entropy.

Finally, the latched outputs of all oscillators are XORed together, to measure their relative phase.
This XOR output is latched on the rising edge of the RAW_CLK signal, to ensure that that there are
no spurious transitions in the output signal. This results in the RAW_OUT signal. RAW_OUT is sent
out of pin 19 for the user. The choice of pin 19 for RAW_OUT was completely arbitrary; system
designers are free to re-assign pins to make PCB routing easier.

Realization with GreenPAK designer: LFSR
LFSR_OUT Matrix 0 portion of LFSR WHITENED_OUT

FEEDBAKK

Matrix 1 portion of LFSR

PIPEO_OUT LFSR_OUT

A 3

FEEDBACK

Figure 4. LFSR implementation.
The top image shows the portion of the LFSR in matrix 0. The bottom image shows the portion of the LFSR in
matrix 1. It was necessary to split the LFSR across matrices to fully use both pipe delay blocks.

A 35-bit LFSR was implemented, because there exists a maximal 35-bit LFSR with a very simple
structure: the feedback consists of the XOR of registers 33 and 35 (see the n=35 entry of Table 3
in [3]). The LFSR uses both pipe delay blocks in the SLG46620V, where each pipe delay block
consists of 16 D flip flops in serial. Pipe delay 0 contributes the first 16 bits of the shift register,
pipe delay 1 contributes the next 16 bits, and D flip flops 7, 8, and 9 form the last three bits of the
shift register. The resulting 35-bit LFSR has a cycle period of 235 - 1, which is extremely long
compared to the LFSR clock rate.

The feedback element shown in Figure 4 uses NXOR instead of XOR. This does not change the
structure of the LFSR, or the cycle period. However, it does ensure that the LFSR does not enter a
lock-up state (where cycle period = 1) when the shift register is initialized to an all-0s state, which
is the case during power-on.

The LFSR is clocked/shifted by the global LFSR_CLK signal (net LFSR_CLKO for matrix 0, net
LFSR_CLK1 for matrix 1). The output of the LFSR (LFSR_OUT) is not directly exposed to the user.
Instead, the output of the LFSR is latched on the rising edge of the WHITE_CLK signal. Note that
WHITE_CLK runs at a slower rate than LFSR_CLK - this is to allow some bits of LFSR_OUT to be
discarded. This latched output is sent to pin 5, as the WHITENED_OUT signal. Like with RAW_OUT,
the choice of pin 5 was completely arbitrary.

© 2022 Renesas Electronics Corporation

LENESAS

Realization with GreenPAK designer: clocks

RAW_CLK
Matrix 0 portion of clocks

LFSR_CLK
= WHITENED_CLK

o— .

¢ SN s :
DISABLE_WHITENED PPN CNTS/DLYS . _ ”
s . % P CNT2/DLY2/ =il a]
ot -~ FSMO .

o0 o |

o

Matrix 1 portion of clocks RAW_CLK

00000

.
mmo‘ b @coo h’o. RAW _CLK

LFSR_CLK

Figure 5. Clock structure of TRNG. The top image shows the portion in matrix 0. The bottom image shows the
portion in matrix 1.

The master clock source for the TRNG is a ring oscillator constructed out of LUTs, visible in the
bottom image of Figure 5. Although the SLG46620V does have many in-built clocks, none of those
were used. The reason for this was to improve rejection against common-mode interference such
as power supply noise, temperature variations, and power supply voltage variations. By
constructing the master clock in the same way as the entropy source, these common-mode
interference sources should affect both the master clock and the entropy source in the same way,
partially cancelling out the effect of the interference.

The master clock is fed into matrix 1's EXT. CLK2, where CNT7 and CNT8 are set up as counters to
divide the master clock by 306, to achieve a nominal (at VDD = 3.3 V) RAW_CLK of about 80 kHz.
CNT7 and CNTS8 are set up in this particular cascade (CNT7 has counter data = 152, CNT8 has
counter data = 1) to ensure that RAW_CLK has a duty cycle of 50%. RAW_CLK is used as the
sampling clock for the ring oscillators, hence RAW_OUT will have a nominal bitrate of 80 kbit/s.
RAW_CLK is also output to pin 20 (this pin assignment is arbitrary) so that the user can sample
RAW_OUT at the right times.

LFSR_CLK has the same frequency as RAW_CLK - the only difference is that LFSR_CLK can be
suppressed by asserting ENABLE_WHITENED low. LFSR_CLK is used to clock the shift registers in
the LFSR. In matrix 0, LFSR_CLK is fed into EXT. CLK1, so that CNT5 and CNT6 can derive
WHITE_CLK from it. CNT5 and CNT6 are set up as counters, both with counter data = 1, so they
divide LFSR_CLK by 4. The divided clock, WHITE_CLK, is used to decimate the LFSR output.
WHITE_CLK is sent to pin 3 (this pin assignment is arbitrary) so that the user can sample
WHITENED_OUT at the right times. WHITE_CLK has a nominal frequency of 20 kHz;
WHITENED_OUT has a bitrate of 20 kbit/s.

The final bitrate of 20 kbit/s was chosen because testing revealed that each ring oscillator could
provide about 4 kbit/s of entropy. Since the entropy source consists of six ring oscillators (see
Figure 3), and assuming the entropy sources add, there should be a total of about 24 kbit/s of
entropy in RAW_OUT. This is derated to 20 kbit/s to account for imperfections in the ring oscillators
and LFSR.

Note that while RAW_OUT has a nominal bitrate of 80 kbit/s, the expected entropy rate of
RAW_OUT is only 20 kbit/s. This is because RAW_OUT is expected to have statistical imperfections

© 2022 Renesas Electronics Corporation

LENESAS

which make its bitstream partially predictable. On the other hand, WHITENED_OUT is completely
unpredictable, hence it has a nominal bitrate (of 20 kbit/s) equal to its expected entropy rate.

The output of DLY2 holds CNT5 in reset; the DISABLE_WHITENED signal halts WHITE_CLK. DLY2 is
set up so that the falling edge of the DISABLE_WHITENED signal is delayed by 400 counts of
LFSR_CLK. The effect of this is that after the whitened output is enabled, the first 400 bits of the
LFSR will be discarded. It is necessary to discard the first 400 bits of LFSR output so that fresh
entropy can mix into the LFSR’s internal state.

Realization with GreenPAK designer: enable logic

ENABLE_WHITENED

o — ENABLE
A - ESR CLK

ENABLE_ALL ' g DISABLE_WHITENED

‘e
L 2 ',

ENABLE

(o}

Figure 6. Enable logic of TRNG.
The left image shows the portion in matrix 0. The right image shows the portion in matrix 1.

The remaining configuration is dedicated to enable logic. The enable logic allows the user to save
power by disabling sections of the TRNG. The ENABLE_ALL signal is connected to pin 17 (this pin
assignment is arbitrary). If the user asserts pin 17 low, then all ring oscillators will stop oscillating.
This will cause the entire TRNG to enter a static state.

The ENABLE_ALL signal is also ANDed with the output of the POR block. This is necessary, as the
ring oscillators will not begin oscillating unless they begin from a well-defined state. The POR clock
is configured to output high 4 ps after power-on. This gives the ring oscillators 4 ps to settle into
the well-defined disabled state (see the section “Realization with GreenPAK designer: ring
oscillators”), ensuring that the ring oscillators will reliably start oscillating after power-on.

The ENABLE_WHITENED signal is connected to pin 15 (this pin assignment is arbitrary). If the user
asserts pin 15 low, then LFSR_CLK will be disabled, and the entire LFSR section will enter a low-
power static state. A related signal, DISABLE_WHITENED, is used to suppress the first 100 bits of
whitened output (i.e. the first 400 bits of LFSR output), so that fresh entropy is mixed into the
LFSR internal state before anything is output. For this reason, DISABLE_WHITENED will be asserted
high whenever the LFSR or entropy source is (re)started.

Test results

The TRNG described in this application note was implemented in a SLG46620V, and samples were
taken from the RAW_OUT and WHITENED_OUT pins. This was done using a LPC11U24
microcontroller that was set up to sample RAW_OUT/WHITENED_OUT on the falling edge of
RAW_CLK/WHITENED_CLK. These samples were sent to a PC over a UART-to-USB converter, and
the samples were logged into a file for later analysis.

The result of an FFT performed on the raw output is shown in Figure 7. While the spectrum is
approximately flat, to within 2.5 dB, there is clearly a structure of peaks and troughs. This
structure is inconsistent with the expected result of a perfect entropy source (a flat spectrum).

© 2022 Renesas Electronics Corporation

1000Hz 3000Hz 5000Hz 7000Hz 10000Hz 13000Hz 15000Hz 18000Hz 20000Hz 22000Hz 25000Hz 28000Hz 30000HZ 33000Hz 35000Hz

Figure 7. FFT results of about 3 million bits of raw output (sampled from RAW_OUT).
Wide peaks and troughs in the spectra are clearly visible.

The result of an FFT performed on the whitened output is shown in Figure 8. This spectrum is flat,
with the (statistical) variance observed to be within 0.4 dB.

H
|

500Hz 1000Hz 1500Hz 2000Hz 2500Hz 3000Hz 3500Hz 4000Hz 4500Hz 5000Hz 5500Hz 6000Hz 6500Hz 7000Hz 7500Hz 8000Hz 8500Hz 9000Hz 10000Hz

Figure 8. FFT results of about 3 million bits of whitened output (sampled from WHITENED_OUT).
The spectrum is flat (white).
The observed variance is statistical in nature.

Further statistical testing can be done using a suite of statistical tests developed by NIST, described
in detail in [5]. For a brief explanation of what each test is examining, see [8]. The NIST tests are
specifically adapted to testing random bitstreams. For example, the “Frequency” test examines
whether the proportion of ones and zeroes is the same i.e. the “Frequency” test checks that the
bitstream is unbiased. To test the TRNG, about 80,000,000 bits of RAW_OUT and WHITENED_OUT
were collected and recorded in files. These files were split into 100 bitstreams of 800,000 bits each,
and then analysed, using the assess tool described in [5]. Appendix A contains the final results
(“finalAnalysisReport.txt”) for the raw output, and Appendix B contains the final results for the
whitened output.

An accessible introduction to interpreting the NIST test results is given in [7]. The NIST test results
contain a lot of columns, but the important ones are the “"P-VALUE” and “PROPORTION"” columns.
Values in the “P-VALUE” column should be uniformly distributed between 0 and 1. Values close to 0
(e.g. 0.000000) or 1 (e.g. 0.999999) are indicative of failure. The "PROPORTION" column describes
how many of the 100 bitstreams passed the statistical tests. Statistically, some of the bitstreams
are expected to fail. The minimum pass rate is described at the bottom of each appendix. Asterisks
in either the “"P-VALUE” or "PROPORTION" columns are indicative of failure.

The general conclusion from the NIST test results is that the raw output fails most of the statistical
tests. This failure is expected - the raw output is an imperfect source of entropy. On the other
hand, the whitened output passes every statistical test. This indicates that the whitened output can
be used as a source of almost-perfectly random bits.

© 2022 Renesas Electronics Corporation

LENESAS

How to use the TRNG

The TRNG implemented in this application note requires only the SLG46620V to generate the
random bitstream; it does not require any external components, except for decoupling capacitors
for the SLG46620V. The raw output can be sampled by connecting RAW_CLK (pin 20) and
RAW_OUT (pin 19) to a microcontroller - see Figure 9 for an example of what these signals look
like.

If the microcontroller supports SPI in slave mode, then RAW_CLK can be connected to SCLK and
RAW_OUT can be connected to MOSI, with CPOL set to 0 and CPHA set to 1 (SPI mode 1).
Alternatively, the microcontroller can be set up to interrupt on the falling edge of RAW_CLK, with
the interrupt handler sampling RAW_OUT.

The whitened output can be similarly sampled using the WHITENED_CLK (pin 3) and
WHITENED_OUT (pin 5) signals — see Figure 9 for an example of what these signals looks like. The
whitened output is the most appropriate output for most applications.

A0 CE S I [A o Ay
RAW_OUT [\ [\ / U W N N A

WHITENED_CLK

WHITENED_OUT i/ \ /

Figure 9. Timing diagram showing an example of what the output signals look like. RAW_OUT transitions on
the rising edge of RAW_CLK; WHITENED_OUT transitions on the rising edge of WHITENED_CLK. Both
RAW_OUT and WHITENED_OUT should be sampled on the falling edge of their respective clocks. In this
example, RAW_OUT is depicted as outputting the bitstream 1001001111101010011, and WHITENED_OUT is
depicted as outputting the bitstream 01101. RAW_CLK runs at a nominal rate of 80 kHz; WHITENED_CLOCK
runs at a quarter of RAW_CLK, at a nominal rate of 20 kHz.

The whitened output can be disabled by asserting ENABLE_WHITENED (pin 15) low. The entire
TRNG can be disabled by asserting ENABLE_ALL (pin 17) low. Both enable pins are pulled-up, so if
they are both left unconnected, all sections of the TRNG will be enabled.

A summary of signhals is given in Table 1.

Name Pin Type Description
RAW_OUT 19 Digital push-pull Raw output of the TRNG - the latched
output output of the XOR of all ring oscillators,
representing their relative phase.
RAW_CLK 20 Digital push-pull Sampling clock for RAW_OUT. Runs at a
output nominal 80 kHz. RAW_OUT transitions on
the rising edge of this clock.
WHITENED_OUT 5 Digital push-pull Output of the TRNG after whitening by a
output LFSR.
WHITENED_CLK 3 Digital push-pull Sampling clock for WHITENED_OUT. Runs at
output a nominal 20 kHz. WHITENED_OUT
transitions on the rising edge of this clock.
ENABLE_ALL 17 Digital input with When low, stops all clocks within the TRNG,
pull-up putting it into a low-power static state;
RAW_CLK and WHITENED_CLK will stop
ticking.
ENABLE_WHITENED 15 Digital input with When low, stops the LFSR clock, causing the
pull-up whitened output to halt; WHITENED_CLK

will stop ticking.

Table 1. Summary of TRNG signals

© 2022 Renesas Electronics Corporation

LENESAS

Security considerations

High-security applications should verify that the entropy source is working properly. To do this, they
must not test the whitened output; the whitened output should not be trusted to be truly random,
even if it passes statistical tests. This is because the maximal 35-bit LFSR used in this application note
is @ good pseudo-random number generator, and will produce results that will pass most statistical
tests, even if the entropy source is completely broken. Instead, applications should try to detect
failure by running statistical tests on the raw output. For example, applications could test for
unusually long strings of Os or 1s, or use a FFT to test if the raw output spectrum is less flat than
Figure 7.

For simplicity, the whitened output can be used directly in cryptographic operations. Applications
demanding greater security should use the whitened output to seed a cryptographically-secure
pseudo-random number generator (CSPRNG), continually reseeding the CSPRNG as new whitened
output bits become available. This approach has the advantages:

e The CSPRNG can be used to generate a high throughput of on-demand bits; the application
won't be limited to the 20 kbit/s produced by this TRNG.

e The reseeding operation allows entropy to accumulate in the CSPRNG's internal state. This
guarantees that the CSPRNG will become increasingly unpredictable (and hence secure) over
time, even in the event of partial failure of the TRNG’s entropy source.

e Other entropy sources (e.g. data from radio receivers) can be used to reseed the CSPRNG. This
will make the cryptographic system more robust against failure of an entropy source.

A cryptographic system using a SLG46620V as a TRNG is trivially vulnerable to invasive attacks. An
attacker who has physical access to the system can simply remove the SLG46620V, replacing it
with a device that produces a completely predictable bitstream. This can be countered by making
physical access difficult, or attempting to detect physical access.

TRNGs based on ring oscillators are known to be vulnerable to signals injected to their power
supply [6]. This can be countered by filtering the power supply. A possible extension to this
application note is to use the ACMP and VREF blocks to detect such injection attacks.

Downsizing the design

The TRNG design described in this application note can be implemented in a smaller GreenPAK, to
reduce costs and board space requirements. The number of ring oscillators used in the entropy
source could be reduced, down to a minimum of two. Since there are three times fewer oscillators
being used, this would reduce the throughput of the design to a third: approximately 6.6 kbit/s.

D flip flop requirements could be reduced by using a smaller LFSR for a whitener. The minimum
LFSR size depends on the number of ring oscillators, and on the oscillator sampling clock rate. The
minimum LFSR size can be experimentally determined by using successively smaller LFSR lengths,
until the whitened output begins to fail the NIST statistical tests.

Usually, a TRNG is used in a system that contains a microcontroller. Thus, a minimal GreenPAK
design could omit the whitener completely, relying on the microcontroller to perform whitening. The
firmware in that microcontroller could easily implement a very large LFSR, or it could use a
cryptographic hash function to implement a more robust whitener.

Conclusion

GreenPAK can be used to implement a compact true random number generator that requires no
external components (except for decoupling capacitors), and generates true random numbers at a
rate of 20 kbit/s. The TRNG has a simple interface, and has power-saving features, making it ideal
for mobile, space-constrained devices that require an entropy source for cryptographic operations.

© 2022 Renesas Electronics Corporation

LENESAS

References

1 1. D. Gilson, "Blockchain.info issues refunds to bitcoin theft victims,” Aug. 21, 2013. [Online].
Available: http://www.coindesk.com/blockchain-info-issues-refunds-to-bitcoin-theft-victims/.
[Accessed: Jun. 30, 2017].

1 2. B. Sunar, W. J. Martin, and D. R. Stinson, “A Provably Secure True Random Number Generator
with Built-In Tolerance to Active Attacks”, IEEE Trans. Comput., vol. 56, no. 1, Jan. 2007.

1 3. P. Altke, “Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence
Generators,” Xilinx Application Note, XAPP 052, Jul. 7, 1996.

1 4. K. Wold, and C. H. Tan, “Analysis and Enhancement of Random Number Generator in FPGA
Based on Oscillator Rings,” Int. J. of Reconfigurable Computing, vol. 2009, article ID 501672, 2009.

1 5. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D.
Banks, A. Heckert, J. Dray, and S. Vo, “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” NIST Special Publication 800-22, revision 1a,
Apr. 2010.

1 6. A. T. Markettos, and S. W. Moore, “"The Frequency Injection Attack on Ring-Oscillator-Based
True Random Number Generators,” in Proc. 11th Int. Workshop Cryptographic Hardware and
Embedded Syst., Lausanne, Switzerland, 2009, pp. 317-331.

1 7. “Interpretation of the results of NIST (p)NRG suite,” Jan. 9, 2017. [Online]. Available:
https://crypto.stackexchange.com/questions/19861/interpretation-of-the-results-of-nist-pnrg-
suite. [Accessed: Jul. 16 2017].

1 8. “Guide to the statistical tests,” Jul. 16, 2014. [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/rng/stats tests.html. [Accessed: Jul. 17 2017].

© 2022 Renesas Electronics Corporation

http://www.coindesk.com/blockchain-info-issues-refunds-to-bitcoin-theft-victims/
https://crypto.stackexchange.com/questions/19861/interpretation-of-the-results-of-nist-pnrg-suite
https://crypto.stackexchange.com/questions/19861/interpretation-of-the-results-of-nist-pnrg-suite
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

LENESAS

Appendix A: NIST SP 800-22 test results for raw output

For testing methodology and interpretation of results, see the “Test results” section.

RESULTS FOR THE

UNIFORMITY

OF P-VALUES AND THE

(=Rl

PROPORTION OF PASSING SEQUENCES

T e
MoEa O £ O3 e

=
Lo LY I I . VP e e}

—
SR N U TR |
s e) ¥ |

oy Lo |
W s

100
100
100
i1
100
43
22
17
100
74
100
80
100
100
6l
100
100
87
100

36

10
10

ST S

R S R U A I T

S |

[RS TR S T Ty [O R S GO T B O |

o
o
o
]

o
o

o

R = B T T T T T T U S U B (R T T L T e T S I e i e I

SO T O N T O T T e Y S

[FURrS

ot
[VI S ¥]

—n

[SR Y

[R

[T S T e T R (O T, L e B e

=y

L =]

=g

[

© 2022 Renesas Electronics Corporation

SRS S R R]

S S I T R B N L

I R R PR R R |

[

S SR PRI B

(=]

| T T T I O I R

=] L

[) B FLRR) e S L

[l =

o Dy

[¥ e

[}

00000
00000
00000
00000
000000
00000
.834308
00000
00000
00000
00000
000000
00000
.006661
00000
00000
00000
00000
00000
00000
. 000000
00000
000000
00000
00000
00000
00000
. 000000
00000
000000
00000
00000
00000
00000
. 000000
00000

L)

I . TR

S59/100
95/100
89,/100
0/100
£/100
847100
277100
0/100
9c/100
917100
517100
0/100
0/100
0/100
327100
0/100
837100
85/100
457100
0/100
527100
0/100
417100
0/100
0/100
&B/100
0/100
0/100
367100
0/100
817100

L)

I . TR

Frequency
BlockFreguency
CumulativeSums
CumulativeSums

Runs

LongestRun

Rank

FFT
HonCverlappingTemplate
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOverlappingTemplate
HonOwerlappingTemplats
HonOverlappingTemplate
HonOwerlappingTemplats
HonCverlappingTemplate
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOverlappingTemplate
HonOwerlappingTemplats
HonCverlappinglemplate
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOverlappingTemplate
HonOwerlappingTemplats
HonCverlappinglemplate
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOwerlappingTemplats
HonOverlappingTemplate
HonOwerlappingTemplats

5 3 3 1 0
8 3 3 1 13
100 0 0O O O O O 0 O
9 1 0 0 0 0 0 ©
100 0 0O O O O O 0 ©
3 9 16 8 8 1 3 6 5
6 3 1 0 1 2 1
100 0 O O O O O O0 O
9 1 0o 1 0 0 1 o0 o0
100 0 O O O O O 0 O
100 0 O O O O O O0 O
100 0 O O O O O 0 O
97 0O 0o 1 0 0 0 ©0
_0 1B 10 7 9
58 5 5 8 3 3 3
100 0 O O O O O 0 O
100 0 O O O O O 0 O
100 0 O O O O O 0 O
818 B -1 10 8
100 0 O O O O O 0 O
8 6 1 1 0 3
38 11 1 -l B 4 3 5
3 L 9 9 9 10 5 8
9 1 0 O 0 0 1 0 o
9 1 1 0 0 0 0 ©0
66 L 3 0
55 14 3 4 3 5 3 5
6 8 5 0o 1
100 0 0O O O O O 0 ©
8 3 8 o0 1 1 1 1
.8 14 a 6 2 3
94 3 0O 0 0 0 ©
64 8 6 5
64 8 2 3 3 6
100 0 O O O O O 0 O
100 0 O O O O O 0 O
69 4 3 .0 3 5 1 3
100 0 O O O O O O0 O
200 0 O O O O O 0 0
99 3 0 0 0 0O 0 0 O
8 8 1 6 0o 1 0
94 1 0 1 10 0 1
10 0 0 0 0 0
9 1 0 0 0 0O 0 o0 o
94 1 1 0 O 1 0 o0
4 6 6 5 2 1 1
100 0 O O O O O 0 ©
10 0 O O O O O 0 O
100 0 O O O O O 0 O
100 0 O O O O O 0 ©
100 0 O O O O O 0 ©
100 0 O O O O O 0 O
5 14 9 -0 6 3 2 4 6
8 23 9 4 7 6 6 6
66 1 5 3 1 1 0
3 0 9 9 -3 b
700 0 O O O O O 0 O
100 0 O O O O O O O
100 0 O O O O O 0 ©
100 0 O O O O O 0 ©
5 10 L 3 5 4 1 I
3 1 9 3 5
100 0 O O O O O 0 O
100 0 0O O O O O 0 O
98 0 0 O 0 0 0 O
9 1 1 0 0 0
6 6 3 1 0 1 0
6 10 15 -3 L 5 6 10
9 0o 0 1 0 0 0 O

© 2022 Renesas Electronics Corporation

OO0 ooNOO poO0 OVl "Oooco0O0OO0OOF OO0 oWwWo

PP O OO0k OO PO O P PFPOFPFoOWN

[eNe)

N PO

o o

o oo OO0 O O

O 0D O0DO0OO0O OO0 O0ODO0O0OO0OO0O 0O 00D O0ODO0OO OO0 OO OO0 ©O O el elNelNeoNocleNelolNoNoleololeoNoNoloNeoleleololNoNoloNoNoNoRoNoNoNo N NoleNo)

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.045675
.000000
.000000
.000000
.000000
.005 6
.000000
.000000
.000000
.003996
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

.000000

Ji
Jl

Jl

J

Ji
Ji
Jl
Jl
Ji
Jl

Jl

Jl
Jl

5 /100
3 /100
0/100
1 /100
0/100
85/100
-1 00
0100
1.1100
0/100
0100
0100
100
9.1 00
9/100
0/100
1/100
0/100
9 /100
0/100
60/1 00
88/1 00
96/100
6/1 00
100
51/1 00
637100
-1 00
0/100
457100
0/100
1 /100
5- /1 00

65/1 00

0/100
0/100
497100
0/100
/100

/100
_6/100
-1./100

/1 0
5/100
13/100
35/1 00
0/100
0/1 0
0/100
0/100
0/1 00
0/100
8.1 00
8 /100
65/1 00
9 /100
0/100
0/100
0/1 00
0/1 00
8 /10
8.1 00
0/1 00
0/100
L /100
9/1 0
35/100
9 /100
1100

=

Ji
Jl
1]
m
m

Jl

nOverla pn di'emplate
nOverla pn g:enplate
nOverléym d:'emplate
nOverla p.: di'emplate
nOverlapn g:enplate
nOverla pn d:'emplate
nOverla mn g:emplate
nOverla in di'emplate
nOverla pn di'emplate
nOverla p.! gTenplate
nOverla in di'emplate
nOverlap.n g:enplate
nOverla p.. gTenplate
nOverla pn d:'emplate
nOverla pn g:enplate
nOverla ph d:'emplate
nOverla p.i di'emplate
nOverla pn g:enplate
nOverla pn d!'emplate
nOverla pn g:emplate
nOverla pin di'emplate
nOverléﬁm d:'emplate
nOverléy“m gTenplate
nOverla pn d:'emplate
nOverla p..n g:enplate
nOverla p.. gTenplate
nOverla pn di'emplate
nOverla:pu; emplate
nOverla pin di'emplate
nOverla p.: di'emplate
nOverlapn g:enplate
nOverla pn d:'emplate
nOverla pn g:emplate
nOverla pn dg:'emplate

erla pir di'emplate
erlapping:ernplate

erlapping':'ernplate

n. erla ph dJd'emplate
nOverlapping:ernplate
nOverlapoind'emplate
erlapp..:.ng:ernplate
nOverlapp:! gTemplate
erlampind'emplate
n. erla phr g:emplate
nOverlapp: gTemplate
nOverlapping:renplate
erlapping':'ernplate
n. erla i d'emplate
nOverlapoind'emplate
erlapping':'ernplate
n erlapp..:.ng:emplate
nOverlapoind'emplate
erlapoi! g:emplate
n. erla pr d'emplate
nOverlapp! gTemplate
n erlapping:ernplate
n. erla pn dgl'emplate
nOverlapp:i d:'emplate

erlapping':'ernplate
erlapping':'ernplate

n. erlapp..:.ngTemplate
nOverlapoind'emplate
erlapp.:.ng:ernplate
nOverlapp! gTemplate
nOverlapoind'emplate
erla pii gt mplate
erla pn d'emplate
erlapping:emplate

erlapping':'ernplate

LENESAS

100

© 2022 Renesas Electronics Corporation

[=
S OO mo Do OO OO OO

N

1'9

21

oo

o Qo © o o

o

ON OO OO VWO OO

ORr Rk JO © ogg oo O o WO

OO N NO YU WO gy © Do Ul o

OO OO wWwoe oo

oo O o mw o ©

PR OO OO OO Ok Ol 010 <2 o

o

w o o o oo w

o o oo

U o w o o

~N OO O O 0O O O

=

MO (OO (WO JTOSONODNOR ORW WO o cor oo o

o o

o @ oo = o o O ©o00 oo O o

O >

w o

B o N o o w

w o o o

o o o

—

O 9O oo T O o 0O

o o

co o oo

T oo oo NO O O

N OO S op oo oMNO -

O R O N O Ok =l]

DO O OO OO OO OO OO OO OO0 OO OO OO0 O -

O OO0 OO0 OO 9O O

.000000 ™
.000000 ™
.000000 "™
.000000 "™
00 o0 ™
.000000 ™
.000000 "
.000000 "™
.000000 "™

0

.000000

.000000

.000000 ™
.000000 "™

.000000 ™

.000000 "™
.000000 "
.000000 ™
.000000 "™
.000000 "

.000000 "™
.000000 "™

00 00 ™
.000000 "™
.000000

.000000 "™
.000000 "™
.000000 ™
.00009 "
. 00 00 "
.000000 ™
.000000 ™
.000000 "
.000000 "™
.000000 ™
.000000 "™
.000000 "™
.000000

.000000 "™
.000000 ™
.000000 "™
.000 .14

1./100
0/100
0 /100

80 /100

/10
0 /100
3/100
- 1100

3/100
y /100

3./100
90/1 00
0/100
0/100
0i 00
85 /100
4./100
0/ 100
- /100
0/100
86 /100
- /100
56/1 0
/100
46/100
0 /100
66 /100
) /100
9 /100
3/10
0/ 100
0 /100
89 /100
0 /100
55/100
45 /100
4 /100
0/100
. /100
86/100
0 /100
9 /100

ZzZzZzZz=Z2zZ2Z2Z2zZ2Z2 2222 zZz=zzZz=zZzzz2z=ZZzzzZ2Z2zZz=z2=2=2

Zzzzzz=zz22=

nOver lapping:em\) ate
n erlaping:eml) ate
nOver la.ping:eml)l ate
nOverla.ping:em!)l ate
nOver la. ping'Eemplate
nOverla.ping:eml)l ate
nOver la.p..ng: eml)l ate
nOver la.pingEem!)l ate
nOverla.ping:eml)l ate
nOver la. ping:em) ate
nOver lapping: em) ate
nOverla.ping'eml)l ate
nOver la_ping emplate
nOver lapping:emb)l ate
n e la_ping em) ate
nOver la_ping em!)late
nOverla_ping em!i)l ate
nOver la_pingEem)l ate
nOver la_ping emblate
nOver la_p..ng: eml) ate
nOverla_ping'Eeml)late
nOverla_ping: eml)l ate
nOverla_ping' emplate
nOverlapping:eml)l ate
nOver la_ping' eml)l ate
nOver la_ping eml)late
nOver lapping:eml)l ate
n e la_ping em) ate
nOverla_ping: eml)l ate
nOver la_ping' em!)l ate
nOver la_pingEem!)l ate
nOver la_ping eml) ate
er la_p..ng:emblate
nOver la_pingEeml) ate
nOverla_ping: em!)l ate
nOver lapp ..ng eml) ate
nOverlapping:em!)l ate
n erla_p.ngemate
nOver la_ping eml) ate
nOverlapping:eml) ate
nOver la_ping eml)l ate
nOver la_ping emi)late

;rﬁ)
2
h
7

85 2 1 0 2 0 0 0 0 0 0.000000 157100 * NonCwverlappingTemplate
73 3 5 3 2 4 0 1 2 2 0.000000 = 487100 * HNHonOverlappingTemplate
G3 3 2 0 1 0 1 a 0 0 0.000000 * 217100 * NeonCwerlappingTemplate
15 12 11 17 12 4] 3] 6 0.07571% 99/100 HonCwerlappingTemplate
S5 3 1 0 1] 0 0 1] 1 0 0.000000 = 7/100 % HeonOwerlappingTemplate
g4 & 4 1 1 0 3 1 0 0 0.000000 = 247100 * HNHonOverlappingTemplate
100 1] 0 0 1] 0 0 1] 0 0 0.000000 = 3/100 * HeonOwerlappingTemplate
100 0 0 0 0 0 I 0 0 0 0.000000 4/100 * HNeonOverlappingIemplate
74 & & 5 2 2 2 1 1 1 0.000000 = 357100 * HNHonOverlappingTemplate
gg 1 1 4 1 1 1 2 0 1 0.000000 * 277100 * OwerlappingTemplate
100 0 0 0 0 0 0 0 0 0 0.000000 07100 * Universal
100 1] 0 0 1] 0 0 1] 0 0 0.000000 = 0100 % ApproximateEntropy

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 0 0 0 0 0 0 0 0 0 ———— ————— RBandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursions

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 0 0 0 0 0 0 0 0 0 ———— ————— RBandomExcursionsVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 0 0 0 0 0 0 0 0 0 ———— ————— RBandomExcursionsVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 a 0 0 a 0 0 a 0 0 —_——— —————— RandomExcursionsVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 0 0 0 0 0 0 0 0 0 ———— ————— RBandomExcursionsVariant

0 1] 0 0 1] 0 0 1] 0] _——— m————— RandomExcursionsvVariant

0 a 0 0 a 0 0 a 0 0 —_——— —————— RandomExcursionsVariant
100 0 0 0 0 0 0 0 0 0 0.000000 07100 * Serial

32 11 10 o 13 5 10 2 & 5 0.000000 927100 * Serial

13 7 1le& B 7 10 13 & 10 10 0.419021 95/100 LinsarComplexity

The minimum pass rate for sach statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sanple size = 100 binary ssgquences.

The minimum pass rate for the random excursion (variant) test is undefined.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentaticn.

© 2022 Renesas Electronics Corporation

LENESAS

Appendix B: NIST SP 800-22 test results for whitened output

For testing methodology and interpretation of results, see the “Test results” section.

F-VALLUE

FROPORTION

Frequency
BlockFrequency
CummlativeSums
CummlativeSums

Runs

LongestRun

Rank

FFT
HonCwerlappingTemplate

generator
Cl1 <2 C3
9 g 11
11 14 T
7 11 11
10 7T 12
16 7 T
g 15 14
g 8 12
9 1z f
7 7 1lg
8§ 15 6
9 1 1
9 11 L
-0 10 10
13 1
-0 10 L
10 13 9
13 6
-4 6 10
7 15 10
1 9 9
14 1
4 8 L
-0 8 9
-0
12 L 6
-1 9
-3 9 10
6 11
9 10 15
10 14
L4
13 9
5 16
7 8 10
6 L L
4 10 o
-3 9
9 10 L
-0 13 10
11 5
-0 L 16
6 16
11 15 10
5 11 9
3 9 13
9 10 10
7
2
9
8
1 14 9
1
9 8 13
5 11 15
13 6
8 13 9

H OO

11

© * ©

14

13
13
10

11

15
15

13
13
10

11
10

10
13
10
13

1 <= ©

© © < ©

15

c7 s
8 g
11 9
5 13
12 13
1B 7
5 4
10 12
11 14
15 3
5 14
5 9
5 9
-0 15
9 9
8 15
9 9
-4
4 10
-0 13
-0 9
9 6
-4 16
-0 11
8 9
L
10
10
19
9
5 9
6 10
-3 10
-4 11
5 L
-1 8
16
-3
6 9
-3
6
-5
9
9
-1
-1
6
-0
6 8
-4 6
-5 9
8 15
-1 13
=0 10
-3 8
- §
8 L
9

© 2022 Renesas Electronics Corporation

0 o> oo oo

0.739%148
0.816537
0.514124
0.851383
0.062821
0.24%9284
0.996335
0.9%24076
0.2757049
0.350.85
0.616305
0.5955 49
0.9463 08

. 955835
9439

.090936
534 .46
.6993 13

[oNeNeNelNo)

63
.53 46
.38 2

[oNeNeNe)

o

..19021

). 63 =1}
1. 699313
I3 66918
)3 .345 .38

100/100
100/100
98/100
100/100
98,/100
55,/100
85,100
87,100
100/100
99fl 00
100f 00
99fl 00
9 /100
9 fl 00
9 fl 00
100f 00
9 /100
9 /100
99fl 00
9 /100
9 fl 00
100/1 00
99/1 00
9 fl 00
9 /100
100/1 00
99fl 00
100/1 00
99fl 00
100/1 00
100/1 00
100fl 00
9 fl O
100/1 00
99/1 00
99/1 00
99fl 00
961 o
100/1 00
9 fl 00
96fl 00
99fl 00
10 fl 0
9 /100
1 00fl 00
100fl 00
99/1 00
10 fl O
99/1 00
9 fl 00
99fl 00
100/1 00

/100

9 /100
9 /100
10 /10
9 /100
100/100

N

N
N
N

=

z

nOverla ping'en|late
n erlapp: g:en)late
nOverla pin giern|late
nOverla pin gi'en|late
erlapping:'en.)late
n erlappindi'en.late
nOverla pin g:em)late
e.rla:pin g"'en.)late
n erlappind:'emn.)late
nOverla pindgi'en)late
e.rla pin g“'em|late
n erlapp. g:emllate
nOverla pin dien)late
nOverla pindi'en)late
n erlappind:'en.)late
nOverla pin giemlate
e.rla ping em)late
erlapping:'en.)late
n erlappindi'en.late
nOverla pindi'en)late
e.rla pin g¢"'em.)late
n erlabping:eMJlate
nOverla pindi'en)late
n e.rla pn g"'en)late
nOverla pin dgfiemplate
nOoverla pin gEen|late
e.rla pin : er)late
erlapping:'en.)late
e.rla pn dlem)late
e.rla pn ¢ emplate
erlapping:'en.)late
n e.rla pn gremnlate
nOverla pingi'em|late
n e.rla th ¢"'en)late
nOverla pin diemplate
nOverla pindi'er)late
n erlapp: g:enllate
nOverla pingien)late
e.rla pn dlem)late
e.rla pn ¢ emplate
erlappindg:'eni.)late
e.rla pn g:em/late
e.rla pn g¢''em)late

NonCwverlappingTemplats
NonOverlappingTemplate

e.rla ngTemplate
.rla ng'emplate
.rla ng:'emplate
.rla ngTemplate

® O @

=4 §
5 6
=l 9
13
={ 0
8 10
8 8
8 1
-3 10
-
-6
9
=1
-5 11
7 10
8 9
9 9
8 13
5 5
=4 §
-3 10
- 14
=0 15
9
9 11
6 10
_ 9
7 L
8 9
9 13
8 10
=1 11
6 9
L
=l §
9 11
~ 5
=1 13
9 10
=1 13
8 L
3 10
14
8 11
8 13
=0 13
5
=1 16
13
9 11
= :4
9 6
_9 Y
g 1
10
10 10
10 10
14 13
12 L
12 8
10 9
] 8
2 10
=0 13
8 10
8 10

10

10

15

13

15
15

NelNe]

oo o w

10
11
10

15

=
O~ O = o~

1

3

o

o]

13
10

11

11

11

13

11

14
11
11
14
11

10

e}

© 2022 Renesas Electronics Corporation

10
10

15

13

13

13

10

) 15549

0.3.34538

% /100

13 014-26
0.334538

0.06_ 21
0.911.13

.65 933
0.0 519
0.574903
0..01.3¢
IR NE

103y 4-

99/100
y /100
y /100
10 /1 ©
99/100
100/100
100/100
100/100
100/100
9 /100
/100
99/100
9 /100
y /100
% /100
99/1 0
100/100
101 /100
/100
99 /100
100/100
99/1 0
y /100
¥ /100
100/100

100/100
100 /100

/100
% /10
99/100
99/100
100 /100
99 /100
100/100
100/100
99/100
/100
% /100
99/100
Bl
99/100
98/100
i /100
99/100
100 /100
100/100
99/1 0
100 /100
110 /100
100/100
99/100
100/100
100/100
% /100
% /100
9 /100
99 /100
100/100
99/100
9 /100
98/100
100/100
100/100
9 /100
99/1 0
99/100
99/100
1 /100
8 /100

e.rla

.rla
.rla
.rla
.rla
.rla
rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla_
.rla

®® ® ® ®D® D® D D® D DD DD DD DMD®D® D DD DD D

e.rla
e.rla.

.rla
.rla
rla
.rla
.rla
.rla
rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
rla
.rla
e.rla
rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
.rla
e.rla

® ® ® ® ® ® ® ® ® ® ® ® ® ® ® D @D

® ® ® D® D ® D DD pD®D® D D®D®D DD DD D D

nag'emplate
ng'emplate
ng'emplate
ng:'emplate
n g:'emplate
ng'emplate
ng'emplate
ng:'emplate
ng:'emplate
ngTemplate
ng'emplate
ng'emplate
ngTemplate
ng'emplate
ng'emplate
ng'emplate
ng'emplate
ng'emplate
ng'emplate
ng:'emplate
ng:'emplate
ngTemplate
ngTemplate

_ng'emplate

ng:'emplate
ngTemplate
na'emplate
ng'emplate

ng'emplate
ng emplate
ngTemplate
ng'emplate
ng'emplate
ng:'emplate
ngTemplate
ng'emplate
ng'emplate
ng'emplate
ng'emplate
ng'emplate
ngTemplate
ng'emplate
nd:'emplate
ngTemplate
ng:'emplate
ng:'emplate
ng:'emplate
nglemplate
ng'emplate
ng'emplate
ng:'emplate
ng'emplate
ng:'emplate
ngTemplate
ng'emplate
ng'emplate
ngTemplate
ng:'emplate
ng:'emplate
ngTemplate
n g:'emplate
ng:'emplate
ng'emplate
ng:'emplate
ng:'emplate
nd'emplate
n gTemplate
ng'emplate
ng:'emplate

NonOverlappingTemplate

0 5 5 _1
__0 ¢ 4 1
_3 7 L 9 8
9 .9 10 48 L
__1 18 75 _3 8 1 9
0 g L __0 g _3
9 1 = -0
o 10 10 - - 6 L -
10 8L 15 _0
12 H 9-° 9 6 5
0 5 13 6 10 13 -3
14 L L 8
1 11 10 5 6 13
0oL 10 8 11 1
10 g8 10 L
-3 14 9 6 6 9
1 6 13 9 6L 5
2 5 13-t 9 5
-3 1 J
6 9 10 -2 13 L
8 9 8_.0 1 1
B 9 L 7 15 8
13 13 5 3 L 3
g 10 L 9 9 L
_ 9 1 4 14 L _5
6 10 7 5L 9
g U 9 5 L g
SRR
9 6 19 _1 5 L 9
9 10 N T 8
_1 5 8 1 6
7 4 7 4 -
6§ 9 5 3 3 8
4 6 8 6 6
6 5 5 7
3 8 6 6 8
6 6 5 5
5 4 10 5
4 4 6 5
5 11 0 1
4 9 4 5 5 6
6 4 10 6 4 5 3
6 4 5 9 9 2
7 6 6--3 8 2
7 6 6 8 6 4
9 4 5 6 9 5 3
8 3 4 6 3
3 10 4 4 9 8
3 6 8
4 4 8 3
3 8 6 9 3 5 4
6 5 6 4 3 4
5 5 5 6 5 8
5 3 10 6
8 3 5 6 4 3 1
3 5 5 6 8
6 L 10 9 15 _
1L b
1 L 1 5 16 _0 1

© 2022 Renesas Electronics Corporation

10
10

11

10
11

11

1
10

11

10
14
11

oo Po oo

N OO A~ DW o OO0l © W

o o b~ OO

o ©

OO o ©

15

—

o w

(o]

;1w

U o oo

l,_.om

W o

oo

lool

]

B OUOWOoO R GWOUGWa N

— o R

o]

©

0. 39918
0.-36 10
0. 616305
0.616305
0. 39918
0.030 06
0. 51383
0.350.85
0. 36 10
0.015598
0.699313
0..190 1
0. 616305

0..9439_

99/1 00 erla ng:'emplate
9 /100 erla ng:empla.te
99/1 00 erla ng:'emplate
99/100 erla ng:emplate
9 /100 erla ng:'empla.te
9 100 erla ng:'emplate
100/100 erla ng:emplate
98 /100 erla ng:'empla.te
100/100 erla ng:empla.te
9 /100 erla ngTemplate
100/1 00 erla ng:'emplate
0 f1 0 erla ng:'t mplate
99/100 erla ngTemplate
99/100 erla. ng: emplate
9 100 erla ng:'emplate
9 /100 erla ng:'emplate
99/100 erla ng:emplate
100/1 00 erla ng:'empla.te
R erla ng:emplate
100/1 00 nOverla g ''emplate
99/1 00 nOverla pig "'emplate
9 100 nOverla p.y Template
100/1 00 nOverlap.i1 Template
100/1 00 n erla pig emplate
99/1 00 nOverla png "'emplate
100/1 00 nOverla p.r Template
9 /1 00 nOverla__plnq . empla.te
PP PP BOYS TR M empPAREATS
99/1 00 un..verss
101l 0 ApproximateEntropy
53/56 RandomExcursions
56/56 - ‘n.s
5/56 n.s
5./ 56 n.s
55/56 n.s
56/56 n.s
56/56 n.s
56/56 n.s
55/ 56 nsVariant
55/56 nsVariant
56/56 nsVar iant
56/56 n.sVariant
56/56 n.sVariant
56/56 n.sVariant
55/56 n.sVariant
55/56 nsVariant
55/56 n.sVariant
56/56 n.sVariant
56/56 nsVariant
55/56 n.sVariant
56/56 n.sVariant
56/56 nsVariant
56/56 nsVar iant
56/56 n.s Variant
55/56 n.sVariant
55/56) nsVariant
99/1 00 Seria_
99/1 00 Seria_
9 /100 Linea.C 1l lexity

LENESAS

T.e ninimlill p asy rate £ r each stati;:;tical te;:;t with the excepri n f the

rand m excumi 1 variant) test iy » proximatey = 96 f r a

mimp e size = 1 lnairy s equerce);.

The minimllil p as;; rate £ r the rand m excux;i n {variant) test

is @ ximately = 53 f r a sample .size = 56 bina:ry sequence;.

F r further guideline;:; c nstiruct a r babill y table ujin the WL E pr giraim

p:r vii ed in t.e addendum secti n f t.e d cumentati n.

© 2022 Renesas Electronics Corporation

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

