

© 2022 Renesas Electronics Corporation Page 1 of 8

AN-1139
Binary Sequence Detector

Authors: Ing. Alberto I. Leibovich & Ing. Pablo E. Leibovich

Date: November 14, 2016

Introduction

In baseband digital communication channels,

binary serial transmission is the most prevalent

way to share information between transmitters

and receivers. These serial channels are used in

networks where computers, embedded systems

and even IoT (Internet of Things) devices can be

connected via a number of standard protocol

implementations, such as TCP, UDP, RS232, etc.

In channels where binary data is sent one bit at a

time at high data rates, the binary transmission is

referred to as a stream and the carried

information is called a packet. The challenge of

this type of transmission is defining the start and

end of the transmission. In general, flags are

used to allow the receiver to identify the start and

end of the packet.

To achieve this objective, bit sequences are

defined to identify the beginning and ending of a

message and they are used to set or clear the

flags. Binary sequence detectors are used to

detect these sequences at the receiving end.

This application note shows how to implement a

design using the GreenPAK based on a state

machine. In this example, the pattern “101” gets

detected from a binary stream.

State Machine Design

In digital design, there are Combinational circuits

and Sequential circuits. The former operate using

only logic functions of the inputs, without any

dependency on previous states. Whereas, in the

latter category of circuits, the output at any stage

is dependent on the previous states, which means

that certain memory elements are involved in the

circuit.

That’s the case in binary sequence detectors as

well, where previous bits have to be used to

detect the desired sequence.

In Sequential circuit design, it is important to

define whether the output of the system depends

only on the present state, or if it also depends on

the current input. These two structural

possibilities are known respectively as Moore or

Mealy state machines. In Moore machines, the

output depends only on the present state and

doesn’t care about the current input. In Mealy

machines, the output depends both on the

present state and the current input. Moore

machines are safer to use since outputs do not

change asynchronously to a clock. This application

note uses Moore machines.

In this example, the pattern “101” is detected in a

binary stream (X is the input). When the

sequence has not yet been detected, the output

of the system will stay at a low level. When the

sequence gets detected, the output turns to high

until a 0 is found in the stream.

In figure 1, the Moore state diagram is shown.

State 0 (S0) is the first state. Here, the system

waits with 0 as output until the first 1 of the

sequence is detected. In that case, it goes to

state 1 (S1), where it stays until a 0 is received.

This is because the system can receive a stream

like “11111101”. When a 0 is detected, we reach

state 2 (S2). This is the final decision state. If a ‘0’

is detected here, it means that the sequence was

“100” (which wasn’t the desired pattern) so the

machine gets reset to state 0. If we detect a ‘1’

here, it means that the desired pattern was

received which sets the machine to state 3 (S3),

with a high level (1) at the output. The system

waits in state 3 until a ‘0’ is received.

© 2022 Renesas Electronics Corporation Page 2 of 8

Binary Sequence Detector

Logic Design

From the State Diagram shown in the previous

section the following transition table can be

obtained (See Table 1).

Actual

State
Next State Output

X = 0 X = 1

S0 S0 S1 0

S1 S2 S1 0

S2 S0 S3 0

S3 S0 S3 1

Table 1. Transition Table

It can be concluded that, because of the

implementation comprising 4 states, the design

will require 2 flip-flops. All of GreenPAK ICs have

D-type flip-flops, so if the selected GreenPak

doesn’t have the Asynchronous State Machine

(ASM) Module, then the implementation must

generate the functions for the flip-flops inputs.

The logic functions depend both on the stream

input and on the previous states, hence they are

functions of X and Q1/Q0 (The flip-flop outputs).

For the first flip-flop (Q0 output), the truth table

of the logic function must look like the one shown

in Table 2.

Figure 1. State Diagram

© 2022 Renesas Electronics Corporation Page 3 of 8

Binary Sequence Detector

Q1 Q0 X D0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Table 2. D0 Truth Table

For the second flip-flop (Q1 output), the truth

table of the logic function is shown in Table 3.

Q1 Q0 X D1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Table 3. D1 Truth Table

Finally, for the system output (Z), the truth table

of the logic function is shown in Table 4.

Q1 Q0 Z

0 0 0

0 1 0

1 0 0

1 1 1

Table 4. Z Truth Table

Implementation

We can implement GreenPAK desgin in various

ways depending on the resources available in the

particular GreenPAK version. We will explore

implementations using GreenPAK Flip-flops, as

well as the built-in ASM (Asynchronous State

Machine) available in some GreenPAK’s.

Flip – Flop based Implementation

In this case, 2 flip-flops and 3 lookup tables are

used. Figure 2 shows the the block diagram.

In the figure, it can be seen that the input (X) is

mapped to PIN 2, the clock input is mapped to

PIN 3 (which is also connected to the clock input

of the rising-edge-triggered flip-flops) and the

output is connected to PIN 8. PIN 2 and PIN 3 are

configured as Digital – In without a Schmitt

trigger and without a resistor. PIN 8 is used as an

output, with its Output Enable tied to VDD.

The logic function of the input of DFF0 is

implemented as a LUT2; its configuration is shown

in figure 3.

The logic function corresponding to the input of

DFF1 is impelemented as a LUT3, it is configured

as shown in figure 4.

© 2022 Renesas Electronics Corporation Page 4 of 8

Binary Sequence Detector

Figure 2. Flip-Flop based block diagram

Figure 3. LUT2 Configuration Figure 4. LUT3 Configuration

© 2022 Renesas Electronics Corporation Page 5 of 8

Binary Sequence Detector

Finally, the output logic function is implemented

using LUT0, because we only need 2 bits in our

input. The configuration can be seen in figure 5.

ASM based implementation

This design is based on the ASM (Asynchronous

State Machine) Module available in GreenPak5.

Because of the synchronous nature of the

implemented system, the asynchronous nature of

this module must be considered. The block

diagram is shown in figure 6.

In this figure, it can be seen that the input (X) is

mapped to PIN 4, the clock input is mapped to

PIN 3 and the output is connected to PIN 10. PIN

3 and PIN 4 are configured as Digital – In with

Schmitt trigger and without a resistor.

 Figure 5. LUT0 Configuration

Figure 6. ASM based block diagram

© 2022 Renesas Electronics Corporation Page 6 of 8

Binary Sequence Detector

PIN 10 is used as an output, with its Output

Enable tied to VDD.

It’s important to explain the presence of the D-

type flip-flops. Because of the level-sensitive and

active-high transition inputs of the ASM, flip-flops

with nReset input are used to obtain a high level

only when the desired transition has to be done.

Each flip-flop is reset when the corresponding

state is not active (hence the output is low).

When the corresponding state is active, the ASM

output turns to high and the flip-flop becomes

active.

A high level should be obtained at the output of

the FF only when there is a rising-edge on the

clock and the corresponding state of the input. To

achieve this, an inversion of the signal is done

with 2-bit LUT1. This helps in obtaining a high

level for the transitions where the input will be

low. With this scheme, the ASM is able to perform

with synchronous behavior.

Based on the state machine shown in figure 1, the

ASM is configured using the ASM Editor. The

outputs of the states are high only when the

machine is on the corresponding state. This can

be seen in figure 7.

In figures 8 and 9, the 2-bit LUT1 and flip-flop

configurations are shown.

DFF3 output should be 1 only when a rising edge

is detected, X is high and State 0 is active; hence

the transition from State 0 to State 1 is done only

when these conditions are met.

DFF4 output is high when the corresponding edge

is detected, X is 0 (the inverted signal is high)

and State 1 is active. This output handles the

transition from State 1 to State 2.

Figure 7. ASM Configuration

Figure 8. 2-bit LUT1 Configuration

© 2022 Renesas Electronics Corporation Page 7 of 8

Binary Sequence Detector

DFF5 controls the transition from State 2 to State

0, so it’s configured to set its output high when a

rising edge of clock is detected with a 0 in X and

when state 2 active. DFF6 is the complement of

DFFX. It controls the transition from State 2 to

State 3, so its output is high when a rising edge is

detected with a 1 in X and when state 2 active.

Finally, DFF7 handles the transition from State 3

to State 0. It’s high only when a rising edge is

detected and when X is 0 with State 3 being

active.

The output of this design is connected directly to

the output of State 3 in the ASM because it must

be high only when the state machine is on State

3.

Test and Conclusion

Both designs presented in this application note

were tested with a logic analyzer while capturing

the inputs and the output.

Figures 10 and 11 show the signals for the first

implementation. In the figures, channel 1 is the

clock, channel 2 is the input and channel 3 is the

output

Figure 9. DFF Configuration

Figure 10. Wrong Sequence - FF based implementation

Figure 11. Right Sequence - FF based implementation

© 2022 Renesas Electronics Corporation Page 8 of 8

Binary Sequence Detector

In figure 10, the “101” sequence is not present at

the input so the output is always 0. In figure 11,

the “101” sequence gets detected (it starts at the

second rising edge of clock) and the output is

turned to high until a low level at the input is

detected.

Figures 12 and 13 show the signals for the second

implementation. Again, channel 1 is the clock,

channel 2 is the input and channel 3 is the output.

In figure 12, the “101” sequence is not present at

the input so the output stays at 0. In figure 13,

the “101” sequence gets detected (it starts at the

fourth rising edge of clock) and the output turns

to high until a low level at the input is detected.

Conclusion

In this application note, two versions of a binary

sequence detector were implemented using the

capabilities of the GreenPAK ICs. In the first

implementation, flip-flops and LUTs were used,

while in the second one, an ASM, Flip-Flops and

LUTs were used.

It’s important to note the synchronous use of the

ASM with the additional flip-flops. If the binary

sequence is short (as it is in this example), a Flip-

Flop based implementation can be simpler than

one based on the ASM. For more complex

designs, using the ASM may be more efficient.

Figure 12. Wrong Sequence - ASM based implementation

Figure 13. Right Sequence – ASM based implementation

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

