LENESANS

-
%
1>
>
<
Q
S
-
D

CubeSuite+ VV2.01.00

Integrated Development Environment
User's Manual: RL78,78KOR Coding

Target Device

RL78 Family
78K0OR Microcontroller

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.00 Dec 2013

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

How to Use This Manual

This manual describes the role of the CubeSuite+ integrated development environment for developing applications and
systems for RL78 family, 78BKOR microcontrollers, and provides an outline of its features.

CubeSuite+ is an integrated development environment (IDE) for RL78 family, 7BKOR microcontrollers, integrating the
necessary tools for the development phase of software (e.g. design, implementation, and debugging) into a single plat-
form.

By providing an integrated environment, it is possible to perform all development using just this product, without the
need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the
CubeSuite+ and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the
CubeSuite+ to use for reference in developing the hardware or software of systems
using these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS
CHAPTER 6 FUNCTION SPECIFICATIONS

CHAPTER 7 STARTUP

CHAPTER 8 ROMIZATION

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER
CHAPTER 10 CAUTIONS

APPENDIX A ROMIZATION PROCESSOR

APPENDIX B WINDOW REFERENCE

APPENDIX C INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity,
logic circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numeric representation: Decimal ... XXXX

Hexadecimal ... OXXXXX

Related Documents The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Document Name Document No.
CubeSuite+ Start R20UT2682E
Integrated Development Environment RX Design R20UT2683E
User's Manual

V850 Design R20UT2134E
R8C Design R20UT2135E
RL78 Design R20UT2684E
78KOR Design R20UT2137E
78K0 Design R20UT2138E
RH850 Coding R20UT2584E
RX Coding R20UT2470E
V850 Coding R20UTO0553E
Coding for CX Compiler R20UT2659E
R8C Coding R20UTO576E
RL78,78KOR Coding This manual

78K0 Coding R20UT2141E
RH850 Build R20UT2585E
RX Build R20UT2472E
V850 Build R20UTO557E
Build for CX Compiler R20UT2142E
R8C Build R20UTO575E
RL78,78KOR Build R20UT2623E
78K0 Build R20UT0783E
RH850 Debug R20UT2685E
RX Debug R20UT2702E
V850 Debug R20UT2446E
R8C Debug R20UTO770E
RL78 Debug R20UT2445E
78KOR Debug R20UTO0732E
78K0 Debug R20UTO731E
Analysis R20UT2686E
Message R20UT2687E

Caution The related documents listed above are subject to change without
notice. Be sure to use the latest edition of each document when
designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 10

1.1 Overview ... 10

1.1.1 Ccompiler and assembler ... 10

1.1.2 Position of C compiler and assembler ... 13

1.1.3 Processing flow ... 14

1.1.4 Basic structure of C source program ... 15
1.2 Features ... 17

1.2.1 Features of C compiler ... 17

1.2.2 Features of assembler ... 18

1.2.3 Limits ... 18

CHAPTER 2 FUNCTIONS ... 21

2.1 Variables (Assembly Language) ... 21
2.1.1 Defining variables with no initial values ... 21
2.1.2 Defining const constants with initial values ... 21
2.1.3 Defining 1-bit variables ... 21
2.1.4 1/8 bit access of variable ... 22

2.1.5 Allocating to sections accessible with short instructions ...

2.2 Variables (C Language) ... 24
2.2.1 Allocating data only of reference in ROM ... 24

2.2.2 Allocating to sections accessible with short instructions ...

2.2.3 Allocating in near areas ... 25

2.2.4 Allocating in far areas ... 25

2.2.5 Allocating addresses directly ... 26

2.2.6 Defining 1-bit variables ... 27

2.2.7 Empty area of the structure is stuffed ... 27
2.3 Functions ... 28

2.3.1 Allocating to sections accessible with short instructions ...

2.3.2 Allocating in near areas ... 28
2.3.3 Allocating in far areas ... 29
2.3.4 Allocating addresses directly ... 29
2.3.5 Inline expansion of function ... 30
2.3.6 Embedding assembly instructions ... 30
2.4 Using Microcontroller Functions ... 31
2.4.1 Accessing special function registers (SFR) from C ... 31
2.4.2 Interrupt functions in C ... 32
2.4.3 Using CPU control instructions in C ... 33
2.5 Startup Routine ... 35

2.5.1 Deleting unused functions and areas from startup routine ...

2.5.2 Allocating stack area ... 36
2.5.3 Initializing RAM ... 37

23

24

28

35

2.6 Link Directives ... 38
2.6.1 Partitioning default areas ... 38
2.6.2 Specifying section allocation ... 38
2.7 Reducing Code Size ... 39

2.7.1 Using extended functions to generate efficient object code ...

2.7.2 Calculating complex expressions ... 42
2.8 Compiler and Assembler Mutual References ... 43

2.8.1 Mutually referencing variables ... 43

2.8.2 Mutually referencing functions ... 45

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 47

3.1 Basic Language Specifications ... 47
3.1.1 Processing system dependent items ... 47
3.1.2 Internal representation and value area of data ... 58
3.1.3 Memory ... 62
3.2 Extended Language Specifications ... 63
3.2.1 Macro names ... 64
3.2.2 Reserved words ... 64
3.2.3 #pragma directives ... 65
3.2.4 Using extended functions ... 67
3.2.5 C source modifications ... 179
3.3 Function Call Interface ... 180
3.3.1 Return values ... 180
3.3.2 Ordinary function call interface ... 180
3.4 List of saddr Area Labels ... 184
3.5 List of Segment Names ... 185
3.5.1 List of segment names ... 186
3.5.2 Segment allocation ... 188
3.5.3 Csource example ... 188
3.5.4 Example of output assembler module ... 189

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 198

4.1 Description Methods of Source Program ... 198
4.1.1 Basic configuration ... 198
4.1.2 Description method ... 204
4.1.3 Expressions and operators ... 214
4.1.4 Arithmetic operators ... 217
4.1.5 Logic operators ... 225
4.1.6 Relational operators ... 230
4.1.7 Shift operators ... 237
4.1.8 Byte separation operators ... 240
4.1.9 Word separation operators ... 243
4.1.10 Special operators ... 248
4.1.11 Other operator ... 252
4.1.12 Restrictions on operations ... 254
4.1.13 Absolute expression definitions ... 258
4.1.14 Bit position specifier ... 259

39

4.1.15 Identifiers ... 260

4.1.16 Operand characteristics ... 261
4.2 Directives ... 269

4.2.1 Overview ... 269

4.2.2 Segment definition directives ... 270

4.2.3 Symbol definition directives ... 288

4.2.4 Memory initialization, area reservation directives ... 295

4.2.5 Linkage directives ... 305

4.2.6 Object module name declaration directive ...

312

4.2.7 Branch instruction automatic selection directives ... 314

4.2.8 Macro directives ... 319

4.2.9 Assemble termination directive ... 334
4.3 Control Instructions ... 336

4.3.1 Overview ... 336

4.3.2 Assemble target type specification control instruction ... 337

4.3.3 Debug information output control instructions ...

339

4.3.4 Cross-reference list output specification control instructions ... 344

4.3.5 Include control instruction ... 349
4.3.6 Assembly list control instructions ... 353

4.3.7 Conditional assembly control instructions ...

4.3.8 Kanji code control instruction ... 402

376

4.3.9 RAM area allocation-specification control instruction ... 404

4.3.10 Other control instructions ... 406
4.4 Macros ... 407

4.4.1 Overview ... 407

4.4.2 Using macros ... 407

4.4.3 Symbols in macros ... 410

4.4.4 Macro operators ... 412
4.5 Reserved Words ... 413
4.6 Instructions ... 414

4.6.1 Differences from 78K0 microcontrollers ... 414

4.6.2 Memory space ... 416

4.6.3 Registers ... 419

4.6.4 Addressing ... 424

4.6.5 Instruction set ... 434

4.6.6 Explanation of instructions ... 466
4.6.7 Pipeline ... 589

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS ...

5.1 Coding Method ... 592
5.1.1 Link directives ... 592

5.2 Reserved Words ... 597

5.3 Coding Examples ... 597
5.3.1 When specifying link directive ... 597
5.3.2 When using the compiler ... 598

CHAPTER 6 FUNCTION SPECIFICATIONS ... 600

592

6.1 Distribution Libraries ... 600
6.1.1 Standard library ... 601
6.1.2 Runtime library ... 606

6.2 Interface Between Functions ... 614
6.2.1 Arguments ... 614
6.2.2 Return values ... 614

6.2.3 Saving registers used by separate libraries ...

6.3 Header Files ... 615
6.3.1 ctype.h ... 615
6.3.2 setjimp.h ... 616
6.3.3 stdarg.h ... 616
6.3.4 stdio.h ... 616
6.3.5 stdlib.h ... 616
6.3.6 string.h ... 617
6.3.7 error.h ... 617
6.3.8 errno.h ... 617
6.3.9 limits.h ... 618
6.3.10 stddef.h ... 618
6.3.11 math.h ... 619
6.3.12 float.h ... 619
6.3.13 assert.h ... 621

6.4 Re-entrant ... 622

614

6.5 Use of Arguments/Return Values Suitable for Standard Library ... 622

6.6 Character/String Functions ... 624

6.7 Program Control Functions ... 644

6.8 Special Functions ... 647

6.9 Input and Output Functions ... 652

6.10 Utility Functions ... 670

6.11 String and Memory Functions ... 702

6.12 Mathematical Functions ... 725

6.13 Diagnostic Function ... 772

6.14 Library Stack Consumption List ... 774
6.14.1 Standard libraries ... 774
6.14.2 Runtime libraries ... 779

6.15 List of Maximum Interrupt Disabled Times for Libraries ... 786

6.16 Batch Files for Update of Startup Routine and Library Functions ...

6.16.1 Using batch files ... 790

CHAPTER 7 STARTUP ... 794

7.1 Function Overview ... 794

7.2 File Organization ... 794
7.2.1 "bat" folder contents ... 795
7.2.2 "lib" folder contents ... 796
7.2.3 "src" folder contents ... 798

7.3 Batch Files ... 799

7.3.1 Batch files for creating startup routines ...

7.4 Startup Routines ... 800
7.4.1 Preprocessing ... 801

799

789

7.4.2 Initial settings ... 803
7.4.3 main function startup and postprocessing ... 807
7.5 ROMization Processing in Startup Routine for Flash Area ... 809
7.6 Coding Examples ... 810
7.6.1 Essential points about revising startup routine ... 810
7.6.2 When using RTOS ... 811

CHAPTER 8 ROMIZATION ... 812

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER ... 813

9.1 Accessing Arguments and Automatic Variables ... 813
9.2 Storing Return Values ... 813
9.3 Calling C Language Routines from Assembly Language ... 813
9.3.1 Calling C language routine from assembly language program ... 813
9.4 Calling Assembly Language Routines from C Language ... 815
9.4.1 Clanguage routine calling procedure ... 815
9.4.2 Saving data from assembly language routine and returning ... 816
9.5 Referencing Variables Defined in C Language from Assembly Language ... 818
9.6 Referencing Variables Definted in Assembly Language from C Language ... 819

9.7 Points of Caution for Calling Between C Language Routines and Assembler Functions ...

CHAPTER 10 CAUTIONS ... 821

APPENDIX A ROMIZATION PROCESSOR ... 839

A.1 Overview ... 839
A.2 Procedure for Creating ROMization Load Module ... 840

APPENDIX B WINDOW REFERENCE ... 841

B.1 Description ... 841

APPENDIX C INDEX ... 861

819

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

This chapter explains the roles of the RL78,78KOR C compiler package (called "CA78K0R") in system development,

and provides an outline of their functions.

1.1 Overview

RL78,78KOR C compiler is a translation program that converts source programs written in traditional C or ANSI C into
machine language. RL78,78KOR C compiler can produce either object files or assembly source files.
RL78,78K0OR assembler is a language processing program that converts source programs written in assembly lan-

guage into machine language.

1.1.1 C compiler and assembler

(1) Clanguage and assembly language
A C compiler takes C source modules as input and produces either object modules or assembly source modules

as output. This means that you can develop your programs in C and use assembly language as required to make

fine adjustments.
An assembler takes assembly source modules as input and produces object modules as output.
The following figure shows the flow of program development with a C compiler and an assembiler.

Figure 1-1. Flow of Development with C Compiler and Assembler

Program written in C Binary program

> Translation program |

(C source modules) (C compiler) (Object modules)
Program written in assembly language
(assembler source modules)
Binary program
Translation program >

(Assembler) (Object modules)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 10 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

(2) Relocatable assemblers
The machine language translated from assembly source files by the assembler is written to the memory of the
microcontroller before use. To do this, the location in memory where each machine language instruction is to be
written must already be determined.
Therefore, information is added to the machine language assembled by the assembler, stating where in memory
each machine language instruction is to be located.
Depending on the method used to allocate machine language instructions to memory addresses, assemblers can
be broadly divided into absolute assemblers and relocatable assemblers. RA78KOR is a relocatable assembler.
- Absolute assembler
An absolute assembler allocates machine language instructions assembled from the assembly language at
absolute addresses.
- Relocatable assembler

In a relocatable assembler, the addresses determined for the machine language instructions assembled from

the assembly language are tentative

Absolute addresses are determined subsequently by the linker.
In the past, when programs were created with absolute assemblers, programmers normally had to write the entire
program as a single large block. However, when all the components of a large program are contained in a single
block, the program becomes complicated, making it harder to understand and maintain.
To avoid this, large programs are now usually developed by dividing them into several subprograms, called
modules, one for each functional unit. This programming technique is called modular programming.
Relocatable assemblers are well suited for modular programming, which has the following advantages:

(a) Greater development efficiency
It is difficult to write a large program all at the same time. In such cases, dividing the program into modules for
individual functions enables two or more programmers to develop subprograms in parallel to increase
development efficiency.
Moreover, when bugs are found, only the module that contained the bugs needs to be corrected and
assembled again, instead of needing to assemble the entire program. This shortens debugging time.

Figure 1-2. Division into Modules

Program consisting of single module Program consisting of multiple modules
Module
Bug Module Bug
Module
found! found!

Entire program)
XXX XXX Only this module
must be assembled

) Module needs to be
agam assembled again
Module
R20UT2774EJ0100 Rev.1.00 RENESAS Page 11 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

(b) Utilization of resources
Reliable and versatile modules from previous development efforts are software resources that can be reused
in new programs. As you accumulate more of these resources, you save time and labor in developing new
programs.

Figure 1-3. Resource Utilization

Module A | | Module B | | Module C | | Module D

New

Module

» Module A

New

Module

Module D

A

New program

R20UT2774EJ0100 Rev.1.00 RENESAS Page 12 of 872
Dec 01, 2013

CubeSuite+ vV2.01.00

CHAPTER 1 GENERAL
11.2

Position of C compiler and assembler

The following figure shows the position of compiler and assembler in the flow of product development

Figure 1-4. Flow of Microcontroller Application Product Development

Product planning

System design
Hardware development

Software development

v

A

Logic design

Software design

v

A4
v

Manufacturing

Program coding

v

Position of

Compilation /_ CA78KOR
Testing and assembly

NO
NO
YES
YES
Debugging
NO
YES
v
System evaluation
v
Marketing
R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 13 of 872

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

1.1.3 Processing flow

This section explains the flow of processing in program development.

The C compiler compiles C source module files and generates object files or assembly source module files. By hand

optimizing the generated assembly source module files, you can create more efficient object module files. This is useful

when the program must perform high-speed processing and when compact modules are desirable.
The following programs are involved in the processing flow.

Table 1-1. Programs Involved in Processing Flow

Program Function
Compiler Compiles C source module files
Assemble Assembles assembly language source module files
Linker Links object module files

Determines addresses of relocatable segments

Object converter Converts to HEX-format object module files
Librarian Creates library files
List converter Generates absolute assemble list files

Figure 1-5. Flow of Compiler and Assembler Processing
C source files

Include files

| C compiler |4—8
Assembler source files Assembler source files /

Assembler |

a Object module files

Librarian

Library files

Assembile list files 8

v | ROMization processor |

| List converter | ¢

Absolute 8
assemble list
| Object converter |

HEX-format object module files 8 /

ROMization object file

R20UT2774EJ0100 Rev.1.00 ENESAS
Dec 01, 2013

Page 14 of 872

CubeSuite+ vV2.01.00

CHAPTER 1 GENERAL

114

Basic structure of C source program

A program in C is a collection of functions. A function is an independent unit of code that performs a specific action.
Every C language program must have a function "main" which becomes the main routine of the program and is the first

function to be called when execution begins.

Each function consists of a header part, which defines its function name and arguments, and a body part, which
consists of declarations and statements. The format of C programs is shown below.

Definitions of variables/constants

void main (arguments) {
statement 1 ;

statement 2 ;

functionl (arguments) ;
function2 (arguments) ;
functionl (arguments) {
statement 1 ;
statement 2 ;
function2 (arguments) {

statement 1 ;

statement 2 ;

Definitions of data items, variables,

Header of the function main

Body of the function main

functionl

—— function2

and macros

An actual C source program looks like this.

#define TRUE 1 /* #define xxx xxx Preprocessor directive (macro definition) */
#define FALSE 0 /* #define xxx xxx Preprocessor directive (macro definition) */
#define SIZE 200 /* #define xxx xxx Preprocessor directive (macro definition) */
void displaystring (char * , int) ; /* xxXx XxXxX (XXX, XXX)
Function prototype declaration */
void displaychar (char) ; /* xxx xXxX (XXX)
Function prototype declaration */
char mark [SIZE + 1] ; /* char xxx
Type declaration, External definition */
/* xx[xx] Operator */
void main (void) {
int i, prime, k, count ; /* int xxx Type declaration */
count = 0 ; /* XX = XX Operator */
R20UT2774EJ0100 Rev.1.00 RENESAS Page 15 of 872

Dec 01, 2013

CubeSuite+ vV2.01.00

void

void

for (i =0 ; 1 <= SIZE ; i ++) /* for (xx ; XX ; XX) xxXx ; Control structure */

mark [i] = TRUE ;

for (1 =0 ; i <= SIZE ; 1 ++) {

if (mark[i]) {

prime = i + 1 + 3 ;

/*
/*

XXX = XXX + XXX + XXX Operator */

displaystring ("%$6d", prime) ; xxx (xxXx) ; Operator */

count ++ ;

if ((count%8) == 0)
‘\n') ;

for ((k = 1 + prime ; k

displaychar (/* if

+=

(XxxXx) xxXX ; Control structure */

<= SIZE ; k prime)

mark [k] = FALSE ;

}

displaystring ("\n%d primes found.", count) ; /* xxx (XXX) ; Operator */

displaystring (char *s, int i) {
int o

char *ss ;

displaychar (char c) {

char d ;

D

)

@)

(4)

Declaration of type and storage class
Declares the data type and storage class of an object identifier.

Operator or expression
Performs arithmetic, logical, or assignment operations.

Control structure

Specifies the flow of the program. C has a number of instructions for different types of control, such as conditional
control, iteration, and branching.

Structure or union
Declares a structure or union. A structure is a data object that contains several subobjects or members that may
have different types. A union is like a structure, but allows two or more variables to share the same memory.

R20UT2774EJ0100 Rev.1.00

RENESAS

Dec 01, 2013

CHAPTER 1 GENERAL

Page 16 of 872

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

(5) External definition
Declares a function or external object. A function is an independent unit of code that performs a specific action. A
C program is a collection of functions.

(6) Preprocessor directive
An instruction to the compiler. The #define directive instructs the compiler to replace any instances of the first
operand that appear in the program with the second operand.

(7) Declaration of function prototype
Declares the types of the return value and arguments of a function.

1.2 Features

This section explains the features of the CA78KOR.

121 Features of C compiler

(1) Conformsto ANSIC
The compiler conforms to the ANSI standard for the C language.

Remark ANSI: American National Standards Institute

(2) Designed for efficient use of ROM and RAM memory
External variables can be allocated to short direct addressing memory. Function arguments and auto variables can
be allocated to short direct addressing memory or registers.
Bit instructions enable definitions and operations on data in units of 1 bit.

(3) Interrupt control features
Peripheral hardware of RL78,78K0R can be controlled directly from C.
Interrupt handlers can be written directly in C.

(4) Supports extended functions of RL78,78K0R
RL78,78KOR C compiler supports the following extended functions, which are not defined in the ANSI standard.
Some of these functions allow special-purpose registers to be accessed in C, while others enable more compact
object code and higher execution speed.
The following table lists extended functions that reduce the size of object code and improve execution speed.

Table 1-2. Methods to Improve Execution Speed

Method Extended Function
Allocate variables to registers Register variables
Allocate variables to the saddr area sreg/__sreg
Use sfr names. sfr area
Embed assembly language statements in C source programs. ASM statements
Accessing the saddr or sfr area can be made on a bit-by-bit basis. bit type variables, boolean/__boolean type
variables
Specify bit fields using the unsigned char type. Bit field declarations
The code to multiply can be directly output with inline expansion. Multiplication function
R20UT2774EJ0100 Rev.1.00 RENESAS Page 17 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

Method Extended Function
The code to rotate can be directly output with inline expansion. Rotation functions
Specific data and instructions can be directly embedded in the code Data insertion function
area.
memcpy and memset are directly expanded inline and output. Memory function

See "3.2 Extended Language Specifications" for detailed information about the extended functions of the
RL78,78KOR C compiler.

1.2.2 Features of assembler

The RL78,78K0OR assembler has the following features.

(1) Macro function
When the same group of instructions occurs in a source program over and over again, you can define a macro to
give a single name to the group of instructions.
Macros can increase your coding efficiency and make your programs more readable.

(2) Optimized branching directives
The RL78,78K0R assembler provides the BR and CALL (Branch instruction automatic selection directives).
A characteristic of programs that make efficient use of memory is selection of the appropriate branching
instructions, using only the number of bytes required by the branch destination range. But it is a burden for the
programmer to need to be conscious of the branch destination range for every branch. The BR and CALL
directives are automatic solutions to this problem. They facilitate memory-efficient branching by instructing the
assembler to generate the most appropriate branching instruction for the branch destination range. This function is
called branch instruction optimization.

(3) Conditional assembly
Conditional assembly allows you to specify conditions that determine whether or not specific sections of the source
program are assembled.
For example, when the source contains debugging statements, a switch can be set to determine whether or not
they should be translated into machine language. When they are no longer needed, they can be excluded from the
output with no major modifications to the source program.

(4) 78K0 compatibility macro function
The assembly of the assembler source file made by the assembler for 78K0 is enabled.
When assemble 78KO0 instructions that cannot be used on RL78,78KOR without changing the description of the
source, specify the -compati option.

78KO0 instructions that cannot be used on RL78,78KO0R: DIVUW/ROR4/ROL4/ADJBA/ADJIBS/CALLF/DBNZ

1.2.3 Limits

(1) Compiler limits
See "(9) Translation Limit" for the limits of the compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 18 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

(2) Assembler limits
The maximum values for the assembler are shown below.

Table 1-3. Assembler Translation Limits

Description Limit
Number of symbols (local + public) 65,535
Number of symbols for which cross-reference list can be output 65,534Note 1
Maximum size of macro body for one macro reference 1 Mbyte
Total size of all macro bodies 10 Mbyte
Number of segments in one file 256
Number of macro and include specifications in one file 10,000
Number of macro and include specifications in one include file 10,000
Number of relocation data items N°t 2 65,535
Line number data items 65,535
Number of BR/CALL directives in one file 32,767
Character length of source line 2,04gNote 3
Character length of symbol 256
Character length of name definition Not€ 4 1,000
Character length of switch name Not 4 31
Character length of segment name 8
Character length of module name (NAME directive) 256
Number of parameters in MACRO directive 16
Number of arguments in macro reference 16
Number of arguments in IRP directive 16
Number of local symbols in macro body 64
Total number of local symbols in expanded macro 65,535
Nesting levels in macro (macro reference, REPT directive, IRP directive) 8 levels
Number of characters in TITLE control instruction (-Ih option) goNote 5
Number of characters in SUBTITLE control instruction 72
Include file nesting levels in 1 file 16 levels
Conditional assembly nesting levels 8 levels
Number of include file paths specifiable by -i option 64
Number of symbols definable by -d option 30

Notes 1. Excluding the number of module names and section nhames.
Available memory is used. When memory is insufficient, a file is used.
2. Information passed to the linker when a symbol value cannot be resolved by the assembler.
For example, when an externally referenced symbol is referenced by the MOV instruction, two items of
relocation information are generated in a .rel file.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 19 of 872
Dec 01, 2013

CubeSuite+ vV2.01.00

CHAPTER 1 GENERAL

3. Including CR and LF codes. If a line is longer than 2048 characters, a warning message is output and

the 2049th and following characters are ignored.

4. Switch names are set to true/false by the SET and RESET directives and are used by constructs such

as $If.

5. If the maximum number of characters that can be specified in one line of the assembile list file ("X") is

119, this figure will be "X - 60" or less.

(3) Linker limits
The maximum values for the linker are shown below.

Table 1-4. Linker Limits

Description

Limit

Number of symbols (local + public + internally generated symboIsN"te 1)

2,147,483,647

Line number data items in 1 segment

1,048,575

Number of segments

65 535Note 2

Number of input modules 1,024
Character length of memory area name 256
Number of memory areas 100Note 2
Number of library files specifiable by the -b option 64
Number of include file paths specifiable by the -i option 64

Notes 1. Symbols internally generated by individual programs (including those for use in debugging information).

2. Including those defined by default.

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 20 of 872

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

CHAPTER 2 FUNCTIONS

This chapter explains programming technique to use CA78KOR more effectively and use of extended functions.

2.1 Variables (Assembly Language)

This section explains techniques for using variables in assembly language.

211 Defining variables with no initial values

Allocate memory area in a data segment.
Use the DSEG quasi directive to define a data segment, and use the DS quasi directive to allocate memory area.

Example Define an 10-byte variable with no initial values.

DSEG

_table : DS 10

Remark See "DSEG"and "DS".

2.1.2 Defining const constants with initial values

Initialize memory area in a code segment.
Use the CSEG quasi directive to define a code segment, and use the DB (1 byte), DW (2 bytes), or DG (4 bytes) quasi
directive to initialize memory area.

Example Defining constants with initial values

CSEG
_vall : DB OFOH ; 1 byte
_val2 : DW 1234H ; 2 bytes
_val3 : DG 56789H ; 4 bytes (20 bits)

Remark See "CSEG", "DB", "DW", and "DG".

2.1.3 Defining 1-bit variables

Allocate 1 bit memory area in a bit segment.
Use the BSEG quasi directive to define a bit segment, and use the DBIT quasi directive to allocate 1 bit memory area.

Example Define bit variables with no initial values.

BSECG
_bitl DBIT
_bit2 DBIT
_bit3 DBIT

Remark See "BSEG" and "DBIT".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 21 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.1.4 1/8 bit access of variable

In assembly language source code, give two symbols for the address in the saddr area. To use the symbol name
respectively for the bit access and for byte access,specify saddr as the relocation attribute of a DSEG segment, define bit
name of a symbol for byte access as a symbol name for bit access by a EQU quasi directives.

Example Byte access symbol name: FLAGBYTE
Bit access symbol name: FLAGBIT

- smpl.asm
NAME SMP1
PUBLIC FLAGBYTE, FLAGBIT
FLAGS DSEG SADDR ; The relocation attribute of DSEG is SADDR
FLAGBYTE : DS (1) ; Define FLAGBYTE
FLAGBIT EQU FLAGBYTE.O ; Define FLAGBIT
END
- smp2.asm
NAME SMP2
EXTRN FLAGBYTE
EXTBIT FLAGBIT ; FLAGBIT declared as EXTBIT
CSEG
Ccl :
MOV FLAGBYTE, #OFFH
CLR1 FLAGBIT
END

Remark See "DSEG" and "EQU".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 22 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.15 Allocating to sections accessible with short instructions

Compared to other data memory areas, the short direct addressing area can be accessed with shorter instructions.
Improve the memory efficiency of programs by efficiently using this area.

To allocate in the short direct addressing area, specify saddr or saddrp as the relocation attribute of a DSEG quasi
directive.

The following examples explains use in assembly source code.

- Module 1
PUBLIC TMP1l, TMP2
WORK DSEG saddrp
TMP1 : DS 2 ; word
TMP2 : DS 1 ; byte
- Module 2

EXTRN TMP1, TMP2

SAB CSEG
MOVW TMP1, #1234H
MOV TMP2, #56H

Remark See "DSEG".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 23 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.2 Variables (C Language)

This section explains Variables (C language).

221 Allocating data only of reference in ROM

(1) Allocating variables with initial values in ROM
Specify the const qualifier to allocate variables with initial values only of a reference in ROM.

Example Allocating variable "a" with initial values only of a reference in ROM

const int a = 0x12 ; /* Allocating ROM */

int b

0x12 ; /* Allocating ROM/RAM */

Variable "a" is allocated in ROM.

For variable "b", the initializing value is allocated in ROM and the variable itself is allocated in RAM (areas is
required in both ROM and RAM).

Startup routine ROMization, an initial value of ROM is copied in a variable of RAM.

ROMization requires areas in both ROM and RAM.

(2) Allocating table data in ROM
If allocating table data in ROM only, define type qualifier const, as follows.

const unsigned char table datal9] = { 1, 2, 3, 4, 5, 6, 7, 8, 9} ;

2.2.2 Allocating to sections accessible with short instructions

Compared to other data memory areas, the short direct addressing area can be accessed with shorter instructions.
Improve the memory efficiency of programs by efficiently using this area.

The use example is shown below.

External variables defined sreg or __sreg, and static variables within functions (called sreg variables) are automatically
allocated in relocatable in short direct addressing area [FFE20H to FFEB3H]

extern sreg int hsmm0 ;
extern sreg int hsmml ;

extern sreg int *hsptr ;

void main (void) {

hsmmO -= hsmml ;

Remark See "How to use the saddr area (sreg/__sreg)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 24 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.2.3 Allocating in near areas

Using the small model, the compiler generates code with 16-bit address lengths.

When knowing in advance that code and data are into 64 KB, obtain more compact code by using the small model
instead of the large model.

Specify the small model (-ms option) with the compiler option. Data and functions are allocated in near areas.

Or add the __near type qualifier to variable and function declarations.

__near int func (void) ; /* Allocating in near area */
__near const int a=02x 12 ; /* Allocating in near area */
__near int b=0x12 ; /* Allocating in near area */
_ near int func (void) { /* Allocating in near area */

/* Function processing */

return 0 ;

Remark See to "near/far area specification (__near/__far)".

224 Allocating in far areas

Using the large model, the compiler generates code with 20-bit address lengths.

If data are into 64 KB and code are into 1MB, use the medium model.

Specify the medium model (-mm option) with the compiler option. Data are allocated in near areas and functions are
allocated in far areas.

Or add the __near and __far type qualifier to variable and function declarations.

_ far int func (void) ; /* Allocating in far area */
__near const int a=0zx12 ; /* Allocating in near area */
__near int b=0x12 ; /* Allocating in near area */
_ _far int func (void) { /* Allocating in far area */

/* Function processing */

return 0 ;

}

If code and data are into 1 MB, use the large model.
Specify the large model (-ml option) with the compiler option. Data and functions are allocated in far areas.
Or add the __far type qualifier to variable and function declarations.

_ far int func (void) ; /* Allocating in far area */
__far const int a=0x12 ; /* Allocating in far area */
_ far int b=0x12 ; /* Allocating in far area */
_ far int func (void) { /* Allocating in far area */

/* Function processing*/

return 0 ;

Remark See to "near/far area specification (__near/__far)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 25 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

225

1)

Allocating addresses directly

direcrtmap

External variable declared __directmap and the initializing value of static variable in functions are allocation
address, the variable is mapped to the specified address. Specify the allocation address as an integral number.
__directmap variables in C source files are handled as well as static variables.

Make the __directmap declaration in the module which defines the variable that to map to an absolute address.

__directmap char c = 0xffe00 ;
__directmap _ sreg char d = 0xffe20 ;

__directmap _ sreg char e = Oxffe2l ;

__directmap struct x {
char a ;
char b ;

} xx = { oxffe30 } ;

void main (void) {
c =1 ;
d = 0x12 ;
e.5 =1 ;
Xx.a = 5 ;
xx.b = 10 ;

Remark See "Absolute address allocation specification (__directmap)".

(2) Using section names

Change the compiler output section name and specify a starting address.
Use the #pragma directive to specify the name of the section to be changed, a new name, and the starting address
of the new section.
The following example changes the section name from @@CODEL to CC1, and specifies 2400H as the starting
address.

#pragma section @@CODEL CCl AT 2400H

void main (void) {

/* Function definition */

}

Remark See "Changing compiler output section name (#pragma section)".
R20UT2774EJ0100 Rev.1.00 .ZENESAS Page 26 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.2.6 Defining 1-bit variables

The variable is made bit and boolean type, are handled as 1-bit data, and are allocated in the short direct addressing
area.
bit and boolean type variables are handled in the same way as external variables with no initial values (irregularity).
The compiler generates the following bit manipulation instructions to this bit variables.
- MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF

The bit access to the short direct addressing area becomes possible in C source code.

#define ON 1
#define OFF 0
extern bit datal ;
extern bit dataz2 ;
void main (void) {
datal = ON ;

data2 = OFF ;

while (datal) {
datal = data2 ;
testb () ;

}

if (datal && data2)

chgb () ;

Remark See "bit type variables (bit), boolean type variables (boolean/__boolean)".

2.2.7 Empty area of the structure is stuffed

Specify the -rc option to deselect alignment of structure members on 2-byte boundaries.
However, there is no support for deselecting alignment of non-structure variables.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 27 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.3 Functions

This section explains functions.

23.1 Allocating to sections accessible with short instructions

Using callt function calls, obtain code that is more compact that the code for normal function calls.
A callt instruction stored the address of the called function in the area [80H - OBFH] called a callt table. And possible
to call the function by a short code than the function is called directly.

__callt void funcl (void) ;

__callt void funcl (void) {

/* Function definition */

Remark See "callt functions (callt/__callt)".

2.3.2 Allocating in near areas

Using the small model, the compiler generates code with 16-bit address lengths.

When knowing in advance that code and data are into 64 KB, obtain more compact code by using the small model
instead of the large model.

Specify the small model (-ms option) with the compiler option. Functions are allocated in near areas.

Or add the __near type qualifier to function declarations.

__near int func (void) ; /* Allocating in near area */
__near const int a=0x 12 ; /* Allocating in near area */
__near int b=0x12 ; /* Allocating in near area */
_ near int func (void) { /* Allocating in near area */

/* Function processing */

return 0 ;

void main (void) {
int a ;

a = func () ;

Remark See to "near/far area specification (__near/__far)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 28 of 872
Dec 01, 2013

CubeSuite+ vV2.01.00

CHAPTER 2 FUNCTIONS

2.3.3 Allocating in far areas

If data are into 64 KB and code are into 1MB, use the medium model.

Specify the medium model (-mm option) with the compiler option. Functions are allocated in far areas.

If code and data are into 1 MB, use the large model.

Specify the large model (-ml option) with the compiler option. Data and functions are allocated in far areas.

Or add the __far type qualifier to function declarations.

/* Function processing */

return 0 ;

void main (void) {
int a ;

a = func () ;

_ far int func (void) ; /* Allocating in far area */
__near const int a=02x 12 ; /* Allocating in near area */
__near int b=0x12 ; /* Allocating in near area */
_ _far int func (void) { /* Allocating in far area */

Remark See to "near/far area specification (__near/__far)".

2.3.4 Allocating addresses directly

(1) Using section names
Change the compiler output section name and specify a starting address.

Use the #pragma directive to specify the name of the section to be changed, a new name, and the starting address

of the new section.

#pragma section @@DATA ??DATA AT OFDEOOH

int al ; // ??DATA
int a2 ; // ??DATA

#pragma section @@DATS ??DATS AT OFFE30H

sreg int bl ; // ??DATS
sreg int b2 ; // ??DATS
Remark See "Changing compiler output section name (#pragma section)".

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 29 of 872

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.35 Inline expansion of function

#pragma inline instructs to generate inline expansion code for memory operation standard library memcpy and memse,
instead of calling functions.

If to make the execution faster by expanding other functions inline, there are no instructions which can be inline
expansive every function. If the function except memcpy and memset being inline-expansive, define a macro in function
format,as shown below.

#define MEMCOPY (a, b, c) \
{\
struct st { unsigned char d[(c) 1; } ; \

* ((struct st *) (a)) =* ((struct st *) (b)) ; \

Remark See "Memory manipulation function (#pragma inline)".

2.3.6 Embedding assembly instructions

Embedding assembly instructions in the assembler source file output by the compiler.

(1) #asm - #endasm
#asm marks the start of an assembly source code block, and #endasm marks its end. Write assembly source code
between the #asm and #endasm.

#asm
/* Assembly source */

#endasm

[Output assemble file] by [Compile Options] tab of Property panel, set it as "Yes." (See "CubeSuite+ Integrated
Development Environment User's Manual: RL78,78KO0R Build" for a setting method.)

Remark See "ASM statements (#asm - #endasm/__asm)".

(2) _asm
Described by the next form in the C source.

__asm (string literal) ;

Characters in the string literal are interpreted according to the ANSI conventions. Escape sequences, the line
continues on the next line by '\' character, and concatenate strings can be described.
[Output assemble file] by [Compile Options] tab of Property panel, set it as "Yes." (See "CubeSuite+ Integrated
Development Environment User's Manual: RL78,78KO0R Build" for a setting method.)

Remark See "ASM statements (#asm - #endasm/__asm)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 30 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.4 Using Microcontroller Functions

This section explains using microcontroller functions.

24.1 Accessing special function registers (SFR) from C

(1) Setting each register of SFR
The SFR area are a area of group of special function registers, such as mode and control registers for the
peripheral hardware of RL78 family, 78BKOR microcontrollers (PM1, P1, TMC8O0, etc.).
To use the SFR area from C, place the #pragma sfr at the start of C source file. This declares the name of each
SFR register. The sfr keyword can be either uppercase or lowercase.

#pragma sfr

The following error message appears if attempt to use the SFR area without declaring the register names.

E0711 Undeclared 'variable-name' ; function 'function-name'

The symbols made available by the #pragma sfr directive are the same as the abbreviations given in the list of
special function registers.
The following items can be described before #pragma sfr:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

In the C source, simply use the sfr names supported by the target device. The sfr names do not need to be
declared individually.

SFR names are external variables with no initial values (irregularity).

A compiler error occurs if assign invalid constant data to an SFR name.

Remark See "How to use the sfr area (#pragma sfr)".
(2) Specifying bits in SFR registers
As shown below, specify bits in SFR registers by using reserved names or by using the "register-name.bit-

position".

Examples 1. Starting TM1

TCE1lL = 1 ;

or

TMC1.0 = 1 ;

2. Stopping TM1

TCE1lL = 0 ;

or

TMC1.0 = 0 ;

R20UT2774EJ0100 Rev.1.00 RENESAS Page 31 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.4.2 Interrupt functions in C

(1) Interrupt function
The following two directives are provided when the interrupt function is specified.
- #pragma interrupt
- #pragma vect
Either can be used. And the vector table is generated, which can check in the assembler source list output.
Place the #pragma directive at the start of the C source file.
The following items can be described before #pragma directives:
- Comments
- Preprocessor directive which does neither define nor see to a variable or a function

Example Processing for input to INTPO pin

#pragma interrupt INTPO inter rbl

void inter (void) {

/* Processing for input to INTPO pin*/

Remark See "Interrupt functions (#pragma vect/interrupt)".

(2) RTOS interrupt handlers
RTOS interrupt handlers are described by use the #pragma rtos_interrupt, as shown below.
Place the #pragma directive at the start of the C source file.
The following items can be described before #pragma directives:
- Comments
- Preprocessor directive which does neither define nor see to a variable or a function

#pragma rtos_interrupt INTPO inthdrl

#include "kernel.h"

#include "kernel_id.h"

void inthdrl (void) {
/* Handle the interrupt */

return ;

Remark See to "Interrupt handler for RTOS (#pragma rtos_interrupt)".

(3) Allocating stack area
When using the extended functions for interrupt functions, and do not specify stack switching, the compiler uses
the default stack. It does not allocate any extra stack space that be required.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 32 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.4.3 Using CPU control instructions in C
(1) halt instruction
The halt instruction is one of the standby functions of the microcontroller. To use it, use the #pragma HALT as
shown below.
Place the #pragma directive at the start of the C source file.
The following items can be described before #pragma directives:
- Comments
- Preprocessor directive which does neither define nor see to a variable or a function
In the form similar to the function call, describes it by the uppercase letter in C source as follows.
Example Using the halt instruction
#pragma HALT
void func (void) {
HALT () ;
}
Remark See "CPU control instruction (#pragma HALT/STOP/BRK/NOP)".
(2) stop instruction
The stop instruction is one of the standby functions of the microcontroller. To use it, use the #pragma STOP as
shown below.
Place the #pragma directive at the start of the C source file.
The following items can be described before #pragma directives:
- Comments
- Preprocessor directive which does neither define nor see to a variable or a function
In the form similar to the function call, describes it by the uppercase letter in C source as follows.
Example Using the stop instruction
#pragma STOP
void func (void) {
STOP () ;
}
Remark See "CPU control instruction (#pragma HALT/STOP/BRK/NOP)".
R20UT2774EJ0100 Rev.1.00 .ZENESAS Page 33 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

(3) brk instruction
To use software interrupt of a microcontroller, use the #pragma BRK as shown below.
Place the #pragma directive at the start of the C source file.
The following items can be described before #pragma directives:
- Comments
- Preprocessor directive which does neither define nor see to a variable or a function
In the form similar to the function call, describes it by the uppercase letter in C source as follows.

Example Using the brk instruction

#pragma BRK

void func (void) {

BRK () ;

Remark See "CPU control instruction (#pragma HALT/STOP/BRK/NOP)".

(4) nop instruction
The nop instruction advances the clock without operating a microcontroller. To use it, use the #pragma NOP as
shown below.
Place the #pragma directive at the start of the C source file.
The following items can be described before #pragma directives:
- Comments
- Preprocessor directive which does neither define nor see to a variable or a function
In the form similar to the function call, describes it by the uppercase letter in C source as follows.

Example Using the nop instruction

#pragma NOP

void func (void) {

NOP () ;

Remark See "CPU control instruction (#pragma HALT/STOP/BRK/NOP)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 34 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.5 Startup Routine

This section explains startup routine.

25.1 Deleting unused functions and areas from startup routine

(1) Deleting the exit function
Delete the exit function by setting the EQU symbol EXITSW in the startup routine to 0.

(2) Deleting unused areas
An unused area about the area such as _ @FNCTBL that a standard library uses can be deleted by confirming the
library used, and changing the value of the EQU symbol such as EXITSW in startup routine cstart.asm.
The following table lists the controlling EQU symbols and the affected library function names and symbol names.

EQU Symbol Library Function Name Symbol Name
BRKSW brk _errno
sbrk _@MEMTOP
malloc _@MEMBTM
calloc _@BRKADR
realloc
free
EXITSW exit _@FNCTBL
atexit _@FNCENT
RANDSW rand _@SEED
srand
DIVSW div _@DIVR
LDIVSW Idiv _@LDIVR
STRTOKSW strtok _@TOKPTR
FLOATSW atof _errmo
strtod
strtol
strtoul
Math functions
Floating point runtime library

Remark See"7.4 Startup Routines".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 35 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 F

UNCTIONS

25.2 Allocating stack area

(1) Stack setting

If specify the stack resolution symbol option -s when linking, the symbol _@STEND is generated to mark the

lowest address in the stack, and the symbol _@STBEG is generated to mark the highest address + 1

MOVW SP, #LOWW _@STBEG

Figure 2-1. Stack Setting

High
User segment
_@STBEG
Stack
<— _@STEND
User segment
Lowt

In this case, set the stack pointer as follows.

MOVW SP, #LOWW _@STBEG

(2) Checking stack area
To check the stack area, specify the linker -kp option to output the public symbol list in the link list file
The stack area is between the _ @STEND symbol and the _@STBEG symbol.

Example Public symbol list

% Pyblic symbol list *
MODULE ATTR VALUE NAME
NUM OFFE20H _@STBEG
NUM OFFB7EH _ @STEND
R20UT2774EJ0100 Rev.1.00 RENESAS Page 36 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

253 Initializing RAM

The following areas are initialized by the startup routine.
- The saddr area (except for the general register area)
- The stack area between symbols " _@STEND" and "_@STBEG"

In the default startup routine, initial values are copied to the following areas.
- @@INIT segment
- @@INITL segment
- @@INIS segment
The following areas are zero cleared.
- saddr area (OFFE20H to OFFEDFH)
- @ @DATA segment
- @@DATAL segment
- @@DATS segment
If to initialize areas other than the above, add the appropriate initialization processing code to the startup routine.

Remark See "7.4 Startup Routines".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 37 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.6 Link Directives

This section explains link directives.

26.1 Partitioning default areas

Link directives allow to specify nhames for memory areas that define. However, care is required regarding the location
of the special function register (SFR) area.

For example, if define two areas in RAM and specify 1) the name "RAM", which is defined by default, and 2) the user-
defined name "STACK", then should make sure that the SFR area is contained within the area named RAM.

Example Link directives

MEMORY STACK : (OFEFOOH, 00100H)

MEMORY RAM : (OFFOOOH, 01000H)

Remark See"5.1.1 Link directives".

2.6.2 Specifying section allocation

(1) Specifying areas
When specifying the allocation of a section, can specify a memory area.
Use the MERGE quasi directive to allocate the target section in a memory area.

Example Allocate input segment SEG1 to memory area MEML1.

MEMORY ROM : (0000H, 1000H)
MEMORY MEM1 : (1000H, 2000H)
MERGE SEG1 : = MEM1

Remark See"5.1.1 Link directives".
(2) Specifying addresses
When specifying the allocation of a section, can specify addresses.

Use the MERGE quasi directive to specify the allocation address of the target section.

Example Allocate input segment SEG1 to address 500H.

MEMORY ROM : (0000H, 10000H)

MERGE SEG1 : AT (500H)

Remark See"5.1.1 Link directives".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 38 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.7 Reducing Code Size

This section explains techniques for reducing the code size.

2.7.1 Using extended functions to generate efficient object code

When RL78,78KO0R application product is developed, RL78,78KOR C compiler generates efficient object code by using
the saddr and callt areas in the device.

Using external variables
L if (saddr area available)

L use sreg/__sreg variables/
or compiler's -rd option

Using 1 bit data
L i (saddr area available)

L use bit/boolean/__boolean type variables
Function definitions
I if (frequently called function)
L if (callt area available)

L define as __callt/callt function (for smaller code size)

L if (use automatic variables && saddr area available)

(1) Using external variables
If available in the saddr area when defineing external variables, define external variables as sreg/__sreg variables.
sreg/__sreg variables are shorter instruction code than the instructions to memory. Object code will be smaller and
execution speed will be faster. (Instead of the sreg variables, can use the compiler -rd option.)

sreg/ sreg variable define : extern sreg int variable-name ;

extern sreg int variable-name ;

Remark See "How to use the saddr area (sreg/__sreg)".

(2) Using 1 bit data
When using only 1 bit of data, define a bit type (or boolean/__boolean type) variable. The compiler generates bit
operation instructions to manipulate bit/boolean/__boolean type variables. Like sreg variables, they are stored in
the saddr area for smaller code and faster execution speed.

bit/boolean type variable define : bit variable-name ;
boolean variable-name ;

__boolean variable-name ;

Remark See "bit type variables (bit), boolean type variables (boolean/__boolean)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 39 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

(3) Function definitions
Frequently called functions can be registered in the callt table when callt area can be used.
callt functions are called by using the callt areas of the device, so they can be called by code that is shorter than
normal function calls.

callt function define : callt int tsub () {

Remark See "callt functions (callt/__callt)".
-gx3 reduces the code size by "subroutine-ization of a common code" and calling "library for the stack access" in
addition to -gx2. Therefore the execution speed has the possibility of slowing compared with -gx2.

(4) Using extended functions

Function definitions
if (use automatic variables && saddr area available)

L Register definitions

—— if (use internal static variable) && (saddr area available)

L __sreg definitions

(@) Functions that use automatic variables
When the function for which an automatic variable is used can use saddr area, define register. A register
definitions allocates a defined object to a register.
Programs that use registers are shorter object and faster execution than programs that use memory.

Remark About defining register variables (register inti ; ...), see "Register variables (register)".
(b) Functions that use internal static variables
When the function for which an internal static variables is used can use saddr area, define __sreg or specify

the -rs option. Like sreg variables, they are possible to shorter object and faster execution.

Remark See "How to use the saddr area (sreg/__sreg)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 40 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

(5) Other functions
Other extended functions allow to generate faster execution or more compact code.

(@) Use SFR names (or SFR bit names)
#pragma sfr

Remark See "How to use the sfr area (#pragma sfr)".

(b) __sreg definitions for bit fields of 1-bit members (members can also use unsigned char type)

__sreg struct bf {

unsigned char a : 1 ;
unsigned char b :1;
unsigned char c : 1 ;

unsigned char d: 1 ;
unsigned char e : 1 ;
unsigned char £f :1;

} bf 1 ;

Remark See "How to use the saddr area (sreg/__sreg)".

(c) Useregister bank switching for interrupt routines
#pragma interrupt INTPO inter RB1

Remark See "Interrupt functions (#pragma vect/interrupt)".
(d) Use of multiplication, division embedded function

#pragma mul
#pragma div

Remark See "Multiplication function (#pragma mul)", "Division function (#pragma div)".

(e) Described by assembly language to be faster modules.

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 41 of 872

CubeSuite+ vV2.01.00

CHAPTER 2 FUNCTIONS

2.7.2 Calculating complex expressions

The following example shows the most reasonable way to calculate an expression whose result will always fit into byte

type, even when intermediate results require double word type.

Example Find the rounded percentage c of b in a.

c=(ax100 +b /2) /b

In a function like the following, the variable for the result ¢ must be defined as a long int, requiring 4 bytes

of area when a single byte would have been enough.

void x () {

c = (
/ (unsigned long int) 2) /

}

(unsigned long int) b ;

(unsigned long int) a * (unsigned long int) 100 + (unsigned long int) b

This can be written as follows, if using double word type for intermediate results only.

#pragma mul

#pragma div

unsigned int

unsigned char c ;

void x () |

c = (unsigned char) divux ((unsigned long)

(b /2

)

+ muluw (a, 100), b) ;

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 42 of 872

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.8 Compiler and Assembler Mutual References

This section explains compiler and assembler mutual references.

2.8.1 Mutually referencing variables

(1) Reference avariable defined in C language
To reference a extern variable defined in a C program from an assembly language routine, define extern.
Prefix the name of the variable with an underscore () in the assembly language module.

Example C source

extern void subf (void) ;
char c =0 ;
int i=20;
void main (void) {
subf () ;
}

Example Assembly source

$PROCESSOR (F1166A0)
PUBLIC _subf
EXTRN ¢
EXTRN i

@@CODE CSEG

_subf :
MOV !_c, #04H
MOVW AX, #07H
MOVW 1 i, AX
RET
END

Remark See "9.5 Referencing Variables Defined in C Language from Assembly Language".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 43 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

(2) Reference avariable defined in assembly language
To reference a extern variable defined in an assembly language program from a C routine, define extern.
Prefix the name of the variable with an underscore () in the assembly language routine.

Example C source

extern char c ;
extern int i ;
void subf (void) {
c = 'A';
i =4 ;

Example Assembly source

NAME ASMSUB
PUBLIC i
PUBLIC _c
ABC DSEG BASEP
i : DwW 0
_c : DB 0
END

Remark See "9.6 Referencing Variables Definted in Assembly Language from C Language".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 44 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

2.8.2 Mutually referencing functions

(1) Reference a function defined in C language
The following procedure is used to call functions written in C from assembly language routines.

(@) Save the work registers (AX, BC, DE)

(b) Push the arguments on the stack

(c) Call the C function

(d) Adjust the stack pointer (SP) by the byte length of the arguments

(e) Reference the return value of the C function (BC, or DE, BC)

Example Assembly language

$SPROCESSOR (F1166A0)
NAME FUNC2
EXTRN _CSUB
PUBLIC _FUNC2

@@CODE CSEG

_FUNC2 :
movw ax, #20H ; Set 2nd argument (j)
push ax
movw ax, #21H ; Set 1lst argument (1)
call ! _CSUB ; Call "CSUB (i, F)"
pop ax
ret

END

Remark See "9.3 Calling C Language Routines from Assembly Language".

(2) Reference a function defined in assembly language
Functions defined in assembly language to be called from C functions perform the following processing.

(@) Savethe base pointer and saddr area for register variables

(b) Copy the stack pointer (SP) to the base pointer (HL)

(c) Perform the processing of the function FUNC

(d) Set the return value

(e) Restore the saved registers

(f) Return to the function main

R20UT2774EJ0100 Rev.1.00 RENESAS Page 45 of 872
Dec 01, 2013

CubeSuite+ vV2.01.00

CHAPTER 2 FUNCTIONS

Example Assembly language

$PROCESSOR (F1166A0)
PUBLIC _FUNC
PUBLIC _DT1
PUBLIC _DT2

@@DATA DSEG BASEP

_DT1 : DS (2)

DT2 : DS (4)

@@CODE CSEG

_FUNC
PUSH HL ; Save base pointer
PUSH AX
MOVW HL, SP ; Copy stack pointer
MOVW AX, [HL] ; argl
MOVW ! DT1, AX ; Move 1lst argument (i)
MOVW AX, [HL + 10] ; argz2
MOVW ! DT2 + 2, AX
MOVW AX, [HL + 8] ; argz2
MOVW ! DT2, AX ; Move 2nd argument (1)
MOVW BC, #O0AH ; Set return value
POP AX
POP HL ; Restore base pointer
RET
END

Remark See "9.4 Calling Assembly Language Routines from C Language".

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 46 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains the language specifications supported by RL78,78KOR C compiler.

3.1 Basic Language Specifications

The C compiler supports the language specifications stipulated by the ANSI standards. These specifications include

items that are stipulated as processing definitions. This chapter explains the language specifications of the items
dependent on the processing system of the micro processors for RL78 family, 78KOR microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those options are
not used are also explained.

See "3.2 Extended Language Specifications" for extended language specifications explicitly added by RL78,78K0OR C
compiler.

311 Processing system dependent items

This section explains items dependent on processing system in the ANSI standards.

(1) Datatypes and sizes
The byte order in multibyte data types is "from least significant to most significant byte" Signed integers are
expressed by 2's complements. The sign is added to the most significant bit (O for positive or 0, and 1 for
negative).
- The number of bits of 1 byte is 8.
- The number of bytes, byte order, and encoding in an object files are stipulated below.

Table 3-1. Data Types and Sizes

Data Types Sizes
char 1 byte
int, short 2 bytes
long, float, double 4 bytes
pointer near : 2 bytes
far : 4 bytes

(2) Translation stages
The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for
translation. The arrangement of "non-empty white space characters excluding line feed characters" which is
defined as processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens and
white space characters" is maintained as it is without being replaced by single white space character.
However, tabs are replaced by the space character specified with the -It option.

(3) Diagnostic messages
When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error
message containing source file name and (when it can be determined) the number of line containing the error.
These error messages are classified into three types: "alarm”, "fatal error”, and "other error" messages.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 47 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(4)

(6)

(6)

@)

®)

9)

Free standing environment

(@) The name and type of a function that is called on starting program processing are not stipulted in a
free-standing environmentN°®, Therefore, it is dependent on the user-own coding and target system.

Note Environment in which a C Language source program is executed without using the functions of the
operating system.
In the ANSI Standard two environments are stipulated for execution environment: a free-standing envi-
ronment and a host environment. The RL78,78KOR C compiler does not supply a host environment at
present.

(b) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is
dependent on the user-own coding and target system.

Program execution
The configuration of the interactive unit is not stipulated.
Therefore, it is dependent on the user-own coding and target system.

Character set
The values of elements of the execution environment character set are ASCII codes.

Multi-byte characters
Multi-byte characters are not supported by character constants and character strings.

However, Japanese description in comments is supported.

Significance of character display
The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

Expanded Notation Value (ASCII) Meaning
\a 07 Alert (Warning tone)
\b 08 Backspace
\f oc Form feed (New Page)
\n 0A New line (Line feed)
\r (0]5} Carriage return (Restore)
\t 09 Horizontal tab
\v 0B Vertical tab

Translation Limit
The limit values of translation are explained below.

Table 3-3. Translation Limit Values

Contents Limit Values

Number of nesting levels of compound statements, repetitive control structures, and 45
selective control structures

(However, dependent on the number of "case" labels)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 48 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Contents Limit Values
Number of nesting levels of condition embedding 255
Number of pointers, arrays, and function declarators (in any combination) qualifying 12
one arithmetic type, structure type, union type, or incomplete type in one declaration
Number of nesting levels of an expression enclosed by parentheses in a complete 1024
expression
Valid number of first characters in a macro name 256
Valid number of first characters of an external identifier 249
Valid number of first characters in an internal identifier 249
Number of identifiers having an external identifier in one translation unit 1024Notel
Number of identifiers having the valid block range declared in one basic block 255
Number of macro identifiers simultaneously defined in one translation unit 60000
Number of dummy arguments in one function definition and number of actual 3gNotel
arguments in one function call
Number of dummy arguments in one macro definition 31
Number of actual arguments in one macro call 31
Number of characters in one logical source line 32767Notel
One character string constant after concatenation, or number of characters in a wide 50gNotel
character string constant
Object size of 1-file (Data is indicated) 65535
Number of nesting levels for include (#include) files 50
Number of "case" labels for one "switch" statement 1024
(including those nested, if any)
Number of source lines per compilation unit 65535N0el
Number of nested function calls 4oNotel
Number of label in one function 33
Total size of code, data, and stack segments in a single object module by memory modelNote2
Number of members of a single structure or single union 1024
Number of enumerate constants in a single enumerate type 255
Number of nesting levels of a structure or union definition in the arrangement of a 15
single structure declaration
Nesting of initializer elements 15
Number of function definitions in a single source file 4095
Number of nesting levels enclosed by parentheses in a complete declarator 591 Notel
Macro nesting 10000
Number of include file paths 64

Notes 1. The values marked with Notel are guaranteed values. These values may be exceeded in some cases,
but the operation is not guaranteed.

2. The following table lists the maxium values for each memory model when extended functions are not used.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 49 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Memory Model

Maximum Values

Small model

Code 64KB, Data 64KB, Total 128KB

Medium model

Code 1MB, Data 64KB, Total 1IMB

Large model

Code 1MB, Data 1MB, Total 1IMB

(10) Quantitative limit

(@ The limit values of the general integer types (limits.h file)

The limits.h file specifies the limit values of the values that can be expressed as general integer types (char

type, signed/unsigned integer type, and enumerate type).

Because multibyte characters are not supported, MB_LEN_MAX does not have a corresponding limit.
Consequently, it is only defined with MB_LEN_MAX as 1.
If a -qu option is specified, CHAR_MIN is 0, and CHAR_MAX takes the same value as UCHAR_MAX. The
limit values defined by the limits.h file are as follows.

Table 3-4. Limit Values of General Integer Type (limits.h File)

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the minimum object not
in bit field

SCHAR_MIN -128 Minimum value of signed char
SCHAR_MAX +127 Maximum value of signed char
UCHAR_MAX +255 Maximum value of unsigned char
CHAR_MIN -128 Minimum value of char
CHAR_MAX +127 Maximum value of char
SHRT_MIN -32768 Minimum value of short int
SHRT_MAX +32767 Maximum value of short int
USHRT_MAX +65535 Maximum value of unsigned short int
INT_MIN -32768 Minimum value of int
INT_MAX +32767 Maximum value of int
UINT_MAX +65535 Maximum value of unsigned int
LONG_MIN -2147483648 Minimum value of long int
LONG_MAX +2147483647 Maximum value of long int
ULONG_MAX +4294967295 Maximum value of unsigned long int

(b) The limit values of the floating-point type (float.h file)

The limit values related to characteristics of the floating-point type are defined in float.h file.

The limit values defined by the float.h file are as follows.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 50 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-5. Definition of Limit Values of Floating-point Type (float.h File)
Name Value Meaning
FLT_ROUNDS +1 Rounding mode for floating-point addition.
1 for the RL78 family, 78KOR microcontrollers
(rounding in the nearest direction).
FLT_RADIX +2 Radix of exponent (b)
FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of floating-
point mantissa as base
DBL_MANT_DIG
LDBL_MANT_DIG
FLT_DIG +6 Number of digits of a decimal numberN°® 1 (q) that can
DEL DIG round a decimal number of q digits to a floating-point
— number of p digits of the radix b and then restore the
LDBL_DIG decimal number of q
FLT_MIN_EXP -125 Minimum negative integer (e, that is a normalized
floating-point number when FLT_RADIX is raised to the
DBL_MIN_EXP .
I power of the value of FLT_RADIX minus 1.
LDBL_MIN_EXP
FLT_MIN_10_EXP -37 Minimum negative integerlog,gb®mn that falls in the
range of a normalized floating-point number when 10 is
DBL_MIN_10_EXP) .
raised to the power of its value.
LDBL_MIN_10_EXP
FLT_MAX_EXP +128 Maximum integer (eax) that is a finite floating-point
number that can be expressed when FLT_RADIX is
DBL_MAX_EXP . . .
— — raised to the power of its value minus 1.
LDBL_MAX_EXP
FLT_MAX_10_EXP +38 Maximum value of finite floating-point numbers that can

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

be expressed
(1 - b™P) * p&max

FLT_MAX 3.40282347E + 38F | Maximum value of finite floating-point numbers that can
be expressed

DBL_MAX
(1 - b™P) * p&max

LDBL_MAX

FLT_EPSILON 1.19209290E - 07F | DifferenceN® 2 petween 1.0 that can be expressed by
specified floating-point number type and the lowest

DBL_EPSILON

LDBL_EPSILON

value which is greater than 1.
bl-P

FLT_MIN

DBL_MIN

LDBL_MIN

1.17549435E - 38F

Minimum value of normalized positive floating-point
number

[p€min-1

Notes 1.

DBL_DIG and LDBL_DIG are 10 or more in the ANSI standards but are 6 in the RL78 family,

78KO0OR microcontrollers because both the double and long double types are 32 bits.

DBL_EPSILON and LDBL_EPSILON are 1E-9 or less in the ANSI standards, but 1.19209290E-

07F in the RL78 family, 78KOR microcontrollers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 51 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(11) Identifier
The initial 249 characters of identifiers are recognized.
Uppercase and lowercase characters are distinguished.

(12)char type
A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default
assumption.
However, a simple char type can be treated as an unsigned integer by specifying the - gi option of the C compiler.
The types of those that are not included in the character set of the source program required by the ANSI standards
(escape sequence) is converted for storage, in the same manner as when types other than char type are
substituted for a char type.

char c = "\777"; /* Value of ¢ is -1 */

(13)Floating-point constants
The floating-point constants conform to IEEE754N°te,

Note |EEE:Institute of Electrical and Electronics Engineers
Moreover, IEEE754 is a standard to unify specifications such as the data format and numeric range in
systems that handle floating-point operations.

(14)Character constants

(@) Both the character set of the source program and the character set in the execution environment are
basically ASCIl codes, and correspond to members having the same value.

(b) The last character of the value of an integer character constant including two or more characters is
valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape
sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal
notation

\077 63

<2> The simple escape sequence is expressed as follows.

\ '

" "

\? 2

\ \

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in "(8) Significance of character
display".

(d) Character constants of multi byte characters are not supported.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 52 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(15)Header file name
The method to reflect the string in the two formats (<> and

) of a header file name on the header file or an exter-
nal source file name is stipulated in "(32) Loading header file".

(16) Comment
A comment can be described in Japanese. The default character code set for Japanese is Shift JIS.
The character code set of the input source file can be specified by the compiler's -z option, or by an environmental
variable. An option specification takes priority over an environment variable specification. However, character
codes are not guaranteed when "none" is specified.

(@) Option specification

-ze | -zn | -zs

(b) Environment variable

LANG78K [euc | none | sjis]

To set environment variables, use the standard procedure for environment.

(17)Signed constants and unsigned constants
If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are
truncated and a bit string image is copied.
If an unsigned integer is converted into the corresponding signed integer, the internal representation is not
changed.

(18)Floating-points and general integers
If the value of a general integer type is converted into the value of a floating-point type, and if the value to be
converted is within a range that can be expressed but not accurately, the result is rounded to the closest
expressible value.
When the result is just a middle value, it can be rounded to the even number (with the least significant bit of the
mantissa being 0).

(19)double type and float type
In the RL78,78KOR C compiler, a double type is expressed as a floating-point number in the same manner as a
float type, and is treated as 32-bit (single-precision) data

(20)Signed type in operator in bit units
The characteristics of the shift operator conform to the stipulation in"(26) Shift operator in bit units" .
The other operators in bit units for signed type are calculated as unsigned values (as in the bit image).

(21) Members of structures and unions
If the value of a member of a union is stored in a different member, it is stored according to an alignment condition.
Therefore, the members of that union are accessed according to the alignment condition (see "(b) Structure type"
and "(c) Union type").
In the case of a union that includes a structure sharing the arrangement of the common first members as a
member, the internal representation is the same, and the result is the same even if the first member common to
any structure is referred.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 53 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(22)sizeof operator
The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in"(1)
Data types and sizes".
For the number of bytes in a structure and union, it is byte including padding area.

(23)Cast operator
When a pointer is converted into a general integer type, the required size of the variable is the same as the
following table lists. The bit string is saved as is as the conversion result.
Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type is
expanded according to the type.
- near: 2 bytes
-far: 4 bytes

When a near pointer or int is cast to a far pointer, and when a near pointer is cast to a long, the operation behaves
as follows.
- For variable pointers, 0xf is added at the most significant position (0 is an exception and the pointer is zero-
extended).
- Function pointers are zero-extended.

(24)Division/remainder operator
The result of the division operator ("/") when the operands are negative and do not divide perfectly with integer
division, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater than
the algebraic quotient.
If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.
If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(25)Addition and subtraction operators
If two pointers indicating the elements of the same array are subtracted, the type of the result is int type, and the
size is 2 bytes.

(26) Shift operator in bit units
If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

(27)Storage area class specifier
The storage area class specifier "register" is declared to increase the access speed as much as possible, but this
is not always effective.

(28) Structure and union specifier

(a) int type bit field sign Simple int type bit fields without a signed or unsigned specifier are treated as
unsigned.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can
be allocated. If there is insufficient area, however, the bit field that does not match is packed into to
the next unit according to the alignment condition of the type of the field.

(c) The allocation sequence of the bit field in unit is from lower to higher.
However, the -rb option can be specified for the allocation sequence is from higher to lower.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 54 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(d) Each member of the non-bit field of one structure or union is aligned at a boundary as follows
- char and unsigned char types, and arrays of char and unsigned char types: Byte boundary
- Other (including pointers): 2-byte boundary

(29)Enumerate type specifier
The type of an enumeration is the first type from among the following which is capable of expressing all of the
enumeration constants.
- signed char
- unsigned char
- signed int

(30) Type qualifier
The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O port,
etc.) to which the data is mapped.

(31)Condition embedding

(@) The value for the constant specified for condition embedding and the value of the character constant
appearing in the other expressions are equal.

(b) The character constant of a single character must not have a negative value.
(32)Loading header file

(@) A preprocessing directive in the form of "#include <character string>"
Unless "filename" begins with the character '\ Note the #include <filename> preprocessor directive instructs the
preprocessor to search for the file specified between the angle brackets (<..>) in the following locations: 1) the
folder specified by the -i option, 2) the folder specified by the INC78KOR environment variable, and 3) the
.\inc78Kk0r folder relative to the bin folder where cc78k0r.exe resides.
If a header file uniformly identified is searched with a character string specified between delimiters "<" and ">",
the whole contents of the header file are replaced.

Note Both "\" and "/" are regarded as the delimiters of a folder.

Example

#include <header.h>

The search order is as follows.
- The folder specified by the -i option
- The folder specified by the INC78KOR environment variable
- The standard folder

R20UT2774EJ0100 Rev.1.00 RENESAS Page 55 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) A preprocessing directive in the form of "#include "character string""
Unless "character string" begins with the character \Note the #include "character string" preprocessor direc-
tive instructs the preprocessor to search for the file specified between the quotation marks ("..") in the following
locations: 1) the folder that contains the source file, 2) the folder specified by the -i option, 3) the folder speci-
fied by the INC78KOR environment variable, and 4) the ..\inc78kO0r folder relative to the bin folder where
cc78KkO0r.exe resides.
If the file specified between the quotation mark delimiters is found, the #include directive line is replaced with
the entire contents of the file.

Note Both "\" and "/" are regarded as the delimiters of a folder.

Example

#include "header.h"

The search order is as follows.
- The folder that contains the source file
- The folder specified by the -i option
- The folder specified by the INC78KOR environment variable
- The standard folder

(c) The format of "#include preprocessing character phrase string"
The format of "#include preprocessing character phrase string" is treated as the preprocessing character
phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to the
form of <character string> or "character string".

(d) A preprocessing directive in the form of "#include <character string>"
Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the
strings is identified,

And the file name length valid in the compiler operating environment is valid.

The folder that searches a file conforms to the above stipulation.

(33)#pragma directive
#pragma directives are one of the preprocessing directive types defined by the ANSI standard. The string that
follows #pragma the compiler to translate in an implementation-defined manner.
When a #pragma directive is not recognized by the compiler, it is ignored and translation continues. If the directive
adds a keyword, then an error occurs if the C source contains that keyword. To avoid the error, delete the keyword
from the source or exclude it with #ifdef.

(34)Predefined macro names
All the following macro names are supported.

Macros not ending with "_ _ " are supplied for the sake of former C language specifications (K&R specifications).
To perform processing strictly conforming to the ANSI standards, use macros with "_ _ " before and after.
R20UT2774EJ0100 Rev.1.00 .IENESAS Page 56 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-6. List of Supported Macros

Macro Name Definition
__LINE__ Line number of source line at that point (decimal).
__FILE__ Name of assumed source file (character string constant).
_ DATE___ Date of translating source file (character string constant in the form of "Mmm dd yyyy").

Here, the name of the month is the same as that created by the asctime function
stipulated by ANSI standards (3 alphabetic characters with only the first character is
capital letter) (The first character of dd is blank if its value is less than 10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss" similar
to the time created by the asctime function).

__STDC__ Decimal constant 1, indicating conformance to the ANSI standard.Note
__KOR__ Decimal constant 1

_ KOR_SMALL___ Decimal constant 1 (When small model is specified.)
__KOR_MEDIUM___ Decimal constant 1 (When medium model is specified.)

_ KOR_LARGE___ Decimal constant 1 (When large model is specified.)

_ CHAR_UNSIGNED__ | Decimal constant 1 (When the -qu option was specified.)

__RL78__ Decimal constant 1 (When device classification of RL78 family is specified.)

__RL78_1 Decimal constant 1 (When device classification of RL78 non-mounted multiply/divide/
multiply & accumulate instructions with register banks is specified.)

__RL78_ 2 Decimal constant 1(When device classification of RL78 mounted multiply/divide/multiply
& accumulate instructions is specified.)

__RL78.3 Decimal constant 1(When device classification of RL78 non-mounted multiply/divide/

multiply & accumulate instructions without register banks is specified.)

_ CA78KOR__ Decimal constant 1

CPUmacro Decimal constant 1 of a macro indicating the target CPU.

A character string indicated by "product type specification" in the device file with "_ _
prefixed and suffixed is defined.

Note Defined when the -za option is specified

(35) Definition of special data type
NULL, size_t, and ptrdiff_t defined by stddef.h file are as follows.

Table 3-7. Definition of NULL, size_t, ptrdiff_t (stddef.h File)

NULL/size_t/ptrdiff_t Definition
NULL ((void *) 0)
size_t unsigned int
ptrdiff_t int
R20UT2774EJ0100 Rev.1.00 RENESAS Page 57 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.1.2 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the RL78,78KOR

C compiler.

(1) Basic types
The basic types, also called arithmetic types, consist of the integer types and the floating point types.

The integer types can be classified into the char type, signed integer types, unsigned integer types, and

enumeration type.

(@) Integer types

Integer types can be divided into 4 categories, as follows. Integer types are expressed as binary Os and 1s.

- char type

- signed integer types

- unsigned integer types

- enumeration types

<1>

<2>

<3>

<4>

char type

The char type is large enough to store any member of the execution character set.

If a member of the basic execution character set is stored in a char object, its value is guaranteed to be
nonnegative.

Objects other than characters are treated as signed integers.

If an overflow occurs when a value is stored, the overflow part is ignored.

Signed integer types
There are four signed integer types, as follows.
- signed char
- short int
- int
- long int
An object defined as signed char type occupies the same amount of area as a "plain" char.
A "plain” int has the natural size suggested by the CPU architecture of the execution environment.
For each of the signed integer types, there is a corresponding unsigned integer type that uses the same
amount of area.
The positive number of a signed integer type is a subset of the the unsigned integer type.

Unsigned integer types

Unsigned integer types are designated by the keyword "unsigned".

A computation involving unsigned integer types can never overflow, because a result that cannot be
represented by the resulting unsigned integer type is reduced modul the number that is one greater than
the largest value that can be represented by the resulting type.

Enumeration types

An enumeration comprises a set of named integer constant values.
Each distinct enumeration constitutes a different enumerated type.
Each enumeration constitutes a enumerated type.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 58 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Floating point types

There are three real floating types, as follows.

- float
- double
- long double

Like the float type, the double and long double types of RL78,78KOR C compiler are supported as floating

point representations of the single-precision normalized numbers defined in ANSI/IEEE 754-1985. This

means that the float, double, and long double types have the same value range.

Table 3-8. Value Ranges by Type

Type Value Range
(signed) char -128 to +127
unsigned char 0to 255

(signed) short int

-32768 to +32767

unsigned short int

0 to 65535

(signed) int

-32768 to +32767

unsigned int

0 to 65535

(signed) long int

-2147483648 to +2147483647

unsigned long int

0 to 4294967295

float 1.17549435E - 38F to 3.40282347E + 38F
double 1.17549435E - 38F to 3.40282347E + 38F
long double 1.17549435E - 38F to 3.40282347E + 38F

Remarks 1. The "signed" type specifier may be omitted. However, when it is omitted for the char type, a
compiling condition (option) determines whether the type is the signed char or unsigned char
type.

2. The shortint and int types have the same value range, but they are treated as different types.

3. The unsigned short int and unsigned int types have the same value range, but they are treated
as different types.

4. The float, double, and long double types have the same value range, but they are treated as
different types.

5. The ranges of the float, double, and long double types are ranges of absolute values.

The following show the specifications of floating point numbers (float type).

<1> Format
The floating point number format is shown below.

Figure 3-1. Floating Point Number Format

(High address) | s e m (Low address)

31 30 23 22 0

Numerical values in this format are as follows.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 59 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(Value of sign) (Value of exponent)

(-1) * (Value of mantissa) * 2

s Sign (1 bit)

0 for a positive number and 1 for a negative number.

e | Exponent (8 bits)

A base-2 exponent is expressed as a 1-byte integer (expressed by 2's complement in the case of a
negative), after the further addition of a bias of 7FH. These relationships are shown in the table below.

Exponent (Hexadecimal) Value of Exponent
FE 127
81 2
80 1
7F 0
7E -1
01 -126

m | Mantissa (23 bits)

The mantissa is expressed as an absolute value, with bit positions 22 to 0 equivalent to the 1st to 23rd
places of a binary number.

Except for when the value of the floating point is 0, the value of the exponent is always adjusted so that
the mantissa is within the range of 1 to 2 (normalization). The result is that the position of 1 (i.e. the
value of 1) is always 1, and is thus represented by omission in this format.

<2> Expression of zero

When exponent = 0 and mantissa = 0, + 0 is expressed as follows.

(Value of sign)

(-1 * 0

<3> Expression of infinity

When exponent = FFH and mantissa = 0, + « is expressed as follows.

(Value of sign)

(-1 * oo

<4> Denormalized values

When exponent = 0 and mantissa # 0, the denormalized value is expressed as follows.

(Value of sign) -126

(-1) * (Value of mantissa) * 2

Remark The mantissa value here is a number less than 1, so bit positions 22 to 0 of the mantissa

express the 1st to 23rd decimal places.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 60 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<5> Expression of NaN (Not-a-number)
When exponent = FFH and mantissa # 0, NaN is expressed, regardless of the sign.

<6> Rounding of computation results
Numerical values are rounded down to the nearest even number. If the computation result cannot be
expressed in the above floating point format, round to the nearest expressible number.
If there are 2 values that can express the differential of the prerounded value, round to an even number
(a number whose least significant binary bit is 0).

<7> Exceptions
There are 5 types of exceptions, as shown in the table below.

Table 3-9. Numerical Exception

Exception Return Value
Underflow Denormalized number
Inexact +0
Overflow +
Division by zero + oo
Invalid operation NaN

When an exception occurs, calling the matherr function causes a warning to appeatr.

(2) Character types
There are 3 char data types.
- char
- signed char
- unsigned char

(3) Incomplete types
There are 4 incomplete data types.
- Arrays with indefinite object size
- Structures
- Unions
- void type

(4) Derived types
There are 5 derived data types.
- Array type
- Structure type
- Union type
- Function type
- Pointer type

(@) Array type
An array type describes a contiguously allocated set of objects with a particular member object type, called the
element type.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 61 of 872
Dec 01, 2013

CubeSu

ite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

All member objects have the area of the same size. Array types and individual elements can be specified. Itis
not possible to create an incomplete array type.

(b) Structure type

(©)

A structure type describes a sequentially allocated set of member objects, each of which has an optionally
specified name and possibly a distinct type.

Remark Array and structure types are collectively called aggregate types. The member objects in
aggregate types are allocated sequentially.

Union type

A union type describes an overlapping set of member objects.

Each member of a union has an optionally specified name and possibly a distinct type. Union members can
be specified individually.

(d) Function type

(e)

313

A function type describes a function with the return value of the specified type.
A function type is characterized by its return value type and the number and types of its parameters.
If its return value type is T, the function is called a "function returning T".

Pointer type

A pointer type may be derived from a function type, an object type, or an incomplete type, called the
referenced type.

A pointer type describes an object whose value provides a reference to an entity of the referenced type.
A pointer type derived from the referenced type T is sometimes called a "pointer to T".

Memory

This section explains memory.

(1) Memory models

Th
Th

e memory model is determined by the memory space of the target device.
e following memory models are available.

Table 3-10. Memory Models

Memory Model Maximum Values
Small modell (-ms option) Code 64KB, Data 64KB, Total 128KB
Medium model (-mm option) Code 1MB, Data 64KB, Total 1MB
Large model (-ml option) Code 1MB, Data 1MB, Total 1MB

Data sections include ROM data. The above table lists maximum values when expanded functions are not used.

(2) Register banks

- The current register bank is set to "RB0" by the RL78,78KOR C compiler startup routine. Unless it is changed,
it remains set to register bank 0.

- It's set as a specified register bank at the start of the interrupt function where register bank change designation
was done.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 62 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(3) Memory space

RL78,78KOR C compiler utilizes the following memory space.

Figure 3-2. Usage of Memory Space

Size
Address Use
(bytes)
00 080 - OBFH CALLT table 64
FF E20 - EB3H sreg variables, boolean variables 148
FF EB4 - EC3H Register variables 16
FF EC4 - ED3H Compiler reserved area 16
FF ED4 - ED7H Segment information 4
FF EDS8 - EDFH Runtime library arguments 8
FF EEO-EF7H | RB3-RB1 Work registersNote 1 24
EF8 - EFFH RBO Work registers 8
FF FOO - FFFH sfr variables 256
FO 000 - 7FFH 2nd sfr variables Max. 2048 Note 2
Notes 1. Used when a register bank is specified.

2. \Varies depending on the device used.

3.2 Extended Language Specifications

This section explains extensions unique to the RL78,78KOR C compiler, which are not specified by thel ANSI (Ameri-
can National Standards Institute) standard.

The RL78,78K0OR C compiler extensions allow to generate code that makes the most effective use of the target device.
These extensions are not necessarily useful in every situation, so recommended to use only those which are useful for
purposes. For more information about effective use of the RL78,78K0OR C compiler extensions, see "CHAPTER 2
FUNCTIONS".

Use of the RL78,78KOR C compiler extensions introduces microcontroller dependencies into C source programs, but
compatibility on the C language level is maintained. Even if using the RL78,78KOR C compiler extensions in C source
programs, can still port the programs to other microcontrollers with a few easy-to-make modifications.

Remark In this section, "RTOS" stands for the RL78,78KOR real-time OS.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 63 of 872

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

321 Macro names

RL78,78KOR C compiler defines a macro name to indicate the microcontroller name of the target device and a macro
name to indicate the device name. These device hames are specified by a compiling option to generate object code for
the target device or by device classification in the C source code. The following examples define the macro names
_ _KOR__and __F1166A0._.

See "(34) Predefined macro names" for more information about macro names.

Compiling option:

>cc78k0r -cfll166a0 prime.c ...

3.2.2 Reserved words

RL78,78KOR C compiler defines the following reserved words to enable the extended functions. Like ANSI C key-
words, these reserved words cannot be used as labels or variable names.

All of these reserved words are in lowercase. Any token that contains an uppercase character is not regarded as a
reserved word.

In the following table of reserved words added by RL78,78KOR C compiler, reserved words that do not begin with*_"
can be undefined by specifying the strict ANSI C conformance option (-za).

Table 3-11. Reserved Words Added by RL78,78KOR C Compiler

Additional Reserved Word Purpose
Always Defined Undefined When -za Option Is
Specified
__callt callt Call functions via callt table
__calif callf For 78K0 compatibility
__sreg sreg Allocate variables in saddr area
- noauto For 78K0 compatibility
__leaf norec For 78K0 compatibility
__boolean boolean Bit access to saddr and sfr area
- bit Bit access to saddr and sfr area
__interrupt - Hardware interrupt
__interrupt_brk - Software interrupt
__asm - ASM statements
__rtos_interrupt - RTOS interrupt handlers
__pascal - For 78K0 compatibility
__flash - Firmware ROM functions
__flashf - __flashf functions
__directmap - Absolute address mapping
__temp - For 78K0 compatibility
__near, __far - Memory area specification
__mxcall - For 78K0 compatibility
R20UT2774EJ0100 Rev.1.00 RENESAS Page 64 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

)

@)

3.2.3

Functions

The callt, __callt, __interrupt, __interrupt_brk, __rtos_interrupt, __ flash, __flashf reserved words are attribute
qualifiers that may be added to the start of function descriptions.

The syntax is shown below.

attribute-qualifier ordinary-declarator function-name (parameter-type-list/identifier-
list)

Following is an example description .

_ callt int func (int) ;

Valid attribute qualifiers are limited to the following.
Note that callt and __callt are regarded as the same specification. However, the qualifier that begins with"_ " is
defined even when the -za option is specified.

callt, __interrupt, __interrupt_brk, __rtos_interrupt, __ flash, __ flashf

Caution The compiler issues a warning when it encounters the callf, __callf, noauto, __pascal, __mxcall,
norec, and__leaf keywords, but otherwise ignores them.

Variables

sreg and __sreg follow the same rules as the "register” of the C language (See "How to use the saddr area (sreg/
__sreq)" for more information about the sreg reserved words).

The bit, boolean, and __boolean type specifiers follow the same rules as the "char" and "int" type specifiers of the
C language. However, they can be applied only to variables declared outside functions (external variables).

The __directmap qualifier follows the same rules as the qualifiers of the C language (See "Absolute address
allocation specification (__directmap)" for details).

The __near and __far qualifiers follow the same rules as the type qualifiers of the C language (See "near/far area
specification (__near/__far)" for details).

Caution The compiler issues a warning when it encounters the __temp keyword, but otherwise ignores
it.

#pragma directives

#pragma directives are one of the types of preprocessing directives supported by the ANSI C standard. A #pragma

directive instructs the compiler to translate in a specific way, depending on the string that follows the #pragma.
When a compiler encounters a #pragma directive that it does not recognize, it ignores the directive and continues
compiling. If the function of the unrecognized #pragma was to define a keyword, then an error will occur when that

keyword is encountered in the C source. To avoid this, the undefined keyword should be deleted from the C source or
excluded by #ifdef.
RL78,78KOR C compiler supports the following #pragma directives, which allow extended functions.

The keyword after #pragma may be specified in either uppercase or lowercase.

See "3.2.4 Using extended functions" for more information about using these directives to enable extended func-

tions.#pragma directive list.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 65 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-12. #pragma List

#pragma Directive Purpose

#pragma sfr Use SFR names in C source files.

-> See "How to use the sfr area (#pragma sfr)".

#pragma vect Write interrupt service routines in C.

#pragma interrupt -> See "Interrupt functions (#pragma vect/interrupt)".

#pragma di Disable and enable interrupts in C.

#pragma ei -> See "Interrupt functions (#pragma DI/EI)".

#pragma halt Write CPU control instructions in C.

#pragma stop -> See "CPU control instruction (#pragma HALT/STOP/BRK/NOP)".

#pragma brk

#pragma nop

#pragma section Change the compiler output section name and specify the section location.

-> See "Changing compiler output section name (#pragma section)".

#pragma name Change the module name.

-> See "Module name changing function (#pragma name)".

#pragma rot Use the inline rotation functions.

-> See "Rotate function (#pragma rot)".

#pragma mul Use the inline multiplication function.

-> See "Multiplication function (#pragma mul)".

#pragma div Use optimized division functions.

-> See "Division function (#pragma div)".

#pragma mac Use optimized sum-of-products calculation functions.

-> See "Sum-of-products calculation function (#pragma mac)".

#pragma opc Insert data at the current code address.

-> See "Data insertion function (#¥pragma opc)".

#pragma rtos_interrupt Write RI78V4 (real-time OS) interrupt handlers in C.
-> See "Interrupt handler for RTOS (#pragma rtos_interrupt)".

#pragma rtos_task Write RI78V4 (real-time OS) tasks in C.
-> See "Task for RTOS (#pragma rtos_task)".

#pragma ext_func Call flash area functions from boot area.

-> See "Function of function call from boot area to flash area (#pragma ext_func)".

#pragma inline Inline expansion of the standard library functions memcpy and memset.

-> See "Memory manipulation function (#pragma inline)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 66 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.2.4

Using extended functions

The following lists the extended functions of RL78,78KOR C compiler.

Table 3-13. Extended Function List

Extended Function

Description

callt functions (callt/__callt)

Allocated the address of a called function in the callt table area.

It's possible to reduce an object code compared with usual calling instruction call..

Register variables (register)

Instructs the compiler to place a variable in a register or the saddr area, for greater execution
speed.

Object code is also more compact.

How to use the saddr area
(sreg/__sreq)

Allocated a external variable of specified sreg or specified __sreg, and a static variable in a
function in the saddr area. Variables in the saddr area can be faster execution speed than
normal variables.

Object code is also more compact. Variables can be allocated in the saddr area by compiler
options.

Usage with saddr automatic
allocation option of external
variables/external static
variables (-rd)

Allocated a external variable and a external static variable in the saddr area. Variables in the
saddr area can be faster execution speed than normal variables.

Object code is also more compact. Variables can be allocated in the saddr area by compiler
options.

Usage with saddr automatic
allocation option of internal
static variables (-rs)

Allocated a internal static variable in the saddr area. Variables in the saddr area can be faster
execution speed than normal variables.

Object code is also more compact. Variables can be allocated in the saddr area by compiler
options.

How to use the sfr area
(#pragma sfr)

The #pragma sfr directive declares sfr names, which can use to manipulate special function
registers (sfr) from C source files.

bit type variables (bit),
boolean type variables
(boolean/__boolean)

Generate variables having 1-bit memory area.
bit and boolean/__boolean type variables allow bit access to the saddr area.

boolean and __boolean type variables are functionally identical to bit type variables, and can
be used in the same way.

ASM statements (#asm -
#endasm/__asm)

The #asm and __asm directives allow to use assembly language statements in C source code.
The statements are embedded in the assembly source code generated by the C compiler.

Kaniji (2-byte character) (/*
kanji */, /I kanji)

C source comments can contain kanji (multibyte Japanese characters).

Select the kanji encoding from Shift-JIS, EUC, or none.

Interrupt functions
(#pragma vect/interrupt)

Generate the interrupt vector table, and output object code required by interrupt.

This allows to write interrupt functions in C..

Interrupt function qualifier
(__interrupt/
__interrupt_brk)

It's possible to describe a vector table setting and an interrupt function definition in another file.

Interrupt functions
(#pragma DI/EI)

Embed instructions to disable/enable interrupts in object code.

CPU control instruction
(#pragma HALT/STOP/
BRK/NOP)

Embed the following instruction in object code.
halt instruction

stop instruction

brk instruction

nop instruction

Bit field declaration
(Extension of type specifier)

Defining bit fields of unsigned char, signed char, signed int, unsigned short, signed short type
can save memory and make object code shorter and faster execution speed.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 67 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Extended Function

Description

Bit field declaration
(Allocation direction of bit
field)

The -rb option changes the bit-field allocation order.

Changing compiler output
section name (#pragma
section)

Allows to change the compiler output section name and instruct the linker to locate that section
independently.

Binary constant (Ob)

Allows specifying binary constants in C source code.

Module name changing
function (#pragma name)

The module name of an object can be changed to any name in C source code.

Rotate function (#pragma
rot)

Outputs the code that rotates the value of an expression to the object with direct inline
expansion.

Multiplication function
(#pragma mul)

Outputs the code that multiplies the value of an expression to the object with direct inline
expansion.

The resulting object code is smaller and faster execution speed.

Division function (#pragma
div)

Output instructions using the data size of the input/output of a division instruction.
The code is compatible with the 78K0 compiler.

It is object code is smaller and faster execution speed than description division expressions.

Sum-of-products
calculation function
(#pragma mac)

It is object code is smaller and faster execution speed than description sum-of-products
calculation expressions.

BCD operation function
(#pragma bcd)

Outputs the code that performs a BCD operation on the expression value in an object by direct
inline expansion.

BCD operation is the calculation to express 1 digit of decimal number by 4 bits of binary
number.

Data insertion function
(#pragma opc)

Inserts constant data into the current address.

Specific data and instruction can be embedded in the code area without using the ASM
statement.

Interrupt handler for RTOS
(#pragma rtos_interrupt)

The interrupt handler for RI78V4 can be described..

Interrupt handler qualifier
for RTOS (__rtos_interrupt)

The setting of the vector and the description of the interrupt handler for RI78V4 can be
described in separate files.

Task for RTOS (#pragma
rtos_task)

The function names specified with #pragma rtos_task are interpreted as the tasks for RI78V4.

This allows to write efficient code of real-time OS task in C.

Flash area allocation
method (-zf)

By compiling with the -zf option, allows programs to be allocated to the flash area, and allows
those programs to be linked to object code (compiled without the -zf option) in the boot area.

Flash area branch table
and flash area allocation (-
zt/-2z)

Specifies the start address of the flash area branch table by -zt option, allowing the startup
routine and interrupt functions to be allocated in the flash area, and allowing flash area
functions to be called from the boot area.

Function of function call
from boot area to flash area
(#pragma ext_func)

The #pragma instruction specifies the function name and ID value in the flash area called from
the boot area, allowing flash area functions to be called from the boot area.

Mirror source area
specification (-mi0/-mil)

Compiling with the -mi0/-mil option, instructs the compiler to generate code for a specified
mirror source area.

Method of int expansion
limitation of argument/
return value (-zb)

Compiling with the -zb option, to generate smaller object code and faster execution speed.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 68 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Extended Function Description
Memory manipulation An object file is generated by the output of the standard library functions memcpy and memset
function (#pragma inline) with direct inline expansion.

The resulting code is faster execution speed.

Absolute address allocation | Declare __directmap in the module in which the variable to be allocated in an absolute
specification (__directmap) | address is to be defined. One or more variables can be allocated to the same arbitrary
address.

near/far area specification An allocating place of the function and a variable can be designated specifically by adding the
(__near/__far) __near or __far type qualifier when a function or variable declared.

Memory model An allocating place of the function and a variable can be specifying by a memory model by
specification (-ms/-mm/-ml) | specifying the -ms, -mm, or -ml option when compiling.

Allocating ROM data An allocating place of the ROM data can be designated specifically near or far area.
specification (-rf/-rn)

Specifying RAM allocation An allocating place of the code and ROM data can be designated RAM area.
destinations with self-
programming (-zx)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 69 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

callt functions (callt/__callt)

The address of the called function is allocate in the callt table area, and the function is called.

[Function]

- The callt instruction stores the address of a function to be called in an area [80H to BFH] called the callt table, so
that the function can be called with a shorter code than the one used to call the function directly.

- To call a function declared by the callt (or __callt) (called the callt function), a name with ? prefixed to the function
name is used. To call the function, the callt instruction is used.

- The function to be called is not different from the ordinary function.

[Effect]

- The object code can be shortened.

[Usage]

- Add the callt/__callt attribute to the function to be called as follows (described at the beginning):

callt extern type-name function-name

__callt extern type-name function-name

[Restrictions]

- The callt functions are allocated to the area within [COH to OFFFFH], regardless of the memory model.

- The address of each function declared with callt/__callt will be allocated to the callt table at the time of linking
object modules. For this reason, when using the callt table in an assembler source module, the routine to be cre-
ated must be made "relocatable" using symbols.

- A check on the number of callt functions is made at linking time.

- When the -za option is specified, __callt is enabled and callt is disabled.

- When the -zf option is specified, callt functions cannot be defined. If a callt function is defined, an error will occur.

- The area of the callt table is 80H to BFH.

- When the callt table is used exceeding the number of callt attribute functions permitted, a compile error will occur.

- The callt table is used by specifying the -gl option. For that reason, the humber of callt attributes permitted per 1
load module and the total in the linking modules is as shown below.

Option -ql1 -gl2 to -qI3

number of callt attribute functions 32 30

- Cases where the -gl option is not used and the defaults are as shown in the table below.

callt Function Restriction Value
Number per load module 32 max.
Total number in linked module 32 max.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 70 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

(C source)

============ Cal.C ============ ============ CQ2.C ============

__callt extern int tsub (void) ;

void main (void) { __callt int tsub (void) {
int ret_val ; int val ;
ret val = tsub () ; return val ;

1 }

(Output object of compiler)
cal module
EXTRN ?tsub ; Declaration

callt [?tsub] ; Call

ca2 module
PUBLIC _tsub ; Declaration

PUBLIC ?tsub ;

@@CALT CSEG CALLTO ; Allocation to segment
?tsub : DW _tsub

@@BASE CSEG BASE

_tsub : ; Function definition

; Function body

The callt attribute is given to the function tsub () so that it can be stored in the callt table.

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified if the reserved word callt/ __callt is not used.
- To change functions to callt functions, observe the procedure described in the Usage above.

(2) From the RL78,78KOR C compiler to another C compiler
- #define must be used. For details, see "3.2.5 C source modifications".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 71 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Register variables (register)

A variable is allocated to a register and saddr area.

[Function]

- Allocates the declared variables (including arguments of function) to the register (HL) and saddr area (_ @KREGO00
to _@KREG15). Saves and restores registers or saddr area during the preprocessing/ postprocessing of the mod-
ule that declared a register.

- For the details of the allocation of register variables, see "3.3 Function Call Interface".

- Register variables are allocated to register HL or the saddr area (FFEB4H to FFEC3H), in the order of reference
frequency. Register variables are allocated to register HL only when there is no stack frame, and allocated to the
saddr area only when the -gr option is specified.

[Effect]

- Instructions to the variables allocated to the register or saddr area are generally shorter in code length than those
to memory. This helps shorten object and also improves program execution speed.

[Usage]

- Declare a variable with the register storage class specifier as follows:

register type-name variable-name

[Restrictions]

- If register variables are not used so frequently, object code may increase (depending on the size and contents of
the source).

- Register variable declarations may be used for char/int/short/long/float/double/long double and pointer data types.

- The char type uses half as much area as the int type does. The long, float, double, long double, and far pointers
use twice as much area as the int type does. Between chars there are byte boundaries but in other cases, there
are word boundaries.

- In the cases of int, short and near pointers, up to eight variables can be used for each function. The ninth and sub-
sequent variables are allocated to the normal memory.

- In the case of a function without a stack frame, a maximum of 9 variables per function is usable for int, short and
near pointers. The 10th and subsequent variables are allocated to the normal memory.

[Example]

<C source>

void func () ;

void main () {
register int i, 35
i=20 ;
j=1;
i+=3 ;
func () ;

1

R20UT2774EJ0100 Rev.1.00 RENESAS Page 72 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(1) Example of register variable allocation to register HL and the saddr area
The following labels are declared in the startup routine (see to "3.4 List of saddr Area Labels").

<Output object of compiler>

EXTRN _@KREGO00 ; References the saddr area to be used
@@CODEL CSEG
_main :
push hl ; Saves the contents of the register at the beginning of
; the function
movw ax, _@KREGO0O ; Saves the contents of the saddr at the beginning of
; the function
push ax
; line 3 : register int 1, j ;
; line 4 : i=20 ;
; line 5 : jo=1;
movw hl, #00H ; The following codes are output in the middle of the
; function
onew ax
movw _@KREGO00, ax |
; line 6 : i += 3 ;
addw ax, hl
movw hl, ax
; line 7 :
pop ax ; Restores the contents of the saddr at the end of the
; function
movw _@KREGO00, ax
pop hl ; Restores the contents of the register at the end of
; the function
ret
END

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified if the other C compiler supports register declarations.
- To change to register variables, add the register declarations for the variables to the program.

(2) From the RL78,78K0OR C compiler to another C compiler
- The C source program need not be modified if the other compiler supports register declarations.
- How many variable registers can be used and to which area they will be allocated depend on the implementa-
tions of the other C compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 73 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

How to use the saddr area (sreg/__sreq)

External variables that the sreg or __sreg is declared and static variables declared within functions are allocated in the
saddr area.

[Function]

- The external variables and in-function static variables (called sreg variable) declared with reserved word sreg or
__sreg are automatically allocated to saddr area [FFE20H to FFEB3H] and with relocatability. When those vari-
ables exceed the area shown above, a compile error will occur.

- The sreg variables are treated in the same manner as the ordinary variables in the C source.

- Each bit of sreg variables of char, short, int, and long type becomes boolean type variable automatically.

- sreg variables declared without an initial value take 0 as the initial value.

- Of the sreg variables declared in the assembler source, the saddr area [FFE20H to FFF1FH] can be referred to.
The area [FFEB4H to FFEDFH] are used by compiler so that care must be taken (see Figure 3-2. Usage of Mem-
ory Space).

[Effect]

- Instructions to the saddr area are generally shorter in code length than those to memory. This helps shorten object
code and also improves program execution speed.

[Usage]

- Declare variables with the reserved words sreg and __sreg inside a module and a function which defines the vari-
ables. Only the variable with a static storage class specifier can become a sreg variable inside a function.

sreg type-name variable-name/ sreg static type-name variable-name

__sreg type-name variable-name/ __ sreg static type-name variable-name

- Declare the following variables inside a module which refers to sreg external variables. They can be described
inside a function as well.

extern sreg type-name variable-name/ extern sreg type-name variable-name

[Restrictions]

- If const type is specified, or if sreg/__sreg is specified for a function, a warning message is output, and the sreg
declaration is ignored.

- char type uses a half the space of other types and long/float/double/long double/far pointer types use a space
twice as wide as other types.

- Between char types there are byte boundaries, but in other cases, there are word boundaries.

- When the -za option is specified, only __sreg is enabled and sreg is disabled.

- In the case of int/shortt, and near pointer and pointer, a maximum of 74 variables per load module is usable (when
saddr area [FFE20H to FFEB3H] is used).
Note that the number of usable variables decreases when bit and boolean type variables, boolean type variables

are used.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 74 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]
<C source>
extern sreg int hsmmO ;
extern sreg int hsmml ;
extern sreg int *hsptr ;
void main () {
hsmmO -= hsmml ;
1

The following example shows a definition code for sreg variable that the user creates. If extern declaration is ot made

in the C source, the RL78,78KOR C compiler outputs the following codes. In this case, the ORG quasi-directive will not

be output.

PUBLIC _hsmmO0 ; Declaration
PUBLIC _hsmml
PUBLIC _hsptr

@@DATS DSEG SADDRP ; Allocation to segment
ORG OFE20H

_hsmmO : DS (2)

_hsmml : DS (2)

_hsptr : DS (2)

The following codes are output in the function.

movw ax, _hsmmO
subw ax, _hsmml
movw _hsmm0, ax

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modifications are not needed if the other compiler does not use the reserved word sreg/__sreg.
To change to sreg variable, modifications are made according to the method shown above.

(2) From the RL78,78K0OR C compiler to another C compiler

- Modifications are made by #define. For the details, see "3.2.5 C source modifications". Thereby, sreg vari-

ables are handled as ordinary variables.

R20UT2774EJ0100 Rev.1.00 ENESAS
Dec 01, 2013

Page 75 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Usage with saddr automatic allocation option of external variables/external static variables (-rd)

The -rd option to automatically allocate external variables and external static variables in the saddr area.

[Function]

- External variables/external static variables (except const type) are automatically allocated to the saddr area
regardless of whether sreg declaration is made or not.

- Depending on the value of n and the specification of m, the external variables and external static variables to allo-
cate can be specified as follows.

Specification of n,m Variables Allocated to saddr Area
n (1) Whenn=1
Variables of char and unsigned char types
(2) Whenn=2

Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int, enum,
and near pointer type
Whenn =4
Variables for when n = 2, plus variables of long, unsigned long, float, double, and long double,
far pointer type

m Structures, unions, and arrays

When omitted All variables

- Variables declared with the reserved word sreg are allocated to the saddr area, regardless of the above specifica-
tion.

- The above rule also applies to variables referenced by extern declaration, and processing is performed as if these
variables were allocated to the saddr area.

- The variables allocated to the saddr area by this option are treated in the same manner as the sreg variable. The
functions and restrictions of these variables are as described in [How to use the saddr area (sreg/__sreg)].

[Usage]
- Specify the -rd[n][m] (n = 1, 2, or 4) option.

[Restrictions]

- In the -rd[n][m] option, modules specifying different n, m value cannot be linked each other.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 76 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Usage with saddr automatic allocation option of internal static variables (-rs)

The -rs option to automatically allocate internal static variables in the saddr area.

[Function]

- Automatically allocates internal static variables (except const type) to saddr area regardless of with/ without sreg
declaration.
- Depending on the value of n and the specification of m, the internal static variables to allocate can be specified as

follows.
Specification of n, m Variables Allocated to saddr Area
n (1) Whenn=1:
Variables of char and unsigned char types
(2) Whenn=2:
Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int, enum,
and near pointer type
(3) Whenn=4:
Variables for when n = 2, plus variables of long, unsigned long, float, double, and long
double, far pointer type
m Structures, unions, and arrays
When omitted All variables (including structures, unions, and arrays in this case only)

- Variables declared with the reserved word sreg are allocated to the saddr area regardless of the above specifica-
tion.

- The variables allocated to the saddr area by this option are handled in the same manner as the sreg variable. The
functions and restrictions for these variables are as described in [How to use the saddr area (sreg/__sreg)].

[Usage]
- Specify the -rs[n][m] (n = 1, 2, or 4) option.

Remark In the -rs[n][m] option, modules specifying different n, m value can also be linked each other.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 77 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

How to use the sfr area (#pragma sfr)

The #pragma sfr directive declares sfr names, which can use to manipulate special function registers (sfr) from C
source files.

[Function]

- The sfr area refers to a group of special function registers such as mode registers and control registers for the var-
ious peripherals of the RL78 family, 78BKOR microcontrollers.

- By declaring use of sfr names, manipulations on the sfr area can be described at the C source level.

- sfr variables are external variables without initial value (undefined).

- A write check will be performed on read-only sfr variables.

- A read check will be performed on write-only sfr variables.

- Assignment of an illegal data to an sfr variable will result in a compile error.

- The sfr names that can be used are those allocated to an area consisting of addresses [FFFOOH to FFFFFH, and
FOOOOH to FO7FFHNO®].

Note Varies depending on the device used.

[Effect]

- Manipulations to the sfr area can be described in the C source level.
- Instructions to the sfr area are shorter in code length than those to memory. This helps shorten object code and
also improves program execution speed.

[Usage]

- Declare the use of an sfr name in the C source with the #pragma preprocessor directive, as follows (The keyword
sfr can be described in uppercase or lowercase letters.):

#pragma sfr

The #pragma sfr directive must be described at the beginning of the C source line.
The following statement and directives may precede the #pragma sfr directive:
- Comment
- Preprocessor directives which do not define nor see to a variable or function
- In the C source program, describe an sfr name that the device has as is (without change). In this case, the sfr
need not be declared.

[Restrictions]

- All sfr names must be described in uppercase letters. Lowercase letters are treated as ordinary variables.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 78 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

<C source>

#ifdef _ KOR__

#pragma sfr

#endif
void main (void) {
PLO -= ADCR ;
/* ADCR = 10 ; ==> error */

Codes that relate to declarations are not output and the following codes are output in the middle of the function.

mov a, PLO
sub a, ADCR
mov PLO, a

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Those portions of the C source program not dependent on the device or compiler need not be modified.

(2) From the RL78,78K0OR C compiler to another C compiler
- Delete the "#pragma sfr" statement or sort by "#ifdef" and add the declaration of the variable that was formerly
a sfr variable.
The following shows an example.

#ifdef _ KOR__

#pragma sfr

#else

unsigned char PO ; /*Declaration of variables*/
#endif

void main (void) {

PO = 0 ;

- In case of a device which has the sfr or its alternative functions, a dedicated library must be created to access
that area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 79 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

bit type variables (bit), boolean type variables (boolean/__boolean)

The bit, boolean, and __boolean type specifiers generate variables having 1-bit of memory area.

[Function]

- A bit or boolean type variable is handled as 1-bit data and allocated to saddr area.
- This variable can be handled the same as an external variable that has no initial value (or has an unknown value).
- To this variable, the C compiler outputs the following bit manipulation instructions:

MOV1l, AND1, OR1, XOR1l, SET1, CLR1, NOT1l, BT, BF

[Effect]

- Programming at the assembler source level can be performed in C, and the saddr and sfr area can be accessed in
bit units.

[Usage]

- Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as follows:
- __boolean can also be described instead of bit.

bit variable-name
boolean variable-name
boolean variable-name

- Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as follows:

extern bit variable-name
extern boolean variable-name
extern boolean variable-name

- char, int, short, and long type sreg variables (except the elements of arrays and members of structures) and 8-bit
sfr variables can be automatically used as bit type variables.

variable-name.n (where n = 0 to 31)

[Restrictions]

- An operation on 2 bit or boolean type variables is performed by using the CY (Carry) flag. For this reason, the con-
tents of the carry flag between statements are not guaranteed.

- Arrays cannot be defined or referenced.

- A bit or boolean type variable cannot be used as a member of a structure or union.

- This type of variable cannot be used as the argument type of a function.

- A bit type variable cannot be used as a type of automatic variable

- With bit type variables only, up to 1184 variables can be used per load module (when saddr area [FFE20H to
FFEB3H] is used) (normal model

- The variable cannot be declared with an initial value.

- If the variable is described along with const declaration, the const declaration is ignored.

- Only operations using 0 and 1 can be performed by the operators and constants shown in the table below.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 80 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Classification Operator

Assignment =

Bitwise AND &, &=

Bitwise OR I =

Bitwise XOR N A=

Logical AND &&

Logical OR Il

Equal ==

Not Equal 1=

- *, & (pointer reference, address reference), and sizeof operations cannot be performed.

- When the -za option is specified, only __boolean is enabled.

- In the case that sreg variables are used or if -rd, -rs (saddr automatic allocation option) options are specified, the
number of usable bit type variables is decreased.

[Example]
<C source>
#define ON 1
#define OFF 0
extern bit datal ;
extern bit data2 ;
void main (void) {

datal = ON ;

data2 = OFF ;

while (datal) {
datal = data2 ;

testb () ;

if (datal && data2)

chgb () ;

This example is for cases when the user has generated a definition code for a bit type variable. If an extern declaration
has not been attached, the compiler outputs the following code. The ORG quasi-directive is not output in this case.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 81 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

PUBLIC _datal ; Declaration

PUBLIC _data2

@@BITS BSEG ; Allocation to segment
ORG OFE20H

_datal DBIT

_data2 DBIT

The following codes are output in a function

setl _datal (Initialized)

clrl _data2 (Initialized)

bf datal, $?L0004 (Judgment)

movl CY, _data2 (Assignment)

movl _datal, CY (Assignment)

bf _datal, $?L0005 (Logical AND expression)
bf _data2, $?L0005 (Logical AND expression)

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified if the reserved word bit, boolean, or __boolean is not used.
- To change variables to bit or boolean type variables, modify the program according to the procedure described
in Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #define must be used. For details, see "3.2.5 C source modifications" (As a result of this, the bit or boolean
type variables are handled as ordinary variables.).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 82 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

ASM statements (#asm - #endasm/__asm)

The #asm and __asm directives allow to use assembly language statements in C source code. The statements are
embedded in the assembly source code generated by the C compiler.

[Function]

(1) #asm - #endasm
- The assembler source program described by the user can be embedded in an assembler source file to be out-
put by the RL78,78KOR C compiler by using the preprocessor directives #asm and #endasm.
- #asm and #endasm lines will not be output.

(2) _asm
- An assembly instruction is output by describing an assembly code to a character string literal and is inserted in
an assembler source.

[Effect]
- To manipulate the global variables of the C source in the assembler source
- To implement functions that cannot be described in the C source
- To hand-optimize the assembler source output by the C compiler and embed it in the C source (to obtain effi-
cient object)
[Usage]

(1) #asm #endasm
- Indicate the start of the assembler source with the #asm directive and the end of the assembler source with
the #endasm directive. Describe the assembler source between #asm and #endasm.

#asm
/* Assembler source */

#endasm

(2) _asm
- The ASM statement is described in the following format in the C source:

__asm (string-literal) ;

- The description method of character string literal conforms to ANSI, and a line can be continued by using an
escape character string (\n: line feed, \t: tab) or\, or character strings can be linked.

[Restrictions]

- Nesting of #asm directives is not allowed.
If ASM statements are used, no object module file will be created. Instead, an assembler source file will be cre-
ated.
[Output assemble file] by [Compile Options] tab of Property panel, set it as "Yes." (See "CubeSuite+ Integrated
Development Environment User's Manual: RL78,78KO0R Build" for a setting method.)

- Only lowercase letters can be described for __asm. If __asm is described with uppercase and lowercase charac-
ters mixed, it is regarded as a user function.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 83 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- When the -za option is specified, only __asm is enabled.

- #asm - #endasm and __asm block can only be described inside a function of the C source. Therefore, the assem-
bler source is output to CSEG of segment name @@CODE, or @ @CODEL.

[Example]

(1) #asm - #endasm
<C source>

void main (void) {
#asm
callt [init]

#endasm

}

<Output object of compiler>

@@CODEL CSEG
_main :
callt [init]

ret

END

In the above example, statements between #asm and #endasm will be output as an assembler source program to
the assembler source file.

(2) _asm
<C source>
int a, b ;
void main (void) {
__asm ("\tmovw ax, ! a \t ; ax <- a")
_asm ("\tmovw ! b, ax \t ; b <- ax") ;

<Output object of compiler>

@@CODEL CSEG
_main :
movw ax, ! a ; ax <- a
movw ! b, ax ; b <- ax
ret
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 84 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

- With the C compiler which supports #asm, modify the program according to the format specified by the C compiler.
- If the target device is different, modify the assembler source part of the program.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 85 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Kanji (2-byte character) (/* kanji */, // kanji)

C source comments can contain kanji (multibyte Japanese characters).

[Function]

- Kanji code can be described in comments in C source files.

- Kanji code in comments is handled as a part of comments, so the code is not subject to compilation.

- The kanji code to be used in comments can be specified by using an option or the environment variable.
If no option is specified, the code set in the environment variable LANG78K is set as the kanji code.

- If the kaniji code is specified by both the option and environment variable LANG78K, specification by the option
takes precedence.

- If"SJIS" is set in the environment variable LANG78K, the type of kanji in comments is Interpreted as shift JIS code.

- If "EUC" is set in the environment variable LANG78K, the compiler interprets this as meaning that the type of kaniji
in comments is EUC code.

- If "NONE" is set in the environment variable LANG78K, the compiler interprets this as meaning that comments do
not contain kanji codes.

- SJIS code is specified by default.

[Effect]

- The use of kanji code allows Japanese programmers to describe easier-to-understand comments, which makes C
source management easier.

[Usage]

- Set the kanji code by using a compiler option or environment variable (Setting is not needed if the default setting is
used).

(1) Setting by compiler option
Set any of the options listed in the following table.

Option Explaination
-Zs SJIS (shift JIS code)
-ze EUC (EUC code)
-zn NONE (kanji code not used)

(2) Setting by environment variable LANG78K
- Set "SJIS", "EUC" or "NONE".
- Specification of SJIS, EUC or NONE is not case-sensitive.
- Describe kanji characters in comments in C source files, in accordance with the one specified in LANG78K.

SET LANG78K = SJIS ; shift JIS code
SET LANG78K = EUC ; EUC code
SET LANG78K = NONE ; kanji code not used
R20UT2774EJ0100 Rev.1.00 RENESAS Page 86 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- Only shift JIS code and EUC code can be described in comments. Only the characters of 0x7f or lower ASCII
codes can be described for places other than comments. Neither full-size characters nor half-size katakana
(including half-size punctuation marks) can be described for any place other than comments.

If any of these characters is described, the expected code may not be output.

[Example]

<C source>

// main function
void main (void) {

/* Comment */

Kaniji type information is output to the assembler source.

<Output object of compiler>

SKANJICODE SJIS

When the C source contents are output to the assembler source, kanji characters in the comment are also output.

; line 1 : // main function
; line 2 : void main (void) {

@@CODEL CSEG

_main :
; line 3 /* Comment */
; line 4 }

[Description]

- Kanji code can be described only in comments in C source files.
- When using the format "// comment”, specify compiler option -zp.

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- If there is kanji in the the area that comment cannot be described (the area other than "/* ... */", or "// newline"
), the source files must be modified.
- If the kanji code differs from the one specified in the CC78KO0R, the kanji code must first be converted.

(2) From the RL78,78K0OR C compiler to another C compiler
- The C source need not be modified for a C compiler that supports kanji characters to be described in com-
ments.
- Kanji characters in the C source must be deleted if the C compiler does not support kanji characters to be
described in comments.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 87 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Interrupt functions (#pragma vect/interrupt)

Generate the interrupt vector table, and output object code required by interrupt.

[Function]

- The address of a described function name is registered to an interrupt vector table corresponding to a specified

interrupt request name.

- An interrupt function outputs a code to save or restore the following data (except that used in the ASM statement)

to or from the stack at the beginning and end of the function (after the code if a register bank is specified):

- Registers

- saddr area for register variables
- saddr area for work

- saddr area for run time library

- saddr area for storing segment information

- ES and CS registers

Note, however, that depending on the specification or status of the interrupt function, saving/restoring is performed

differently, as follows:

- If no change is specified, codes that change the register bank or saves/restores register contents, and that

saves/restores the contents of the saddr area are not output regardless of whether to use the codes or not.

- If aregister bank is specified, a code to select the specified register bank is output at the beginning of the inter-

rupt function, therefore, the contents of the registers are not saved or restored.

- If no change is not specified and if a function is called in the interrupt function, however, the entire register

area is saved or restored, regardless of whether use of registers is specified or not.

- If the -gr option is not specified for compilation, the saddr area for register variables and the saddr area for work

are not used; so the saving/restoring code is not output.

If the size of the saving code is smaller than that of the restoring code, the restoring code is output. The table

below summarizes the above and lists the saving/restoring areas.

Save/Restore Area NO

Function Called

Function Not Called

BANK

Without -qr

With -gr

Without -qr

With -gr

Stack

RBn

Stack

RBnN

Stack

RBn

Stack

RBn

Register used - -

OK

OK

All registers - OK

OK

saddr area for runtime - -
library used,

ES, CS register,

saddr area for storing seg-
ment information

OK

OK

OK

OK

saddr area for all runtime - OK
libraries,

ES, CS register,

saddr area for storing seg-
ment information

OK

OK

OK

saddr area for register vari- - -
able used

OK

OK

OK

OK

saddr area for compiler - -
reserved area

OKNote

OKNote

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 88 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Stack : Use of stack is specified
RBn . Register bank is specified
OK . Saved

- : Not saved

Note Not saved when speed is given priority (-gl not specified).

[Effect]

- Interrupt functions can be described at the C source level.

- Because the register bank can be changed, codes that save the registers are not output; therefore, object codes
can be shortened and program execution speed can be improved.

- You do not have to be aware of the addresses of the vector table to recognize an interrupt request name.

[Usage]

- Specify an interrupt request name, a function name, stack switching, registers used by the compiler, and whether
the saddr area is saved/restored, with the #pragma directive. Describe the #pragma directive at the beginning of
the C source. The #pragma directive is described at the start of the C source (for the interrupt request names, see
the user's manual of the target device used). For the software interrupt BRK, describe BRK_I.

- The following items can be described before this #pragma directive:

- Comments
- Preprocessor directive which does neither define nor see to a variable or a function

#pragma vect (or interrupt) interrupt-request-name function-name

[Stack-change-specification] Stack-usage-specification
No-change-specification

Register-bank-specification

- Interrupt request name
Described in uppercase letters.
See the user's manual of the target device used (Example: NMI, INTPO, etc.).
For the software interrupt BRK, describe BRK_|.
- Function name
Name of the function that describes interrupt processing
- Stack change specification
SP = array nhame [+ offset location] (Example: SP = buff + 10)
Define the array by unsigned short (Example: unsigned short buff [5];).
Specify for the offset location an even value of the buff size or lower (Example: In the case of unsigned short
buff[5], the buff size is 10 bytes, so an even value of 10 or lower should be specified).
- Stack use specification
STACK (default)
- No change specification

NOBANK
- Register bank specification
RBO/RB1/RB2/RB3
R20UT2774EJ0100 Rev.1.00 RENESAS Page 89 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Cautions 1. Since the RL78,78K0OR C compiler startup routine is initialized to register bank 0, be sure to
specify register banks 1 to 3.
2. When speed is given priority (-ql not specified), the saddr area for the compiler reserved area is
not saved when saving or restoring an interrupt function with a function call, even if -qr is
specified.

[Restrictions]

- When the -zf option is not specified, interrupt functions are allocated to the area between COH and OFFFFH,
regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In addi-
tion, specification of allocation area by specifying __near or __far is also enabled.

- Arrays in an area other than the near area cannot be specified for stack change. If specified, an error will occur.

- A value other than an even value cannot be specified for the offset location. If specified, an error will occur.

- Unlike other microcontrollers, the unsigned short type array is reserved for changing the stack pointer.

- An interrupt request name must be described in uppercase letters.

- A duplication check on interrupt request names will be made within only 1 module.

- The contents of a register may be changed if the following three conditions are satisfied, but the compiler cannot
check this.

If it is specified to change the register bank, set the register banks so that they do not overlap. If register banks
overlap, control their interrupts so that they do not overlap.
When NOBANK (no change specification) is specified, the registers are not saved. Therefore, control the registers
so that their contents are not lost.

- If two or more interrupts occur

- If two or more interrupts that use the same BANK are included in the interrupt that has occurred

- If NOBANK or a register bank is specified in the description #pragma interrupt -.

- The specifiable number of register banks depends on the actual number of register banks in the device.

However, the number of register banks is not specifiable for RL78 8-bit CPUs because each chip only has one reg-
ister bank.

- As the interrupt function, callt/__callt/__rtos_interrupt/__flash/__flashf cannot be specified.

__far can be specified only when the -zf option is specified.

- An interrupt function is specified with void type (example: void func (void);) because it cannot have an argument
nor return value.

- Even if an ASM statement exists in the interrupt function, codes saving all the registers and variable areas are not
output. If an area reserved for the compiler is used in the ASM statement in the interrupt function, therefore, or if a
function is called in the ASM statement, the user must save the registers and variable areas.

- If leafwork 1 to 16 is specified, a warning is output and the specification is ignored.

- When stack change is specified, the stack pointer is changed to the location where offset is added to the array
name symbol. The area of the array name is not secured by the #pragma directive. It needs to be defined sepa-
rately as global unsigned short type array.

- The code that changes the stack pointer is generated at the start of a function, and the code that sets the stack
pointer back is generated at the end of a function.

- When reserved words sreg/__sreg are added to the array for stack change, it is regarded that two or more vari-
ables with the different attributes and the same name are defined, and a compile error will occur. It is possible to
allocate an array in saddr area by the -rd option, but code and speed efficiency will not be improved because the
array is used as a stack. Itis recommended to use the saddr area for purposes other than a stack.

- The stack change cannot be specified simultaneously with the no change. If specified so, an error will occur.

- The stack change must be described before the stack use/register bank specification. If the stack change is
described after the stack use/register bank specification, an error will occur.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 90 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- If a function specifying no change, register bank, or stack change as the saving destination in #pragma vect/

#pragma interrupt specification is not defined in the same module, a warning message is output and the stack
change is ignored. In this case, the default stack is used.
- Coding a "#pragma vect" or "#pragma interrupt" when -zx is specified will cause an error. Use the "__interrupt” or

" __interrupt_brk " modifier when defining an interrupt function. RL78 familyuse the self-programming library to
allocate interrupt vector tables in self-programming.

[Example]

(1) When register bank is specified

<C source>

#pragma interrupt INTPO inter rbl

void inter (void) {

/* Interrupt processing to INTPO pin input*/

<Output object of compiler>

@@VECTO08

_@vect08

@@BASE

_inter :

7

7

DW

CSEG AT 0008H ; INTPO
_inter
CSEG BASE

Switching code for the register bank

Saving code of the saddr area for use by the compiler
Saves ES and CS registers

Interrupt processing to INTPO pin input (function body)
Restores ES and CS registers

Restoring code of the saddr area used by the compiler

reti

(2) When stack change and register bank are specified

<C source>

#pragma interrupt INTPO inter sp = buff + 10 rb2

unsigned short buff[5] ;

void func (void) ;
void inter (void) {
func () ;
}
R20UT2774EJ0100 Rev.1.00 RENESAS Page 91 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

<Output object of compiler (When code size prioritized)>

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

@@BASE CSEG BASE
_inter
sel RB2 ; Changes register bank
movw ax, sp ; Changes stack pointer
movw sp, # buff + 10 ;
push ax H
movw c, #OCH ; Saves saddr used by the compiler
dec c H
dec c ;
movw ax, _@SEGAX[c] H
push ax i
bnz $$ - 6 i
mov a, ES ; Saves ES and CS registers
mov X, a i
mov a, Cs i
push ax i
call !l func
pop ax ; Restores ES and CS registers
mov Cs, a ;
mov a, x i
mov ES, a ;
movw de, #_ @SEGAX ; Restores saddr used by the compiler
mov c, #06H i
pop ax i
movw [de]l, ax i
incw de H
incw de ;
dec c H
bnz $$ - 5 i
pop ax ; Returns the stack pointer to its original position
movw sp, ax ;
reti
@@VECTO08 CSEG AT 0008H
_@vect08
DW _inter

<Output object of compiler (When speed prioritized)>

@@BASE CSEG BASE

_inter
sel RB2 ; Changes register bank
movw ax, sp ; Changes stack pointer
movw sp, # buff + 10 ;

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 92 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

push ax ;
movw ax, _@RTARG6 ; Saves saddr used by the compiler
push ax i
movw ax, _@RTARG4 ;
push ax i
movw ax, _@RTARG2 ;
push ax ;
movw ax, _@RTARGO ;
push ax i
movw ax, _@SEGDE ;
push ax i
movw ax, _@SEGAX ;
push ax ;
mov a, ES ; Saves ES and CS registers
mov X, a i
mov a, Cs i
push ax i
call !'!_func
pop ax ; Restores ES and CS registers
mov Cs, a i
mov a, x i
mov ES, a i
pop ax ; Restores saddr used by the compiler
movw _@SEGAX, ax ;
pop ax ;
movw _@SEGDE, ax ;
pop ax ;
movw _@RTARGO, ax ;
pop ax ;
movw _@RTARG2, ax ;
pop ax i
movw _@RTARG4, ax ;
pop ax i
movw _@RTARG6, ax ;
pop ax ; Returns the stack pointer to its original position
movw sp, ax i
reti

@@VECTO08 CSEG AT 0008H

_@vect08

DW _inter
R20UT2774EJ0100 Rev.1.00 RENESAS Page 93 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified if interrupt functions are not used at all.
- To change an ordinary function to an interrupt function, modify the program according to the procedure
described in Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- An interrupt function can be used as an ordinary function by deleting its specification with the #pragma vect,
#pragma interrupt directive.
- When an ordinary function is to be used as an interrupt function, change the program according to the specifi-
cations of each compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 94 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Interrupt function qualifier (__interrupt/__interrupt_brk)

It's possible to describe a vector table setting and an interrupt function definition in another file.

[Function]

- A function declared with the __interrupt qualifier is regarded as a hardware interrupt function, and execution is
returned by the return RETI instruction for non-maskable/maskable interrupt function.

- By declaring a function with the __interrupt_brk qualifier, the function is regarded as a software interrupt function,
and execution is returned by the return instruction RETB for software interrupt function.

- A function declared with this qualifier is regarded as (non-maskable/maskable/software) interrupt function, and
saves or restores the registers and variable areas (1) and (6) below, which are used as the work area of the com-
piler, to or from the stack.

If a function call is described in this function, however, all the variable areas are saved to the stack.

(1) Registers

(2) saddr area for register variables

(3) saddr area for work

(4) saddr areafor run time library

(5) saddr area for storing segment information
(6) ES and CS registers

Remark If the -gr option is not specified (default) at compile time, save/restore codes are not output because areas
(2) and (3) are not used.

[Effect]

- By declaring a function with this qualifier, the setting of a vector table and interrupt function definition can be
described in separate files.

[Usage]

- Describe either __interrupt or __interrupt_brk as the qualifier of an interrupt function.

(1) For non-maskable/maskable interrupt function

__interrupt void func () { processing }

(2) For software interrupt function>

__interrupt brk void func () { processing }
R20UT2774EJ0100 Rev.1.00 RENESAS Page 95 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- When the -zf option is specified, the interrupt functions are allocated to the area within [COH to OFFFFH], regard-
less of the memory model.
When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In addi-
tion, specification of allocation area by specifying __near or __far is also enabled.

- The interrupt function cannot specify callt/__callt/__rtos_interrupt/__flash/__flashf.

- When -zx is specified, the interrupt function is allocated at [COH - FFEFFH], regardless of whether the -zf option
was specified, or the memory model. In self-programming mode, an interrupt vector table is allocated using the self-

programming library.

[Example]

- Declare or define interrupt functions in the following format. The code to set the vector address is generated by
#pragma interrupt.

#pragma interrupt INTPO inter RB1 /*The interrupt request name of*/
#pragma interrupt BRK_I inter b RB2 /*The software interrupt is "BRK I"*/
__interrupt void inter () ; /*Prototype declaration*/
__interrupt_brk void inter b () ; /*Prototype declaration*/
__interrupt void inter () { processing } ; /*Function body*/
__interrupt_brk void inter b () { processing } ; /*Function body*/

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified unless interrupt functions are supported.
- Modify the interrupt functions, if necessary, according to the procedure described in Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #define must be used to allow the interrupt qualifiers to be handled as ordinary functions.
- To use the interrupt qualifiers as interrupt functions, modify the program according to the specifications of each
compiler.

[Cautions]

- The vector address is not set by merely declaring this qualifier. The vector address must be separately set by
using the #pragma vect/interrupt directive or assembler description.

- The saddr area and registers are saved to the stack.

- Even if the vector address is set or the saving destination is changed by #pragma vect (or interrupt) ..., the change
in the saving destination is ignored if there is no function definition in the same file, and the default stack is
assumed.

- To define an interrupt function in the same file as the #pragma vect (or interrupt) ... specification, the function name
specified by #pragma vect (or interrupt) ... is judged as the interrupt function, even if this qualifier is not described.
For details of #pragma vect/interrupt, see Usage of "Interrupt functions (#pragma vect/interrupt)".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 96 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Interrupt functions (#pragma DI/EI)

Embed instructions to disable/enable interrupts in object code.

[Function]

- Codes DI and El are output to the object and an object file is created.

- If the #pragma directive is missing, DI () and EI () are regarded as ordinary functions.

- If "Dl ();" is described at the beginning in a function (except the declaration of an automatic variable, comment,
and preprocessor directive), the DI code is output before the preprocessing of the function (immediately after the
label of the function name).

- To output the code of DI after the preprocessing of the function, open a new block before describing "DI ();"
(delimit this block with "{").

- If"El ();" is described at the end of a function (except comments and preprocessor directive), the El code is output
after the post-processing of the function (immediately before the code RET).

- To output the EI code before the post-processing of a function, close a new block after describing "El ();" (delimit
this block with "}").

[Effect]

- A function disabling interrupts can be created.

[Usage]

- Describe the #pragma DI and #pragma El directives at the beginning of the C source.
However, the following statement and directives may precede the #pragma DI and #pragma EI directives:
- Comment
- Other #pragma directives
- Preprocessor directive which does neither define nor see to a variable or function
- Describe DI (); or El (); in the source in the same manner as function call.
- DI and El can be described in either uppercase or lowercase letters after #pragma.

[Restrictions]

- When using these interrupt functions, DI and El cannot be used as function names.
- DI and El must be described in uppercase letters. If described in lowercase letters, they will be handled as ordi-
nary functions.

[Example]

#ifdef _ KOR__
#pragma DI
#pragma EI
#endif

R20UT2774EJ0100 Rev.1.00 RENESAS Page 97 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<C source>

#pragma DI

#pragma EI

void main (void) {
DI ()
; Function body

EI ()

<Output object of compiler>

_main :
di
; Preprocessing
; Function body
; Postprocessing
ei

ret

(1) To output DI and El after and before preprocessing/post-processing

<C source>

#pragma DI

#pragma EI

void main (void) {
{
DI ()
; Function body

EI ()

<Output object of compiler>

_main :
; Preprocessing
di
; Function body
el
; Postprocessing

ret

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 98 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified if interrupt functions are not used at all.
- To change an ordinary function to an interrupt function, modify the program according to the procedure
described in Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- Delete the #pragma DI and #pragma El directives or invalidate these directives by separating them with #ifdef
and DI and El can be used as ordinary function names (Example: #ifdef __KOR___ ... #endif).
- When an ordinary function is to be used as an interrupt function, modify the program according to the specifi-
cations of each compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 99 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CPU control instruction (#pragma HALT/STOP/BRK/NOP)

The #pragma HALT/STOP/BRK/NOP directives declare functions that embed CPU control instructions.

[Function]

- The following codes are output to the object to create an object file:
- Instruction for HALT operation (HALT)

- Instruction for STOP operation (STOP)

- BRK instruction

- NOP instruction

[Effect]

- The standby function of a microcontroller can be used with a C program.
- A software interrupt can be generated.
- The clock can be advanced without the CPU operating.

[Usage]
- Describe the #pragma HALT, #pragma STOP, #pragma NOP, and #pragma BRK instructions at the beginning of
the C source.
- The following items can be described before the #pragma directive:
- Comment
- Other #pragma directive
- Preprocessor directive which does neither define nor see to a variable or function
- The keywords following #pragma can be described in either uppercase or lowercase letters.
- Describe as follows in uppercase letters in the C source in the same format as function call:

HALT () ;
STOP ()

BRK () ;

NOP ()

[Restrictions]

- When this feature is used, HALT, STOP, BRK, and NOP cannot be used as function names.
- Describe HALT, STOP, BRK, and NOP in uppercase letters. If they are described in lowercase letters, they are
handled as ordinary functions.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 100 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

<C source>

#pragma HALT
#pragma STOP
#pragma BRK

#pragma NOP

void main (void) {
HALT () ;
STOP ()
BRK ()

NOP ()

<Output object of compiler>

@@CODEL CSEG
_main :
halt
stop
brk

nop

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The C source program need not be modified if the CPU control instructions are not used.
- Modify the program according to the procedure described in Usage above when the CPU control instructions
are used.

(2) From the RL78,78K0OR C compiler to another C compiler
- If "#pragma HALT", "#pragma STOP", "#pragma BRK", and "#pragma NOP" statements are delimited by
means of deletion or with #ifdef, HALT, STOP, BRK, and NOP can be used as function names.
- To use these instructions as the CPU control instructions, modify the program according to the specifications
of each compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 101 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Bit field declaration (Extension of type specifier)

It's possible declare bit-fields of type unsigned char, signed char, unsigned int, signed int, unsigned short, and signed
short.

[Function]

- The hit field of unsigned char, signed char type is not allocated straddling over a byte boundary.

- The bit field of unsigned int, signed int, unsigned short, signed short type is not allocated straddling over a word
boundary, but can be allocated straddling over a word boundary when the -rc option is specified.

- The hit fields that the types are same size are allocated in the same byte units (or word units).
If the types are different size, the bit fields are allocated in different byte units (or word units).

- unsigned short, signed short type is handled similarly with unsigned int, signed int type respectively.

[Effect]

- The memory can be saved.

[Usage]

- As a bit field type specifier, unsigned char, signed char, signed int, unsigned short, signed short type can be speci-
fied in addition to unsigned int type.
Declare as follows.

struct tag-name {
unsigned char field-name : bit-width ;

unsigned char field-name : bit-width ;

unsigned int field-name : bit-width ;

b

[Example]

struct tagname {
unsigned char A1 ;
unsigned char B : 1 ;
unsigned int c: 2 ;
unsigned int D : 1 ;

}oi

R20UT2774EJ0100 Rev.1.00 RENESAS Page 102 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The source program need not be modified.
- Change the type specifier to use unsigned char, signed char, unsigned short, signed short as the type speci-
fier.

(2) From the RL78,78K0OR C compiler to another C compiler
- The source program need not be modified if unsigned char, signed char, signed int, unsigned short and signed
short is not used as a type specifier.
- Change into unsigned int, if unsigned char, signed char, signed int, unsigned short and signed short is used as
a type specifier.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 103 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Bit field declaration (Allocation direction of bit field)

The -rb option changes the bit-field allocation order.

[Function]

- The direction in which a bit field is to be allocated is changed and the bit field is allocated from the MSB side when

the -rb option is specified.

- If the -rb option is not specified, the bit field is allocated from the LSB side.

[Usage]

- Specify the -rb option at compile time to allocate the bit field from the MSB side.
- Do not specify the option to allocate the bit field from the LSB side.

[Example]

(1) Bitfield declaration 1

struct t {

unsigned char a : 1 ;
unsigned char b : 1 ;
unsigned char c : 1 ;

unsigned char d: 1 ;

unsigned char e : 1 ;
unsigned char f 1 ;
unsigned char g :1

unsigned char h : 1 ;

Because a through h are 8 bits or less, they are allocated in 1-byte units.

Bit allocation from MSB

with the -rb option specified

Bit allocation from LSB

without the -rb option specified

MSB LSB MSB LSB
a b c d e f g h h g f e d [« a
R20UT2774EJ0100 Rev.1.00 RENESAS Page 104 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Bitfield declaration 2

struct t {
char a ;
unsigned char b : 2 ;
unsigned char c : 3 ;

unsigned char d: 4 ;

int e
unsigned int f : 5
unsigned int g : 6
unsigned char h: 2
unsigned int i:2
b
Bit field allocated from the MSB side Bit field allocated from the LSB side
when the -rb option is specified when the -rb option is not specified
MSB LSB MSB LSB
b c Vacant a Vacant c b a
NN NN
1 0 1 0

Member a of char type is allocated to the first byte unit. Members b and c are allocated to subsequent byte units,
starting from the second byte unit. If a byte unit does not have enough space to hold the type char member, that

member will be allocated to the following byte unit. In this case, if there is only space for 3 bits in the second byte
unit, and member d has 4 bits, it will be allocated to the third byte unit.

Vacant d Vacant Vacant Vacant d
L] N T O O
3 2 3 2
e e e e
R T A A N A O A A
5 4 5 4
f g g Vacant Vacant g g f
N N A I
7 6 7 6
Vacant h Vacant Vacant Vacant h
| L] || O L |
9 8 9 8

Since member g is a bit field of type unsigned int, it can be allocated across byte boundaries.
Since h is a bit field of type unsigned char, it is not allocated in the same byte unit as the g bit field of type unsigned
int, but is allocated in the next byte unit.

i Vacant Vacant Vacant Vacant i
EEEEEEEEEREEE. LI
11 10 11 10
R20UT2774EJ0100 Rev.1.00 RENESAS Page 105 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Since i is a bit field of type unsigned int, it is allocated in the next word unit.
When the -rc option is specified (to pack the structure members), the above bit field becomes as follows.
In addition, since the compiler is processing the data of array as a pointer, it becomes byte access at the time of "-

rc" specification.

b c Vacant a Vacant c b a
HEEEEEEEE N RSN
1 0 1 0

e d Vacant e Vacant d
L PPy RN
3 2 3 2

g Vacant e g f e
L PP NN
5 4 5 4
h Vacant f [o} Vacant h Vacant g
RN HEEEEE NN
7 6 7 6
i Vacant Vacant Vacant Vacant i
RN RN
9 8 9 8
Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

(3) Bitfield declaration 3

struct t {

char

unsigned int
unsigned int
unsigned int
unsigned char
unsigned int
unsigned int
unsigned int

unsigned int

b 6
c 7
d : 4
e 3
£f : 10
g : 2
h : 5
i:6

Bit field allocated from the MSB side

when the -rb option is specified

Bit field allocated from the LSB side

when the -rb option is not specified

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 106 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

MSB LSB MSB LSB
Vacant a Vacant a
L] LT
1 0 1 0
b c c Vacant Vacant c c b
L] L
3 2 3 2
Since b and c are bit fields of type unsigned int, they are allocated from the next word unit.
Since d is also a bit field of type unsigned int, it is allocated from the next word unit.
d Vacant Vacant Vacant Vacant d
L] L]
5 4 5 4
Vacant e Vacant Vacant Vacant e
L] I A O A B
7 6 7 6
Since e is a hit field of type unsigned char, it is allocated to the next byte unit.
f f g Vacant Vacant g f f
RN RN
9 8 9 8
h i i Vacant Vacant i i h
Ll I I A O A O A O
11 10 11 10

fand g, and h and i are each allocated to separate word units.
When the -rc option is specified (to pack the structure members), the above bit field becomes as follows.
In addition, since the compiler is processing the data of array as a pointer, it becomes byte access at the time of "-

rc" specification.

MSB LSB MSB LSB
[« Vacant a [b a
I O T A A O Ll
1 0 1 0
Vacant b c Vacant d Vacant c
L g I T A O I
3 2 3 2
e Vacant d Vacant Vacant e Vacant
I A O A A Ll
5 4 5 4
f f g Vacant Vacant g f f
I T A I LI L]
7 6 7 6
h i i Vacant Vacant i i h
[A O A A [O A
9 8 9 8
R20UT2774EJ0100 Rev.1.00 RENESAS Page 107 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the
structure.

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The source program need not be modified.

(2) From the RL78,78KOR C compiler to another C compiler
- The source program must be modified if the -rb option is used and coding is performed taking the bit field allo-
cation sequence into consideration.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 108 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Changing compiler output section name (#pragma section)

Changing compiler output section name, and specifying the starting address.

[Function]

- A compiler output section name is changed and a start address is specified.

If the start address is omitted, the default allocation is assumed. For the compiler output section name and default
location, see "3.5 List of Segment Names".

In addition, the location of sections can be specified by omitting the start address and using the link directive file at
the time of link. For the link directives, see "5.1.1 Link directives".

- To change section names @@CALT with an AT start address specified, the callt functions must be described
before or after the other functions in the source file.

- If data are described after the #pragma instruction is described, those data are located in the data change section.
Another change instruction is possible, and if data are described after the rechange instruction, those data are
located in the rechange section.

If data defined before a change are redefined after the change, they are located in the rechanged section.
Furthermore, this is valid in the same way for static variables (within the function).

[Effect]

- Changing the compiler output section repeatedly in 1 file enables to locate each section independently, so that
data can be located in data units to be located independently.

[Usage]
- Specify the name of the section which is to be changed, a new section name, and the start address of the section,
by using the #pragma directive as indicated below.
Describe this #pragma directive at the beginning of the C source.
The following items can be described before this #pragma directive:
- Comment
- Preprocessor directive which does neither define nor see to a variable or a function
However, all sections in BSEG and DSEG, and the @ @CNST, @ @CNSTL section in CSEG can be described
anywhere in the C source, and rechange instructions can be performed repeatedly. To return to the original sec-
tion name, describe the compiler output section name in the changed section.
Declare as follows at the beginning of the file:

#pragma section compiler-output-section-name new-section-name [AT startaddress]

- Of the keywords to be described after #pragma, be sure to describe the compiler output section name in upper-
case letters.
section, AT can be described in either uppercase or lowercase letters, or in combination of those.

- The format in which the new section name is to be described conforms to the assembler specifications (up to 8 let-
ters can be used for a segment name).

- Only the hexadecimal numbers of the C language and the hexadecimal numbers of the assembler can be
described as the start address.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 109 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(1) Hexadecimal numbers of C language

0xn/0xn ... n

0Xn/0Xn ... n

(2) Hexadecimal numbers of assembler

nH/n ... nH
nh/n ... nh

(n=0,1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

The hexadecimal number must start with a numeral.
To example,to express a numeric value with a value of 255 in hexadecimal number, specify zero before F. ltis
therefore OFFH.

- For sections other than the @ @CNST, @ @CNSTL section in CSEG, that is, sections which locate functions, this
#pragma instruction cannot be described in other than the beginning of the C source (after the C source is
described).If described, a warning is output and the description is ignored.

- If this #pragma instruction is executed after the C text is described, an assembler source file is created without an
object module file being created.

- If this #pragma instruction is after the C text is described, a file which contains this #pragma instruction and which
does not have the C text (including external reference declarations for variables and functions) cannot be included.
This results in an error (see "CODING ERROR EXAMPLE1").

- #include statement cannot be described in a file which executes this #pragma instruction following the C text
description. If described, it causes an error (see "CODING ERROR EXAMPLE2").

- If #include statement follows the C text, this #pragma instruction cannot be described after this description. If
described, it causes an error (see "CODING ERROR EXAMPLE3").

But, when a body of C is in the header file, it isn't cause an error.

dl.h
extern int a ;

d2.h
#define VAR 1

d.c
#include "d1l.h" // When there is a body of C and it's in #include,
#include "d2.h" // #pragma instruction of d.c isn't an error.
#pragma section @@DATA ??DATAl

[Restrictions]

- A section name that indicates a segment for vector table (e.g., @@VECTO02, etc.) must not be changed.

- If two or more sections with the same name as the one specifying the AT start address exist in another file, a link
error will occur.

- Specify the address within the range from FFE20H to FFEB3H for compiler output section names @ @DATS,
@@BITS and @@INIS, from 0x80 to Oxbf for @ @CALT, from 0x0 to Oxffff for @ @CODE and @ @BASE, from
mirror area for @ @CNST, and from 0x0 to Oxffeff for other sections.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 110 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

Section name @@CODEL is changed to CC1 and address 2400H is specified as the start address.

<C source>

#pragma section @@CODEL CC1l

void main (void) {

; Function body

AT

2400H

<Output object of compiler>

_main
; Preprocessing
; Function body
; Postprocessing

ret

CcC1 CSEG AT 2400H

The following is a code example in which the main C code is followed by a #pragma directive.

The contents are allocated in the section following "//".

(1) EXAMPLE1

#pragma section @@DATA

int al ;
sreg int bl ;
int cl =1 ;
const int dil = 1 ;

#pragma section @@DATS

int a2 ;
sreg int b2 ;
int c2 =1 ;
const int d2 = 1 ;

#pragma section @@DATA

int a3 ;
sreg int b3 ;
int c3 = 3 ;
const int d3 = 3 ;

#pragma section @@DATA

??DATA

// ??DATA
// @@DATS
// @@INIT and @@R_INIT
// @@CNST

??DATS

// ??DATA
// ??DATS
// @@INIT and @@R_INIT
// @@CNST

??DATA2

// ??DATA is automatically closed and ??DATA2 becomes valid

// ??DATA2
// ??DATS
// @@INIT and @@R_INIT
// @@CNST

@@DATA

// ??DATA2 is closed and processing returns to the default @@DATA

#pragma section @@INIT ??INIT
#pragma section @@R_INIT ??R_INIT
R20UT2774EJ0100 Rev.1.00 :{ENESAS Page 111 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

int a4 ;

sreg int b4 ;

int c4d =1 ;

const int d4 = 1 ;
#pragma section @@INIT

#pragma section @@R_INIT

// ROMization is invalidated unless both names

// @@DATA
// ??DATS

(@@INIT and @@R_INIT)

// is the user's responsibility.

// ??INIT and ??R_INIT
// @@CNST
@@INIT

@@R_INIT

// ??INIT and ??R_INIT are closed and processing returns to the default setting

are changed.

This

#pragma section @@BITS ??BITS

__boolean e4 ; // ??BITS

#pragma section @@CNST ??CNST

char *const p = "Hello" ; // p and "Hello" are both ??CNSTT
(2) EXAMPLE2

#pragma section @@INIT ??INIT1

#pragma section @@R_INIT ??RINIT1

#pragma section @@DATA ??DATAL

char cl ;

int i2 ;

#pragma section @@INIT ??INIT2

#pragma section @@R_INIT ??RINIT2

#pragma section @@DATA ??DATA2

char cl ;

int i2 =1 ;

#pragma section @@DATA ??DATA3

#pragma section @@INIT ??2INIT3

#pragma section @@R_INIT ??RINIT3

extern char cl ; // ??DATA1l

int i2 ; // ??INIT1 and ??RINIT1

#pragma section @@DATA ? ?DATA4

#pragma section @@INIT ??INIT4

#pragma section @@R_INIT ??RINIT4

Restrictions when this #pragma directive has been specified after the main C code are explained in the following coding

error examples.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 112 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(3) CODING ERROR EXAMPLEL1

al.h
#pragma section @@DATA ??DATAL // File containing only the #pragma
// section
a2.h
extern int funcl (void) ; s
#pragma section @@DATA ?7?DATA2 // File containing the main C code
// followed by the #pragma directive.
a3.h
#pragma section @@DATA ?7?DATA3 // File containing only the #pragma
// section
a4.h
#pragma section @@DATA ?7?DATA3
extern int func2 (void) ; // File that includes the main C code.
a.c
#include "al.h"
#include "a2.h"
#include "a3.h" // <- Error
// Because the a2.h file contains the main C code
// followed by this #pragma directive, file a3.h, which
// includes only this #pragma directive, cannot be
// included.
#include "a4.h"

(4) CODING ERROR EXAMPLE2

bl.h
const int 1 ;
b2.h
const int j ;
#include "bl.h" // This does not result in an error since it is not
// file (b.c) in which the main C code is followed by
// this #pragma directive.
b.c
const int k ;
#pragma section @@DATA ??DATAl
#include "b2.h" // <- Error
// Since an #include statement cannot be coded afterward
// in file (b.c) in which the main C code is followed by
R20UT2774EJ0100 Rev.1.00 RENESAS Page 113 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

// this #pragma directive.

(5) CODING ERROR EXAMPLES3

cl.h
extern int o
#pragma section @@DATA ??DATAl // This does not result in an error since the
// #pragma directive is included and
// processed before the processing of c¢3.h.
c2.h
extern int k ;
#pragma section @@DATA ??DATA2 // <- Error
// This #include statement is specified after
// the main C code in c¢3.h, and the #pragma
// directive cannot be specified afterward.
c3.h
#include "cl.h"
extern int i ;
#include "c2.h"
#pragma section @@DATA ??DATA3 // <- Error
// This #include statement is specified after
// the main C code, and the #pragma directive
// cannot be specified afterward.
c.c
#include "c3.h"
#pragma section @@DATA ??DATA4 // <- Error
// This #include statement is specified after
// the main C code in c¢3.h, and the #pragma
// directive cannot be specified afterward.
int i ;

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The source program need not be modified if the section name change function is not supported.
- To change the section name, modify the source program according to the procedure described in Usage
above.

(2) From the RL78,78K0OR C compiler to another C compiler
- Delete or delimit #pragma section ... with #ifdef.
- To change the section name, modify the program according to the specifications of each compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 114 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Cautions]

- A section is equivalent to a segment of the assembler.

- The compiler does not check whether the new section name is in duplicate with another symbol. Therefore, the
user must check to see whether the section name is not in duplicate by assembling the output assemble list.

- When the -zf option has been specified, each section name is changed so that the second "@" is replaced with
"E".

- If a section nameNote

related to ROMization is changed by using #pragma section, the startup routine must be
changed by the user on his/her own responsibility.

Note ROMization-related section name
@@R_INIT, @@R_INIS, @@RLINIT, @@INITL, @@INIT, @@INIS

Here are examples of changing the startup routine (cstart.asm or cstartn.asm) and termination routine (rom.asm) in
connection with changing a section name related to ROMization.

<C source>
#pragma section @@R_INIT RTT1
#pragma section @@INIT TT1

If a section name that stores an external variable with an initial value has been changed by describing #pragma section
indicated above, the user must add to the startup routine the initial processing of the external variable to be stored to the
new section.

To the startup routine, therefore, add the declaration of the first label of the new section and the portion that copies the
initial value, and add the portion that declares the end label to the termination routine, as described below.

RTT1_S and RTT1_E are the names of the first and end labels of section RTT1, and TT1_S and TT1_E are the names
of the first and end labels of section TT1.

(1) Changing startup routine cstartx.asm

(@) Add the declaration of the label indicating the end of the section with the changed name

EXTRN RTT1_E, TT1_E ; Adds EXTRN declaration of RTT1_E and TT1_E

Add the #pragma section directives to the C source code.

#pragma section @@R_INIT RTT1
#pragma section @@INIT TT1
R20UT2774EJ0100 Rev.1.00 RENESAS Page 115 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(b) Add a section to copy the initial values from the RTT1 section with the changed name to the TT1 sec-

tion.

LDATS1 :
MOVW AX, HL
CMPW AX, #LOW _?DATS
BZ $LDATS2
MOV [HL + 0], #0
INCW HL
BR $LDATS1

LDATS2 :
MOV ES, #HIGH RTT1_S
MOV HL, #LOWW RTT1_ S
MOV DE, #LOWW TT1_ S

LTT1 : —
MOVW AX, HL
CMPW AX, #LOWW RTT1 E
BZ SLTT2

Adds section to copy the initial values from
MOV A, ES : [HL]
the RTT1 section to the TT1 section

MOV [DE], A
INCW HL
INCW DE
BR SLTT1

LTT2 : o
CALL !l _main ; main () ;
CLRW AX
CALL 11 exit ; exit (. 0) ;
BR $%

R20UT2774EJ0100 Rev.1.00 ;{ENESAS Page 116 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(c) Set the label of the start of the section with the changed name.

@@R_INIT CSEG UNIT64KP
_@R_INIT
@@R_INIS CSEG UNIT64KP
_@R_INIS
@@INIT DSEG
_@INIT
@@DATA DSEG
_@DATA :
@@INIS DSEG SADDRP
_@INIS
@@DATS DSEG SADDRP
_@DATS
RTT1 CSEG UNIT64KP ; Indicates the start of the RTT1 section
RTT1_S ; Adds the label setting
TT1 DSEG BASEP ; Indicates the start of the TT1l section
TT1_S ; Adds the label setting
@@CODEL CSEG
@@CALT CSEG CALLTO
@@CNST CSEG MIRRORP
@@BITS BSEG
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 117 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Changing termination routine rom.asm

Caution Don't change the object module name "@rom" and "@rome".

(@) Add the declaration of the label indicating the end of the section with the changed name

NAME @rom

PUBLIC _?R_INIT, ?R INIS

PUBLIC _?INIT, _?DATA, _?INIS, _7?DATS
PUBLIC RTT1 E, TT1 E ; Adds RTT1 E and TT1 E
@@R_INIT CSEG UNIT64KP

_?R_INIT

@@R_INIS CSEG UNIT64KP

_?R_INIS

@@INIT DSEG

_?INIT

@@DATA DSEG

_?DATA :

@@INIS DSEG SADDRP

_?INIS

@@DATS DSEG SADDRP

_?DATS

(b) Setting the label indicating the end

RTT1 CSEG UNIT64KP ; Adds the label setting indicating the end of the
; RTT1 section.

RTT1_E : ; Adds the label setting

TT1 DSEG BASEP ; Adds the label setting indicating the end of the

; TT1 section.

TT1 E : ; Adds the label setting
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 118 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Binary constant (0Ob)

The compiler supports the Obxxx notation for expressing binary constants in C source code.

[Function]

- Describes binary constants to the location where integer constants can be described.

[Effect]

- Constants can be described in bit strings without being replaced with octal or hexadecimal number. Readability is

also improved.

[Usage]

- Describe binary constants in the C source.
The following shows the description method of binary constants.

0b binary-number
0B binary-number
Remark Binary number: either "0" or "1".

- A binary constant has Ob or OB at the start and is followed by the list of numbers 0 or 1.
- The value of a binary constant is calculated with 2 as the base.
- The type of a binary constant is the first one that can express the value in the following list.

Subscripted binary number:

int, unsigned int, long int, unsigned long int

Subscripted u or U:

unsigned int, unsigned long int

Subscripted | or L:

long int, unsigned long int

Subscripted u or U and subscripted | or L with:

unsigned long int

[Example]

<C source>

unsigned i ;

i = 0b11100101 ;

Output object of compiler is the same as the following case.

unsigned i ;

i = 0xe5 ;

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 119 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modifications are not needed.

(2) From the RL78,78K0OR C compiler to another C compiler
- Modifications are needed to meet the specification of the compiler if the compiler supports binary constants.
- Modifications into other integer formats such as octal, decimal, and hexadecimal are needed if the compiler
does not support binary constants.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 120 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Module name changing function (#pragma name)

The module name of an object can be changed to any name in C source code.

[Function]

- Outputs the first 254 letters of the specified module name to the symbol information table in a object module file.

- Outputs the first 254 letters of the specified module name to the assemble list file as symbol information
(MOD_NAM) when the -g2 option is specified and as NAME pseudo instruction when the -ng option is specified.

- If a module name with 255 or more letters are specified, a warning message is output.

- If unauthorized letters are described, an error will occur and the processing is aborted.

- If more than one of this #pragma directive exists, a warning message is output, and whichever described later is
enabled.

[Effect]

- The module name of an object can be changed to any name.

[Usage]

- The following shows the description method.

#pragma name module-name

A module name must consist of the characters that the OS authorizes as a file name except "(", ")", and kaniji (2-
byte character).

Upper/lowercase is distinguished.

[Example]

#pragma name modulel

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modifications are not needed if the compiler does not support the module name changing function.
- To change a module name, modification is made according to Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #pragma name ... is deleted or sorted by #ifdef.
- To change a module name, modification is needed depending on the specification of each compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 121 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Rotate function (#¥pragma rot)

Outputs the code that rotates the value of an expression to the object with direct inline expansion.

[Function]

- Outputs the code that rotates the value of an expression to the object with direct inline expansion instead of func-
tion call and generates an object file.
- If there is not a #pragma directive, the rotate function is regarded as an ordinary function.

[Effect]

- Rotate function is realized by the C source or ASM description without describing the processing to perform rotate.

[Usage]

- Describe in the source in the same format as the function call.
There are the following 4 function names.
rorb, rolb, rorw, rolw

(1) unsigned char rorb (x,y);
unsigned char x ;
unsigned chary ;

Rotates x to right for y times.

(2) unsigned charrolb (x,y);
unsigned char x ;
unsigned chary ;

Rotates x to left for y times.

(3) unsignedintrorw (X,y);
unsigned int x;
unsigned chary ;
Rotates x to right for y times.

(4) unsigned introlw (x,y);
unsigned int x;
unsigned chary ;

Rotates x to left for y times.

- Declare the use of the function for rotate by the #pragma rot directive of the module.
However, the followings can be described before #pragma rot.
- Comments
- Other #pragma directives
- Preprocessing directives which do not generate definition/reference of variables and definition/reference of
functions
- Keywords following #pragma can be described in either uppercase or lowercase letters.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 122 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- The function names for rotate cannot be used as the function names.
- The function names for rotate must be described in lowercase letters. If the functions for rotate are described in
uppercase letters, they are handled as ordinary functions.

[Example]

<C source>

#pragma rot

unsigned char a = 0x11 ;
unsigned char b =2;

unsigned char c ;

void main (void) {

¢ =rorb (a, b) ;

<Qutput assembler source>

mov x, !' b

mov a, !_a
L0003 :

ror a, 1

dec X

bnz $L0003

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modification is not needed if the compiler does not use the functions for rotate.
- To change to functions for rotate, modifications are made according to Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #pragma rot statement is deleted or sorted by #ifdef.
- To use as a function for rotate, modification is needed depending on the specification of each compiler (#asm,
#endasm or asm () ;, etc.).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 123 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Multiplication function (#pragma mul)

Outputs the code that multiplies the value of an expression to the object with direct inline expansion.

[Function]

- Outputs the code that multiplies the value of an expression to the object with direct inline expansion instead of
function call and generates an object file (mulu function).
- If there is not a #pragma directive, the multiplication function is regarded as an ordinary function.

[Effect]

- The codes utilizing the data size of input/output of the multiplication instruction are generated. Therefore, the
codes with faster execution speed and smaller size than the description of ordinary multiplication expressions can
be generated (mulu function).

- Because the generated code takes advantage of the multiplier's or RL78 expansion instructions I/O data size, the
execution speed is faster than writing normal multiplication expressions, and the size of the generated code is
smaller as well (muluw/mulsw function).

[Usage]

- Describe in the same format as that of function call in the source.
The following shows list of multiplication function.
mulu, muluw, mulsw

(1) unsignedintmulu (x,y);
unsigned char x;
unsigned char vy ;
Performs unsigned multiplication of x and y.

(2) unsigned long muluw (x,y);
unsigned int x ;
unsigned inty ;
Performs unsigned multiplication of x and y.

(3) signed long mulsw (x,y);
signed int x ;
signed inty ;
Performs signed multiplication of x and y.

- Declare the use of functions for multiplication by #pragma mul directive of the module.
However, the followings can be described before #pragma mul.
- Comments
- Other #pragma directives
- Preprocessing directives that do not generate definition/reference of variables and definition/reference of func-
tions
- Keywords following #pragma can be described in either uppercase or lowercase letters.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 124 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- The function for multiplication cannot be used as the function names (when #pragma mul is declared).
- The function for multiplication must be described in lowercase letters. If they are described in uppercase letters,
they are handled as ordinary functions.

- This will become a library call. Inline expansion will not be performed (muluw/mulsw function).

[Example]

<C source>

#pragma mul

unsigned char a = 0x11 ;
unsigned char b =2;

unsigned int i ;

void main (void) {

i =mulu (a, b) ;

<Output object of compiler>

mov x, !' b
mov a, !_a
mulu X

movw ! 1, ax

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modifications are not needed if the compiler does not use the functions for multiplication.
- To change to functions for multiplication, modification is made according to Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #pragma mul statement is deleted or sorted by #ifdef. Function names for multiplication can be used as the
function names.
- To use as functions for multiplication, modification is needed depending on the specification of each compiler
(#asm, #endasm or asm () ;, etc.).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 125 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Division function (#pragma div)

Outputs the code that divides the value of an expression to the object.

[Function]

- Outputs the code that divides the value of an expression to the object.
- If there is not a #pragma directive, the function for division is regarded as an ordinary function.

[Effect]

- Codes that are compatible with the 78K0 C compiler and utilize the data size of the division instruction I/O are gen-
erated. Therefore, codes with faster execution speed and smaller size than the description of ordinary division
expressions can be generated.

[Usage]

- Describe in the same format as that of function call in the source.
There are the following 2 functions for division.
divuw, moduw

(1) unsigned int divuw (X,Yy);
unsigned int x;
unsigned char vy ;
Performs unsigned division of x and y and returns the quotient.

(2) unsigned char moduw (x,y);
unsigned int X ;
unsigned char y ;
Performs unsigned division of x and y and returns the remainder.

- Declare the use of the function for divisions by the #pragma div directive of the module.
However, the followings can be described before #pragma div.
- Comments
- Other #pragma directives
- Preprocessing directives which do not generate definition/reference of variables and definition/ reference of
functions
- Keywords following #pragma can be described in either uppercase or lowercase letters.

[Restrictions]

- The division functions are not expanded inline, but are called by the library.

- The function names for division cannot be used as the function names.

- The function names for division must be described in lowercase letters. If they are described in uppercase letters,
they are handled as ordinary functions.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 126 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

<C source>

#pragma div

unsigned int a = 0x1234 ;

unsigned char b = 0x12 ;

unsigned char c ;

unsigned int i ;

void main (void) {
i = divuw (a, b) ;
c = moduw (a, b)

1

<Output object of compiler>

mov c, !'b
movw ax, !_a
call l@e@divuw
movw 1 1, ax
mov c, !'b
movw ax, !_a
call l@e@divuw
mov a, c

mov ! ¢, a

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modification is not needed if the compiler does not use the functions for division.
- To change to functions for division, modifications are made according to Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #pragma div statement is deleted or sorted by #ifdef. The function names for division can be used as the func-

tion name.

- To use as a function for division, modification is needed depending on the specification of each compiler
(#asm, #endasm or asm () ;, etc.).

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 127 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Sum-of-products calculation function (#pragma mac)

Outputs the code that sum-of-products calculation the value of an expression to the object.

[Function]

- Outputs the code that sum-of-products calculation the value of an expression to the object.
- If there is not a #pragma directive, the function for sum-of-products calculation is regarded as an ordinary function.

[Effect]

- The codes utilizing the data size of input/output of the sum-of-products calculation or RL78 expansion instructions
are generated. Therefore, the codes with faster execution speed and smaller size than the description of ordinary
sum-of-products calculation expressions can be generated.

[Usage]

- Describe in the same format as that of function call in the source.
The following shows list of sum-of-products calculation function.

macuw, macsw

(1) unsigned long macuw (X, VY,2);
unsigned long X ;
unsigned inty ;
unsigned int z ;
Performs unsigned sum-of-products calculation of x + (y * z) and returns the result.

(2) signed long macsw (X,y,2);
signed long x ;
signed inty ;
signed int z;
Performs signed sum-of-products calculation of x + (y * z) and returns the result.

- Declare the use of the function for sum-of-products calculation by the #pragma mac directive of the module.
However, the followings can be described before #pragma mac.
- Comments
- Other #pragma directives
- Preprocessing directives which do not generate definition/reference of variables and definition/ reference of
functions
- Keywords following #pragma can be described in either uppercase or lowercase letters.

[Restrictions]

- The sum-of-products calculation functions are not expanded inline, but are called by the library.

- The function names for sum-of-products calculation cannot be used as the function names.

- The function names for sum-of-products calculation must be described in lowercase letters. If they are described
in uppercase letters, they are handled as ordinary functions.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 128 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

<C source>

#pragma mac

unsigned long a = 100000 ;

unsigned int b = 1000 ;
unsigned int c = 100 ;
singed long d = 100000 ;
signed int e = 1000 ;
signed int f = -100 ;

unsigned long ul ;

signed long sl ;

void main () {
ul = macuw (a, b, c) ;

sl = macsw (4, e, £) ;

<Output object of compiler>

mMmovw ax, !_a
mMmovw _@RTARGO, ax
movw ax, ! _a+2
mMmovw _@RTARG2, ax
movw ax, ! b
mMmovw _@RTARG4, ax
mMmovw ax, !_c
call ! @@macuw
movw ax, _@RTARG2
movw ! ul+2, ax
movw ax, _@RTARGO
movw ! ul, ax
movw ax, !_d
mMovw _@RTARGO, ax
movw ax, !_d+2
movw _@RTARG2, ax
mMmovw ax, !_e
movw _@RTARG4, ax
movw ax, !_f
call !@@macsw
movw ax, _@RTARG2
movw ! sl+2, ax
movw ax, _@RTARGO
movw ! sl, ax
R20UT2774EJ0100 Rev.1.00 RENESAS Page 129 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modification is not needed if the compiler does not use the functions for sum-of-products calculation.
- To change to functions for sum-of-products calculation, modifications are made according to USAGE above.

(2) From the RL78,78K0OR C compiler to another C compiler
- #pragma mac statement is deleted or sorted by #ifdef. The function names for sum-of-products calculation
can be used as the function name.
- To use as a function for sum-of-products calculation, modification is needed depending on the specification of
each compiler (#asm, #endasm or asm () ;, etc.).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 130 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

BCD operation function (#pragma bcd)

Outputs the code that performs a BCD operation on the expression value in an object by direct inline expansion.

[Function]

- Outputs the code that performs a BCD operation on the expression value in an object by direct inline expansion

rather than by function call, and generates an object file.
However, bcdtob, btobcde, bedtow, wtobed and btobed function are not developed inline.

- If there are no #pragma directives, the function for BCD operation is regarded as an ordinary function.

[Effect]

- Even if the process of the BCD operation is not described, the BCD operation function can be realized by the C

source or ASM statements.

[Usage]

1)

)

®)

(4)

©)

(6)

- The same format as that of a function call is coded in the source.
There are 13 types of function name for BCD operation, as listed below.

unsigned char adbcdb (x,y) ;

unsigned char x ;

unsigned chary ;

Decimal addition is carried out by the BCD adjustment instruction.

unsigned char sbbcdb (x,y) ;

unsigned char x ;

unsigned char vy ;

Decimal subtraction is carried out by the BCD adjustment instruction.

unsigned int adbcdbe (x,y) ;

unsigned char x ;

unsigned chary ;

Decimal addition is carried out by the BCD adjustment instruction (with result expansion).

unsigned int sbbcdbe (x,y) ;
unsigned char x ;
unsigned chary ;

Decimal subtraction is carried out by the BCD adjustment instruction (with result expansion).

If a borrow occurs, the high-order digits are set to 0x99.

unsigned int adbcdw (x,y) ;

unsigned int x ;

unsigned inty ;

Decimal addition is carried out by the BCD adjustment instruction.

unsigned int sbbcdw (x,y) ;

unsigned int x ;

unsigned inty ;

Decimal subtraction is carried out by the BCD adjustment instruction.

R20UT2774EJ0100 Rev.1.00 ENESAS
Dec 01, 2013

Page 131 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(7) unsigned long adbcdwe (x,y);
unsigned int x ;
unsigned inty ;
Decimal addition is carried out by the BCD adjustment instruction (with result expansion).

(8) unsigned long sbbcdwe (x,y);
unsigned int x ;
unsigned inty ;
Decimal subtraction is carried out by the BCD adjustment instruction (with result expansion).
If a borrow is occurred, the higher digits are set to 0x9999.

(9) unsigned char bcdtob (x) ;
unsigned char x ;
Values in decimal number are converted to binary number values.

(10)unsigned int btobcde (x) ;
unsigned char x ;
Values in binary number are converted to decimal number values.

(11) unsigned int bedtow (x) ;
unsigned int x ;
Values in decimal number are converted to binary number values.

(12)unsigned int wtobcd (x) ;
unsigned int x ;
Values in decimal number are converted to binary number values.
However, if the value of x exceeds 10000, Oxffff is returned.

(13)unsigned char btobcd (x);
unsigned char x ;
Values in decimal number are converted to those in binary number.
However, the overflow is discarded.

- Use of functions for BCD operation is declared by the module's #pragma bcd directive. The following items, how-
ever, can be coded before #pragma bcd.
- Comments
- Other #pragma directives
- Preprocessing directives that do not generate definitions/sreferences of variables or function definitions/ refer-
ences
- Either uppercase or lowercase letters can be used for keywords described after #pragma.

[Restrictions]

- BCD operation function names cannot be used as function names.
- The BCD operation function is coded in lowercase letters. If uppercase letters are used, these functions are
regarded as an ordinary functions.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 132 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

<C source>

#pragma bcd

unsigned char a = 0x12 ;
unsigned char b = 0x34 ;

unsigned char c ;

void main (void) {

[¢]

adbcdb (a, b)

c = sbbcdb (b, a) ;

<Output object of compiler>

mov a, ! a
add a, !'b
add a, !BCDADJ
mov ! ¢, a
mov a, !'b
sub a, !_a
sub a, !BCDADJ
mov ! ¢, a

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Corrections are not needed if functions for the BCD operations are not used.
- To change another function to the function for BCD operation, use the description above.

(2) From the RL78,78K0OR C compiler to another C compiler
- The #pragma bcd statements are either deleted or separated by #ifdef. A BCD operation function name can
be used as a function name.
- If using "pragma bcd" as a BCD operation function, the changes to the program source must conform to the C
compiler's specifications (#asm, #endasm or asm (); etc.).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 133 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Data insertion function (#pragma opc)

Inserts constant data into the current address.

[Function]

- Inserts constant data into the current address.
- When there is not a #pragma directive, the function for data insertion is regarded as an ordinary function.

[Effect]

- Specific data and instruction can be embedded in the code area without using the ASM statement.
When ASM is used, an object cannot be obtained without the intermediary of assembler. On the other hand, if the
data insertion function is used, an object can be obtained without the intermediary of assembler.

[Usage]
- Describe using uppercase letters in the source in the same format as that of function call.
- The function name for data insertion is __OPC.

(1) void __ OPC (unsigned char x, ...) ;
Insert the value of the constant described in the argument to the current address.

Arguments can describe only constants.

- Declare the use of functions for data insertion by the #pragma opc directive.
However, the followings can be described before #pragma opc.
- Comments

- Other #pragma directives
- Preprocessing directives which do not generate definition/reference of variables and definition/reference of

functions
- Keywords following #pragma can be described in either uppercase or lowercase letters.

[Restrictions]

- The function names for data insertion cannot be used as the function names (when #opc is specified).
- __OPC must be described in uppercase letters. If they are described in lowercase letters, they are handled as

ordinary functions.

[Example]

<C source>

#pragma opc

void main (void) {
__OpC (0xa7) ;
__OPC (0x51, 0x12) ;

__OPC (0x30, 0x34, 0x12) ;

R20UT2774EJ0100 Rev.1.00 RENESAS Page 134 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<Output object of compiler>

_main :

; line

; line

; line

; line

4

DB

5

DB

DB

6

DB

DB

DB

7 :

ret

: _ OPC (Oxa7

OAFH

: _OopC (0x51,

051H

012H

: __OPC (0x30,

030H

034H

012H

) i

0x12

0x34,

)

7

0x12)

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler

- Modification is not needed if the compiler does not use the functions for data insertion.
- To change to functions for data insertion, use the Usage above.

(2) From the RL78,78K0OR C compiler to another C compiler
- The #pragma opc statement is deleted or delimited by #ifdef. Function names for data insertion can be used
as function names.

- To use as a function for data insertion, changes to the program source must conform to the specification of the
C compiler (#asm, #endasm or asm () ;, etc.).

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 135 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Interrupt handler for RTOS (#pragma rtos_interrupt)

The interrupt handler for RI78V4 can be described.

[Function]

- Interprets the function name specified with the #pragma rtos_interrupt directive as the interrupt handler for the
RL78,78KOR RTOS RI78V4.
- Registers the address of the described function name to the interrupt vector table for the specified interrupt request
name.
- The interrupt handler for RTOS generates codes in the following order.
(1) Calls kernel symbol __kernel_int_entry using call !laddr20 instruction
(2) Saves the saddr area used by compiler
(3) Secures the local variable area (only when there is a local variable)
(4) The function body
(5) Releases the local variable area (only when there is a local variable)
(6) Restores the saddr area used by compiler

(7) Unconditionally jumps to label _ret_int using br !'addr20 instruction

[Effect]

- The interrupt handler for RTOS can be described in the C source level.
- Because the interrupt request name is identified, the address of the vector table does not need to be identified.

[Usage]

- The interrupt request name, function name is specified by the #pragma directive.

#pragma rtos_interrupt [interrupt-request-name function-name]

- This #pragma directive is described at the start of the C source.
- The following can be described before the #pragma directive.
- Comments
- Preprocessing directives which do not generate definition/reference of variables and definition/reference of
functions
- Of the keywords to be described following #pragma, the interrupt request name must be described in uppercase
letters. The other keywords can be described either in uppercase or lowercase letters.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 136 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- When the -zf option is not specified, interrupt handler for RTOS are allocated to the area between COH and
OFFFFH, regardless of the memory model.
When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In addi-
tion, specification of allocation area by specifying __near or __far is also enabled.

- Interrupt request names are described in uppercase letters.

- Software interrupts and non-maskable interrupts cannot be specified for the interrupt request names, if specified
so, an error will occur.

- Interrupt requests are double-checked in one module units only.

- The interrupt handler for RTOS cannot specify callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.
__far can be specified only when the -zf option is specified.

- ret_int/_kernel_int_entry cannot be used for the function names.

- Coding a "#pragma rtos_interrupt" when -zx is specified will cause an error. Use the "__rtos_interrupt" modifier
when defining an RTOS interrupt handler. RL78 family use the self-programming library to allocate interrupt vector

tables in self-programming.

[Example]

<C source>

#pragma rtos_interrupt INTPO intp

int i ;

void intp (void) {
int al3] ;
al[o] =1 ;
func () ;

<Output object of compiler>

@@BASE CSEG BASE

_intp :
call !l kernel int entry
movw ax, _@RTARGO ; Saves saddr area used by the compiler
push ax i
movw ax, _@RTARG2 ;
push ax i
movw ax, _@RTARG4 ;
push ax H
movw ax, _@RTARG6 ;
push ax i
movw ax, _@SEGAX ;
push ax i
movw ax, _@SEGDE ;
push ax i

R20UT2774EJ0100 Rev.1.00 RENESAS Page 137 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

subw sp, #06H ; Secures the local variable area
movw hl, sp
; line 5 : int al3] ;
; line 6 : afol =1 ;
onew ax
movw [hl], ax ia
; line 7 : func () ;
call !'!_func
; line 8 : }
addw sp, #06H ; Releases the local variable area
pop ax ; Restores saddr area used by the compiler
movw _@SEGDE, ax ;
pop ax i
movw _@SEGAX, ax ;
pop ax i
movw _@RTARG6, ax ;
pop ax i
movw _@RTARG4, ax ;
pop ax i
movw _@RTARG2, ax ;
pop ax ;
movw _@RTARGO, ax ;
br Il ret int
@@VECTO06 CSEG AT 0006H
_@vect06 :
DW _intp

[Compatibility]

(1) From another C compiler to the RL78,78KOR C compiler
- Modifications are not needed if the compiler does not support the interrupt handler for RTOS.
- To change to interrupt handler for RTOS, use the USAGE above.

(2) From the RL78,78K0OR C compiler to another C compiler
- Handled as an ordinary function if #pragma rtos_interrupt specification is deleted.
- To use as an interrupt handler for ROTS, changes to the source program must conform to the specification of
the C compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 138 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Interrupt handler qualifier for RTOS (__rtos_interrupt)

The setting of the vector and the description of the interrupt handler for RI78V4 can be described in separate files.

[Function]

- The function declared with the __rtos_interrupt qualifier is interpreted as an interrupt handler for RTOS. For details
on registers used with interrupt handler for RTOS and saving and restoring of saddr, see to "Interrupt handler for
RTOS (#pragma rtos_interrupt)".

[Effect]

- The setting of the vector table and the definition of the interrupt handler function for RTOS can be described in
separate files.

[Usage]

- __rtos_interrupt is added to the qualifier of the interrupt handler for RTOS.

__rtos_interrupt void func () { processing }

[Restrictions]

- When the -zf option is not specified, interrupt handler for RTOS are allocated to the area between COH and
OFFFFH, regardless of the memory model. When the -zf option is specified, interrupt functions are allocated in
accordance with the memory model. In addition, specification of allocation area by specifying __near or __ faris
also enabled.

- The interrupt handler for RTOS cannot specify callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- ret_int/__kernel_int_entry cannot be used for the function names.

- When -zx is specified, the interrupt function is allocated at [COH - FFEFFH], regardless of whether the -zf option
was specified, or the memory model. In self-programming mode, an interrupt vector table is allocated using the
self-programming library.

[Cautions]

- Vector addresses cannot be set only with declaration of this qualifier.
The setting of the vector address must be performed separately with the #pragma directive, assembler description,
etc.

- When the interrupt handler for RTOS is defined in the same file as the one in which the #pragma rtos_interrupt ...
is specified, the function name specified with #pragma rtos_interrupt is judged as an interrupt handler for RTOS
even if this qualifier is not described.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 139 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modifications are not needed if the compiler does not support interrupt handler for RTOS.
- To change to interrupt handler for RTOS, use the USAGE above.

(2) From the RL78,78K0OR C compiler to another C compiler
- Changes can be made by #define (For the details, see to "3.2.5 C source modifications").
By these changes, interrupt handler qualifiers for RTOS are handled as ordinary variables.
- To use as an interrupt handler for RTOS, modification is needed depending on the specification of each com-
piler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 140 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Task for RTOS (#pragma rtos_task)

The function names specified with #pragma rtos_task are interpreted as the tasks for RI78V4.

[Function]

- The function names specified with #pragma rtos_task are interpreted as the tasks for RTOS.
- In the case the function name is specified, if the entity definition is not in the same file, an error will occur.
- The preprocessing of the task for RTOS does not save the registers for frame pointer/register variables. The post-
processing is not output.
- RTOS system call ext_tsk is always called at the end of #pragma rtos_task.
- The following RTOS system call calling function can be used.
void ext_tsk (void) ;
Calls RTOS system call ext_tsk.
When ext_tsk is, however, called in the ext_tsk entity definition, interrupt function, interrupt handler for RTOS, an
error will occur.
- RTOS system call ext_tsk is called using the br 'addr20 instruction. If ext_tsk is issued at the end of an ordinary
function, the epilogue is not output.
- A task can be coded without arguments specified, or with only one argument of up to 4 bytes specified, but no
return values can be specified.
An error will be occur if two or more arguments are specified, an argument of 5 bytes or longer is specified, or a
return value is specified.

[Effect]

- The task for RTOS can be described in the C source level.
- The saving and postprocessing of the register frame pointer/register variable are not output, so the code efficiency
is improved.

[Usage]

- Specifies the function name for the following #pragma directives.

#pragma rtos_task([task-function-name]

- The #pragma directives are described at the start of the C source.
However, the followings can be described before the #pragma directive.
- Comments
- Preprocessing directives which do not generate definition/reference of variables and definition/ reference of
functions
- Keywords following #pragma can be described either in uppercase or lowercase letters.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 141 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- The task for RTOS cannot specify the callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.
__far can be specified only when the -zf option is specified.
- The task for RTOS cannot be called in the same manner as the ordinary functions.
- RTOS system call calling function name ext_tsk cannot be used for function names.
- If #pragma rtos_task is not written to the C source, ext_tsk is not interpreted as a system call for RTOS. Conse-
quently, the following error will not be output even if ext_tsk is called from an RTOS interrupt handler.
EQ778: Cannot call ext_tsk in interrupt function
Workarounds:
- Clearly specify the use of the task, by specifying #pragma rtos_task.
- Do not cvoid all ext_tsk from RTOS interrupt handlers.

[Example]
<C source>
#pragma rtos_task func
#pragma rtos_task func2
void func (void) {
int al3] ;
alo] =1 ;
ext _tsk () ;
}
void func2 (int x) {
int al3] ;
alo0] =1 ;
}
void func3 (void) {
int al3] ;
al[o] =1 ;
ext_tsk () ;
}
void func4 (void) {
int al3] ;
al[o] =1 ;
if (afo])
ext tsk () ;
}
R20UT2774EJ0100 Rev.1.00 RENESANS Page 142 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<Output object of compiler>

@@CODEL CSEG
_func
subw sp, #06H ; Frame pointers are saved
movw hl, sp
onew ax
movw [hl], ax ia
br Il _ext tsk ; Calling of ext tsk by writing ext tsk function
br Il _ext_tsk ; Calling of ext tsk always output by task
; Epilogue is not output
_func2
push ax ; Frame pointers are not saved
subw sp, #06H
movw hl, sp
onew ax
movw [h1l], ax ia
br Il _ext_tsk ; Calling of ext tsk always output by task
; Epilogue is not output
_func3
push hl ; Frame pointers are saved
subw sp, #06H
movw hl, sp
onew ax
movw [h1l], ax ia
br !l _ext tsk ; Epilogue is output if ext tsk is called in the middle of
; a function
_func4
push hl ; Frame pointers are saved
subw sp, #06H
movw hl, sp
onew ax
movw [h1l], ax ia
clrw bc
cmpw ax, bc
skz
br !l _ext_tsk ; Epilogue is output if ext tsk is called
addw sp, #06H ; in the middle of a function
pop hl
ret
R20UT2774EJ0100 Rev.1.00 RENESAS Page 143 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modifications are not needed if the compiler does not support the task for RTOS.
- To change to the task for RTOS, use the USAGE above.

(2) From the RL78,78K0OR C compiler to another C compiler
- If #pragma rtos_task specification is deleted, RTOS task is used as an ordinary function.
- To use as RTOS task, changes to the program source must conform to the specification of the C compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 144 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Flash area allocation method (-zf)

Enables locating a program in the flash area compiling with specifying the -zf option. Enables using function linking
with a boot area object created without specifying the -zf option.

[Function]

- Generates an object file located in the flash area.

- External variables in the flash area cannot be referred to from the boot area.

- External variables in the boot area can be referred to from the flash area.

- The same external variables and the same global functions cannot be defined in a boot area program and a flash
area program.

[Effect]

- Enables locating a program in the flash area.
- Enables using function linking with a boot area object created without specifying the -zf option.

[Usage]

- Specify the -zf option during compiling.

[Restrictions]

- Use startup routines or library for the flash area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 145 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Flash area branch table and flash area allocation (-zt/-zz)

The -zt option specify the starting address of the flash branch table. A startup routine and interrupt function can be
located in the flash area and a function calls can be performed from the boot area to the flash area.

[Function]

- The -zt options determines the first address of the branch table for the startup routine, the interrupt function, or the
function call from the boot area to the flash area.

- 64 addresses from the first address of the branch table are dedicated for interrupt functions (including startup rou-
tine), and each of them occupies 4 bytes of area.

- The branch tables for ordinary functions are normally allocated after the "first address of the branch table + 4 * 64".
Each of the branch tables occupies 4 bytes of area. See "Function of function call from boot area to flash area
(#pragma ext_func)" for more information about ext_func ID values.

- The -zz options determine the starting address of the branch table.

- When only the -zt option is specified, the -zz option is regarded as having the same value.

- When only the -zz option is specified, the -zt option is regarded as having the same value.

[Effect]

- A startup routine and interrupt function can be located in the flash area.
- A function calls can be performed from the boot area to the flash area.

[Usage]

- Use the -zt option as follows to specify the starting address of the flash branch table.

-ztxxxxxH : xxxxx = 0cOH to OedfffmNote

- Use the -zz option as follows to specify the starting address of the flash branch table.

-zzxxxxxH : xxxxx = 0cOH to OedfffpNote

Note The address varies on different devices.

[Restrictions]

- The range of addresses that may be specified as the starting address of the flash branch table is 0COH to
OEDFFFH (However, the OEDFFFH varies according to the target device).

- Either the -zf option must be specified when the source program contains a #pragma ext_func, and when the the -
zf option is specified and the program contains a #pragma vect, #pragma interrupt or a #pragma rtos_interrupt
directive. An error occurs if the -zz or -zt option is not specified.

- 2000H is the default starting address of the interrupt service routine library vector table (_@vect00 to _@vect7e).
The default of the start address of the branch table in the interrupt vector library is 2000H.

- The linker option -zb also specifies the starting address of the flash branch table. Always specify the same
address for the linker option -zb and the starting address of the flash area. An error occurs if the addresses do not
agree.

- An error occurs if the allocation address of the flash branch table is smaller than the starting address of the flash
branch table

- The -zt or -zz option must be used to specify the allocation address of the flash area and the flash branch table if
you are creating a program to be located in the boot area or the flash area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 146 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- An error occurs when modules compiled with different -zt or -zz address specifications are linked.
- Pointers to ROM data are forcibly handled as far pointers when the ROM data of the boot area or flash area cannot
be located in a near area (See the [Cautions] below). Consequently, in the small and medium models, the suffix

" " must be added after the library function name when calling a standard library function that takes a (const *)

argument (warning W0072 is always output).

The following standard library functions take (const *) arguments.
sprintf/sscanf/printf/scanf/vprintf/vsprintf/puts/atoi/atol/strtol/strtoul/atof/strtod/bsearch/qsort/memcpy/mem-
move/strcpy/strncpy/strcat/strncat/memcmp/stremp/strncmp/memchr/strchr/strespn/strpbrk/strrchr/strspn/str-
str/strtok/strlen/strcoll/strxfrm

[Example]

To generate a branch table after the address 2000H and place the interrupt function:

<C source>
#pragma interrupt INTPO intp
void intp (void) {

(1) To place the interrupt function to the boot area (no -zf specified, -zt2000H specified)
<Output object of compiler>

PUBLIC _intp

PUBLIC _@vect06
@@BASE CSEG BASE
_intp :

reti
@@VECTO06 CSEG AT 0006H
_@vect06 :

DW _intp

Sets the first address of the interrupt function in the interrupt vector table.

(2) To place the interrupt function in the flash area (-zf specified, -zt2000H specified)
<Output object of compiler>

PUBLIC _intp

@ECODE CSEG BASE

_intp :
reti

@EVECTO06 CSEG AT 0200CH
br !l _intp

Sets the first address of the interrupt function in the branch table.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 147 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

The address value of the branch table is 2000H + 4 * (0006H / 2) since the first address of the branch table is
200CH and the interrupt vector address (2 bytes) is 0006H.
The interrupt vector library performs the setting of the address 200CH in the interrupt vector table.

<Library for interrupt vector 06>

PUBLIC _@vect06

@@VECTO06 CSEG AT 0006H

_@vect06 :

DW 200CH

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- To specify the first address of the flash area branch table, change the address in accordance with Usage
above.

(2) From the RL78,78K0OR C compiler to another C compiler
- To specify the first address of the flash area branch table, the following change is required.

[Cautions]

- The starting address of the flash branch table and the starting address of the mirror area affect the handling of
near/far specifications. If near/far area specifications are different from the actual memory layout, warnings
WO0070 and WO0071 are issued once only, at the time of command line analysis.

- When the starting address of the flash branch table is within the mirror area, and within 64 KB: near/far area spec-
ifications are followed without change (See "Figure 3-3. Memory Map Example 1").

- When the starting address of the flash branch table is within the mirror area, and not within 64 KB: flash area func-
tions are located in a far area (See "Figure 3-4. Memory Map Example 2").

- When the starting address of the flash branch table is above the end address of the mirror area, and within 64 KB:
flash area ROM data is located in a far area (See "Figure 3-5. Memory Map Example 3").

- When the starting address of the flash branch table is above the end address of the mirror area, and not within 64
KB: flash area functions are located in a far area, and flash ROM data is located in a far area (See "Figure 3-6.
Memory Map Examplee 4").

- When the starting address of the flash branch table is below the starting address of the mirror area, and within 64
KB: boot area ROM data is located in a far area (See "Figure 3-7. Memory Map Example 5").

- When the starting address of the flash branch table is below the starting address of the mirror area, and not within
64 KB: boot area ROM data is located in a far area, and flash area ROM data is located in a far area (See "Figure
3-8. Memory Map Example 6").

- When boot area or flash area ROM data cannot be placed in a near area: pointers to ROM data are always far.
Consequently, small and medium model programs no longer conform to the ANSI standard. When the strict ANSI
conformance option -za is specified, warning W0073 is issued.

- When boot area or flash area ROM data cannot be placed in a near area, or when flash area functions cannot be
placed in a near area: the following restrictions apply.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 148 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Table 3-14. Handling of ROM Data When There Is No Mirror of Boot Area

Area Definition Extern Declaration Object Pointed to by Pointer
Boot Always far Always far Always far
Flash near or far Always far Always far

Table 3-15. Handling of ROM Data When There Is No Mirror of Flash Area

Area Definition Extern Declaration Object Pointed to by Pointer
Boot near or far near or far Always far
Flash Always far Always far Always far

Table 3-16. Handing of Functions When Start of Flash Area Is Not Within 64 KB

Area Definition Extern Declaration Object Pointed to by Pointer
Boot near or far near or far Note Always far
Flash Always far Always far Always far

Note Functions specified by #pragma ext_func reside in flash memory, so they are always far.

Figure 3-3. Memory Map Example 1

10000H |
(64K) Flash area
] _M_irr_or_scluE:e_ B Start address of
flash area
Boot area
00000H
R20UT2774EJ0100 Rev.1.00 RENESAS Page 149 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-4. Memory Map Example 2

Mirror source Flash area
Start address of
flash area
10000H
(64K)
Boot area
00000H
Figure 3-5. Memory Map Example 3
Flash area
10000H
(64K)
Start address of
flash area
Mirror source
Boot area
00000H
Figure 3-6. Memory Map Examplee 4
Flash area
Start address of
10000H flash area
(64K)
Boot area
Mirror source
00000H
R20UT2774EJ0100 Rev.1.00 RENESANS Page 150 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Figure 3-7. Memory Map Example 5

Mirror source

Flash area
10000H
(64K)
Start address of
flash area
Boot area
00000H
Figure 3-8. Memory Map Example 6
Mirror source
Flash area
Start address of
10000H | | flash area
(64K)
Boot area
00000H
R20UT2774EJ0100 Rev.1.00 RENESANS Page 151 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Function of function call from boot area to flash area (#pragma ext_func)

The #pragma instruction specifies the function name and ID value in the flash area called from the boot area. It
becomes possible to call a function in the flash area from the boot area.
[Function]
- Function calls from the boot area to the flash area are executed via the flash area branch table.
- From the flash area, functions in the boot area can be called directly.
[Effect]

- It becomes possible to call a function in the flash area from the boot area.

[Usage]
- The following #pragma instruction specifies the function name and ID value in the flash area called from the boot
area.
#pragma ext_ func function-name ID-value

- This #pragma instruction is described at the beginning of the C source.
- The following items can be described before this #pragma instruction.
- Comments

- Instructions not to generate the definition/reference of variables or functions among the preprocess instruc-
tions.

[Restrictions]

- The ID value is set at 0 to 255 (0xff).
- An error occurs if a file containing a #pragma ext_func is compiled without specifying the -zt option or the -zz
option.

- For the same function with a different ID value and a different function with the same ID value, an error will occur.
(1) and (2) below are errors.

(1) #pragma ext_func f1 3
#pragma ext_func f1 4

(2) #pragma ext_func f1 3
#pragma ext_func f2 3

- If a function is called from the boot area to the flash area and there is no corresponding function definition in the
flash area, the linker cannot conduct a check. This is the user's responsibility.

- The callt functions can only be located in the boot area. If the callt functions are defined in the flash area (when the
-zf option is specified), it results in an error.

- When the -rf option is specified for the small or medium model, and when the -rn option is specified for the large
model, the suffix "_f" must be added to the library function name when calling a standard library function that takes
a (const *) argument (warning W0072 is always output).

The following standard library arguments take (const *) arguments.
sprintf/sscanf/printf/scanf/vprintf/vsprintf/puts/atoi/atol/strtol/strtoul/atof/strtod/bsearch/qsort/memcpy/mem-

move/strcpy/strncpy/strcat/strncat/memecmp/stremp/strnemp/memchr/strchr/strespn/strpbrk/strrchr/strspn/str-
str/strtok/strlen/strcoll/strxfrm

R20UT2774EJ0100 Rev.1.00 RENESAS Page 152 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]

- In the case that the branch table is generated after address 2000H and functions f1 and 2 in the flash area are
called from the boot area.
<C source>
- Boot area side

#pragma interrupt INTPO intfo
#pragma ext func f1 3

#pragma ext func f2 4

void f1 (), £2 () ;
void func () {

f1 ()

f2 () ;

- Flash area side

#pragma interrupt INTP1l intfl
#pragma ext func f1 3

#pragma ext func f2 4

void £1 () |

}

void £2 () {

1

void intfl () {

Remarks 1. #pragma ext_func f1 3 means that the branch destination to function fl1 is located in starting address of
the branch table + 4 *64 + 4 * 3.

2. #pragma ext_func f2 4 means that the branch destination to function f2 is located in starting address of
the branch table + 4 *64 + 4 * 4.

3. 4 *64 bytes from the beginning of the branch table are dedicated to interrupt functions (including the
startup routine).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 153 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<Output object of compiler>

(1) When allocation address of flash area branch table is within 64 KB
- Boot area side (no specified -zf and specified -zt2000H)

@@CODEL CSEG
_func :

call 10210CH

call 102110H

ret
@@VECTO08 CSEG AT 0008H
_@vect08 :

DW _intfo

- Flash area side (specified -zf)

@ECODEL CSEG

_f1
ret

_f2
ret

_intfl :
reti

@EVECTOA CSEG AT 02014H
br 11 intfl

@EXTO03 CSEG AT 0210CH
br 1rf1
br 11 f2

- Interrupt vector library for OA

@@VECTOA CSEG AT 000AH
_@vectoOa :
DW 2014H
R20UT2774EJ0100 Rev.1.00 RENESAS Page 154 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) When allocation address of flash area branch table is not within 64 KB
When flash area branch table starting address is 13000H

- Boot area side (no specified -zf and specified -zt13000H)

@@CODEL CSEG
_func :

call 1101310CH

call 11013110H

ret
@@VECTO08 CSEG AT 0008H
_@vect08 :

DW _intfo

- Flash area side (specified -zf and specified -zt13000H)

@ECODEL CSEG

_f1
ret

_f2
ret

_intfl :
reti

@EVECTOA CSEG AT 013014H
br !l intfl

@EXTO03 CSEG AT 01310CH
br 11 f1
br 1f2

- Interrupt vector library for OA

@@BASE CSEG BASE
?@vectOa :
br 11013014H
@@VECTOA CSEG AT 000AH
_@vectoOa :
DW ?@vectOa

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 155 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- If the #pragma ext_func is not used, no corrections are necessary.
- To perform the function call from the boot area to the flash area, make the change in accordance with Usage
above.

(2) From the RL78,78K0OR C compiler to another C compiler
- Delete the #pragma ext_func instruction or divide it by #ifdef.
- To perform the function call from the boot area to the flash area, the following change is required.

[Cautions]

- A program ceases to conform to the ANSI standard when the -rf option is specified in the small or medium model,
and when the -rn option is specified for the large model. Warning W0073 is issued if the strict ANSI option -za is
specified.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 156 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Mirror source area specification (-mi0/-mil)

The -mi0/-mil options instruct the compiler to generate code for a specified mirror source area.

[Function]

- When the -mi0 option is specified, code for 0 in MAA is generated.

- When the -mil option is specified, code for 1 in MAA is generated.

- A link error occurs when modules have been compiled with different -miO/-mil option specifications.

- When the -mi option is not specified, code for 0 in MAA is generated.

- By default the linker's -mi option is set to the value of the compiling -mi option.

- Unless specified, the -mi option is set to 0.

- Alink error occurs if the value of the linker -mi option is different from the value of the compiler -mi option.
- See the user's manual of the target device for more information about the mirror area and the MAA bit.

[Effect]

- The compiler generates code for the specified mirror source area.

[Usage]

- At compiling, specify the -mi0 or -mil option.

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- The -mi option can be specified to select the mirror source area. No modifications to source files are required.

(2) From the RL78,78K0OR C compiler to another C compiler
- Source files can be compiled on other C compilers with no madifications required.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 157 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Method of int expansion limitation of argument/return value (-zb)

The -zb option is specified during compiling, the object code is reduced and the execution speed improved.

[Function]

- When the type definition of the function return value is char/unsigned char, the int expansion code of the return
value is not generated.

- When the prototype of the function argument is defined and the argument definition of the prototype is char/
unsigned char, the int expansion code of the argument is not generated.

[Effect]

- The object code is reduced and the execution speed improved since the int expansion codes are not generated.

[Usage]

- The -zb option is specified during compiling.

[Restrictions]

- If the files are different between the definition of the function body and the prototype declaration to this function, the
program may operate incorrectly.

[Example]

<C source>

unsigned char funcl (unsigned char x, unsigned char y) ;

unsigned char c, d, e ;

void main (void) {
c = funcl (4, e) ;
¢ = func2 (4, e)
}
unsigned char funcl (unsigned char x, unsigned char y) {

return x + y ;

R20UT2774EJ0100 Rev.1.00 RENESAS Page 158 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(1) When the -zb option is specified
<Output object of compiler>

_main
; line 5 : c = funcl (4, e) ;
mov x, ! e
push ax
mov x, ! d ; Do not execute int expansion
call ! funcl
pop ax
mov a, c
mov ! ¢, a
; line 6 c = func2 (4, e) ;
mov x, ! e
clrb a ; Execute int expansion
; prototype declaration
push ax
mov x, !_d
mov x, #O00H
xch a, x ; Execute int expansion
; prototype declaration
call !_func2
pop ax
mov a, c
mov ! ¢, a
; line 7 : }
ret
; line 8
; line 9 unsigned char funcl (unsigned char x, unsigned char y) ({
_funcl
push hl
push ax
movw ax, sp
movw hl, ax
mov a, [hl]
mov X, a
mov a, [hl + 6]
movw hl, ax
; line 10 return x + y ;
mov a, 1
add a, h
mov c, a ; Do not execute int expansion
; line 11 : }
pop ax
pop hl
ret

since there is no

since there is no

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 159 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- If the prototype declarations for all definitions of function bodies are not correctly performed, perform correct
prototype declaration. Alternatively, do not specify the -zb option.

(2) From the RL78,78K0OR C compiler to another C compiler
- No modification is needed.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 160 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Memory manipulation function (#pragma inline)

An object file is generated by the output of the standard library functions memcpy and memset with direct inline expan-
sion.

[Function]

- An object file is generated by the output of the standard library memory manipulation functions memcpy and mem-
set with direct inline expansion instead of function call.
- When there is no #pragma directive, the code that calls the standard library functions is generated.

[Effect]

- Compared with when a standard library function is called, the execution speed is improved.
- Object code is reduced if a constant is specified for the specified character number.

[Usage]

- The function is described in the source in the same format as a function call.
- The following items can be described before #pragma inline.
- Comments
- Other #pragma directives
- Preprocess directives that do not generate variable definitions/references or function definitions/references

[Example]

<C source>

#pragma inline

char aryl[100], ary2[100]

void main (void) {

memset (aryl, 'A', 50) ;

memcpy (aryl, ary2, 50)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 161 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<Output object of compiler>

'A', 50)
movw de, #loww (_aryl)
; 65

; 50

aryl, ary2, 50) ;
movw de, #loww (_aryl)
movw hl, #loww (_ary2)

; 50

_main :
push hl
; line 5 : memset (aryl,
mov a, #041H
mov c, #032H
L0003 :
mov [de],
incw de
dec c
bnz $10003
; line 6 : memcpy
mov c, #032H
L0005 :
mov a, [hl]
mov [de],
incw de
incw hl
dec c
bnz $L0005
; line 7 : }
pop hl
ret

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Modification is not needed if the memory manipulation function is not used.

- When changing the memory manipulation function, use the method above.

(2) From the RL78,78K0OR C compiler to another C compiler
- The #pragma inline directive should be deleted or delimited using #ifdef.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS Page 162 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Absolute address allocation specification (__directmap)

Declare __directmap in the module in which the variable to be allocated in an absolute address is to be defined. Vari-
ables can be allocated to the arbitrary address.

[Function]

- The initial value of an external variable declared by __directmap and a static variable in a function is regarded as
the allocation address specification, and variables are allocated to the specified addresses.
Specify the allocation address using integers.

- The __directmap variable in the C source is treated as an static variable.

- Because the initial value is regarded as the allocation address specification, the initial value cannot be defined and
remains an undefined value.

- The specifiable address specification range, secured area range linked by the module for securing the area for the
specified addresses, and variable duplication check range are shown in the table below.

Item Range

When Small Model or When Large Model Is

Medium Model Is Specified Specified

Address Specification Range

0xf0000 - Oxffff

0x00000 - Oxfifff

Secured Area Range

Oxffd0O0 - Oxffeff

Oxffd0O0 - Oxffeff

Duplication Check Range

Start address - end address of

device internal RAM

Start address - end address of

device internal RAM

- If the address specification is outside the address specification range, an error is output.

- A variable that is declared with __directmap cannot be allocated to an area that extends over a boundary of the fol-
lowing areas. If allocated, an error will be output.

- saddr area (Oxffe20 to Oxffeff)

- sfr area or an area with which saddr area overlaps (0xfff00 to to Oxfff1f)
- sfr area (0xfff20 to Oxfffff)

- 2nd sfr area (Varies depending on the device used.)

- If the allocation address of a variable declared by __directmap is duplicated and is within the duplication check
range, a warning message (W0762) is output and the name of the duplicated variable is displayed.

- If the address specification range is inside the saddr area, the __sreg declaration is made automatically and the
saddr instruction is generated.

- If char/unsigned char/short/unsigned short/int/unsigned int/long/unsigned long type variables declared by
__directmap are bit referenced, sreg/__sreg must be specified along with __directmap. If they are not, an error will
occur,

- If the specified address range is in the near area, the variable is regarded to be in the near area for accessing.

- If the specified address range is in neither the saddr area nor near area, the variable is regarded to be in the far
area for accessing.

- If neither the __near nor __far type qualifier is specified, the variable is accessed in accordance with the memory
model specifications.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 163 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- If a type qualifier is specified, the variable is accessed in accordance with the specification. If the specified
address range and the type qualifier contradict, an error will be output.
The table below lists the relationship between the address specification ranges, memory models, and type qualifi-

ers.
Address Type Qualifier
Specification __near _ far __sreg __near _ far No Specification
Range __sreg __sreg
In saddr Access- sreg sreg sreg sreg sreg sreg
area ing
method
Pointer 2 bytes 4 bytes Small : 2 bytes 2 bytes 4 bytes Small : 2 bytes
length Medium : 2 bytes Medium : 2 bytes
Large : 4 bytes Large : 4 bytes
In near Access- Error Error Error near far Small : near
area ing Medium : near
method Large : far
Pointer 2 bytes 4 bytes Small : 2 bytes
length Medium : 2 bytes
Large : 4 bytes
In far Access- Error Error Error Error far Small : Error
area ing Medium : Error
method Large : far
Pointer 4 bytes Small : Error
length Medium : Error
Large : 4 bytes
[Effect]

- One or more variables can be allocated to the same arbitrary address.

[Usage]

- Declare __directmap in the module in which the variable to be allocated in an absolute address is to be defined.

__directmap type-name variable-name = allocation-address-specification ;
__directmap static type-name variable-name = allocation-address-specification ;
__directmap _ sreg type-name variable-name = allocation-address-specification ;

__directmap _ sreg static type-name variable-name = allocation-address-specification ;

- If __directmap is declared for a structure/union/array, specify the address in braces {}.

extern Type-name Variable-name ;
extern _ sreg Type-name Variable-name ;
R20UT2774EJ0100 Rev.1.00 RENESAS Page 164 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Restrictions]

- __directmap cannot be specified for function arguments, return values, or automatic variables. If it is specified in

these cases, an error will occur.

- If an address outside the secured area range is specified, the variable area will not be secured, making it neces-
sary to either describe a directive file or create a separate module for securing the area.

- The __directmap variable cannot be declared with extern because it is handled in the same way as the static vari-

ables.
[Example]
<C source>
__directmap char c = 0xffeoO0 ;
__directmap _ sreg char d = 0xffe20 ;
__directmap _ sreg char e = 0xffe2l ;

__directmap struct x {
char a ;
char b ;

} xx = { oxffe30 } ;

void main (void) {
c =1 ;
d = 0x12
e.5 =1 ;
xx.a = 5
xx.b = 10 ;

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 165 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<Output object of compiler>

@@CODEL

_main :

PUBLIC

EQU
EQU
EQU
EQU
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

CSEG

; line 10

oneb

; line 11
mov
; line 12
setl
; line 13

mov

; line 14

mov

; line 15

ret

END

_main

OFFEOOH
OFFE20H
OFFE21H
OFFE30H
_ mmfe00
__mmfe20
_ mmfe2l
_ _mmfe30

_ mmfe3l

lloww (_c)

_d, #012H

_e.5

_xx, #05H

_xx + 1, #OAH

; Addresses for variables declared by _ directmap

; are defined by EQU

; For linking secured area modules

; EXTRN output

; saddr instruction output because address
; specified in saddr area

; Bit manipulation possible because __ sreg also used

; saddr instruction output because address

; specified in saddr area

; saddr instruction output because address

; specified in saddr area

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- No modification is necessary if the reserved word __directmap is not used.

- To change to the __directmap variable, modify according to the description method above.

(2) From the RL78,78K0OR C compiler to another C compiler
- Compatibility can be attained using #define (see "3.2.5 C source modifications for details).

- When the __directmap is being used as the absolute address allocation specification, modify according to the

specifications of each compiler.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS Page 166 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

near/far area specification (__near/__far)

An allocating place of the function and a variable can be designated specifically by adding the __near or __far type
qualifier when a function or variable declared.

[Function]

- The location of a function or variable is specified explicitly by specifying a __near or __far type qualifier.

Qualifier Location

__near type qualifier near area
(data:0FO000H to OFFFFFH, code:000000H to 00FFFFH)

__far type qualifier far area
(0O00000H to OFFFFFH)

- The pointer to the near area should be 2 bytes long, and that to the far area should be 4 bytes long.

- An error will occur if __near and __far type qualifiers are used together in declaration of the same variable or func-
tion.

- The __near and __far type qualifiers are handled as type qualifiers, grammatically.

- If specified together with __callt, __interrupt, __rtos_interrupt, __interrupt_brk, __sreg, or __boolean, the __near or
__far type qualifier is ignored.

- An error will occur if __near and __far type qualifiers are specified together.

- If specified for an automatic variable, argument or register variable, the __near or __far type qualifier is ignored.

- Variables in the near area are accessed without using the ES register.

The pointer length should be 2 bytes long.

- Variables in the far area are accessed by setting the ES register.
The pointer length should be 4 bytes long.

- Functions in the near area are called with !addr16, and functions in the far area are called with !laddr20.

- Since there are no instructions that can call function pointers without referencing the CS register, be sure to set the
CS register to call function pointers.

- Function pointers for functions in the near area output the code to set the CS register to 0.

- The highest byte of a far pointer is always undefined.

- Conversion from the near pointer or int to the far pointer, and from the near pointer to long results in the following
operations.

- "Oxf" is added to the higher bytes of the variable pointer (0 is exceptional and zero-extended).
- The function pointer is zero-extended.

- Addition and subtraction with the far pointer uses the lower 2 bytes, and the higher bytes do not change.

- ptrdiff_t is always int type.

- An equality operation with the far pointer uses the lower 3 bytes.

- A relational operation with the far pointer uses the lower 2 bytes. To compare pointers that do not point to the
same object, the pointer must be converted to unsigned long. If the -za option is specified, the lower 3 bytes are
used for comparison.

- The character string constants are allocated to the far area or near area, according to the memory model specified.

Memory Model Location
Small model near area
Medium model near area
Large model far area
R20UT2774EJ0100 Rev.1.00 RENESAS Page 167 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- When the large model is used, pointers to automatic variables, arguments, and sreg variables are 4 bytes long.
- The following error checking is performed to detect cases in which the same variable or function is declared
__near in the defining module and __far in another module, or the reverse (See "Coding examples 2" below).
- Allink error occurs when a variable or function is referenced if 1) it has been declared __near in the defining
module, and 2) it is declared __far in the module where it is referenced.
- Error checks are performed for up to 8 of any combination of pointer, array, or function declarator.
- Error checks are performed only when the -g option is specified.

[Effect]

- Specification of the __far type qualifier enables functions and variables to be allocated to the far area and to be ref-
erenced.

- Specification of the __near type qualifier enables functions and variables to be allocated to the near area and to be
referenced.
The functions and variables allocated to the near area can be called or referenced with a short instruction.

[Usage]

- The __near or __far type qualifier is added to a function or variable declared.

[Example]

(1) Coding examples 1

near int il ;

far int i2 ;

far int *_ near pl ;

far int * near *_far p2 ;

far int funcl () ;

__far int *_ near func2 () ;

__near int (*__ far fpl) () ;

_ far int *_ near (*_ near fp2) () ;
__near int *__ far (*_ near fp3) () ;
__near int *_ near (*_ far fp4) () ;

- il is int type and allocated to the near area.

- i2 is int type and allocated to the far area.

- plis a 4-byte type variable that points to "an int type in the far area". The variable itself is allocated to the near
area.

- p2 is a 2-byte variable that points to a 4-byte type in the near area, which points to "an int type in the far area".
The variable itself is allocated to the far area.

- funcl is a function that returns "an int type". The function itself is allocated to the far area.

- func2 is a function that returns a 4-byte type that points to "an int type in the far area". The function itself is
allocated to the near area.

- fplis a 2-byte type variable that points to "a function in the near area, which returns an int type". The variable
itself is allocated to the far area.

- fp2 is a 2-byte type variable that points to a function in the near area, which returns a 4-byte type that points

- to "an int type in the far area”. The variable itself is allocated to the near area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 168 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- fp3 is a 4-byte type variable that points to a function in the far area, which returns a 2-byte type that points to

"an int type in the near area". The variable itself is allocated to the near area.

- fp4 is a 2-byte type variable that points to a function in the near area, which returns a 2-byte type that points to

"an int type in the near area". The variable itself is allocated to the far area.

(2) Coding examples 2
- The following examples explain the error checking that is performed to detect cases in which the same variable or

function is declared near in the defining module and far in another module, or the reverse.

-a.c
/* Definitions */
int __near il ;
int _ far 12 ;
int __near *_ near nnpl ;
int __near *__ near nnp2 ;
int __near *__ far fnpl ;
int __near *__ near nnp3 ;
int __far *_ near nfpl ;
int __far *_ near nffuncl () { }
int __far *_ near nffunc2 () { }
int _ far *_ far fffuncl () { }
int __near *_far fnfuncl () { }
int __far *_ far fffunc2 () { }
-b.c
/* extern declarations */
extern int _ far i1 ;
extern int __near i2 ;
extern int __near *_ near nnpl ;
extern int _ near *__ far nnp2 ;
extern int __near *_ near fnpl ;
extern int _ far *_ near nnp3 ;
extern int __near *_ near nfpl ;
extern int _ far *_ near nffuncl () ;
extern int __far *_far nffunc2 () ;
extern int __far *_ near fffuncl () ;
extern int __far *_ far fnfuncl () ;
extern int __near *__ far fffunc2 () ;
void main (void)
i1 = 1 ; /* OK */
i2 =1 ; /* Error */
nnpl 1 ; / OK */
nnp2 1; / OK */
fnpl 1 ; / Error */

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 169 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

nnp3 = 1 ; / Error */
nfpl = 1 ; / Error */
nffuncl () ; /* OK */
nffunc2 () ; /* OK */
fffuncl () ; /* Error */
fnfuncl () ; /* Error */
\ fffunc2 () ; /* Error */

[Restrictions]

- Even if the __far type qualifier is specified, data cannot be allocated to an area extending over a 64 KB boundary.
Functions can be allocated to an area extending over a 64 KB boundary.

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- It is not necessary to modify the code if reserved word __near or __far is not used.

(2) From the RL78,78K0OR C compiler to another C compiler
- It is not necessary to modify the code if the __near or __far type qualifier is not used.
- If the __near or __far type qualifier is used, #define can be used for near/far area specification.

[Cautions]

- If the lower 2 bytes are used for a relational operation, data cannot be allocated to the last byte of a 64 KB bound-
ary area. If allocated, an error will be output by the linker or compiler.
This is because, ANSI-compliant operationN° is performed for the relational operation that uses the pointer that
points to the range outside an array.

Note Constraints on relational operators prescribed by ANSI
If expression P points to an element of an array object and expression Q points to the last element of that

array object, pointer expression Q+1 is larger than expression P.

- The size of the pointer for the far area is 4 bytes but the calculation object is the lower 3 bytes, so the highest byte
is always undefined.

<Example>

union tag {
__far unsigned short *ptr ;

unsigned long ldata ;

} un ;

A value is written to un.ptr and then un.ldata is referenced; the highest byte then becomes undefined. To guaran-
tee that the highest byte of un.ldata is 0, union un must first be initialized with 0.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 170 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

- The linker checks the data location of sections with the following combination of segment type and relocation
attribute.

DSEG UNIT64KP
DSEG PAGE64KP
CSEG PAGE64KP

- If one of the above relocation attributes is changed using the #pragma section or link directive file, the linker does
not check it.

- ROM data cannot be allocated to the near area on devices without a mirror area. For this reason, pointers to ROM
data are forcibly changed to far pointers (warning W0071 is always output). Additionally, when using small and
medium models, standard library functions with "const *" arguments must be called with "_f" appended to the func-
tion name (warning W0072 is always output). Small and medium models are no longer ANSI compliant. If the
ANSI compliance option -za is specified, warning W0073 will be output.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 171 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Memory model specification (-ms/-mm/-ml)

An allocating place of the function and a variable can be specifying by a memory model by specifying the -ms, -mm, or
-ml option when compiling.

[Function]

- The location of a function or variable is specified.

Memory Model Data Function
Small model near area near area
Medium model near area far area
Large model far area far area

- Ifthe __near or __far type qualifier is specified, the specified __near or __ far type qualifier takes precedence.

- Small model
Consists of a data portion of 64 KB and a code portion of 64 KB; 128 KB in total.
The data ROM is allocated at 0000H to OFFFFH or 10000H to 1FFFFH, and mirrored in FxxxxH.
Codes are allocated at 00000H to OFFFFH.
Since the CS register value may be changed by specifying the __far type qualifier, be sure to set the CS register
when calling a function pointer.

- Medium model
Variables are allocated to the near area, and functions are allocated to the far area. Consists of a data portion of
64 KB and a code portion of 1 MB.
The data ROM is allocated at 000000H to OOFFFFH or 010000H to 01FFFFH, and mirrored in FxxxxH. There are
no limitations on locating codes.

- Large model
Variables and functions are allocated to the far area. Consists of a data portion of 1 MB and a code portion of 1
MB. There are no limitations on locating data and codes.

[Usage]

- Specify the -ms, -mm, or -ml option during compilation.

Option Explaination
-ms Small model
-mm Medium model
-ml Large model
R20UT2774EJ0100 Rev.1.00 RENESAS Page 172 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Example]
<C source>
int i ;
int *p ;
void func(void) { }
void (*fp) (void)
void main(void) {
int r ;
r =1 ; /* Data access */
func () ; /* Function call */
r = *p ; /* Data pointer */
fp () /* Function pointer */

<Output object of compiler>

(1) When small model is used

movw hi, ! i
call ! _func
movw de, ! p
movw ax, [del
movw hl, ax
movw ax, ! fp
mov CS, #00H
call ax

(2) When medium model is used

movw hi, !t i
call !l func
movw de, ! p
movw ax, [de]
movw hl, ax

mov a, ! fp + 2
mov CS, a

movw ax, ! fp
call ax

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 173 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(3) When large model is used>

mov ES, #highw (_1i)
movw hl, EsS:! i

call !'!_func

mov ES, #highw (p)
mov a, ES:! p + 2
movw de, ES:! p

mov ES, a

movw ax, ES:[de]

movw hl, ax

mov ES, #highw (_fp)
mov a, ES:! fp + 2
mov CS, a

movw ax, ES:! fp

call ax

[Restrictions]

- Even if the large model is specified, data cannot be allocated to an area that extends over 64 KB boundaries.

- Modules for which a different memory model is specified cannot be linked.

- The size of variables with/without initial values allocated to the far area are (64K - 1) bytes each, per load module
file (Note: 64KB if the -za option is specified).
This size can be increased by changing the section name that includes variables with/without initial values in a cer-

tain file to another output section name, using the function of "Changing compiler output section name (#pragma

section)".

In this case, the startup routine and termination routine must be modified (see to [Examples of Changing startup

Routine in Connection with Changing Section Name Related to ROMization] in "Changing compiler output section

name (#pragma section)").

- The maximum size per output section name does not change.

- If the -za option is not specified, data cannot be allocated to the last byte of a 64 KB boundary area (see to CAU-

TIONS in "near/far area specification (__near/__far)").

[Cautions]

- ROM data cannot be allocated to the near area on devices without a mirror area. For this reason, ROM data are

allocated to the far area (warning W0071 is always output). Additionally, when using small and medium models,

standard library functions with "const ** arguments must be called with *_f* appended to the function name (warn-

ing W0072 is always output). Small and medium models are no longer ANSI compliant. If the ANSI compliance
option -za is specified, warning W0073 will be output.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 174 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Allocating ROM data specification (-rf/-rn)

An allocating place of the ROM data can be designated specifically near or far area.

[Function]

- The -rf option places ROM data in a far area.

- The -rn option places ROM data in a near area.

- When neither the -rf nor the -rn option is specified, the placement of ROM data depends on the memory model.

- The placement of ROM data is determined by the following specifications, listed in order of priority from highest pri-
ority to lowest.

(1) near or far specification by specification of the start address of the flash area and the address of the mirror
source area (see "Flash area branch table and flash area allocation (-zt/-zz)").

(2) __near or __far keyword
(3) -rn or -rf option specification
(4) Memory model

- ROM data refers to the following types of data.
- Variables declared as const
- String literals
- Initial values of auto aggregate type variables (arrays and structures)
- Switch statement branch tables

[Effect]

- It's possible to allocate ROM data in any area far or near area.

[Usage]

- Specify the -rf or -rn option at compiling.

[Restrictions]

- When the same const variable is referenced by different modules, it is placed according to the ROM data specifi-
cation priorities listed above, and an error check is performed. See "near/far area specification (__near/__far)"
about the error check.

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Specify the placement of ROM data by recompiling with the -rf or -rn option specified. There is no need to
modify the source program.

(2) From the RL78,78KOR C compiler to another C compiler
- Compile the source program on other C compilers with no modifications.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 175 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Cautions]

- ROM data cannot be allocated to the near area on devices without a mirror area. For this reason, the -rn option is
ignored, and ROM data is allocated to the far area (warning W0071 is always output).

R20UT2774EJ0100 Rev.1.00 RENESAS Page 176 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Specifying RAM allocation destinations with self-programming (-zx)

An allocating place of the code and ROM data can be designated RAM area.

[Function]

- Supports RL78 family self-programming.
- The -zx option places code and ROM data in a RAM area.
- When -zx is specified, the far attribute is added to the code, regardless of the memory model.
- When -zx1 is specified, it calls a runtime library for ROM allocation.
- When -zx2 is specified, it calls a runtime library for RAM allocation.
- ROM data refers to the following types of data.
- Variables declared as const
- String literals
- Initial values of auto aggregate type variables (arrays and structures)
- Switch statement branch tables

[Effect]

- It's possible to allocate code and ROM data in a RAM area.

[Usage]

- Specify the -zx option at compiling.

[Restrictions]

- If this option is specified for a device that does not support RL78 familyself-programming, and the option -zf for
specifying flash area allocation is not specified, then defining an interrupt function or RTOS interrupt handler will
cause an error.

- If the -gl optimization option is specified when -zx2 is specified, then the -ql level is automatically set to 1.

- A callt function cannot be defined when -zx is specified. Coding a callt function will cause an error.

- The interrupt specification is different in self-programming mode. For this reason, coding a "#pragma interrupt" or
"#pragma rtos_interrupt" directive when -zx is specified will cause an error. Use the __interrupt/__interrupt_brk/
__rtos_interrupt modifiers to define an interrupt handler or RTOS interrupt handler when -zx is specified.

- When -zx is specified, there will be a warning because the function is allocated to the RAM area. All functions will
be far functions.

- Due to issues with RAM capacity, the standard libraries are allocated to ROM even when -zx is specified. Conse-
quently, you should not call standard libraries in self-programming mode, when it is possible that ROM will become
invisible. The user is responsible for calls to the standard libraries from functions allocated to RAM. Behavior is
not guaranteed when standard libraries are called while in self-programming mode.

- Due to issues of RAM capacity, libraries used by multiplication, division, sum-of-products, and BCD functions
using #pragma directives are allocated to ROM, even when -zx is specified. Consequently, you should not call
these functions in self-programming mode, when it is possible that ROM will become invisible. The user is respon-
sible for calls to multiplication, division, sum-of-products, and BCD functions using #pragma directives from func-
tions allocated to RAM. Behavior is not guaranteed when these functions are called while in self-programming
mode.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 177 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

[Compatibility]

(1) From another C compiler to the RL78,78K0OR C compiler
- Recompiling with the -zx option specified. There is no need to modify the source program.

(2) From the RL78,78K0OR C compiler to another C compiler
- Compile the source program on other C compilers with no modifications.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 178 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.25 C source modifications

The compiler generates efficient object code when using the extended functions. But these functions are designed for
use on RL78 family, 78KOR microcontrollers. If programs make use of the extended functions, they must be modified
when porting them for use on other devices.

This section explains techniques that can use to port programs from other C compilers to RL78,78KOR C compiler, and
from RL78,78KOR C compiler to other C compilers.

(1) From another C compiler to the RL78,78K0OR C compiler
- #pragmalNote
If the other C compiler supports the #pragma directive, the C source must be modified. The method and
extent of modifications to the C source depend on the specifications of the other C compiler.
- Extended specifications
If the other C compiler has extended specifications such as addition of reserved words, the C source must be
modified. The method and extent of modifications to the C source depend on the specifications of the other C

compiler.

Note #pragma is one of the preprocessing directives supported by ANSI. The character string following the
#pragma is identified as a directive to the compiler. If the compiler does not support this directive, the
#pragma directive is ignored and the compile will be continued until it properly ends.

(2) From the RL78,78K0OR C compiler to another C compiler
- Because the RL78,78KOR C compiler has added reserved words as the extended functions, the C source
must be made portable to the other C compiler by deleting such reserved words or invalidating them with
#ifdef.

Following are some examples.

(@) To invalidate a reserved word (Same applies to callf, sreg, and norec, etc.)

#ifndef _ KOR__
#define callt /* Makes callt as ordinary function */

#endif

(b) To change from one type to another

#ifndef _ KOR__

#define bit char /* Changes bit type to char type variable*/
#endif
R20UT2774EJ0100 Rev.1.00 RENESAS Page 179 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.3 Function Call Interface

This section explains the following features of the function call interface.

- Return values (common to all functions)
- Ordinary function call interface

3.3.1 Return values

- The return value of a function is stored in registers or carry flags.

- The locations at which a return value is stored are listed below.s

Table 3-17. Storage Locations of Return Values

Type Storage Location
1 bit CcY
1-byte or 2-byte integer BC
near pointer BC

4-byte integer

BC (lower), DE (upper)

far pointer

BC (lower), DE (upper)

Floating-point number

BC (lower), DE (upper)

Structure

The structure to be returned is copied into private storage for the function, and

the address of the copy is stored in BC and DE.

3.3.2 Ordinary function call interface

(1) Passing arguments

- The second and following arguments are passed to functions on the stack.

- The first argument is passed to the function definition side via a register or stack.

The location where the first argument is passed is shown in the table below.

Table 3-18. Location Where First Argument Is Passed (Function Calling Side)

Type Storage Location
1-byte dataNote AX
2-byte data™Note
Pointer to near data AX
3-byte dataNOte AX, BC
4-byte dataNOe
Pointer to function, AX, BC
Pointer to far data
Floating-point number AX, BC
Other On the stack

Note 1-byte to 4-byte data includes structures, unions, and pointers.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 180 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Storage locations of arguments and auto variables

- An argument or automatic variable is assigned to a register at the top of the function, by declaring the argu-
ment or automatic variable with register or specifying the -qv option. Other arguments and automatic variables
are stored in a stack.

- If an argument, which is passed from the function call side via a stack, is not assigned to registers, the location
for passing is the location to be assigned.

- Arguments and automatic variables are assigned to register HL, unless otherwise there are no stack frames.
Arguments and automatic variables can also be assigned to _ @KREGxx if the -gr option is specified. See to
"3.4 List of saddr Area Labels" for _ @KREGxx.

- Arguments and automatic variables are assigned to registers in the order of reference frequency.

Arguments and automatic variables that are rarely referenced may not be assigned to registers, even if the
argument or automatic variable is declared with register or the -qv option is specified.

- The registers to which arguments or automatic variables are assigned are saved and restored by the function
definition side.

(3) Examples

(@) Examples 1

<C source>
void func0 (register int, int) ;
void main (void) {

func0 (0x1234, 0x5678) ;

void func0 (register int pl, int p2)
register int r ;
int a ;
r = p2 ;
a = pl ;

<1> -When -gr option is specified
<Assembly source code generated by compiler>

_main :
; line 4 : funcO0 (0x1234, 0x5678) ;
movw ax, #05678H ; 22136
push ax ; 2nd and following arguments passed on
; stack
movw ax, #01234H ; 4660 ; 1lst argument passed in register
call 11 funco ; Function call
pop ax ; Release stack used for function call
; line 5 : }
ret
; line 6 :
R20UT2774EJ0100 Rev.1.00 RENESAS Page 181 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

; line 7

_funco
push
movw
push
movw
push
movw
push
movw

; line 8

; line 9

; line 10
movw
movw

; line 11
movw
movw

; line 12
pop
pop

movw

pop

movw

pop

ret

void funco

hl

de, _@KREG14
de

de, _@KREG12
de

_@KREG14, ax
ax

hl, sp

register int

int
r = p2 ;
ax, [hl+12]
_@KREG12, ax
a = pl ;
ax, _@KREG14
[h1l], ax

}
ax
ax

_@KREG12, ax

ax

_@KREG14, ax

hl

(register

p2

pl

int pl, int p2) {

; Save saddr area for register variable

; Save saddr area for register variable
; Assign 1lst argument pl to saddr

; Reserve storage for auto variable a

; Argument p2

; Auto variable r

; Argument pl

; Auto variable a

; Release storage for auto variable a

; Restores saddr area for register
; argument
; Restores saddr area for register

; argument

(b) Example 2

<C source>
void funcl (int, register int)
void main (void) {
funcl (0x1234, 0x5678) ;
1
void funcl (int pl, register int p2)
register int r ;
int a ;
r = p2 ;
a = pl ;
}
R20UT2774EJ0100 Rev.1.00 RENESAS Page 182 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

<1> When -qr option is specified
<Assembly source code generated by compiler>

_main
; line 4 : funcl (0x1234, 0x5678) ;
movw ax, #05678H ; 22136
push ax ; 2nd and following arguments passed on
; stack
movw ax, #01234H ; 4660 ; 1lst argument passed in register
call !!_funcl ; Function call
pop ax ; Release stack used for function call
; line 5 : }
ret
; line 6
; line 7 : void funcl (int pl, register int p2) {
_funco
push hl
push ax ; Place 1lst argument pl on stack
movw de, _@KREG14
push de ; Save saddr area for register variable
movw de, _@KREG12
push de ; Save saddr area for register variable
movw ax, [sp+12]
movw _@KREG12, ax ; Assign argument p2 to saddr
push ax ; Reserve storage for auto variable a
movw hl, sp
; line 8 : register int r ;
; line 9 : int a ;
; line 10 : r = p2 ;
movw ax, _@KREG12 i p2 ; Argument p2
movw _@KREG14, ax ;T ; Auto variable r
; line 11 : a = pl ;
movw ax, [hl+6] ; pl ; Argument pl
movw [hl], ax ;i a ; Auto variable a
; line 12 : }
pop ax ; Release storage for auto variable a
pop ax
movw _@KREG12, ax ; Restores saddr area for register
; variable
pop ax
movw _@KREG14, ax ; Restores saddr area for register
; variable
pop ax ; Release storage for 1lst argument pl
pop hl
ret
R20UT2774EJ0100 Rev.1.00 RENESAS Page 183 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.4 List of saddr Area Labels

RL78,78KOR C compiler uses the following labels to reference addresses in the saddr area. Therefore, the names in
the following tables cannot be used in C and assembler source programs.
Since these labels are defined in libraries, link the libraries if the compiler is to use them.

(1) Register variables

Label Name Address
—@KREG00 OFFEB4H
_@KREGO1 OFFEB5H
_@KREG02 OFFEB6H
_@KREGO03 OFFEB7H
_@KREG04 OFFEBSH
_@KREGO5 OFFEBOH
_@KREG06 OFFEBAH
_@KREGO7 OFFEBBH
_@KREGO08 OFFEBCH
_@KREG09 OFFEBDH
_@KREG10 OFFEBEH
_@KREG11 OFFEBFH
_@KREG12 OFFECOHNOt
_@KREG13 OFFEC1HNote
_@KREG14 OFFEC2HNote
_@KREG15 OFFEC3HNote

Note When the arguments of the function are declared by register or the -qv option is specified and the -gr option
is specified, arguments are allocated to the saddr area.

(2) For Works

Label Name Address
_@NRARGO OFFEC4H
_@NRARG1 OFFEC6H
_@NRARG2 OFFECS8H
_@NRARG3 OFFECAH
_@NRATO00 OFFECCH
_@NRATO1 OFFECDH
_@NRATO02 OFFECEH
_@NRATO03 OFFECFH
_@NRATO04 OFFEDOH
_@NRATO05 OFFED1H
R20UT2774EJ0100 Rev.1.00 RENESAS Page 184 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

Label Name Address

_@NRAT06

OFFED2H

_@NRATO7

OFFEDSH

(3) For Segment information

Label Name Address
_@SEGAX OFFED4H
_@SEGBC OFFEDS5H
_@SEGDE OFFEDG6H
_@SEGHL OFFED7H

(4) Runtime library arguments

Label Name Address
_@RTARGO OFFEDS8H
_@RTARG1 OFFEDYH
_@RTARG2 OFFEDAH
_@RTARG3 OFFEDBH
_@RTARG4 OFFEDCH
_@RTARGS5 OFFEDDH
_@RTARG6 OFFEDEH
_@RTARG7 OFFEDFH

3.5 List of Segment Names

This section explains all the segments that the compiler outputs and their locations.

The tables below list the relocation attributes that appear in the tables of this section.

- CSEG relocation attributes

CALLTO

Allocates the specified segment so that the start address is a multiple of two within the range of
80H to BFH.

AT absolute expres-
sion

Allocates the specified segment to an absolute address (within the range of 00000H to
FFEFFH).

UNITP

Allocates the specified segment so that the start address is a multiple of two within any position
(within the range of COH to EFFFEH).

- DSEG relocation attributes

SADDRP Allocates the specified segment so that the start address is a multiple of two within the range of
FFE20H to FFEFFH in the saddr area.
UNITP Allocates the specified segment so that the start address is a multiple of two within any position

(default is within the RAM area).

R20UT2774EJ0100 Rev.1.

Dec 01, 2013

00 RENESAS Page 185 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

35.1 List of segment names

(1) Program areas and data areas

Section Name | Segment Relocation Description
Type Attribute
@@CODE CSEG BASE Segment for code portion (allocated to near area)
@@CODEL CSEG Segment for code portion (allocated to far area)
@@CODER CSEG Segment for code portion (allocated to RAM)
@@LCODE CSEG BASE Segment for library code (allocated to near area)
@@LCODEL CSEG Segment for library code (allocated to far area)
@@LCODER | CSEG Segment for library code portion (allocated to RAM)
@@CNST CSEG MIRRORP ROM data (allocated to near area)N°t 1
@@CNSTR CSEG MIRRORP Segment for ROM data portion (allocated to RAM) (allocated to near

(If thereis a area)
mirror area)

UNITP

(If there is no
mirror area)

@@CNSTL CSEG PAGE64KP ROM data (allocated to far area)No® 1

@@CNSTLR | CSEG PAGEG64KP Segment for ROM data portion (allocated to RAM) (allocated to far
area)

@@R_INIT CSEG UNIT64KP Segment for near initialized data (with initial value)

@@RLINIT CSEG UNIT64KP Segment for far initialized data (with initial value)

@@R_INIS CSEG UNIT64KP Segment for initialized data (sreg variable with initial value)

@@CALT CSEG CALLTO Segment for callt function table

@@VECTnn CSEG AT 00mmH Segment for vector tableNote 2

@@BASE CSEG BASE Segment for callt function and interrupt function

@@LBASE CSEG BASE Segment for library and callt function

@@INIT DSEG BASEP Segment for data area (with initial value, allocated to near area)

@@INITL DSEG UNIT64KP Segment for data area (with initial value, allocated to far area)

@@DATA DSEG BASEP Segment for data area (without initial value, allocated to near area)

@@DATAL DSEG UNIT64KP Segment for data area (without initial value, allocated to far area)

@@INIS DSEG SADDRP Segment for data area (sreg variable with initial value)

@@DATS DSEG SADDRP Segment for data area (sreg variable without initial value)

@@BITS BSEG Segment for boolean type and bit type variables

Notes 1. ROM data refers to the following types of data.
- Segment for const variables
- Table reference for switch-case statement
- Unknown character-string constant
- Data of initial value of an auto variable

R20UT2774EJ0100 Rev.1.00 RENESAS Page 186 of 872
Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

2. The value of nn and mm changes depending on the interrupt types.

(2) Flash memory areas

mirror area)

UNITP

(If there is no
mirror area)

Section Name | Segment Relocation Description

Type Attribute
@ECODE CSEG BASE Segment for code portion (allocated to near area)
@ECODEL CSEG Segment for code portion (allocated to far area)
@ECODER CSEG Segment for code portion (allocated to RAM)
@LECODE CSEG BASE Segment for library code (allocated to near area)
@LECODEL CSEG Segment for library code (allocated to far area)
@LECODER CSEG Segment for library code (allocated to RAM)
@ECNST CSEG MIRRORP ROM data (allocated to near area)Not 1
@ECNSTR CSEG MIRRORP Segment for ROM data (allocated to RAM) (allocated to near area)

(If there is a

@ECNSTL CSEG PAGE64KP ROM data (allocated to far area)N°®© 1

@ECNSTLR CSEG PAGE64KP Segment for ROM data (allocated to RAM) (allocated to far area)
@ER_INIT CSEG UNIT64KP Segment for near initialized data (with initial value)

@ERLINIT CSEG UNIT64KP Segment for far initialized data (with initial value)

@ER_INIS CSEG UNIT64KP Segment for initialized data (sreg variable with initial value)
@EVECTNnn CSEG AT mmmmH | Segment for vector tableNot 2

@EXTxx CSEG AT yyyyH Segment for flash area branch tableN°t 3

@EINIT DSEG BASEP Segment for data area (with initial value, allocated to near area)
@EINITL DSEG UNIT64KP Segment for data area (with initial value, allocated to far area)
@EDATA DSEG BASEP Segment for data area (without initial value, allocated to near area)
@EDATAL DSEG UNIT64KP Segment for data area (without initial value, allocated to far area)
@EINIS DSEG SADDRP Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDRP Segment for data area (sreg variable without initial value)
@EBITS BSEG Segment for boolean type and bit type variables

@ECALT CSEG Dummy segment

@EBASE CSEG BASE Dummy segment

Notes 1. ROM data refers to the following types of data.
- Segment for const variables
- Table reference for switch-case statement
- Unknown character-string constant
- Data of initial value of an auto variable
2. The value of nn and mmmm changes depending on the interrupt types.
3. The values of xx and yyyy changes depending on the ID of the flash area function.

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 187 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

3.5.2 Segment allocation

Segment Type Location (Default)
CSEG ROM
BSEG saddr area of RAM
DSEG RAM

353 C source example

#pragma INTERRUPT INTPO inter rbl /* Interrupt vector*/
void inter (void) ; /* Interrupt function prototype declaration */
const int i cnst =1 ; /* const variablex*/
__callt void £ clt (void) ; /* callt function prototype declaration*/
__boolean b _bit ; /* boolean-type variable*/
long 1 init = 2 ; /* External variable with initial value*/
int i data ; /* External variable without initial value*/
__sreg int sr_inis = 3 ; /* sreg variable with initial value*/
__sreg int sr_dats ; /* sreg variable without initial value*/
void main () { /* Function definition*/

int i ;

i = 100 ;
}
void inter () { /* Interrupt function definition*/

unsigned char uc = 0;

uc++;

if (b_bit)

b bit = 0;
}
__callt void f clt () { /* callt function definition*/
}
R20UT2774EJ0100 Rev.1.00 RENESAS Page 188 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

354 Example of output assembler module

Directives and instructions sets in assembly language source output vary according to the target device.
For details, see "CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS".

(1) Small model

; 78KOR C Compiler Vx.xx Assembler Source Date:xx XXX XXXX Time:XX:XX:XX
; Command : -cfl04le sample.c -ms -sa -ng

; In-file : sample.c

; Asm-file : sample.asm

; Para-file

$SPROCESSOR (F104LE)
SNODEBUG

SNODEBUGA

SKANJICODE SJIS

$TOL_INF 03FH, OxxxH, OOH, OOH, OOH, O00H, OOH

PUBLIC _inter
PUBLIC _i_cnst
PUBLIC _b bit
PUBLIC _1 init
PUBLIC _i data
PUBLIC _sr_inis
PUBLIC _sr_dats
PUBLIC _main
PUBLIC _f clt
PUBLIC *?f clt

PUBLIC _@vect08

@@BITS BSEG ; Segment for boolean-type and bit-type variable

b _bit DBIT

@@CNST CSEG MIRRORP ; Segment for const variable

i _cnst : DW 01H i1

@@R_INIT CSEG UNIT64KP ; Segment for initialization data (External variable

with initial wvalue)

DW 00002H, 0000OH ; 2

@@INIT DSEG BASEP ; Segment for data area(External variable with

initial value)

_1 init : DS (4)
@@DATA DSEG BASEP ; Segment for data area(External variable without
R20UT2774EJ0100 Rev.1.00 RENESAS Page 189 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

initial value)
_1i data DS (2)
@@R_INIS CSEG UNIT64KP ; Segment for initialization data(sreg variable
with initial value)
DW 03H ;3
@@INIS DSEG SADDRP ; Segment for data area(sreg variable with initial
value)
_sr_inis DS (2)
@@DATS DSEG SADDRP ; Segment for data area(sreg variable without
initial value)
_sr_dats DS (2)
@@CALT CSEG CALLTO ; Segment for callt function table
?f_clt DW _f clt
; line 1 #pragma interrupt INTPO inter rbl /* Interrupt vector */
; line 2
; line 3 : void inter (void) ; /* Interrupt function prototype declaration */
; line 4 const int i cnst = 1 ; /* const variable */
; line 5 : _ callt void f clt (void) ; /* callt function prototype declaration */
; line 6 __boolean b bit ; /* boolean-type variable */
; line 7 long 1 init = ; /* External variable with initial value */
; line 8 int i data ; /* External variable without initial value */
; line 9 __sreg int sr_inis = 3 ; /* sreg variable with initial value */
; line 10 __sreg int sr_dats ; /* sreg variable without initial value */
; line 11
; line 12 void main () { /* Function definition */
@@CODE CSEG BASE ; Segment for code portion
_main
push hl ;[INF] 1, 1
; line 13 int
; line 14 i = 100
movw hl, #064H 100 ; [INF] 3, 1
; line 15 : }
pop hl ; [INF] 1, 1
ret ; [INF] 1, 6
; line 16
; line 17 void inter () /* Interrupt function definition */
@@BASE CSEG BASE ; Segment for callt and interrupt function
_inter
sel RB1 ; [INF] 2, 1 Selects register bank 1

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 190 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
; line 18 unsigned char uc = 0;
mov 1,#00H ;0 ; [INF] 2, 1
; line 19 uc++;
inc 1 ; [INF] 1, 1
; line 20 : if (b bit)
bf b _bit,$L0005 ; [INF] 4, 5
; line 21 b bit = 0;
clrl _b_bit ; [INF] 3, 2
L0005:
; line 22 : }
reti ; [INF] 2, 6
; line 23
; line 24 __callt void £ clt () | /* callt function definition */
f_clt

7

@

line 25 : }

ret
@VECTO08 CSEG AT 0008H ; Segment for vector table
@vect08
DW _inter
END

x* Code Information *

$FILE D:\CA78KOR\Vx.xx\Smp78k0r\cc78k0r\sample.c

$FUNC main(12)
void=(void)

CODE SIZE= 6 bytes, CLOCK SIZE= 9 clocks, STACK SIZE= 2 bytes

SFUNC inter(17)
void=(void)

CODE SIZE= 14 bytes, CLOCK SIZE= 16 clocks, STACK SIZE= 0 bytes

SFUNC £ clt(24)

void=(void)

CODE SIZE= 1 bytes, CLOCK SIZE= 6 clocks, STACK SIZE= 0 bytes
Target chip R5F104LE

Device file VX .xX

R20UT2774EJ0100 Rev.1.00

RENESAS

Dec 01, 2013

Page 191 of 872

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(2) Medium model

; 78KOR C Compiler Vx.xx Assembler Source Date:xx XXX XXXX Time:XX:XX:XX
; Command : -cfl04le sample.c -mm -sa -ng

; In-file : sample.c

; Asm-file : sample.asm

; Para-file

SPROCESSOR (F104LE)
SNODEBUG

SNODEBUGA

SKANJICODE SJIS

$TOL_INF 03FH, OxxxH, O0O0H, 04000H, O00H, OOH, O0OH

PUBLIC _inter
PUBLIC _i_cnst
PUBLIC _b bit
PUBLIC _1 init
PUBLIC _i data
PUBLIC _sr_inis
PUBLIC _sr_dats
PUBLIC _main
PUBLIC _f clt
PUBLIC *?f clt

PUBLIC _@vect08

@@BITS BSEG ; Segment for boolean-type and bit-type variable

b _bit DBIT

@@CNST CSEG MIRRORP ; Segment for const variable

i _cnst : DW 01H i1

@@R_INIT CSEG UNIT64KP ; Segment for initialization data (External variable

with initial wvalue)

DW 00002H, 0000OH ; 2

@@INIT DSEG BASEP ; Segment for data area(External variable with

initial value)

1 init : DS (4)
@@DATA DSEG BASEP ; Segment for data area(External variable
without initial value)
_1i_data : DS (2)
@@R_INIS CSEG UNIT64KP ; Segment for initialization data(sreg variable
R20UT2774EJ0100 Rev.1.00 RENESAS Page 192 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

with initial value)
DW 03H ;3
@@INIS DSEG SADDRP ; Segment for data area(sreg variable with
initial value)
_sr_inis DS (2)
@@DATS DSEG SADDRP ; Segment for data area(sreg variable without
initial value)
_sr_dats DS (2)
@@CALT CSEG CALLTO ; Segment for callt function table
?f clt DW _f clt
; line 1 #pragma interrupt INTPO inter rbl /* Interrupt vector*/
; line 2
; line 3 void inter (void) ; /* Interrupt function prototype declaration */
; line 4 const int i cnst =1 ; /* const variable */
; line 5 __callt void £ clt (void) ; /* callt function prototype declaration */
; line 6 __boolean b _bit ; /* boolean-type variable */
; line 7 long 1 init = 2 ; /* External variable with initial value */
; line 8 int i data ; /* External variable without initial value */
; line 9 __sreg int sr inis = 3 ; /* sreg variable with initial value */
; line 10 __sreg int sr_dats ; /* sreg variable without initial value */
; line 11
; line 12 void main () { /* Function definition */
@@CODEL CSEG ; Segment for code portion
_main
push hl ; [INF] 1, 1
; line 13 int i ;
; line 14 i = 100 ;
movw hl, #064H ; 100 ; [INF] 3, 1
; line 15 }
pop hl ; [INF] 1, 1
ret ; [INF] 1, 6
; line 16
; line 17 void inter () { /* Interrupt function definition */
@@BASE CSEG BASE ; Segment for callt and interrupt function
_inter
sel RB1 ; [INF] 2, 1 Selects register bank 1
; line 18 unsigned char uc = 0;
mov 1,#00H ; O ; [INF] 2, 1
; line 19 uc++;

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 193 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

; *** Code Information ***

; SFUNC main(12)

H void=(void)

; CODE SIZE= 6 bytes,
; SFUNC inter(17)

H void=(void)

; CODE SIZE= 14 bytes,
; SFUNC f clt(24)

H void=(void)

; CODE SIZE= 1 bytes,
; Target chip RSF104LE

; Device file VX . XX

inc 1 ; [INF] 1, 1
; line 20 if (b_bit)
bf b _bit,$L0005 ; [INF] 4, 5
; line 21 b_bit = 0;
clrl b bit ; [INF] 3, 2
L0005:
; line 22 : }
reti
; line 23 ; [INF] 2, 6
; line 24 __callt void £f clt () { /* callt function definition*/
_f clt
; line 25 : } ; [INF] 1, 6
ret
@@VECT08 CSEG AT 0008H ; Segment for vector table
_@vect08
DW _inter
END

; SFILE D:\CA78KOR\Vx.xx\Smp78k0r\cc78k0r\sample.c

CLOCK_SIZE= 9 clocks, STACK SIZE= 2 bytes

CLOCK_SIZE= 16 clocks,

STACK_SIZE= 0 bytes

CLOCK_SIZE= 6 clocks, STACK SIZE= 0 bytes

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 194 of 872

CubeSuite+ Vv2.01.00

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

(3) Large model

; 78KOR C Compiler Vx.xx Assembler Source Date:xx XXX XXXX Time:XX:XX:XX
; Command : -cfl04le sample.c -ml -sa -ng
; In-file : sample.c
; Asm-file : sample.asm
; Para-file
SPROCESSOR (F104LE)
SNODEBUG
SNODEBUGA
SKANJICODE SJIS
$TOL_INF 03FH, OxxxH, OOH, 08000H, OOH, O00H, O00H
PUBLIC _inter
PUBLIC _i_cnst
PUBLIC b bit
PUBLIC _1 init
PUBLIC _i data
PUBLIC _sr_inis
PUBLIC _sr_dats
PUBLIC _main
PUBLIC _f clt
PUBLIC *?f clt
PUBLIC _@vect08
@@BITS BSEG ; Segment for boolean-type and bit-type variable
b bit DBIT
@@R_INIS CSEG UNIT64KP ; Segment for initialization data(sreg variable
with initial value)
DW 03H i 3
@@INIS DSEG SADDRP ; Segment for data area(sreg variable with
initial value)
_sr _inis : DS (2)
@@DATS DSEG SADDRP ; Segment for data area(sreg variable without
initial value)
_sr dats : DS (2)
@@CNSTL CSEG PAGE64KP ; Segment for const variable
i _cnst : DW 01H i1
@@RLINIT CSEG UNIT64KP ; Segment for initialization data (External
R20UT2774EJ0100 Rev.1.00 RENESAS Page 195 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

variable with initial value)
DW 00002H, 00000H ; 2

@@INITL DSEG UNIT64KP ; Segment for data area(External variable with
initial value)
_1 init DS (4)
@@DATAL DSEG UNIT64KP ; Segment for data area(External variable without
initial value)
1 data DS (2)
@@CALT CSEG CALLTO ; Segment for callt function table
?f_clt DW _f clt
; line 1 #pragma interrupt INTPO inter rbl /* Interrupt vector */
; line 2
; line 3 void inter (void) ; /* Interrupt function prototype declaration */
; line 4 const int i cnst = 1 ; /* const variable */
; line 5 __callt void £ _clt (void) ; /* callt function prototype declaration */
; line 6 __boolean b bit ; /* boolean-type variable */
; line 7 long 1 init = 2 ; /* External variable with initial value */
; line 8 int i data ; /* External variable without initial value */
; line 9 __sreg int sr_inis = 3 ; /* sreg variable with initial value */
; line 10 __sreg int sr dats ; /* sreg variable without initial value */
; line 11
; line 12 void main () { /* Function definition */
@@CODEL CSEG ; Segment for code portion
_main

push hl ; [INF] 1, 1
; line 13 :int i ;
; line 14 :i = 100 ;

movw hl, #064H ; 100 ; [INF] 3, 1
; line 15 : }

pop hl ; [INF] 1, 1

ret ; [INF] 1, 6
; line 16
; line 17 void inter () { /*Interrupt function definition */
@@BASE CSEG BASE ; Segment for callt and interrupt function
_inter

sel RB1 ; [INF] 2, 1 Selects register bank 1
; line 18 unsigned char uc = 0;

mov 1,#00H ;0 ; [INF] 2, 1
; line 19 uc++;

inc 1 ; [INF] 1, 1

R20UT2774EJ0100 Rev.1.00 RENESAS Page 196 of 872

Dec 01, 2013

CubeSuite+ VvV2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

; line 20 : if (b_bit)

bf b bit,$L0005 ; [INF] 4, 5
; line 21 : b bit = 0;

clrl _b_bit ; [INF] 3, 2
L00O05:

; line 22 : }

_f clt

; line 25 : }

; *** Code Information ***

; SFILE D:\CA78KOR\Vx.xx\Smp78k0r\cc78k0r\sample.c

; SFUNC main(12)

H void=(void)

; SFUNC inter(17)

H void=(void)

; SFUNC f_clt(24)

H void=(void)

; Target chip : RS5F104LE

; Device file : Vx.xx

reti ; [INF] 2, 6
; line 23 :
; line 24 : _ callt void f clt () { /* callt function definition */

ret
@@VECTO08 CSEG AT 0008H ; Segment for vector table
_@vect08
DW _inter
END

; CODE SIZE= 6 bytes, CLOCK_SIZE= 9 clocks, STACK SIZE= 2 bytes

; CODE SIZE= 14 bytes, CLOCK SIZE= 16 clocks, STACK SIZE= 0 bytes

; CODE SIZE= 1 bytes, CLOCK_SIZE= 6 clocks, STACK SIZE= 0 bytes

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 197 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by RL78,78K0OR assembiler.

4.1 Description Methods of Source Program

This section explains the description methods, expressions and operators of the source program.

41.1 Basic configuration
When a source program is described by dividing it into several modules, each module that becomes the unit of input to
the assembler is called a source module (if a source program consists of a single module, "source program" means the

same as "source module").
Each source module that becomes the unit of input to the assembler consists mainly of the following three parts:
- Module header (Module Header)
- Module body (Module Body)
- Module tail (Module Tail)

Figure 4-1. Source Module Configuration

Module header

Module body

Module tail

(1) Module header
In the module header, the control instructions shown below can be described. Note that these control instructions

can only be described in the module header.
Also, the module header can be omitted.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 198 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

@)

®)

Table 4-1. Instructions That Can Appear in Module Headers

Type of Instruction Description

Control instructions with the same functions as - PROCESSOR

assembler options - DEBUG/NODEBUG/DEBUGA/NODEBUGA
- XREF/NOXREF

- SYMLIST/NOSYMLIST

-TITLE

- FORMFEED/NOFORMFEED

- WIDTH

- LENGTH

- TAB

- KANJICODE

Special control instructions output by a C compiler - TOL_INF
or other high-level program -DGS

-DGL

Module body
The following may not appear in the module body.
- Control instructions with the same functions as assembler options

All other directives, control instructions, and instructions can be described in the module body.
The module body must be described by dividing it into units, called " segments".
Segments are defined with the corresponding directives, as follows.
- Code segment
Defined with the CSEG directive
- Data segment
Defined with the DSEG directive
- Bit segment
Defined with the BSEG directive
- Absolute segment
Defined with the CSEG, DSEG, or BSEG directive, plus an absolute address (AT location address) as the relo-
cation attribute. Absolute segments can also be defined with the ORG directive.

The module body may be configured as any combination of segments.
However, data segments and bit segments should be defined before code segments.

Module tail

The module tail indicates the end of the source module. The END directive must be described in this part.

If anything other than a comment, a blank, a tab, or a line feed code is described following the END directive, the
assembler will output a warning message and ignore the characters described after the END directive.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 199 of 872
Dec 01, 2013

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(4) Overall configuration of source program
The overall configuration of a source module (source program) is as shown below.

Figure 4-2. Overall Configuration of Source Program

Directives
Control instructions

Instructions

END directive

Control instructions with the same

functions as assembler option

Special control instructions output by a

C compiler or other high-level program

Module header

Module body

Module tail

Examples of simple source module configurations are shown below.

Figure 4-3. Examples of Source Module Configurations

$ PROCESSOR (flle6a0)

$ PROCESSOR (fl166a0)

Module header

Dec 01, 2013

VECT CSEG AT OH FLAG BSEG
MAIN CSEG WORK DSEG
Module body
SUB CSEG
_______ éN_D"""""""" "_""éﬁD"""""""" Module tail
R20UT2774EJ0100 Rev.1.00 RENESAS Page 200 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(5) Coding example

In this subsection, a description example of a source module (source program) is shown as a sample program.

The configuration of the sample program can be illustrated simply as follows.

< Main routine >

Figure 4-4. Sample Source Program Configuration

< Subroutine >

NAME SAMPM

NAME

SAMPS

DATA DSEG saddr

Variable definitions

CODE CSEG AT

MAIN : DW START

OH

CSEG

START

CALL ! CONVAH

CSEG

CONVAH

CALL

RET

I'SASC

SASC

CSEG

RET

END

END

- Main routine

NAME

EXTRN CONVAH

EXTRN _@STBEG

DATA DSEG
HDTSA : DS

STASC : DS

CODE CSEG

SAMPM

main-routine

PUBLIC MAIN, START

AT OFFE20H

AT OH

i (1)

; HEX -> ASCII Conversion Program

EEEEE SRR RS R R R R R R R R R EEEEEEEEEEEEEEEEESES

khkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkdhhhhkhkhhhhhhhkhhkkhkhkkhkhkkhkkhkkhk**x*x

<- Error

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

Page 201 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MAIN : DW START
CSEG i (7)
START :
; chip initialize
MOVW SP, #_ @STBEG
MOV HDTSA, #1AH
MOVW HL, #LOWW (HDTSA) ; set hex 2-code data in HL registor
CALL ! CONVAH ; convert ASCII <- HEX
; output BC-register <- ASCII code
MOVW DE, #LOWW (STASC) ; set DE <- store ASCII code table
MOV A, B
MOV [DE], A
INCW DE
MOV A, C
MOV [DE], A
BR $s
END i (8)

(1) Declaration of module name

(2) Declaration of symbol referenced from another module as an external reference symbol

(3) Declaration of symbol defined in another module as an external reference symbol

(4) Declaration of stack resolution symbol. This will be generated by the linker when the program is linked
with the -s option specified. (An error occurs if the linker -s option is not specified.)

(5) Declaration of the start of a data segment (to be located in saddr)

(6) Declaration of start of code segment (to be located as an absolute segment starting from address OH)

(7) Declaration of start of another code segment (ending the absolute code segment)

(8) Declaration of end of module

- Subroutine

NAME SAMPS ;7 (9)

; LR EEEEEEEEEREEREEEEREEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

; HEX -> ASCII Conversion Program

; sub-routine

; input condition : (HL) <- hex 2 code

R20UT2774EJ0100 Rev.1.00 RENESAS Page 202 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

; output condition : BC-register <- ASCII 2 code
LR EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEREEEREEEEEEREEEREEEEEEEEEEEEEEEESE]
PUBLIC CONVAH ; (10)
CSEG i (11)
CONVAH :
XOR A, A
ROL4 [HL] ; hex upper code load (12)
CALL I'SASC
MOV B, A ; store result
XOR A, A
ROL4 [HL] ; hex lower code load
CALL ISASC
MOV Cc, A ; store result
RET

; LR RS R RS S SRR SR SRS EE EEE EEEE R R R R SRR R

; subroutine convert ASCII code

i input Acc (lower 4bits) <- hex code
i output Acc <- ASCII code
; LR E R R R R EEEEEEEEEEEEEEEEEEEEEREEEEEEEREREEREEEEEEREEREEREEEESEESS
SASC :
CMP A, #0AH ; check hex code > 9
BC $SASC1
ADD A, #07H ; bias (+7H)
SASC1
ADD A, #30H ; bias (+30H)
RET
END i (13)

(9) Declaration of module name

(10) Declaration of symbol referenced from another module as an external definition symbol

(11) Declaration of start of code segment

(12) The ROL4 instruction is 78K0 instruction that is not supported by the RL78,78KOR. The assembler -com-
pati option must be specified to assemble this module.
For the assembler option (-compati), see to CubeSuite+ Integrated Development Environment User's

Manual: RL78,78KOR Build.

(13)Declaration of end of module

R20UT2774EJ0100 Rev.1.00 RENESAS Page 203 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

41.2 Description method

(1) Configuration
A source program consists of statements.
A statement is made up of the 4 fields shown below.

Figure 4-5. Statement Fields

Statement |:> Symbol field Mnemonic field Operand field Comment fields [CR]LF

@ (b) (c) (d)

(@) The symbol field and the mnemonic field must be separated by a colon (:) or one or more spaces or
tabs. (Whether a colon or space is required depends on the instruction in the mnemonic field.)

(b) The mnemonic field and the operand field must be separated by one or more spaces or tabs. Depend-
ing on the instruction in the mnemonic field, the operand field may not be required.

(c) The comment field, if present, must be preceded by a semicolon (;).
(d) Each linein the source program ends with an LF code (One CR code may exist before the LF code).

- A statement must be described in 1 line. The line can be up to 2048 characters long (including CR/LF). TAB
and the CR (if present) are each counted as 1 character. If the length of the line exceeds 2048 characters, a
warning is issued and all characters beyond the 2048th are ignored for purposes of assembly. However, char-
acters beyond 2048 are output to assembiler list files.

- Lines consisting of CR only are not output to assembler list files.

- The following line types are valid.

- Empty lines (lines with no statements)
- Lines consisting of the symbol field only
- Lines consisting of the comment field only

(2) Character set
Source files can contain the following 3 types of characters.
- Language characters
- Character data
- Comment characters

(@) Language characters
Language characters are the characters used to describe instructions in source programs.

The language character set includes alphabetic, numeric, and special characters.

Table 4-2. Alphanumeric Characters

Name Characters
Numeric characters 0123456789
R20UT2774EJ0100 Rev.1.00 RENESAS Page 204 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Name Characters
Alphabetic Uppercase ABCDEFGHIJKLMNOPQRSTUVWXY?Z
characters Lowercase abcdefghijklmnopgrstuvwxyz
Table 4-3. Special Characters
Character Name Main Use
? Question mark Symbol equivalent to alphabetic characters
@ Circa Symbol equivalent to alphabetic characters
_ Underscore Symbol equivalent to alphabetic characters
Blank Field delimiter Delimiter
HT (09H) Tab code Character equivalent to blank symbols
, Comma Operand delimiter
Colon Label delimiter
Semicolon Symbol indicating the start of the Comment
field
CR (ODH) Carriage return code Symbol indicating the end of a line (ignored in
the assembler)
LF (0OAH) Line feed code Symbol indicating the end of a line
+ Plus sign Add operator or positive sign Assembler opera-
- Minus sign Subtract operator or negative sign fors
* Asterisk Multiply operator
/ Slash Divide operator
Period Bit position specifier
@) Left and right paren- Symbols specifying the order of arithmetic
theses operations to be performed
<> Not equal sign Relational operator
= Equal sign Relational operator
' Single quote mark - Symbol indicating the start or end of a character constant
- Symbol indicating a complete macro parameter
$ Dollar sign - Symbol indicating the location counter
- Symbol indicating the start of a control instruction equivalent to
an assembler option
- Symbol specifying relative addressing
& Ampersand Concatenation symbol (used in macro body)
Sharp sign Symbol specifying immediate addressingr
! Exclamation point Symbol specifying absolute addressing
[] Brackets Symbol specifying indirect addressing

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 205 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Character data

Character data refers to characters used to write string literals, strings, and the quote-enclosed operands of

some control instructions (TITLE, SUBTITLE, INCLUDE).

Cautions 1. Character data can use all characters except 00H (including multibyte kanji, although
the encoding depends on the OS). If 00H is encountered, an error occurs and all char-
acters from the O0H to the closing single quote (') are ignored.

2. When an invalid character is encountered, the assembler replaces it with an exclama-
tion point (!) in the assembly list. (The CR (ODH) character is not output to assembly
lists.)

3. The Windows OS interprets code 1AH as an end of file (EOF) code. Input data cannot
contain this code.

(c) Comment characters
Comment characters are used to write comments.
Caution Comment characters and character data have the same character set. However, no error is
output for OOH in comments. OOH is replaced by "!" in assembly lists.

(3) Symbol field
The symbol field is for symbols, which are names given to addresses and data objects. Symbols make programs
easier to understand.

(@ Symbol types
Symbols can be classified as shown below, depending on their purpose and how they are defined.

objects in source programs.

Symbol Type Purpose Definition Method
Name Used as names for addresses and data Write in the symbol field of an EQU, SET, or
objects in source programs. DBIT directive.
Label Used as labels for addresses and data Write a name followed by a colon (:).

External refer-
ence name

Used to reference symbols defined by other
source modules.

Write in the operand field of an EXTRN or
EXTBIT directive.

Segment name

Used at link time.

Write in the symbol field of a CSEG, DSEG,
BSEG, or ORG directive.

Module name

Used during symbolic debugging.

Write in the operand field of a NAME direc-
tive.

Macro name Use to name macros in source programs. Write in the symbol field of a MACRO direc-
tive.
Caution The 4 types of symbols that can be written in symbol fields are names, labels, segment

names, and macro names.

(b) Conventions of symbol description
Observe the following conventions when writing symbols.

- The characters which can be used in symbols are the alphanumeric characters and special characters (?,

@,).

The first character in a symbol cannot be a digit (0 to 9).

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 206 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- The maximum length of symbols is 256 characters.

Characters beyond the maximum length are ignored.

- Reserved words cannot be used as symbols.

See "4.5 Reserved Words" for a list of reserved words.

- The same symbol cannot be defined more than once.

However, a name defined with the SET directive can be redefined with the SET directive.

- The assembler distinguishes between lowercase and uppercase characters.

- When a label is written in a symbol field, the colon (:) must appear immediately after the label name.

<Examples of correct symbols>

CODEO1

VARO1

LABO1

MAC1

: DW

CSEG
EQU 10H
0
NAME SAMPLE
MACRO

i

"CODEO1" is a segment name.
"VARO1" is a name.

"LABO1l" is a label.
"SAMPLE" is a module name.

"MAC1" is a macro name.

<Examples of incorrect symbols>

1ABC

LAB

FLAG :

EQU

MOV

EQU

A, RO

10H

7

The first character is a digit.s

"LAB"is a label and must be separated from the mnemonic field by

a colon (:).

The colon (:) is not needed for names.

<Example of a symbol that is too long>

N

A123456789B12...Y1234567892123456 EQU 70H

s

257chdracters

; The last character (6)

; beyond the maximum symbol length.

; The symbol is defined as

; A123456789B12...Y123456789212345

is ignored because it is

< Example of a statement composed of a symbol only>

ABCD

i

ABCD is defined as a label.

(c) Points to note about symbols

??Rannnn (where nnnn = 0000 to FFFF) is a symbol that the assembler replaces automatically every time it
generates a local symbol in a macro body. Unless care is taken, this can result in duplicate definitions, which

are errors.

The assembler generates a name automatically when a segment definition directive does not specify a name.

These segment names are listed below.
Duplicate segment name definitions are errors.

Segment Name Directive Relocation Attribute
?A0nnnnn (nnnnn = 00000 - FFFFF) ORG directive (none)
R20UT2774EJ0100 Rev.1.00 RENESAS Page 207 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Segment Name Directive Relocation Attribute
?CSEG CSEG directive UNIT
?CSEGUP UNITP
?CSEGTO CALLTO
?CSEGFX FIXED
?CSEGSI SECUR_ID
?CSEGB BASE
?CSEGP64 PAGE64KP
?CSEGU64 UNIT64KP
?CSEGMIP MIRRORP
?CSEGOBO OPT_BYTE
?DSEG DSEG directive UNIT
?DSEGUP UNITP
?DSEGS SADDR
?DSEGSP SADDRP
?DSEGBP BASEP
?DSEGP64 PAGE64KP
?DSEGU64 UNIT64KP
?BSEG BSEG directive UNIT

(d) Symbol attributes

Every name and label has both a value and an attribute.

The value is the value of the defined data object, for example a numerical value, or the value of the address
itself.

Segment names, module names, and macro names do not have values.

The following table lists symbol attributes.

Attribute Type Classification Value
NUMBER - Name to which numeric constants are assigned Decimal notation : 0to 1048575
- Symbols defined with the EXTRN directive Hexadecimal notation :
- Numeric constants 00000H to FFFFFH (Unsigned)
ADDRESS - Symbols defined as labels Decimal notation : 0to 1048575
- Names of labels defined with the EQU and SET Hexadecimal notation : OH to FFFFFH
directives
BIT - Names defined as bit values OH to FFFFFH

- Names in BSEG
- Symbols defined with the EXTBIT directive

SFR Names defined as SFRs with the EQU directive SFR area
SFRP Names defined as SFRs with the EQU directive
R20UT2774EJ0100 Rev.1.00 RENESAS Page 208 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Attribute Type Classification Value
CSEG Segment names defined with the CSEG directive These attribute types have no values.
DSEG Segment names defined with the DSEG directive
BSEG Segment names defined with the BSEG directive
MODULE Module names defined with the NAME directive. (If
not specified, a module name is created from the pri-
mary name of the input source filename.)
MACRO Macro names defined with the MACRO directive
Example
TEN EQU 10H ; The name TEN has the NUMBER attribute and a value of 10H.
ORG 80H
START : MOV A, #10H ; The label START has the ADDRESS attribute and a value of 80H.
BIT1 EQU OFFE20H.O0 ; The name BIT1 has the BIT attribute and a value of OFFE20H.O.

(4) Mnemonic field
Write instruction mnemonics, directives, and macro references in the mnemonic field.
If the instruction or directive requires an operand or operands, the mnemonic field must be separated from the

operand field with one or more blanks or tabs.
However, if the first operand begins with "#", "$","1", or "[", the statement will be assembled properly even if nothing
exists between the mnemonic field and the first operand field.

<Examples of correct mnemonics>

MOV A, #0H
CALL ! CONVAH
RET

<Examples of incorrect mnemonics>

MOVA #0H
C ALL ! CONVAH
777

; There is no blank between the mnemonic and operand fields.
; The mnemonic field contains a blank.

; The RL78,78KOR series does not have a ZZZ instruction.

(5) Operand field

In the operand field, write operands (data) for the instructions, directives, or macro references that require them.
Some instructions and directives require no operands, while others require two or more.

When you provide two or more operands, delimit them with a comma (,).
The following types of data can appear in the operand field:
- Constants (numeric or string)

- Character strings

- Register names

- Special characters ($#![])
- Relocation attributes of segment definition directives

- Symbols

R20UT2774EJ0100 Rev.1.00 RENESAS Page 209 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- Expressions
- Bit terms

The size and attribute of the required operand depends on the instruction or directive. See "4.1.16 Operand char-
acteristics" for details.

See the user's manual of the target device for the format and notational conventions of instruction set operands.
The following sections explain the types of data that can appear in the operand field.

(@) Constants
A constant is a fixed value or data item and is also referred to as immediate data.
There are numeric constants and character string constants.

- Numeric constants
Numeric constants can be written in binary, octal, decimal, or hexadecimal notation.
The table below lists the notations available for numeric constants.
Numeric constants are handled as unsigned 32-bit data.
The range of possible values is 0 <= n <= OFFFFFFFFH.
Use the minus sign operator to indicate minus values.

Type Notation Example
Binary Append a "B" or "Y" suffix to the number. 1101B
1101Y
Octal Append an "O" or "Q" suffix to the number. 740
74Q
Decimal Simply write the number, or append a "D" or "T" suffix. 128
128D
128T
Hexadecimal - Append an "H" suffix to the number. 8CH
- If the number begins with "A", "B", "C", "D", "E", or "F", prefix it | OA6H
with "0"

- Character string constants
A character-string constant is expressed by enclosing a string of characters from those shown in "(2)
Character set", in a pair of single quotation marks ().
The assembler converts string constants to 7-bit ASCII codes, with the parity bit set to 0.
The length of a string constant is 0 to 2 characters.
To include the single quote character in the string, write it twice in succession.

<Example string constants >

'ab!' ; 6162H
'AY ; 0041H
AT ; 4127H

v ; 0020H (1 space character)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 210 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Character strings
A character string is expressed by enclosing a string of characters from those shown in "(2) Character set”, in
a pair of single quotation marks ().
The main use for character strings is as operands for the DB and CALL directives and the TITLE and SUBTI-
TLE control instructions.

<Special character example>

CSEG
MAS1 : DB 'YES' ; Initialize with character string "YES".
MAS2 : DB 'NO' ; Initialize with character string "NO".

(c) Register names

The following registers can be named in the operand field:

- General registers

- General register pairs

- Special function registers
General registers and general register pairs can be described with their absolute names (RO to R7 and RPO to
RP3), as well as with their function names (X, A, B, C, D, E, H, L, AX, BC, DE, HL).
The register names that can be described in the operand field may differ depending on the type of instruction.
For details of the method of describing each register name, see the user's manual of each device for which
software is being developed.

(d) Special characters
The following table lists the special characters that can appear in the operand field.

Special Character Function

$ - Indicates the location address of the instruction that has the operand (or the first byte of
the address, in the case of multibyte instructions).

- Indicates relative addressing for a branch instruction.

! - Indicates absolute addressing for a branch instruction.

- Indicates an addr16 specification, which allows a MOV instruction to access the entire
memory space.

- Indicates immediate data.

[] - Indicates indirect addressing.

<Special character example>

Address Source program
100 ADD A, #10H
102 LOOP : INC A
103 BR $s -1 ; The second $ in the operand indicates address
; 103H. Describing "BR $ - 1" results in the
; same operation.
105 BR 'S + 100H ; The second $ in the operand indicates address
; 105H. Describing "BR $ + 100H" results in the
; same operation.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 211 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Relocation attributes of segment definition directives
Relocation attributes can appear in the operand field.
See "4.2.2 Segment definition directives" for more information about relocation attributes.

(fy Symbols
When a symbol appears in the operand field, the address (or value) assigned to that symbol becomes the

operand value.

<Symbol value example>

VALUE EQU 1234H

MOV AX, #VALUE ; This could also be written MOV AX, #1234H

(g) Expressions
An expression is a combination of constants, location addresses (indicated by $), names, labels, and opera-
tors, which is evaluated to produce a value.
Expressions can be specified as instruction operands wherever a numeric value can be specified.
See "4.1.3 Expressions and operators" for more information about expressions.

<Expression example>

TEN EQU 10H

MOV A, #TEN - 5H

In this example, "TEN - 5H" is an expression.
In this expression, a name and a numeric value are connected by the - (minus) operator. The value of the
expression is 0BH, so this expression could be rewritten as "MOV A, #0BH".

(h) Bitterms
Bit terms are obtained by the bit position specifier.

See "4.1.14 Bit position specifier" for more information about bit terms.

<Bit term examples>

CLR1 A.5
SET1 1 + OFFE30H.3 ; The value of this operand is OFFE31H.3
CLR1 OFFE40H.4 + 2 ; The value of this operand is OFFE40H.6

(6) Comment fields
Describe comments in the comment field, after a semicolon (;).
The comment field continues from the semicolon to the new line code at the end of the line, or to the EOF code of
the file.
Comments make it easier to understand and maintain programs.
Comments are not processed by the assembler, and are output verbatim to assembly lists.
Characters that can be described in the comment field are those shown in "(2) Character set ".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 212 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<Comment example>

NAME SAMPM
IR R R R R R R S R R S RS S SRS S S SRS S SRR R EREEEEEEEEEST]
; HEX -> ASCII Conversion Program X X
Lines with comment fields only
; main-routine
EEEE R R EEEEEEEEEEEEEEEEEEEEEEEEEREEREEEESESES]

PUBLIC MAIN, START
EXTRN CONVAH
EXTRN @STBEG

DATA DSEG saddr

HDTSA : DS 1

STASC : DS 2

CODE CSEG AT OH

MAIN : DW START
CSEG

START

; chip initialize :| Lines with comment fields only
MOVW SP, #_ @STBEG
MOV HDTSA, #1AH
MOVW HL, #HDTSA ; set hex 2-code data in HL register
Lines with
CALL ! CONVAH ; convert ASCII <- HEX comments in
; output BC-register <- ASCII code comment
fields
MOVW DE, #STASC ; set DE <- store ASCII code table
MOV A, B
MOV [DE], A
INCW DE
MOV A, C
MOV [DE], A
BR $S
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 213 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.3 Expressions and operators

An expression is a symbol, constant, location address (indicated by $) or bit term, an operator combined with one of the
above, or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term, and
so forth from left to right, in the order that they occur in the expression.

The assembler supports the operators shown in "Table 4-4. Operator Types". Operators have priority levels, which
determine when they are applied in the calculation. The priority order is shown in "Table 4-5. Operator Precedence Lev-
els".

The order of calculation can be changed by enclosing terms and operators in parentheses "()".

<Example>

MOV A, #5 * (SYM + 1)

In the above example, "5 * (SYM+1)" is an expression. "5"is the 1st term, "SYM" is the 2nd term, and "1" is the 3rd
term. The operators are "*", "+", and "()".

Table 4-4. Operator Types

Operator Type Operators
Arithmetic operators +, -, *, /, MOD, +sign, -sign
Logic operators NOT, AND, OR, XOR
Relational operators EQ(=),NE(<>),GT (>),GE (>=),LT(<),LE(<=)
Shift operators SHR, SHL
Byte separation operators HIGH, LOW
Word separation operators HIGHW, LOWW, MIRHW, MIRLW
Special operators DATAPQOS, BITPOS, MASK
Other operator @)

The above operators can also be divided into unary operators, special unary operators, binary operators, N-ary opera-
tors, and other operators.

Unary operators +sign, -sign, NOT, HIGH, LOW, HIGHW, LOWW, MIRHW, MIRLW
Special unary operators DATAPQOS, BITPOS
Binary operators +, -, *,/, MOD, AND, OR, XOR,EQ (=),NE (<>),GT (>),GE (>=), LT (<),LE(<=),
SHR, SHL
N-ary operators MASK
Other operators)
R20UT2774EJ0100 Rev.1.00 RENESAS Page 214 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-5. Operator Precedence Levels

Priority Level Operators
Higher 1 + sign, - sign, NOT, HIGH, LOW, HIGHW, LOWW, MIRHW, MIRLW, DATAPOS, BITPOS,
MASK
2 *, [/, MOD, SHR, SHL
3 +, -
4 AND
5 OR, XOR
Lower 6 EQ(=),NE(<>),GT(>),GE(>=),LT (<), LE(<=)

Expressions are operated according to the following rules.
- The order of operation is determined by the priority level of the operators.
When two operators have the same priority level, operation proceeds from left to right, except in the case of unary
operators, where it proceeds from right to left.
- Sub-expressions in parentheses "()" are operated before sub-expressions outside parentheses.
- Operations involving consecutive unary operators are allowed.

Examples:
1=--1==
1l=-+4+1=-1

- Expressions are operated using unsigned 32-bit values.
If intermediate values overflow 32 bits, the overflow value is ignored.

- If the value of a constant exceeds 32 bits, an error occurs, and its value is calculated as 0.

- In division, the decimal fraction part is discarded.
If the divisor is 0, an error occurs and the result is 0.

- Negative values are represented as two's complement.

- External reference symbols are evaluated as 0 at the time when the source is assembled (the evaluation value is
determined at link time).

- The results of operating an expression in the operand field must meet the requirements of the instruction for a valid
operand.
When the expression includes a relocatable or external reference term, and the instruction requires an 8-bit oper-
and, then object code is generated with the value of the least significant 8 bits and the information required for 16
bits is output in the relocation information. Subsequently the linker checks whether the previously determined
value overflows the range of 8 bits. If it overflows, a linking error occurs.
In the case of absolute expressions, the value is determined at the assembly stage and a check is performed at
that stage to test whether the result fits in the required range.
For example, the MOV instruction requires 8-bit operands, so the operand must be in the range OH to OFFH.

(1) Correct examples

MOV A, #'2*' AND OFH

MOV A, #4 * 8 * 8 - 1

(2) Incorrect examples

MOV A, H#'2%.
MOV A, #4 * 8 * 8
R20UT2774EJ0100 Rev.1.00 RENESAS Page 215 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) Evaluation examples

Expression Evaluation
2+4*5 22
(2+3)*4 20
10/4 2
0-1 OFFFFFFFFH
-1>1 O0H (False)
EXTNOt + 1 1
Note EXT : External reference symbols
R20UT2774EJ0100 Rev.1.00 RENESAS Page 216 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.4 Arithmetic operators

The following arithmetic operators are available.

Operator

Overview

Addition of values of first and second terms

Subtraction of value of first and second terms

Multiplacation of value of first and second terms.

Divides the value of the 1st term of an expression by the value of its 2nd term
and returns the integer part of the result.

MOD

Obtains the remainder in the result of dividing the value of the 1st term of an
expression by the value of its 2nd term.

+sign

Returns the value of the term as it is.

-sign

The term value 2 complement is sought.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS Page 217 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

+

Addition of values of first and second terms

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

ORG 100H

START : BR 1$ + 6 ;o (1)

(1) The BR instruction causes a jump to "current location address plus 6", namely, to address "100H + 6H =
106H".
Therefore, (1) in the above example can also be described as: START : BR 1106H

R20UT2774EJ0100 Rev.1.00 RENESAS Page 218 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Subtraction of value of first and second terms

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

BACK :

ORG

BR

100H

BACK - 6H

(1) The BRinstruction causes a jump to "address assigned to BACK minus 6", namely, to address "100H - 6H
= OFAH".

Therefore, (1) in the above example can also be described as: BACK : BR '0FAH

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 219 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Multiplacation of value of first and second terms

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

TEN EQU 10H

MOV A, #TEN * 3 ;o (1)

(1) with the EQU directive, the value "10H" is defined in the name "TEN".
"#" indicates immediate data. The expression "TEN * 3" is the same as "10H * 3" and returns the value
"30H".
Therefore, (1) in the above expression can also be described as: MOV A, #30H

R20UT2774EJ0100 Rev.1.00 RENESAS Page 220 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.
The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0, an error
occurs

[Application example]

MOV A, #256 / 50 i (1)

(1) The result of the division "256 / 50" is 5 with remainder 6.
The operator returns the value "5" that is the integer part of the result of the division.
Therefore, (1) in the above expression can also be described as: MOV A, #5

R20UT2774EJ0100 Rev.1.00 RENESAS Page 221 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MOD

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.
An error occurs if the divisor (2nd term) is 0.
A blank is required before and after the MOD operator.

[Application example]

MOV A, #256 MOD 50 ; (1)

(1) The result of the division "256 / 50" is 5 with remainder 6.
The MOD operator returns the remainder 6.
Therefore, (1) in the above expression can also be described as: MOV A, #6

R20UT2774EJ0100 Rev.1.00 RENESAS Page 222 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

+sign

Returns the value of the term as it is.

[Function]

Returns the value of the term of an expression without change.

[Application example]

FIVE EQU +5 i (1)

(1) The value "5" of the term is returned without change.

The value "5" is defined in name "FIVE" with the EQU directive.

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 223 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

-sign

The term value 2 complement is sought.

[Function]

Returns the value of the term of an expression by the two's complement.

[Application example]

NO EQU -1 i (1)

(1) -1 becomes the two's complement of 1.
The two's complement of binary 0000 0000 0000 0000 0000 0000 0000 0001 becomes:
1111 1111 1721 1111 2111 1211 1111 1111
Therefore, with the EQU directive, the value "OFFFFFFFFH" is defined in the name "NO".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 224 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.5 Logic operators

The following logic operators are available.

Operator Overview

NOT Obtains the logical negation (NOT) by each bit.

AND Obtains the logical AND operation for each bit of the first and second term val-
ues.

OR Obtains the logical OR operation for each bit of the first and second term values.

XOR Obtains the exclusive OR operation for each bit of the first and second term val-
ues.

R20UT2774EJ0100 Rev.1.00 RENESANAS Page 225 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOT

Obtains the logical negation (NOT) by each bit.

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.
A blank is required between the NOT operator and the term.

[Application example]

MOVW AX, #LOWW (NOT 3H) ;i (1)

(1) Logical negation is performed on "3H" as follows:

NOT) 0000 0000 0000 0000 0000 0000 0000

0011

1111 1111 1111 1111 1111 1111 1111

OFFFFFFFCH is returned.
Therefore, (1) can also be described as: MOVW AX, #LOWW #0FFFFFFFCH

1100

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 226 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

AND

Obtains the logical AND operation for each bit of the first and second term values.

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of its

2nd term on a bit-by-bit basis and returns the result.
A blank is required before and after the AND operator.

[Application example]

MOV A, #6FAH AND OFH ; (1)

(1) AND operation is performed between the two values "6FAH" and "OFH" as follows:

0000 0000 0000 0000 0000 0110 1111 1010
AND) 0000 0000 0000 0000 0000 0000 0000 1111
0000 0000 0000 0000 0000 0000 0000 1010

The result "0AH" is returned. Therefore, (1) in the above expression can also be described as:

MOV A, #0AH

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 227 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

OR

Obtains the logical OR operation for each bit of the first and second term values.

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its 2nd

term on a bit-by-bit basis and returns the result.
A blank is required before and after the OR operator.

[Application example]

MOV A, #0AH OR 1101B ; (1)

(1) OR operation is performed between the two values "0OAH" and "1101B" as follows:

0000 0000 0000 0000 0000 0000 0000 1010
OR) 0000 0000 0000 0000 0000 0000 0000 1101
0000 0000 0000 0000 0000 0000 0000 1111

The result "OFH" is returned.
Therefore, (1) in the above expression can also be described as: MOV A, #0FH

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 228 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

XOR

Obtains the exclusive OR operation for each bit of the first and second term values.

[Function]
Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd term

on a bit-by-bit basis and returns the result. A blank is required before and after the XOR operator.

[Application example]

MOV A, #9AH XOR 9DH H (1)

(1) XOR operation is performed between the two values "9AH" and "9DH" as follows:

0000 0000 0000 0000 0000 0000 1001 1010
XOR) 0000 0000 0000 0000 0000 0000 1001 1101
0000 0000 0000 0000 0000 0000 0000 0111

The result "7H" is returned.
Therefore, (1) in the above expression can also be described as: MOV A, #7H

R20UT2774EJ0100 Rev.1.00 RENESAS Page 229 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.6 Relational operators

The following relational operators are available.

Operator Overview

EQ (=) Compares whether values of first term and second term are equivalent.

NE (<>) Compares whether values of first term and second term are not equivalent.

GT (>) Compares whether value of first term is greater than value of the second.

GE (>=) Compares whether value of first term is greater than or equivalent to the value of
the second term.

LT (<) Compares whether value of first term is smaller than value of the second.

LE (<=) Compares whether value of first term is smaller than or equivalent to the value of
the second term.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS Page 230 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EQ (=)

Compares whether values of first term and second term are equivalent.

[Function]

Returns OFFH (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and O0H (False)
if both values are not equal.
A blank is required before and after the EQ operator.

[Application example]

Al EQU 12C4H
A2 EQU 12CO0H
MOV A, #A1 EQ (A2 + 4H) ;o (1)
MOV X, #A1l EQ A2 i (2)

(1) In (1) above, the expression "AL1 EQ (A2 + 4H)" becomes "12C4H EQ (12COH + 4H)".
The operator returns OFFH because the value of the 1st term is equal to the value of the 2nd term.

(2) In (2) above, the expression "A1 EQ A2" becomes "12C4H EQ 12COH".
The operator returns 00H because the value of the 1st term is not equal to the value of the 2nd term.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 231 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NE (<>)

Compares whether values of first term and second term are not equivalent.

[Function]

Returns OFFH (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and O0OH

(False) if both values are equal.
A blank is required before and after the NE operator.

[Application example]

Al EQU 5678H
A2 EQU 5670H
MOV A, #Al1 NE A2 ;i (1)
MOV A, #A1 NE (A2 + 8H) ;o (2)

(1) In (1) above, the expression "Al NE A2" becomes "5678H NE 5670H".
The operator returns OFFH because the value of the 1st term is not equal to the value of the 2nd term.

(2) In (2) above, the expression "A1 NE (A2 + 8H)" becomes "5678H NE (5670H + 8H)".
The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 232 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

GT (>)

Compares whether value of first term is greater than value of the second.

[Function]

Returns OFFH (True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and 00H
(False) if the value of the 1st term is equal to or less than the value of the 2nd term.
A blank is required before and after the GT operator.

[Application example]

Al EQU 1023H
A2 EQU 1013H
MOV A, #Al1 GT A2 ;i (1)
MOV X, #A1 GT (A2 + 10H) ;o (2)

(1) In (1) above, the expression "Al GT A2" becomes "1023H GT 1013H".
The operator returns OFFH because the value of the 1st term is greater than the value of the 2nd term.

(2) In (2) above, the expression "A1 GT (A2 + 10H)" becomes "1023H GT (1013H + 10H)".
The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 233 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

GE (>=)

Compares whether value of first term is greater than or equivalent to the value of the second term.

[Function]

Returns OFFH (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd term,
and O0H (False) if the value of the 1st term is less than the value of the 2nd term.
A blank is required before and after the GE operator.

[Application example]

Al EQU 2037H
A2 EQU 2015H
MOV A, #Al1 GE A2 ;i (1)
MOV X, #A1 GE (A2 + 23H) ;o (2)

(1) In (1) above, the expression "Al GE A2" becomes "2037H GE 2015H".
The operator returns OFFH because the value of the 1st term is greater than the value of the 2nd term.

(2) In (2) above, the expression "Al GE (A2 + 23H)" becomes "2037H GE (2015H + 23H)".
The operator returns 00H because the value of the 1st term is less than the value of the 2nd term.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 234 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LT (<)

Compares whether value of first term is smaller than value of the second.

[Function]

Returns OFFH (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 00H (False)
if the value of the 1st term is equal to or greater than the value of the 2nd term.
A blank is required before and after the LT operator

[Application example]

Al EQU 1000H
A2 EQU 1020H
MOV A, #A1 LT A2 ;i (1)
MOV X, # (A1l + 20H) LT A2 i (2)

(1) In (1) above, the expression "A1 LT A2" becomes "1000H LT 1020H".
The operator returns OFFH because the value of the 1st term is less than the value of the 2nd term.

(2) In (2) above, the expression (Al +20H) LT A2" becomes "(1000H + 20H) LT 1020H".
The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 235 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LE (<=)

Compares whether value of first term is smaller than or equivalent to the value of the second term.

[Function]

Returns OFFH (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd term, and
O0H (False) if the value of the 1st term is greater than the value of the 2nd term.
A blank is required before and after the LE operator.

[Application example]

Al EQU 103AH
A2 EQU 1040H
MOV A, #A1 LE A2 ;i (1)
MOV X, # (A1l + 7H) LE A2 i (2)

(1) In (1) above, the expression "Al LE A2" becomes "103AH LE 1040H".
The operator returns OFFH because the value of the 1st term is less than the value of the 2nd term.

(2) In (2) above, the expression "(Al + 7H) LE A2" becomes "(103AH + 7H) LE 1040H".
The operator returns 00H because the value of the 1st term is greater than the value of the 2nd term.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 236 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.7 Shift operators

The following shift operators are available.

Operator Overview
SHR Obtains only the right-shifted value of the first term which appears in the second
term.
SHL Obtains only the left-shifted value of the first term which appears in the second

term.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 237 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SHR

Obtains only the right-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits specified
by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the high-order bits.

A blank is required before and after the SHR operator.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 32, the
space is automatically filled with zeros.

[Application example]

MOV A, #01lAFH SHR 5 H (1)

(1) This operator shifts the value "01AFH" to the right by 5 bits.

0000 0000 0000 0000 0000 0001 1010 1111

N\ T

0000 0000 0000 0000 0000 0000 0000 1101 0111 1

“—> +“—>
0's are inserted. Right-shifted by 5 bits.

The value "000DH" is returned.
Therefore, (1) in the above example can also be described as: MOV A, #0DH

R20UT2774EJ0100 Rev.1.00 RENESAS Page 238 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SHL

Obtains only the left-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits specified by
the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the low-order bits.

A blank is required before and after the SHL operator.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 32, the
space is automatically filled with zeros.

[Application example]

MOV A, #21H SHL 2 ;o (1)

(1) This operator shifts the value "21H" to the left by 2 bits.

0000 0000 0000 0000 0000 0000 0010 0001

/. /

00 0000 0000 0000 0000 0000 0000 1000 0100

<+—> <+—>
Left-shifted by 2 bits. 0's are inserted.

The value "84H" is returned.
Therefore, (1) in the above example can also be described as: MOV A, #84H

R20UT2774EJ0100 Rev.1.00 RENESAS Page 239 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.8 Byte separation operators

The following byte separation operators are available.

Operator Overview
HIGH Returns the high-order 8-bit value of a term.
LOW Returns the low-order 8-bit value of a term.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 240 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

HIGH

Returns the high-order 8-bit value of a term.

[Function]

Returns the high-order 8-bit value of a term.
A blank is required between the HIGH operator and the term.

[Application example]

MOV A, #HIGH 1234H ; (1)

(1) By executing a MOV instruction, this operator returns the high-order 8-bit value "12H" of the expression
"1234H".
Therefore, (1) in the above example can also be described as: MOV A, #12H

[Remark]

A HIGH operation for an SFR name is performed, using either of the following description methods.

HIGH SFR-name

Or,

HIGH[] ([]1SFR-namel])

The result obtained from the operation is an operand of the absolute NUMBER attribute.
No other operations can be performed for the SFR name .

<Example>
Symbol field Mnemonic field Operand field

MOV RO, #HIGH PMO

MOV R1, #HIGH PM1 + 1H ; Equivalent to (HIGH PM1) + 1

MOV R1, #HIGH (PM1 + 1H) ; An error is returned because
; operands other than HIGH, LOW,
; HIGHW, and LOWW are specified
; as the SFR name

R20UT2774EJ0100 Rev.1.00 RENESANS Page 241 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LOW

Returns the low-order 8-bit value of a term.

[Function]

Returns the low-order 8-bit value of a term.
A blank is required between the LOW operator and the term.

[Application example]

MOV A, #LOW 1234H ; (1)

(1) By executing a MOV instruction, this operator returns the low-order 8-bit value "34H" of the expression
"1234H".
Therefore, (1) in the above example can also be described as: MOV A, #34H

[Remark]

A LOW operation for an SFR name is performed, using either of the following description methods.

LOW SFR-name

Or,

LOW[] ([]SFR-namel[])

The result obtained from the operation is an operand of the absolute NUMBER attribute.
No other operations can be performed for the SFR name .

<Example>

MOV RO, #LOW PMO

MOV R1, #LOW PM1 + 1H ; Equivalent to #(LOW PM1) + 1

MOV R1, #LOW (PM1 + 1H) ; An error is returned because
; operands other than HIGH, LOW,
; HIGHW, and LOWW are specified
; as the SFR name

R20UT2774EJ0100 Rev.1.00 RENESANS Page 242 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

419 Word separation operators

The following word separation operators are available.

Operator Overview
HIGHW Returns the high-order 16-bit value of a term.
LOWW Returns the low-order 16-bit value of a term.
MIRHW Obtains the 16 higher-order bits of an address in the mirror destination area
specified as the operand in the mirror source area.
MIRLW Obtains the 16 lower-order bits of an address in the mirror destination area
specified as the operand in the mirror source area.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 243 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

HIGHW

Returns the high-order 16-bit value of a term.

[Function]

Returns the high-order 16-bit value of a term.

A blank is required between the HIGHW operator and the term.

[Application example]

MOVW AX, #HIGHW 12345678H ;o (1)
MOV ES, #HIGHW LAB i (2)
MOVW AX, ES:!LAB

(1) By executing a MOVW instruction, this operator returns the high-order 16-bit value "1234H" of the expres-

sion "12345678H".

Therefore, (1) in the above example can also be described as: MOVW AX, #1234H

(2) By executing the MOV instruction on line (2), the higher address of label LAB is set to the ES register.

[Remark]

A HIGHW operation for an SFR name is performed, using either of the following description methods.

HIGHW SFR-name

Or,

HIGHW[] ([] SFR-namel[1)

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>
bol field) Field i field

MOVW RPO, #HIGHW PMO

MOVW RP1, #HIGHW PM1 + 1H ; Equivalent to #(HIGHW PM1) + 1

MOVW RP1, #HIGHW (PM1 + 1H) ; An error is returned because
; operands other than HIGH, LOW,
; HIGHW, LOWW, MIRHW, and MIRLW
; are specified as the SFR name

R20UT2774EJ0100 Rev.1.00 RENESANS Page 244 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LOWW

Returns the low-order 16-bit value of a term.

[Function]

Returns the low-order 16-bit value of a term.
A blank is required between the LOWW operator and the term.

[Application example]

MOVW AX, #LOWW 12345678H ;o (1)

(1) By executing a MOVW instruction, this operator returns the low-order 16-bit value "5678H" of the expres-
sion "12345678H".
Therefore, (1) in the above example can also be described as: MOVW AX, #5678H

[Remark]

A LOWW operation for an SFR name is performed, using either of the following description methods.

LOWW SFR-name

Or,

LOWW[] ([]SFR-namel[])

The result obtained from the operation is an operand of the absolute NUMBER attribute.
No other operations can be performed for the SFR name.

<Example>

MOVW RPO, #LOWW PMO

MOVW RP1, #LOWW PM1 + 1H ; Equivalent to #(LOWW PM1) + 1

MOVW RP1, #LOWW (PM1 + 1H) ; An error is returned because
; operands other than HIGH, LOW,
; HIGHW, LOWW, MIRHW, and MIRLW
; are specified as the SFR name

R20UT2774EJ0100 Rev.1.00 RENESANS Page 245 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MIRHW

Obtains the 16 higher-order bits of an address in the mirror destination area specified as the operand in the mirror

source area.

[Function]

Returns the 16 higher-order bits of the 32 bits of an address in the mirror destination area specified as the operand in
the mirror source area.
A blank is required between the MIRHW operator and the term.

[Application example]

MOVW AX, #MIRHW 00001000H ;o (1)

(1) When the MOVW instruction is executed, the value of the 16 higher-order bits of 00001000H, i.e. 0000H, is
converted into the 16 higher-order bits of an address in the mirror destination area (000FH), and the AX
register is loaded with this value.

When the operand is beyond the range of the mirror source area, the operation is the same as for HIGHW.

[Remark]

A MIRHW operation for an SFR name is performed, using either of the following description methods.

MIRHW SFR-name

Or,

MIRHW[] ([]SFR-namel[])

The result obtained from the operation is an operand of the absolute NUMBER attribute.
No other operations can be performed for the SFR name.

<Example>
bol field) Field i field

MOVW RPO, #MIRHW PMO

MOVW RP1, #MIRHW PM1 + 1H ; Equivalent to #(MIRHW PM1) + 1

MOVW RP1, #MIRHW (PM1 + 1H) ; An error is returned because
; operands other than HIGH, LOW,
; HIGHW, LOWW, MIRHW, and MIRLW
; are specified as the SFR name

R20UT2774EJ0100 Rev.1.00 RENESANS Page 246 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MIRLW

Obtains the 16 lower-order bits of an address in the mirror destination area specified as the operand in the mirror source

area.

[Function]

Returns the 16 lower-order bits of the 32 bits of an address in the mirror destination area specified as the operand in
the mirror source area.
A blank is required between the MIRLW operator and the term.

[Application example]

MOVW AX, #MIRLW 00001000H ;7 (1)

(1) When the MOVW instruction is executed on an 8-bit CPU, the value of the 16 lower-order bits of
00001000H, i.e. 1000H, is converted into the 16 lower-order bits of an address in the mirror destination area
(9000H), and the AX register is loaded with this value.

When the MOVW instruction is executed on an 16-bit CPU, the value of the 16 lower-order bits of
00001000H, i.e. 1000H, is converted into the 16 lower-order bits of an address in the mirror destination area
(1000H), and the AX register is loaded with this value.

When the operand is beyond the range of the mirror source area, the operation is the same as for LOWW.

[Remark]

A MIRLW operation for an SFR name is performed, using either of the following description methods.

MIRLW SFR-name

Or,

MIRLW[] ([]SFR-namel[])

The result obtained from the operation is an operand of the absolute NUMBER attribute.
No other operations can be performed for the SFR name.

<Example>
bol field) Field i field

MOVW RPO, #MIRLW PMO

MOVW RP1, #MIRLW PM1 + 1H ; Equivalent to #(LOWW PM1) + 1

MOVW RP1, #MIRLW (PM1 + 1H) ; An error is returned because
; operands other than HIGH, LOW,
; HIGHW, LOWW, MIRHW, and MIRLW
; are specified as the SFR name

R20UT2774EJ0100 Rev.1.00 RENESANS Page 247 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4,1.10 Special operators

The following special operators are available.

Operator Overview
DATAPOS Obtains the address part of a bit symbol.
BITPOS Obtains the bit part of a bit symbol.
MASK Obtains a 16-bit value in which the specified bit positions are 1 and all others are

0.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 248 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DATAPOS

Obtains the address part of a bit symbol.

[Function]

Returns the address portion (byte address) of a bit symbol.

[Application example]

SYM EQU OFE68H.6 ; (1)

MOV A, !DATAPOS SYM ; (2)

(1) An EQU directive defines the name "SYM" with a value of OFE68H.6.

(2) "DATAPOS SYM" represents "DATAPOS OFE68H.6", and "OFE68H" is returned.
Therefore, (2) in the above example can also be described as: MOV A, '0FE68H

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 249 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

BITPOS

Obtains the bit part of a bit symbol.

[Function]

Returns the bit portion (bit position) of a bit symbol.

[Application example]

SYM EQU OFE68H.6 ; (1)

CLR1 [HL] .BITPOS SYM ; (2)

(1) An EQU directive defines the name "SYM" with a value of OFE68H.6.

(2) "BITPOS.SYM" represents "BITPOS OFE68H.6", and "6" is returned.

A CLR1 instruction clears [HL].6 to 0.

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 250 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MASK

Obtains a 16-bit value in which the specified bit positions are 1 and all others are 0.

[Function]

Returns a 16-bit value in which the specified bit position is 1 and all others are set to 0.

[Application example]

MOVW AX, #MASK (0, 3, OFEOOH.7, 15) ; (1)

(1) A MOVW instruction returns the value "8089H".

MASK (0, 3, OFEOOH.7, 15)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 251 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.11 Other operator

The following operators are also available.

Operator

Overview

0

Prioritizes the calculation within ()

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 252 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

0)

Prioritizes the calculation within ()

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.
This operator is used to change the order of precedence of other operators.
If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

MOV A, # (4 +3) *2

(4+3)*2

L
()

(2

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.
If parentheses are not used,

4+3%2

L
@

&)

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.
See Table 4-5. Operator Precedence Levels, for the order of precedence of operators.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 253 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4,1.12 Restrictions on operations

The operation of an expression is performed by connecting terms with operator(s). Elements that can be described as
terms are constants, $, names and labels. Each term has a relocation attribute and a symbol attribute.

Depending on the types of relocation attribute and symbol attribute inherent in each term, operators that can work on
the term are limited. Therefore, when describing an expression it is important to pay attention to the relocation attribute
and symbol attribute of each term constituting the expression.

(1) Operators and relocation attributes
Each term constituting an expression has a relocation attribute and a symbol attribute.
If terms are categorized by relocation attribute, they can be divided into 3 types: absolute terms, relocatable terms
and external reference terms.
The following table shows the types of relocation attributes and their properties, and also the corresponding terms.

Table 4-6. Relocation Attribute Types

Type Property Corresponding Elements
Absolute term Term that is a value or con- - Constants
stant determined at assembly | | abels in absolute segments
time

- $, indicating a location address defined in an abso-
lute segment

- Names defined with absolute values such as con-
stants or the labels and $ listed above.

Relocatable term Term with a value that is not - Labels defined in relocatable segments

determined at assembly time - $, indicating a relocatable address defined in a
relocatable segment

- Names defined with relocatable symbols

Note | Term for external reference of - Labels defined with EXTRN directive

symbol in other module - Names defined with EXTBIT directive

External reference term

Note There are 7 operators which can take an external reference term as the target of an operation; these are
"+" "HIGH", "LOW", "HIGHW", "LOWW", "MIRHW" and "MIRLW". However, only one external reference
term is allowed in one expression, and it must be connected with the "+" operator.

The following tables categorize combinations of operators and terms which can be used in expressions by reloca-
tion attribute.

Table 4-7. Combinations of Operators and Terms by Relocation Attribute (Relocatable Terms)

Operator Type Relocation Attribute of Term
X:ABS X:ABS X:REL X:REL
Y:ABS Y:REL Y:ABS Y:REL
X+Y A R R -
X-Y A - R ANote 1
X*Y A - - -
XY A - - -
X MOD Y A - - -
XSHLY A - - -
R20UT2774EJ0100 Rev.1.00 RENESAS Page 254 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Operator Type Relocation Attribute of Term
X:ABS X:ABS X:REL X:REL
Y:ABS Y:REL Y:ABS Y:REL
XSHRY A - -
XEQY A - N ANote 1
XLTY A - R ANote 1
XLEY A - - ANote 1
XGTY A - R ANote 1
XGEY A - R ANote 1
XNEY A - R ANote 1
X AND Y A - -
XORY A - -
X XORY A - -
NOT X A A -
+ X A A R
-X A A -
HIGH X A A RNote 2 RNote 2
LOW X A A RNote 2 RNote 2
HIGHW X A A RNote 2 RNote 2
LOWW X A A RNote 2 RNote 2
MIRHW X A A RNote 2 RNote 2
MIRLW X A A RNote 2 RNote 2
MASK (X) A A .
DATAPOS X.Y A - -
BITPOS X.Y A - -
MASK (X.Y) A - -
DATAPOS X A A R
BITPOS X A A A

ABS : Absolute term

REL
A
R

Notes 1.

Relocatable term
Result is absolute term

Result is relocatable term
. Operation not possible

Operation is possible only when X and Y are defined in the same segment, and when X and Y are not
relocatable terms operated on by HIGH, LOW, HIGHW, LOWW, MIRHW, MIRLW, or DATAPOS.
Operation is possible when X and Y are not relocatable terms operated on by HIGH, LOW, HIGHW,
LOWW, MIRHW, MIRLW, or DATAPOS.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 255 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

There are 7 operators which can take an external reference term as the target of an operation; these are "+",
"HIGH", "LOW", "HIGHW", "LOWW", "MIRHW" and "MIRLW". However, only one external reference term is
allowed in one expression, and it must be connected with the "+" operator.

The possible combinations of operators and terms are as follows, categorized by relocation attribute.

Table 4-8. Combinations of Operators and Terms by Relocation Attribute (External Reference Terms)

Operator Type Relocation Attribute of Term

X:ABS X:EXT X:REL X:EXT X:EXT

Y:EXT Y:ABS Y:EXT Y:REL Y:EXT
X+Y E E - - -
X-Y - E - - -
+X A E R E E
HIGH X A gNote 1 RrNote 2 gNote 1 gNote 1
LOW X A gNote 1 RrNote 2 gNote 1 gNote 1
HIGHW X A gNote 1 RrNote 2 gNote 1 gNote 1
LOWW X A gNote 1 RrNote 2 gNote 1 gNote 1
MIRHW X A gNote 1 RrNote 2 gNote 1 gNote 1
MIRLW X A gNote 1 RrNote 2 gNote 1 gNote 1
MASK (X) A - - - -
DATAPOS X.Y - - - - -
BITPOS X.Y - - - - -
MASK (X.Y) - - - - -
DATAPOS X A E R E E
BITPOS X A E A E E

ABS : Absolute term

EXT : External reference term

REL : Relocatable term

Result is absolute term

Result is external reference term

o m >

Result is relocatable term
- . Operation not possible

Notes 1. Operation is possible only when X and Y are not external reference terms operated on by HIGH, LOW,
HIGHW, LOWW, MIRHW, MIRLW, DATAPQOS, or BITPOS.
2. Operation is possible only when X and Y are not relocatable terms operated on by HIGH, LOW,
HIGHW, LOWW, MIRHW, MIRLW, or DATAPOS.

(2) Operators and symbol attributes
Each of the terms constituting an expression has a symbol attribute in addition to a relocation attribute.
If terms are categorized by symbol attribute, they can be divided into two types: NUMBER terms and ADDRESS
terms.
The following table shows the types of symbol attributes used in expressions and the corresponding terms.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 256 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-9. Symbol Attribute Types in Operations

Symbol Attribute Type

Corresponding Terms

NUMBER term

- Constant

- Symbol with NUMBER attribute

ADDRESS term

- Symbol with ADDRESS attribute

- "$", indicating the location counter

The possible combinations of operators and terms are as follows, categorized by symbol attribute.

Table 4-10. Combinations of Operators and Terms by Symbol Attribute

Operator Type Symbol Attribute of Term
X:ADDRESS X:ADDRESS X:NUMBER X:NUMBER
Y:ADDRESS Y:NUMBER Y:ADDRESS Y:NUMBER
X+Y A A A N
X-Y N A N N
X*Y N N N N
XY N N N N
XMOD Y N N N N
X SHLY N N N N
X SHRY N N N N
XEQY N N N N
XLTY N N N N
XLEY N N N N
XGTY N N N N
XGEY N N N N
XNEY N N N N
X AND Y N N N N
XORY N N N N
XXORY N N N N
NOT X A A N N
+ X A A N N
-X A A N N
HIGH X A A N N
LOW X A A N N
HIGHW X A A N N
LOWW X A A N N
MIRHW X A A N N
MIRLW X A A N N
DATAPOS X A A N N

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 257 of 872

CubeSuite+ v2.01.00

@)

4.1.13

Operator Type Symbol Attribute of Term
X:ADDRESS X:ADDRESS X:NUMBER X:NUMBER
Y:ADDRESS Y:NUMBER Y:ADDRESS Y:NUMBER
MASK X N N N N

ADDRES : ADDRESS term
NUMBER : NUMBER term

A
N

. Result is ADDRESS term
. Result is NUMBER term
. Operation not possible

How to check operation restrictions

The following is an example of how to interpret the operation of relocation attributes and symbol attributes.

BR

STABLE + G5H

Here, "TABLE" is presumed to be a defined label in a relocatable code segment.

@)

(b)

Operation and relocation attributes
"TABLE + 5H" is a relocatable term + an absolute term, so the rules of "Table 4-7. Combinations of Operators
and Terms by Relocation Attribute (Relocatable Terms)" apply.
Operator type e X+Y
Relocation attribute of term ... X:REL, Y:ABS
Therefore, it can be understood that the result is "R", or more specifically a relocatable term.

[Operation and symbol attributes]
"TABLE + 5H" is an ADDRESS term + a NUMBER term, so the rules of "Table 4-10. Combinations of Opera-
tors and Terms by Symbol Attribute" apply.
Operator type e X+Y
Relocation attribute of term ... X:ADDRESS, Y:NUMBER
Therefore, it can be understood that the result is "A", or more specifically an ADDRESS term.

Absolute expression definitions

Absolute expressions are expressions with values determined by evaluation at assembly time.

The following belong to the category of absolute expressions:

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- Constants

- Expressions that are composed only of constants (constant expressions)
- Constants, EQU symbols defined from constant expressions, and SET symbols

- Expressions that operate on the above

Remark Only backward referencing of symbols is possible.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 258 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.1.14 Bit position specifier

Bit access becomes possible via use of the (.) bit position specifier.

(1) Description Format

X[1.01y
L |
Bit term
X (First Term) Y (Second Term)
General register A Expression (0 - 7)
Control register PSW Expression (0 - 7)
Special function register sfrNote Expression (0 - 7)
Memory [HL]Note Expression (0 - 7)

Note For details on the specific description, see the user's manual of each device.

(2) Function

- The first term specifies a byte address, and the second term specifies a bit position. This makes it possible to
access a specific bit.

(3) Explanation
- An expression that uses a bit position specifier is called a bit term.
- The hit position specifier is not affected by the precedence order of operators. The left side is recognized as term
1 and the right side is recognized as term 2.

- The following restrictions apply to the first term:

- ANUMBER or ADDRESS attribute expression, an SFR name supporting 8 -bit access, or a register name (A)
can be specified.

- If the first term is an absolute expression, the area must be OH to OFFFFFH.
- External reference symbols can be specified.

- The following restrictions apply to the second term:
- The value of the expression must be in the range from 0 to 7. When this range is exceeded, an error occurs.
- It is possible to specify only absolute NUMBER attribute expressions.
- External reference symbols cannot be specified.

(4) Operations and relocation attributes
- The following table shows combinations of terms 1 and 2 by relocation attribute.

Terms combination X: ABS ABS REL REL ABS EXT REL EXT EXT
Terms combination Y: ABS REL ABS REL EXT ABS EXT REL EXT
XY A - R - - E - - -

ABS : Absolute term

REL : Relocatable term

EXT : External reference term
A . Result is absolute term

R20UT2774EJ0100 Rev.1.00 RENESAS Page 259 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

E . Result is external reference term
R . Result is relocatable term
- . Operation not possible

(5) Bit symbol values

- When a bit symbol is defined by using the bit position specifier in the operand field of an EQU directive, the value

of the bit symbol is as follows:

Operand Type

Symbol Value

A.bitNOte 2

1.bit

PSW.bjtNote 2

FFFFAH.bit

Ser ote 1_ bitN ote 2

FEEXXH.bitNote 3

XXXXXH.bitNote 4

expression. bitNote 2

Notes 1. For a detailed description, see the user's manual of each device.
2. bit=0-7
3. FFFXXH is an sfr address
4, XXXXXH is an expression value

(6) Example
SET1 OFFE20H.3
SET1 A.5
CLR1 P1.2
SET1 1 + OFFE30H.3 ; Equals OFFE31H.3
SET1 OFFE40H.4 + 2 ; Equals OFFE40H.6

4.1.15 Identifiers

An identifier is a name used for symbols, labels, macros etc.
Identifiers are described according to the following basic rules.
- ldentifiers consist of alphanumeric characters and symbols that are used as characters (?,@,_)
However, the first character cannot be a number (0 to 9).
- Reserved words cannot be used as identifiers.
With regard to reserved words, see "4.5 Reserved Words".
- The assembler distinguishes between uppercase and lowercase.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 260 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4,1.16 Operand characteristics

Instructions and directives requiring one or more operands differ in the size and address range of the required operand
values and in the symbol attributes of the operands.
For example, the function of the instruction "MOV r, #byte" is to transfer the value indicated by "byte" to register "r".
Because the register is an 8-bit register, the data size of "byte" must be 8 bits or less.
An assembly error will occur at the statement "MOV RO, #100H", because the value of the second operand (100H) can-
not be expressed with 8 bits.
Therefore, it is necessary to bear the following points in mind when describing operands.
- Whether the size and address range are suitable for an operand of that instruction (numeric value, name, label)
- Whether the symbol attribute is suitable for suitable for an operand of that instruction (name, label)

(1) Operand value sizes and address ranges
There are conditions that limit the size and address ranges of numeric values, names and labels used as instruc-
tion operands.
For instructions, the size and address range of operands are limited by the operand representation. For directives,
they are limited by the directive type.
These limiting conditions are as follows.

Table 4-11. Instruction Operand Value Ranges

Operand Value Range
Representation
byte 8-bit value : OH to OFFH
word word [B] (1) Numeric constants and NUMBER attribute symbols
word [C] OH to FFFFH
word [BC] (2) ADDRESS attribute symbols

In either of the following areas
- FOOOOH to FFFFFH

- The mirror source area (e.g. 01000H to OxxxxH) when MAA=0 or the
mirror source area (e.g. 11000H to 1xxxxH) when MAA=1 Note 1

ES : word [B] (1) Numeric constants and NUMBER attribute symbols
ES : word [C] OH to FFFFH
ES : word [BC] (2) ADDRESS attribute symbols

OH to FFFFFH

Other than the above 16-bit value : OH to FFFFH
saddr FFE20H to FFF1FHNo® 4
saddrp FFE20H to FFF1FH even numbeNot 4
sfr FFF20H to FFFFFH : Special function register symbols (SFR symbols), numeric constants, and

NUMBER attribute symbolsN°t 5

sfrp FFF20H to FFFFFH : Special function register symbols (symbols of SFRs that support 16-bit
operations, even values only), numeric constants, and NUMBER attribute symbolsN°®© 5

addr20 lladdr20 OH to FFFFFH
$addr20 OH to FFFFFH, and when a branch destination is in the range (-80H) to

(+7FH) from the next address after a branch or call instruction

$laddr20 OH to FFFFFH, and when a branch destination is in the range (-8000H)
to (+7FFFH) from the next address after a branch or call instruction

R20UT2774EJ0100 Rev.1.00 RENESAS Page 261 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Operand Value Range
Representation
addrl6 laddr16 OH to FFFFH
(BR, CALL instruc- (The range in which numeric constants and symbols can be specified is
tions) the same)
laddr16Note 2 (1) Numeric constants and NUMBER attribute symbolNot 3
(Other than BR, CALL OH to FFFFH
instructions) (2) ADDRESS attribute symbolNot 3

Within one of the following:
- FOOOOH to FFFFFH

- The mirror source area (e.g. 01000H to OxxxxH) when MAA=0 or the
mirror source area (e.g. 11000H to 1xxxxH) when MAA=1Note 1

ES:laddr16 (1) Numeric constants or NUMBER attribute symbolsNt 3
OH to FFFFH

(2) ADDRESS attribute symbolsNote 3
OH to FFFFFH

laddr16.bit (1) DBIT symbol, SFBIT or SABIT attribute bit symbols, bit symbols
defined with EQU directives (but only when operand includes an
ADDRESS attribute symbol)

Within one of the following:
- FOOOOH to FFFFFH

- The mirror source area (e.g. 01000H to OxxxxH) when MAA=0 or the
mirror source area (e.g. 11000H to 1xxxxH) when MAA=1Note 1

(2) Bit symbols other than the above
OH to FFFFH

ES : laddrl6.bit (1) DBIT symbols, SFBIT or SABIT attribute bit symbols, bit symbols
defined with EQU directives (only when operand includes an
ADDRESS attribute symbol)

OH to FFFFFH
(2) Bit symbols other than the above

OH to FFFFH
addr5 0080H to 00BFH (CALLT table area, even values only)
bit 3-bitvalue : Oto7
n 2-bitvalue : Oto3

Notes 1. The address range of the mirror source area differs depending to the device. For details, see to the

user's manual of the target device.

2. To describe sfr or 2ndsfr as an operand, it can be specified as !sfr and !2ndsfr. These are output as the
operands for !'addr16 in the code.
It is possible to described 2ndsfr without "!I". The same !addr16 operand code will be output.

3. Only even addresses can be specified for 16-bit data.

4. In order to maintain compatibility with the 78K0, the range from FE20H to FF1FH can be specified with
numeric constants and NUMBER attribute symbols only.

5. For numeric constants and NUMBER attribute symbols, no check of read/write access for the SFR at
the specified address is performed.

The following examples explain why the symbol attribute of an addr16 or word operand affects the range that can
be specified for that operand.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 262 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

For more information about symbol attributes, see "(d) Symbol attributes".

(@) 'addr16 (Instructions other than BR,CALL)
This section explains why the range of values that can be specified for an !addr16 operand (instructions other
than BR and CALL) differs between (1) numeric constants and NUMBER attribute symbols and (2) ADDRESS
attribute symbols.
Following is an example.

NUMBERO EQU 0F100H ; (a)

NUMBER1 EQU 0F102H

NUMBER2 EQU 0F103H

DO DSEG AT OFF100H

ADDRESSO : DS 1

ADDRESS1 : DS 1

ADDRESS2 : DS 1
CSEG
MOV INUMBERO, A i ()
MOV 10F100H, A i (c)
MOV |ADDRESSO, A ;o (@)

Line (a) contains a NUMBER attribute symbol. The following explains the case when this NUMBER attribute
symbol is specified as an !addr16 operand.

The "MOV laddr16, A" instruction in the instruction set uses direct addressing for the !addr16 operand. In line
(b) of the example, the value in register A is transferred to address OFF100H. The NUMBER attribute symbol
in line (a) could be replaced with the value in line (c). That is, the NUMBERO symbol (the NUMBER attribute
symbol specified for the !addr16 operand) and the numeric value 0F100H both indicate the same address,
namely "OF100H". With respect to the range, NUMBER attribute symbols used as !addr16 operands (instruc-
tions other than BR and CALL) can have values from OH to FFFFH. These values specify addresses from
FOOOOH to FFFFFH.

Next, the following explains the case where the same kind of processing is performed for the ADDRESSO
label, an ADDRESS attribute symbol.

The addrl6 range is 0000H to FFFFH, while the value of the ADDRESS symbol in line (d) is in the RAM mem-
ory space FxxxxH to FFFFFH. Normally this would result in an error. Therefore, to facilitate program develop-
ment, provision is made for operand labels like ADDRESSO (ADDRESS attribute symbols), under which the
operand range FOOOOH to FFFFFH is allowed.

To summarize, !addrl6 operands (instructions other that BR,CALL) that are ADDRESS attribute symbols can
have values from FOOOOH to FFFFF. This allows them to be specified as !addr16 operands just as they are.

Additionally, support for !addr16 is required when ROM areas are mirrored to the mirror destination area.
This is shown in the following example.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 263 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b)

(©)

MO CSEG MIRRORP
ADDRESSO : DB 12H
ADDRESS1 : DB 34H
ADDRESS2 : DB 56H
CSEG
MOV A, !ADDRESSO i (e)

Segment MO is located in the ROM area (mirror source area) that is mirrored in the RAM area. Segment MO is
located at 01000H to OxxxxH when MAA=0, and at 11000H to 1xxxxH when MAA=1. Due to this, the value of
the ADDRESSO0 symbol in line (e) is in the range from 01000H to OxxxxH or from 11000H to 1xxxxH. To facil-
itate program development, references to symbols in mirrored segments like the symbol in line (e) are allowed.
Their 'addr16 range is 01000H to OxxxxH, or 11000H to 1xxxxH.

To summarize, 'addrl6 (instructions other than BR,CALL) symbols with the ADDRESS attribute can have val-
ues from 01000H to OxxxxH, or from 11000H to 1xxxxH. This allows them to be specified as !addr16 operands
just as they are.

ES:laddr16

This section explains why the range of values that can be specified for an ES:!addr16 operand varies between
(1) numeric constants and NUMBER attribute symbols and (2) ADDRESS attribute symbols.

Following is an example.

DATA CSEG AT 12345H

ADDRESSO : DB 12H

ADDRESS1 : DB 34H

ADDRESS2 : DB 56H
CSEG
MOV ES, #HIGHW ADDRESSO ;7 (£)
MOV A, ES:!ADDRESSO0 i (9)

The statements in lines (f) and (g) transfer data from ADDRESSO to register A.

The addr16 range is 0000H to FFFFH. But in line (g) the value of the ADDRESSO symbol is 12345H. Nor-
mally this would result in an error.

Therefore, to facilitate program development, provision is made to allow ADDRESSO to be in the range OH to
FFFFFH, making it possible to write lines like line (g).

To summarize, ES:!addr16 operands which are ADDRESS attribute symbols can be specified just as they are.
Values from OH to FFFFFH can also be specified just as they are.

laddr16.bit, ES:!addr16.bit

This section explains why the value range in !laddr16.bit and ES:!addr16.bit operands differs between (1) DBIT
symbols, SFBIT and SABIT attribute bit symbols, bit symbols defined by EQU directives (but only when an
ADDRESS attribute symbol is included in the operand) and (2) all other symbols.

This is shown by the following example.

R20UT2774EJ0100 Rev.1.00

RENESAS Page 264 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DBITSYMO
DBITSYM1

DBITSYM2

BIT1_ PMO

BIT2 PO

ADDRESSO :
ADDRESS1 :

ADDRESS2 :

ADR_BITO
ADR BIT1

ADR BIT2

BSEG
DBIT
DBIT

DBIT

EQU

EQU

DSEG
DS
DS

DS

EQU
EQU

EQU

CSEG
SET1
SET1
SET1

SET1

PMO.1 ;

P0.2 ;

ADDRESSO0.0 ;
ADDRESSO0.1

ADDRESSO0.2

IDBITSYMO ;
IBIT1 PMO ;
IBIT2 PO ;

!ADR_BITO ;

Describing of the DBIT symbol on line (h), SFBIT attribute and SABIT attribute bit symbols on lines (i) and (j),
and the bit symbol defined with the EQU directive on line (k) (only when an ADDRESS attribute symbol is

included as an operand) as operands for 'addr16.bit is made possible, as stated on lines (I) to (0), so the range
of values varies depending on the symbol attribute described.

For the same reasons, the value range for ES:!addr16.bit operands also depends on the symbol attribute.

(d) word

This section explains why the value ranges of word operands differs between (1) numeric constants and NUM-
BER attribute symbols and (2) ADDRESS attribute symbols.
This is shown by the following example.

DSEG
ADDRESSO : DS 1
ADDRESS1 : DS 1
ADDRESS2 : DS 1
CSEG
MOV B, #0
MOV ADDRESSO [B], A i (p)
MOV C, #1
MOV ADDRESSO [C], A ;o (Q)
MOVW BC, #2
MOV ADDRESSO [BC], AX i ()
R20UT2774EJ0100 Rev.1.00 RENESAS Page 265 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Since labels (ADDRESS attribute symbols) are often specified where a word is required in an operand, such
as in the word[B], word[C] and word[BC] instructions in lines (p) to (r), coding is made simpler by the ability to
specify labels, in the same manner as !addr16.

In the same reason, coding of ES:word[B], ES:word[C], ES:word[BC] instructions is simplified.

Table 4-12. Value ranges of Directive Operands

Directive Type Directive Value Range

Segment definition CSEG AT OH to OFFFFFH (excluding SFR and 2ndSFR)
DSEG AT OH to OFFFFFH (excluding SFR and 2ndSFR)
BSEG AT OH to OFFFFFH (excluding SFR and 2ndSFR)
ORG OH to OFFFFFH (excluding SFR and 2ndSFR)

Symbol definition EQU 20-bit value OH to FFFFFH
SET 20-bit value OH to FFFFFH

Memory initialization and area | DB 8-bit value OH to FFH

reservation Dw 16-bit value OH to FFFFH
DG 20-bit value OH to FFFFFH
DS 16-bit value OH to FFFFH

Automatic branch instruction BR/CALL OH to FFFFFH

selection

(2) Sizes of operands required by instructions
Instructions can be classified into machine instructions and directives. When they require immediate data or sym-
bols, the size of the required operand differs according to the instruction or directive. An error occurs when source
code specifies data that is larger than the required operand.
Expressions are operated as unsigned 32 bits. When evaluation results exceed OFFFFFFFFH (32 bits),a warning
message is issued.
However, when relocatable or external symbols are specified as operands, the value cannot be determined by the
assembler. In these cases, the linker determines the value and performs range checks.

(3) Symbol attributes and relocation attributes of operands
When names, labels, and $ (which indicate location counters) are described as instruction operands, they may or
may not be describable as operands. This depends on the symbol attributes and relocation attributes (see "4.1.12
Restrictions on operations").
When names and labels are described as instruction operands, they may or may not be describable as operands.
This depends on the direction of reference.
Reference direction for names and labels can be backward reference or forward reference.
- Backward reference: A name or label referenced as an operand, which is defined in a line above (before) the
name or label
- Forward reference: A name or label referenced as an operand, which is defined in a line below (after) the
name or label

R20UT2774EJ0100 Rev.1.00 RENESAS Page 266 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<Example>

NAME TEST
CSEG

L1 Backward reference
BR Ll Forward reference
BR L2

L2
END

These symbol attributes and relocation attributes, as well as direction of reference for names and labels, are

shown below.

Table 4-13. Properties of Described Symbols as Operands

Symbol NUMBER ADDRESS NUMBER sfr Reserved WordsNote 1
Attributes ADDRESS
Relocation Attributes Terms | Attributes Terms Relocatable External
Attributes Terms Reference Terms
Reference Back For- Back For- Back For- Back For- sfr 2ndsfr
Pattern ward ward ward ward ward ward ward ward
byte OK OK OK OK OK OK OK OK - -
word OK OK OK OK OK OK OK OK - -
saddr OK OK OK OK OK OK OK OK okNote 3 -
saddrp OK oK oK OK OK oK oK oK OKNote 2,4 -
5 Note 2,5 _
g| sfr - - - - - - - - OK
2 sfrp - - - - - R - R okNote 2,6 B
5
8| addr20 oK oK oK oK oK oK oK OK - -
(&)
g addr16 OK OK OK OK OK OK OK OK okNote 7 okNote 7
addr5 OK OK OK OK OK OK OK OK - -
bit OK OK - - - - - - - -
n OK OK OK OK - - - - - -
Forward Forward reference
Backward : Backward reference
OK : Description possible
- An error
Notes 1. The defined symbol specifying sfr or sfrp (sfr area where saddr and sfr are not overlapped) as an oper-

and of EQU directive is only referenced backward. Forward reference is prohibited.
2. If an sfrreserved word in the saddr area has been described for an instruction in which a combination of

sfr/sfrp changed from saddr/saddrp exists in the operand combination, a code is output as saddr/sad-
drp.

o g~ w

sfr reserved word in saddr area
sfrp reserved word in saddr area
Only sfr reserved words that allow 8-bit accessing
Only sfr reserved words that allow 16-bit accessing

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 267 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

7. Isfrand !2ndsfr can be specified only for operand 'addr16 of instructions other than BR and CALL.

Table 4-14. Properties of Described Symbols as Operands of Directives

Symbol NUMBER ADDRESS, SADDR BIT
Attributes
Relocation Attributes Attributes Relocatable External Attributes Relocatable External
Attributes Terms Terms Terms Reference Terms Terms Reference
Terms Terms

Reference Back | For- | Back | For- | Back | For- | Back | For- | Back | For- | Back | For- | Back | For-

Pattern ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward | ward
ORG OK - - - - - - - - - - - - R
Note 1
EQuNote 2 OK - OK - OK - - - OK - OK - - -
Note 3 Note 3
SET OK - - - - - - - - - - - - -

Note 1

DB | Size OK - - - - - - - - - - - - -
Note 1

Initial OK OK OK OK OK OK OK OK - - - - - R
value

DW | Size OK - - - - - - - - - - - - R
Note 1

Directive

Initial OK OK OK OK OK OK OK OK - - - - - R
value

DG | Size OK - - - - - - - - - - - - R
Note 1

Initial OK OK OK OK OK OK OK OK - - - - - -

value
DS OK - - - - - - - - - - - - -
Note 4
BR/CALL OK OK OK OK OK OK OK OK - - - - - -
Forward : Forward reference
Backward : Backward reference
OK . Description possible

- . Description impossible

Notes 1. Only an absolute expression can be described.
2. An error occurs if an expression including one of the following patterns is described.
- ADDRESS attribute - ADDRESS attribute
- ADDRESS attribute relational operator ADDRESS attribute
- HIGH absolute ADDRESS attribute
- LOW absolute ADDRESS attribute
- HIGHW absolute ADDRESS attribute
- LOWW absolute ADDRESS attribute
- MIRHW absolute ADDRESS attribute
- MIRLW absolute ADDRESS attribute
- DATAPOS absolute ADDRESS attribute

R20UT2774EJ0100 Rev.1.00 RENESAS Page 268 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- MASK absolute ADDRESS attribute
- When the operation results can be affected by optimization from the above 10 patterns.
3. Aterm created by the HIGH/LOW/HIGHW/LOWW/MIRHW/MIRLW/DATAPOS/MASK operator that has
a relocatable term is not allowed.
4. See"4.2.4 Memory initialization, area reservation directives".

4.2 Directives

This chapter explains the directives.
Directives are instructions that direct all types of instructions necessary for the RL78,78KOR assemmbler to perform a
series of processes.

4.2.1 Overview

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not con-
verted into object codes in principle.
Directives contain the following functions mainly:
- To facilitate description of source programs
- To initialize memory and reserve memory areas
- To provide the information required for assemblers and linkers to perform their intended processing

The following table shows the types of directives.

Table 4-15. List of Directives

Type Directives
Segment definition directives CSEG, DSEG, BSEG, ORG
Symbol definition directives EQU, SET
Memory initialization, area reservation directives DB, DW, DG, DS, DBIT
Linkage directives EXTRN, EXTBIT, PUBLIC
Object module name declaration directive NAME
Branch instruction automatic selection directives BR, CALL
Macro directives MACRO, LOCAL, REPT, IRP, EXITM, ENDM
Assemble termination directive END

The following sections explain the details of each directive.
In the description format of each directive, "[]" indicates that the parameter in square brackets may be omitted from

specification, and "..." indicates the repetition of description in the same format.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 269 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

422 Segment definition directives

The source module is described by dividing each segment unit.
The segment directive is what defines these "segments".
There are 4 types of these segments.

- Code segment

- Data segment

- Bit segment

- Absolute segment

The type of segment determines which area of the memory it is mapped to.
The following shows each segment definition method and the memory address that is mapped to.

Table 4-16. Segment Definition Method and Memory Address Location

Segment Type Definition Method Memory Address Location
Code segment CSEG directive In internal or external ROM address area
Data segment DSEG directive In internal or external RAM address area
Bit segment BSEG directive In internal RAM saddr area
Absolute segment Specifies location address (AT location Specified address
address) to relocation attribute with
CSEG, DSEG, BSEG directive

The absolute segment is defined for when the user wants to set the address mapped in the memory. For stack area,
the user must set a stack pointer and secure an area in the data segment.
Also, segments cannot be located to the areas below.

Option byte area CO to C2H (user option byte)
C3H (on-chip-debug option byte)

When specifying security ID C4H to CDH

When using on-chip debug function 02H to 03H, CE to D7H (for on-chip debugging)

Area of program size part from the start address specified with the -go
option by the user

When using an on-chip debug function, allocate the area for on-chip debugging by a directive-file to be able to arrange
the monitor area for on-chip debugging.

Examples of segment mapping are shown below.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 270 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-6. Segment Memory Mapping

Source Module

Source Module Source Module
; - <Memory>
' N FFFFFH
<1 Source Module>
saddr
Data segment
Absolute segment which goes with RAM
data segment.
Bit segment
Code segment
ROM
Absolute segment which goes with -
code segment
00000H
The following segment definition directives are available.
Control Instruction Overview
CSEG Indicate to the assembler the start of a code segment
DSEG Indicate to the assembler the start of a data segment
BSEG Indicate to the assembler the start of a bit segment
ORG Set the value of the expression specified by its operand of the location counter.
R20UT2774EJ0100 Rev.1.00 RENESANS Page 271 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CSEG

Indicate to the assembler the start of a code segment.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[segment -name] CSEG [relocation-attribute] [; comment]
[Function]

- The CSEG directive indicates to the assembler the start of a code segment.

- All instructions described following the CSEG directive belong to the code segment until it comes across a seg-
ment definition directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally those instructions are
located within a ROM address after being converted into machine language.

<Source module> <Memory>
NAME T1
ROM
DSEG
CSEG
Code segment
RAM
END

[Use]

- The CSEG directive is used to describe instructions, DB, DW directives, etc. in the code segment defined by the
CSEG directive.
However, to relocate the code segment from a fixed address, "AT absolute-expression” must be described as its
relocation attribute in the operand field.

- Description of one functional unit such as a subroutine should be defined as a single code segment.
If the unit is relatively large or if the subroutine is highly versatile (i.e. can be utilized for development of other pro-
grams), the subroutine should be defined as a single module.

[Description]

- The start address of a code segment can be specified with the ORG directive.
It can also be specified by describing the relocation attribute "AT absolute-expression".
- A relocation attribute defines a range of location addresses for a code segment.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 272 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-17. Relocation Attributes of CSEG

Relocation Description Format Explanation
Attribute
CALLTO CALLTO Tells the assembler to locate the specified segment so that the start

address of the segment becomes a multiple of 2 within the address
range 00080H to 000BFH.

FIXED FIXED Tells the assembler to locate the beginning of the specified segment
within the address range 000COH to OFFFFH

BASE BASE Tells the assembler to locate the beginning of the specified segment
within the address range 000COH to OFFFFH

AT AT absolute-expression Tells the assembler to locate the specified segment to an absolute
address (excluding SFR and 2ndSFR).

UNIT UNIT Tells the assembler to locate the specified segment to any address
(OO0COH to EFFFFH in memory area "ROM").

UNITP UNITP Tells the assembler to locate the specified segment to any address,
so that the start of the address may be an even number (000COH to
EFFFFH) in memory area "ROM").

IXRAM IXRAM Tells the assembler to locate the specified segment to any address
(OO0COH to EFFFFH in memory area "ROM").

SECUR_ID SECUR_ID It is a security ID specific attribute. Not specify except security ID.

Tells the assembler to locate the specified segment within the
address range 000C4H to 000CDH.

PAGEG64KP PAGE64KP Tells the assembler to locates the specified segment in memory area
"ROM" that does not extend over a 64 KB boundary, so that the start
of the address may be an even number.

The same-named segments but located in different files are not com-
bined.

UNIT64KP UNIT64KP Tells the assembler to locates the specified segment in memory area
"ROM" that does not extend over a 64 KB boundary, so that the start
of the address may be an even number.

The same-named segments are combined.

MIRRORP MIRRORP Tells the assembler to locate the specified segment in the mirror
source area, either 01000H to OxxxxH when MAA=0 or 11000H to
1xxxxH when MAA=1.No©

OPT_BYTE OPT_BYTE It is a user option byte and on-chip debugging specific attribute. Not
specify except user option byte and on-chip debugging.

Tells the assembler to locate the specified segment within the
address range 000COH to 000C3H.

Note The address range of the mirror source area differs with the device.

- If no relocation attribute is specified for the code segment, the assembler will assume that "UNIT" has been speci-
fied.

- If a relocation attribute other than those listed in "Table 4-17. Relocation Attributes of CSEG" is specified, the
assembler will output an error and assume that "UNIT" has been specified. An error occurs if the size of each
code segment exceeds that of the area specified by its relocation attribute.

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler will output an error
message and continue processing by assuming the value of the expression to be "0".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 273 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- By describing a segment name in the symbol field of the CSEG directive, the code segment can be named. If no
segment name is specified for a code segment, the assembler will automatically give a default segment name to
the code segment.

The default segment names of the code segments are shown below.

Relocation Attribute Default Segment Name
CALLTO ?CSEGTO
FIXED ?CSEGFX
UNIT (or omitted) ?CSEG
UNITP ?CSEGUP
IXRAM ?CSEGIX
BASE ?CSEGB
SECUR_ID ?CSEGSI
PAGEG4KP ?CSEGP64
UNIT64KP ?CSEGU64
MIRRORP ?CSEGMIP
OPT_BYTE ?CSEGOBO
AT Segment name cannot be omitted.

- When the size of the following segment is 0 among the default segments that C compiler outputs, the relocation
attribute is changed by the linker.

Section Name Relocation Attribute Relocation Attribute When Being Size 0
@@CALT CSEG CALLTO CSEG UNIT
@@CNST CSEG MIRRORP CSEG UNIT

- An error occurs if the segment name is omitted when the relocation attribute is AT.

- If two or more code segments have the same relocation attribute (except AT), these code segments may have the
same segment name.
These same-named code segments are processed as a single code segment within the assembler.
An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of the
same-named segments for each relocation attribute is one.

- Description of a code segment can be divided into units. The same relocation attribute and the samenamed code
segment described in one module are handled by the assembler as a series of segments.

Cautions 1. Description of a code segment whose relocation attribute is AT cannot be divided into units.
2. Insert a 1-byte interval, as necessary, so that the address specified by relocation attribute
CALLTO may be an even number.

- The same-named data segments in two or more different modules can be specified only when their relocation
attributes are UNIT, CALLTO, FIXED, UNITP, BASE, PAGE64KP, UNIT64KP, MIRRORP, or SECUR_ID, and are
combined into a single data segment at linkage.

- No segment name can be referenced as a symbol.

- The total number of segments that can be output by the assembler is up to 256 alias names, including those
defined with the ORG directive. The same-named segments are counted as one.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 274 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

- Specify user option byte and on-chip debugging by using OPT_BYTE.
When the user option byte is not specified for the chip having the user option byte feature, define a default seg-
ment of "?CSEGOBO0" to each address and set the initial value by reading from a device file.

[Example]

NAME SAMP1

c1 CSEG ;o (1)

c2 CSEG CALLTO ; (2)
CSEG FIXED i (3)

Cl CSEG CALLTO ; (4) <- Error
CSEG i (5)
END

(1) The assembler interprets the segment name as "C1", and the relocation attribute as "UNIT".

(2) The assembler interprets the segment name as "C2", and the relocation attribute as "CALLTO".

(3) The assembler interprets the segment name as "?CSEGFX", and the relocation attribute as "FIXED".

(4) An error occurs because the segment name "C1" was defined as the relocation attribute "UNIT" in (1).

(5) The assembler interprets the segment name as "?CSEG", and the relocation attribute as "UNIT".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 275 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DSEG

Indicate to the assembiler the start of a data segment.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[segment -name] DSEG [relocation-attribute] [; comment]
[Function]

- The DSEG directive indicates to the assembler the start of a data segment.

- A memory defined by the DS directive following the DSEG directive belongs to the data segment until it comes
across a segment definition directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally it is
reserved within the RAM address.

<Source module> <Memory>
NAME Tl
ROM
DSEG
Data segment
CSEG
RAM
END

[Use]

- The DS directive is mainly described in the data segment defined by the DSEG directive.
Data segments are located within the RAM area. Therefore, no instructions can be described in any data seg-
ment.

- In a data segment, a RAM work area used in a program is reserved by the DS directive and a label is attached to
each work area. Use this label when describing a source program.
Each area reserved as a data segment is located by the linker so that it does not overlap with any other work areas
on the RAM (stack area, and work areas defined by other modules).
The linker outputs a warning message if the data segment overlaps a general-purpose register area. The output
level of the warning message can be changed using the warning message specification option (-w).

Value Specified by -w Check Target

0 No areas

R20UT2774EJ0100 Rev.1.00 RENESAS Page 276 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Value Specified by -w Check Target
1 RBO
2 RBO to RB3

[Description]

- The start address of a data segment can be specified with the ORG directive.
It can also be specified by describing the relocation attribute "AT" followed by an absolute expression in the oper-
and field of the DSEG directive.

- A relocation attribute defines a range of location addresses for a data segment.
The relocation attributes available for data segments are shown below.

Table 4-18. Relocation Attributes of DSEG

Relocation Description Format Explanation
Attribute
SADDR SADDR Tells the assembler to locate the specified segment in the saddr area

(saddr area: FFE20H to FFEFFH).

SADDRP SADDRP Tells the assembler to locate the specified segment from an even-
numbered address of the saddr area (saddr area: FFE20H to
FFEFFH).

AT AT absolute-expression Tells the assembler to locate the specified segment in an absolute

address (excluding SFR and 2ndSFR).

UNIT UNIT or no specification Tells the assembler to locate the specified segment in the internal or
any external location (within the memory area name "RAM").

UNITP UNITP Tells the assembler to locate the specified segment in the internal or
any external location from an even-numbered address (within the
memory area name "RAM").

BASEP BASEP Tells the assembler to locates the specified segment in the internal
RAM area so that the start of the address may be an even humber
(not including saddr area: FxxxxH to FFEFFH).No®

When arranging the data to access without ES references, it's used.

PAGE64KP PAGE64KP Tells the assembler to locates the specified segment in memory area
"RAM" that does not extend over a 64 KB boundary, so that the start
of the address may be an even number.

The same-named segments but located in different files are not com-
bined.

UNIT64KP UNIT64KP Tells the assembler to locates the specified segment in memory area
"RAM" that does not extend over a 64 KB boundary, so that the start
of the address may be an even number.

The same-named segments are combined.

Note The address represented by xxxx varies depending on the device used.

- Relocation attributes provided for the 78K0 assembler can also be described, which function in the same manner
as "UNIT".
The following table lists the relocation attributes of DSEG provided for the 78KO0.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 277 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Relocation aAtribute Description ffrmat
IHRAM IHRAM
LRAM LRAM
DSPRAM DSPRAM
IXRAM IXRAM

- If no relocation attribute is specified for the data segment, the assembler will assume that "UNIT" has been speci-

fied.

- If a relocation attribute other than those listed in "Table 4-18. Relocation Attributes of DSEG" is specified, the
assembler will output an error and assume that "UNIT" has been specified. An error occurs if the size of each data
segment exceeds that of the area specified by its relocation attribute.

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler will output an error
and continue processing by assuming the value of the expression to be "0".

- Machine language instructions (including BR directive) cannot be described in a data segment. If described, an

error is output and the line is ignored.

- By describing a segment name in the symbol field of the DSEG directive, the data segment can be named. If no
segment name is specified for a data segment, the assembler automatically gives a default segment name.
The default segment names of the data segments are shown below.

Relocation Atribute Default Segment Name
SADDR ?DSEGS
SADDRP ?DSEGSP
UNIT(or no specification) ?DSEG
UNITP ?DSEGUP
IHRAM ?DSEGIH
LRAM ?DSEGL
DSPRAM ?DSEGDSP
IXRAM ?DSEGIX
BASEP ?DSEGBP
PAGEG4KP ?DSEGP64
UNIT64KP ?DSEGU64
AT Segment name cannot be omitted.

- When the size of the following segment is 0 among the default segments that C compiler outputs, the relocation

attribute is changed by the linker.

Section Name Relocation Attribute Relocation Attribute When Being Size 0
@@INIS DSEG SADDRP DSEG UNITP
@@DATS DSEG SADDRP DSEG UNITP
@EINIS DSEG SADDRP DSEG UNITP
@EDATS DSEG SADDRP DSEG UNITP
R20UT2774EJ0100 Rev.1.00 RENESAS Page 278 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- If two or more data segments have the same relocation attribute (except AT), these data segments may have the
same segment name.
These segments are processed as a single data segment within the assembler.

- Description of a data segment can be divided into units. The same relocation attribute and the same-named code
segment described in one module are handled by the assembler as a series of segments.

Cautions 1. Description of a code segment whose relocation attribute is AT cannot be divided into units.
2. When the relocation attribute is SADDR, insert a 1-byte interval, as necessary, so that the
address immediately after a DESG directive is described may be an even number.

- If the relocation attribute is SADDRP, the specified segment is located so that the address immediately after the
DSEG directive is described becomes a multiple of 2.

- An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of the
same-named segments for each relocation attribute is one.

- The same-named data segments in two or more different modules can be specified only when their relocation
attributes are UNIT, UNITP, SADDR, SADDRP, LRAM, IHRAM, DSPRAM, IXRAM, BASEP, PAGE64KP, or
UNIT64KP, and are combined into a single data segment at linkage.

- No segment name can be referenced as a symbol.

- The total number of segments that can be output by the assembler is up to 255 alias segments including those
defined with the ORG directive. The same-named segments are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Example]

NAME SAMP1
DSEG ;7 (1)

WORK1 : DS 2

WORK2 : DS 1
CSEG
MOV A, !WORK2 ; (2)
MOV A, WORK2 ; (3) <- Error
MOVW DE, #WORK1 ; (4)
MOVW AX, WORK1 ; (5) <- Error
END

(1) The start of a data segment is defined with the DSEG directive.
Because its relocation attribute is omitted, "UNIT" is assumed. The default segment name is "?DSEG".

(2) This description corresponds to "MOV A, 'addr16".
(3) This description corresponds to "MOV A, saddr".
Relocatable label "WORK2" cannot be described as "saddr". Therefore, an error occurs as a result of this

description.

(4) This description corresponds to "MOVW rp, #word".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 279 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(5) This description corresponds to "MOVW AX, saddrp”.
Relocatable label "WORK1" cannot be described as "saddrp". Therefore, an error occurs as a result of
this description.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 280 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

BSEG

Indicate to the assembler the start of a bit segment.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[segment -name] BSEG [relocation-attribute] [; comment]
[Function]

- The BSEG directive indicates to the assembler the start of a bit segment.

- A bit segment is a segment that defines the RAM addresses to be used in the source module.

- A memory area that is defined by the DBIT directive after the BSEG directive until it comes across a segment defi-
nition directives (CSEG, DSEG, or BSEG) or the END directive belongs to the bit segment.

<Source module> <Memory>

NAME T1

BSEG

Bit segment

ROM

DSEG

CSEG
RAM

END

[Use]

- Describe the DBIT directive in the bit segment defined by the BSEG directive.
- No instructions can be described in any bit segment.

[Description]

- The start address of a bit segment can be specified by describing "AT absolute-expression" in the relocation
attribute field.

- A relocation attribute defines a range of location addresses for a bit segment.
Relocation attributes available for bit segments are shown below.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 281 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-19. Relocation Attributes of BSEG

Relocation Description Format Explanation
Attribute

AT AT absolute-expression Tells the assembler to locate the starting address of the specified
segment in the Oth bit of an absolute address. Specification in bit
units is prohibited (00000H to FFFFFH)(excluding SFR and
2ndSFR).

UNIT UNIT or no specification Tells the assembler to locate the specified segment in any location
(FFE20H to FFEFFH).

- If no relocation attribute is specified for the bit segment, the assembler assumes that "UNIT" is specified.

- If a relocation attribute other than those listed in Table 3-5 is specified, the assembler outputs an error and
assumes that "UNIT" is specified. An error occurs if the size of each bit segment exceeds that of the area speci-
fied by its relocation attribute.

- In both the assembler and the linker, the location counter in a bit segment is displayed in the form "Oxxxxx.b" (The
byte address is hexadecimal 5 digits and the bit position is hexadecimal 1 digit (0 to 7)).

(1) Absolute

Byte Bit Position
Address
0 1 2 3 4 5 6 7
OFFE20H | OFFE20H.0 | OFFE20H.1 | OFFE20H.2 | OFFE20H.3 | OFFE20H.4 | OFFE20H.5 | OFFE20H.6 | OFFE20H.7
OFFE21H | OFFE21H.0 | OFFE21H.1 | OFFE21H.2 | OFFE21H.3 | OFFE21H.4 | OFFE21H.5 | OFFE21H.6 | OFFE21H.7
(2) Relocatable
Byte Bit Position
Address
0 1 2 3 4 5 6 7
OH 0H.0 OH.1 0H.2 0H.3 O0H.4 OH.5 OH.6 OH.7
1H 1H.0 1H1 1H.2 1H.3 1H.4 1H5 1H.6 1H.7
Remark Within a relocatable bit segment, the byte address specifies an offset value in byte units from the begin-

ning of the segment.
In a symbol table output by the object converter, a bit offset from the beginning of an area where a bit is
defined is displayed and output.

Symbol Value Bit Offset
OFFE20H.0 0000
OFFE20H.1 0001
OFFE20H.2 0002
OFFE20H.7 0007
OFFE21H.0 0008
OFFE21H.1 0009
R20UT2774EJ0100 Rev.1.00 RENESAS Page 282 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Symbol Value Bit Offset

OFFE80H.0 0300

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler outputs an error mes-
sage and continues processing while assuming the value of the expression to be "0".

- By describing a segment name in the symbol field of the BSEG directive, the bit segment can be named. If no seg-
ment name is specified for a bit segment, the assembler automatically gives a default segment name.
The following table shows the default segment names.

Relocation Attribute Default Segment Name

UNIT (or no specification) ?BSEG

AT Segment name cannot be omitted.

- When the size of the following segment is 0 among the default segments that C compiler outputs, the relocation
attribute is changed by the linker.

Section Name Relocation Attribute Relocation Attribute When Being Size 0

@@BITS BSEG UNIT (in SADDR area) BSEG UNIT (in RAM area)

- If the relocation attribute is "UNIT", two or more data segments can have the same segment name (except AT).
These segments are processed as a single segment within the assembler.

Therefore, the number of same-named segments for each relocation attribute is one.

- The same-named bit segments name must have the same relocation attribute UNIT (when the relocation attribute
is AT, specifying the same name for multiple segments is prohibited).

- If the relocation attribute of the same-named segments in a module is not UNIT, an error is output and the line is
ignored.

- The same-named bit segments in two or more different modules will be combined into a single bit segment at link-
age time.

- No segment name can be referenced as a symbol.

- Bit segments are located at OH to FFFFFH by the linker.

- Labels cannot be described in a bit segment.

- The only instructions that can be described in the bit segments are the DBIT, EQU, SET, PUBLIC, EXTBIT,
EXTRN, MACRO, REPT, IRP, ENDM directive, macro definition and macro reference. Description of instructions
other than these causes in an error.

- The total number of segments that the assembler outputs is up to 256 alias segments, with segments defined by
the ORG directive. The segments having the same name are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 283 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
NAME SAMP1
FLAG EQU OFFE20H
FLAGO EQU FLAG.O0 ;(1)
FLAGL EQU FLAG.1 i (2)
BSEG ;i (3)

FLAG2 DBIT

CSEG
SET1 FLAGO ;o (4)
SET1 FLAG2 ;i (5)
END

(1) Bit addresses (bits 0 of OFFE20H are defined with consideration given to byte address boundaries.

(2) Bit addresses (bits 1 of OFFE20H) are defined with consideration given to byte address boundaries.

(3) A bit segment is defined with the BSEG directive. Because its relocation attribute is omitted, the reloca-
tion attribute "UNIT" and the segment name "?BSEG" are assumed.
In each bit segment, a bit work area is defined for each bit with the DBIT directive. A bit segment should
be described at the early part of the module body.
Bit address FLAG2 defined within the bit segment is located without considering the byte address bound-
ary.

(4) This description can be replaced with "SET1 FLAG.0". This FLAG indicates a byte address.

(5) In this description, no consideration is given to byte address boundaries.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 284 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ORG

Set the value of the expression specified by its operand of the location counter.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[segment -name] ORG [absolute-expression] [; comment]
[Function]

- The ORG directive sets the value of the expression specified by its operand of the location counter.

- After the ORG directive, described instructions or reserved memory area belongs to an absolute segment until it
comes across a segment definition directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and they are
located from the address specified by an operand.

<Source module> <Memory>

NAME T1

DESG

1000H
BSEG AT OFFE20H

Absolute segment : ROM

CSEG

RAM
ORG 1000H

OFFE20H

Absolute segment

END

[Use]

- Specify the ORG directive to locate a code segment or data segment from a specific address.

[Description]

- The absolute segment defined with the ORG directive belongs to the code segment or data segment defined with
the CSEG or DSEG directive immediately before this ORG directive.
Within an absolute segment that belongs to a data segment, no instructions can be described. An absolute seg-
ment that belongs to a bit segment cannot be described with the ORG directive.

- The code segment or data segment defined with the ORG directive is interpreted as a code segment or data seg-
ment of the relocation attribute "AT".

- By describing a segment name in the symbol field of the ORG directive, the absolute segment can be named.
The maximum number of characters that can be recognized as a segment name is 8.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 285 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- The same-named segments in a module, which are defined with the ORG directive, are handled in the same man-
ner as segments of the AT attribute, which are defined with the CSEG or DESG directive.

- The same-named segments in different modules, which are defined with the ORG directive, are handled in the
same manner as segments of the AT attribute, which are defined with the CSEG or DESG directive.

- If no segment name is specified for an absolute segment, the assembler will automatically assign the default seg-
ment name "?A0nnnnn", where "nnnnn" indicates the 5 digit hexadecimal start address (00000 to FFFFF) of the
segment specified.

- If neither CSEG nor DSEG directive has been described before the ORG directive, the absolute segment defined
by the ORG directive is interpreted as an absolute segment in a code segment.

- If a name or label is described as the operand of the ORG directive, the name or label must be an absolute term
that has already been defined in the source module.

- If illegal objects are described for absolute expressions, or if the evaluated value of an absolute expression
exceeds 00000H to FFEFFH, the assembler outputs an error and continues processing, assuming that the value
of the absolute expression is 00000H.

- Absolute expressions for operands are evaluated in unsigned 32-bit units.

- No segment name can be referenced as a symbol.

- The total number of segments that the assembler outputs is up to 256 alias segments, with segments defined by
the segment definition directives. The segments having the same name are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Example]
NAME SAMP1
DSEG
ORG OFFE20H ;o (1)
SADR1 : DS 1
SADR2 : DS 1
SADR3 : DS 2
MAINO ORG 100H
MOV A, SADR1 ;7 (2) <- Error
CSEG i (3)
MAIN1 ORG 1000H ;o (4)
MOV A, SADR2
MOVW AX, SADR3
END

(1) An absolute segment that belongs to a data segment is defined.
This absolute segment will be located from the short direct addressing area that starts from address
"FFE20H". Because specification of the segment name is omitted, the assembler automatically assigns
the name "?A0FFE20".

(2) An error occurs because no instruction can be described within an absolute segment that belongs to a
data segment.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 286 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) This directive declares the start of a code segment.

(4) This absolute segment is located in an area that starts from address "1000H".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 287 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.3 Symbol definition directives

Symbol definition directives specify names for the data that is used when writing to source modules. With these, the
data value specifications are made clear and the details of the source module are easier to understand.

Symbol definition directives indicate the names of values used in the source module to the assembler.

The following symbol definition directives are available.

Control Instruction Overview

EQU The value of the expression specified by operand and the numerical data with
attribute are defined as a name.

SET The value of the expression specified by operand and the variable with attribute
are defined as a name.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 288 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EQU

The value of the expression specified by operand and the numerical data with attribute are defined as a name.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

name EQU expression [; comment]

[Function]

- The EQU directive defines a name that has the value and attributes (symbol attribute and relocation attribute) of
the expression specified in the operand field.

[Use]

- Define numerical data to be used in the source module as a nhame with the EQU directive and describe the name
in the operand of an instruction in place of the numerical data.
Numerical data to be frequently used in the source module is recommended to be defined as a name. If you must
change a data value in the source module, all you need to do is to change the operand value of the name.

[Description]

- The EQU directive may be described anywhere in a source program.

- A symbol defined with the EQU directive cannot be redefined with the SET directive, nor as a label. In addition, a
symbol or label defined with the SET directive cannot be redefined with the EQU directive, nor as a label.

- When a name or label is to be described in the operand of the EQU directive, use the name or label that has
already been defined in the source module.
No external reference term can be described as the operand of this directive.
SFRs and SFR bit symbols can be described.

- An expression including a term created by a HIGH/LOW/HIGHW/LOWW/MIRHW/MIRLW/DATAPOS/BITPOS
operator that has a relocatable term in its operand cannot be described.

- An error occurs if an expression with any of the following patterns of operands is described:

(1) Expression 1 with ADDRESS attribute - Expression 2 with ADDRESS attribute
Either of the following conditions (1) and (2) is fulfilled in the above expression (a) or (b):

(@) (a)lflabel 1inthe expression 1 with ADDRESS attribute and label 2 in the expression 2 with ADDRESS
attribute belong to the same segment and if a BR directive for which the number of bytes of the object

code cannot be determined is described between the two labels

(b) (b) If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the
object code cannot be determined is described between the beginning of the segment and label

(2) Expression 1 with ADDRESS attribute attributeRelational operator Expression 2 with ADDRESS attribute
(3) HIGH absolute expression with ADDRESS attribute

(4) LOW absolute expression with ADDRESS attribute

R20UT2774EJ0100 Rev.1.00 RENESAS Page 289 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(5) HIGHW absolute expression with ADDRESS attribute
(6) LOWW absolute expression with ADDRESS attribute
(7) MIRHW absolute expression with ADDRESS attribute
(8) MIRLW absolute expression with ADDRESS attribute
(9) DATAPOS absolute expression with ADDRESS attribute
(10)BITPOS absolute expression with ADDRESS attribute
(11) The following (a) is fulfilled in the expression (3) to (10):

(@) If aBR directive for which the number of bytes of the object code cannot be determined instantly is
described between the label in the expression with ADDRESS attribute and the beginning of the seg-
ment to which the label belongs

- If an error exists in the description format of the operand, the assembler will output an error message, but will
attempt to store the value of the operand as the value of the name described in the symbol field to the extent that it
can analyze.

- A name defined with the EQU directive cannot be redefined within the same source module.

- A name that has defined a bit value with the EQU directive will have an address and bit position as value.

- The following table shows the bit values that can be described as the operand of the EQU directive and the range
in which these bit values can be referenced.

Operand Type Symbol Value Reference Range
A.bitNote 1 1.bit Can be referenced within the same module
. . only.
PSW.bitye OFFFFAH.bit
sfNote 2 pjgNote 1 OFFFXXHNote 3 pit
2ndsfrNote 2 pjtNote 1 OFXXXXHNote 4 hit
saddr.bitNote 1 OFFXXXHNO® 5 pit Can be referenced from another module.
expression. bitNote 1 OXXXXXHNOE 6 pit

Notes 1. bit=0to7
2. For a detailed description, see the user's manual of each device.

3. OFFFXXH : the address of a sfr
4, OFXXXXH : 2ndsfr area
5. OFXXXXH : saddr area (OFFE20H to OFFF1FH)
6. OXXXXXH : OH to OFFFFFH
R20UT2774EJ0100 Rev.1.00 RENESAS Page 290 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]

NAME SAMP1

WORK1 EQU OFFE20H (1)

WORK10 EQU WORK1.0 i (2)

P02 EQU P0.2 (3)

A4 EQU A.4 ;o (4)

PSW5 EQU PSW.5 (5)
SET1 WORK10 (6)
SET1 P02 i (7)
SET1 A4 (8)
SET1 PSW5 i (9)
END

(1) The name "WORK1" has the value "OFFE20H", symbol attribute "NUMBER", and relocation attribute

)

@)

(4)

(®)

(6)

@)

(8)

9)

"ABSOLUTE".

The name "WORK10" is assigned to bit value "WORKZ1.0", which is in the operand format "saddr.bit".
"WORK1", which is described in an operand, is already defined at the value "OFFE20H", in (1) above.

The name "P02" is assigned to the bit value "P0.2", which is in the operand format "sfr.bit".

The name "A4" is assigned to the bit value "A.4", which is in the operand format "A.bit".

The name "PSWS5" is assigned to the bit value "PSW.5", which is in the operand format "PSW.bit".

This description corresponds to "SET1 saddr.bit".

This description corresponds to "SET1 sfr.bit".

This description corresponds to "SET1 A.bit".

This description corresponds to "SET1 PSW.hit".

Names that have defined "A.bit", and "PSW.bit" as in (4) through (5) can be referenced only within the same module.
A name that has defined "sfr.bit", "saddr.bit", "expression.bit" can also be referenced from another module as an exter-
nal definition symbol (see "4.2.5 Linkage directives™").

R20UT2774EJ0100 Rev.1.00

Dec 01,

2013

RENESAS Page 291 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

As a result of assembling the source module in the application example, the following assemble list is generated.

ALNO

10

11

12

13

Assemble list

STNO

10

11

12

13

ADRS

00000

00003

00006

00008

OBJECT

(FFE20

(FFE20.
(FFF0O.
(00001.

(FFFFA.

710220

712200

71CA

715AFA

M I SOURCE STATEMENT

WORK1
) WORK10
) P02
) A4

) PSW5

NAME

EQU
EQU
EQU
EQU

EQU

SET1
SET1
SET1
SET1

END

SAMP

OFFE20H

WORK1.0

P0.2

A.4

PSW.5

WORK10

P02

A4

PSW5

On lines (2) through (5) of the assemble list, the bit address values of the bit values defined as names are indicated in

the object code field.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 292 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SET

The value of the expression specified by operand and the variable with attribute are defined as a name.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

name SET absolute-expression [; comment]

[Function]

- The SET directive defines a name that has the value and attributes (symbol attribute and relocation attribute) of
the expression specified in the operand field.

- The value and attribute of a name defined with the SET directive can be redefined within the same module.
These values and attribute are valid until the same name is redefined.

[Use]

- Define numerical data (a variable) to be used in the source module as a hame and describe it in the operand of an
instruction in place of the numerical data (a variable).
If you wish to change the value of a name in the source module, a different value can be defined for the same
name using the SET directive again.

[Description]

- An absolute expression must be described in the operand field of the SET directive.

- The SET directive may be described anywhere in a source program.

However, a name that has been defined with the SET directive cannot be forward-referenced.

- If an error is detected in the statement in which a name is defined with the SET directive, the assembler outputs an
error message but will attempt to store the value of the operand as the value of the name described in the symbol
field to the extent that it can analyze.

- A symbol defined with the EQU directive cannot be redefined with the SET directive.

A symbol defined with the SET directive cannot be redefined with the EQU directive.

- A bit symbol cannot be defined.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 293 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]

NAME SAMP1

COUNT SET 10H ;o(1)
CSEG
MOV B, #COUNT ;i (2)

LOOP :
DEC B
BNZ $LOOP

COUNT SET 20H ;o (3)
MOV B, #COUNT i (4)
END

(1) The name "COUNT" has the value "10H", the symbol attribute "NUMBER", and relocation attribute "ABSO-
LUTE". The value and attributes are valid until they are redefined by the SET directive in (3) below.

(2) The value "10H" of the name "COUNT" is transferred to register B.

(3) The value of the name "COUNT" is changed to "20H".

(4) The value "20H" of the name "COUNT" is transferred to register B.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 294 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.4 Memory initialization, area reservation directives

The memory initialization directive defines the constant data used by the program.

The defined data value is generated as object code.

The area reservation directive secures the area for memory used by the program.

The following memory initialization and partitioning directives are available.

Control Instruction Overview
DB Initialization of byte area
DW Initialization of word area
DG Initialization of 20 bit area in 32 bits (4 bytes)
DS Secures the memory area of the number of bytes specified by operand.
DBIT Secures 1 bit of memory area in bit segment.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 295 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DB

Initialization of byte area

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] DB (size) [; comment]
or
[label:] DB initial-valuel, ...] [; comment]
[Function]

- The DB directive tells the assembler to initialize a byte area.
The number of bytes to be initialized can be specified as "size".

- The DB directive also tells the assembler to initialize a memory area in byte units with the initial value(s)specified in
the operand field.

[Use]

- Use the DB directive when defining an expression or character string used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-
tial value is assumed.

(1) With size specification:

(@) If asizeis specified in the operand field, the assembler initializes an area equivalent to the specified
number of bytes with the value "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler
outputs an error message and will not execute initialization.

(2) With initial value specification:

(@) Expression
The value of an expression must be 8-bit data. Therefore, the value of the operand must be in the range of OH
to OFFH. If the value exceeds 8 bits, the assembler will use only lower 8 bits of the value as valid data and out-
put an error.

(b) Character string
If a character string is described as the operand, an 8-bit ASCII code will be reserved for each character in the

string.

- The DB directive cannot be described in a bit segment.

- Two or more initial values may be specified within a statement line of the DB directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be
described.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 296 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
NAME SAMP1
CSEG
WORK1 : DB (1) ;o (1)
WORK2 : DB (2) i (1)
CSEG
MASSAG : DB ' ABCDEF' i (2)
DATAL : DB 0AH, OBH, OCH ;(3)
DATA2 : DB (3 + 1) i (4)
DATA3 : DB 'AB' + 1 ; (5) <- Error
END

(1) Because the size is specified, the assembler will initialize each byte area with the value "00H".

(2) A 6-byte area is initialized with character string 'ABCDEF'.

(3) A 3-byte area is initialized with "OAH, OBH, OCH".

(4) A 4-byte area is initialized with "00H".

(5) Because the value of expression "AB" + 1 is 4143H (4142H + 1) and exceeds the range of 0 to OFFH,
this description occurs in an error.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 297 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DW

Initialization of word area

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] DW (size) [; comment]
or
[label:] DW initial-valuel, ...] [; comment]
[Function]

- The DW directive tells the assembler to initialize a word area.
The number of words to be initialized can be specified as "size".
- The DW directive also tells the assembler to initialize a memory area in word units (2 bytes) with the initial value(s)

specified in the operand field.

[Use]

- Use the DW directive when defining a 16-bit numeric constant such as an address or data used in the program.

[Description]
- If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an initial

value is assumed.
(1) With size specification:

(@) If asizeis specified in the operand field, the assembler will initialize an area equivalent to the specified
number of words with the value "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler
outputs an error and will not execute initialization.

(2) With initial value specification:

(@) Constant
16 bits or less.

(b) Expression
The value of an expression must be stored as a 16-bit data.
No character string can be described as an initial value.

- The DW directive cannot be described in a bit segment.
- The upper 2 digits of the specified initial value are stored in the HIGH address and the lower 2 digits of the value in

the LOW address.
- Two or more initial values may be specified within a statement line of the DW directive.
- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 298 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]

NAME SAMP1
CSEG

WORK1 : DW (10) 7 (1)

WORK2 : DW (128) i (1)
CSEG
ORG 10H
DW MAIN i (2)
DW SUB1 i (2)
CSEG

MAIN :
CSEG

SUB1 :

DATA : DW 1234H, 5678H i (3)
END

(1) Because the size is specified, the assembler will initialize each word with the value "00H".

(2) Vector entry addresses are defined with the DW directives.

(3) A 2-word area is initialized with value "34127856".

Caution The HIGH address of memory is initialized with the upper 2 digits of the word value. The LOW
address of memory is initialized with the lower 2 digits of the word value.

<Example>
<Source module> <Memory> HIGH address
NAME SAMLE 4
CSEG
ORG 1000H
DW 1234H
Upper 2 digits 1 2
3 4
Lower 2 digits
END v
LOW address
R20UT2774EJ0100 Rev.1.00 RENESANS Page 299 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DG

Initialization of 20 bit area in 32 bits (4 bytes)

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] DG (size) [; comment]
or
[label:] DG initial-valuel, ...] [; comment]
[Function]

- The DG directive tells the assembler to initialize a 20-bit area in 32-bit (4-byte) units. The initial value or size can

be specified as an operand.
- The DG directive also tells the assembler to initialize a memory area in 4 bytes units with the initial value(s) speci-

fied in the operand field.

[Use]

- Use the DG directive when defining a 20-bit numeric constant such as an address or data used in the program.

[Description]
- If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an initial

value is assumed.
(1) With size specification:

(@) If asizeis specified in the operand field, the assembler will initialize an area equivalent to the specified
numbers x 4 bytes, with "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler
outputs an error and will not execute initialization.

(2) With initial value specification:

(@) Constant
20 bits or less.

(b) Expression
The value of an expression must be stored as a 16-bit data.
No character string can be described as an initial value.

- The DG directive cannot be described in a bit segment.

- The highest byte of the specified initial value is stored in the HIGH WORD address, the lowest byte is stored in the
LOW address, and the higher byte of the lowest 2 bytes is stored in the HIGH address in the memory.

- Two or more initial values may be specified within a statement line of the DW directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 300 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
NAME SAMP1
DATA1 : DG 12345H, 56789H ;o(1)
DATA2 : DG (10) i (2)
END

(1) A 4-byte area is initialized with value "4523010089670500".

(2) The 40-byte (10 x 4 bytes) area is initialized with "00H".

Caution For the 20-bit value, the HIGH WORD address in the memory is initialized with the highest byte, the
LOW address in the memory is initialized with the lowest byte, and the HIGH address is initialized
with the higher byte of the lowest 2 bytes.

<Example>
<Source module> <Memory> HIGH Address
A
NAME SAMP1 00
CSEG HW 05
DATAl: DG 12345H, 56789H
H 67
L 89
END
00
HW 01
H 23
L 45
v
LOW address
HW : HIGH WORD
H : HIGH
L : LOW
R20UT2774EJ0100 Rev.1.00 ;{ENESAS Page 301 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DS

Secures the memory area of the number of bytes specified by operand.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] DS absolute-expression [; comment]
[Function]

- The DS directive tells the assembler to reserve a memory area for the number of bytes specified in the operand
field.

[Use]

- The DS directive is mainly used to reserve a memory (RAM) area to be used in the program.
If a label is specified, the value of the first address of the reserved memory area is assigned to the label. In the
source module, this label is used for description to manipulate the memory.

[Description]

- The contents of an area to be reserved with this DS directive are unknown (indefinite).
- The specified absolute expression will be evaluated with unsigned 16 bits.
- When the operand value is "0", no area can be reserved.
- The DS directive cannot be described within a bit segment.
- The symbol (label) defined with the DS directive can be referenced only in the backward direction.
- Only the following parameters extended from an absolute expression can be described in the operand field:
- A constant
- An expression with constants in which an operation is to be performed (constant expression)
- EQU symbol or SET symbol defined with a constant or constant expressionADDRESS
- Expression 1 with ADDRESS attribute - expression 2 with ADDRESS attribute
If both label 1 in "expression 1 with ADDRESS attribute" and label 2 in "expression 2 with ADDRESS attribute"
are relocatable, both labels must be defined in the same segment.
However, an error occurs in either of the following two cases:
- If label 1 and label 2 belong to the same segment and if a BR directive for which the number of bytes of
the object code cannot be determined is described between the two labels
- If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the object
code cannot be determined is described between either label and the beginning of the segment to which
the label belongs
- Any of the expressions (1) through (4) above on which an operation is to be performed.
- The following parameters cannot be described in the operand field:
- External reference symbol
- Symbol that has defined "expression 1 with ADDRESS attribute - expression 2 with ADDRESS attribute" with
the EQU directive
- Location counter ($) is described in either expression 1 or expression 2 in the form of "expression 1 with
ADDRESS attribute - expression 2 with ADDRESS attribute"
- Symbol that defines with the EQU directive an expression with the ADDRESS attribute on which the HIGH/
LOW/DATAPOS/BITPOS operator is to be operated

R20UT2774EJ0100 Rev.1.00 RENESAS Page 302 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
NAME SAMPLE
DSEG
TABLE1l : DS 10 ; (1)
WORK1 : DS 2 ; (2)
WORK2 : DS 1 ; (3)
CSEG

MOVW HL, #TABLEl
MOV A, !WORK2

MOVW BC, #WORK1

END

(1) A 10-byte working area is reserved, but the contents of the area are unknown (indefinite). Label "TABLE1"
is allocated to the start of the address.

(2) A 1l-byte working area is reserved.

(3) A 2-byte working area is reserved.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 303 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DBIT

Secures 1 bit of memory area in bit segment.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

[name] DBIT None [; comment]

[Function]

- The DBIT directive tells the assembler to reserve a 1-bit memory area within a bit segment.

[Use]

- Use the DBIT directive to reserve a bit area within a bit segment.

[Description]

- The DBIT directive is described only in a bit segment.

- The contents of a 1-bit area reserved with the DBIT directive are unknown (indefinite).

- If a name is specified in the Symbol field, the name has an address and a bit position as its value.

- The defined name can be described at the place where saddr.bit, addr16.bit, ES:addr16.hitt is required.

[Example]
NAME SAMPLE
BSEG
BIT1 DBIT i (1)
BIT2 DBIT ;o (1)
BIT3 DBIT i (1)
CSEG
SET1 BIT1 i (2)
CLR1 BIT2 ;i (3)
END

(1) By these three DBIT directives, the assembler will reserve three 1-bit areas and define names (BIT1, BIT2,
and BIT3) each having an address and a bit position as its value.

(2) This description corresponds to "SET1 saddr.bit" and describes the name "BIT1" of the bit area reserved
in (1) above as operand "saddr.bit".

(3) This description corresponds to "CLR1 saddr.bit" and describes name "BIT2" as "saddr.bit".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 304 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

425 Linkage directives

Linkage directives clarify associations when referring to symbols defined by other modules. This is thought to be in
cases when one program is written that divides module 1 and module 2.

In cases when you want to see to a symbol defined in module 2 in module 1, there is nothing declared in either module
and and so the symbol cannot be used. Due to this, there is a need to display "l want to use" or "I don't want to use" in
respective modules.

An "l want to see to a symbol defined in another module" external reference declaration is made in module 1. At the
same time, a "This symbol may be referred to by other symbols" external definition declaration is made in module 2.

This symbol can only begin to be referred to after both external reference and external definition declarations in effect.

Linkage directives are used to to form this relationship and the following instructions are available.

- Symbol external reference declaration: EXTRN, and also EXTBIT directive.
- Symbol external definition declaration: PUBLIC directive.

Figure 4-7. Relationship of Symbols Between 2 Modules

<Module 1> <Module 2>

NAME MODUL1 NAME MODUL2

EXTRN MDL2 ;o (1) PUBLIC MDL2 ;o (3)
CSEG CSEG

BR IMDL2 ;o (2) MDL2

END END

In the above modules, in order for the "MDL2" symbol defined in module 2 to be referred to in (2), an external reference
is declared via an EXTRN directive in (1).

In module 2 (3), an external definition declaration is undergone of the "MDL2" symbol referenced from module 1 via a
PUBLIC directive.

Whether or not this external reference and external definition symbols are correctly responding or not is checked via a
linker.

The following linkage directives are available.

Control Instruction Overview

EXTRN Declares to the linker that a symbol (other than bit symbols) in another module is
to be referenced in this module.

EXTBIT Directive declares to the linker that a bit symbol in another module is to be refer-
enced in this module.

PUBLIC Declares to the linker that the symbol described in the operand field is a symbol

to be referenced from another module.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 305 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EXTRN

Declares to the linker that a symbol (other than bit symbols) in another module is to be referenced in this module.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] EXTRN symbol-namel[, ...] [; comment]
or
[label:] EXTRN BASE (symbol-name[, ...]) [; comment]
[Function]

- The EXTRN directive declares to the linker that a symbol (other than bit symbols) in another module is to be refer-
enced in this module.

[Use]

- When referencing a symbol defined in another module, the EXTRN directive must be used to declare the symbol
as an external reference.
- The resulting operation varies depending on the description format for operands.

BASE(symbol-name], ...]) The specified symbol is regarded as a symbol in an area within a 64 KB area (OH
to OFFFF) and can be referenced.

No relocation attribute specified After located by the linker, processing is performed in accordance with the area for
which PUBLIC is declared and then can be referenced.

[Description]

- The EXTRN directive may be described anywhere in a source program (see "4.1.1 Basic configuration™).

- Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

- When referencing a symbol having a bit value, the symbol must be declared as an external reference with the
EXTBIT directive.

- The symbol declared with the EXTRN directive must be declared in another module with a PUBLIC directive.

- No error is output even if a symbol declared with the EXTRN directive is not referenced in the module.

- No macro name can be described as the operand of EXTRN directive (see "4.4 Macros" for the macro name).

- The EXTRN directive enables only one EXTRN declaration for a symbol in an entire module. For the second and
subsequent EXTRN declarations for the symbol, the linker will output a warning.

- A symbol that has been declared cannot be described as the operand of the EXTRN directive. Conversely, a sym-
bol that has been declared as EXTRN cannot be redefined or declared with any other directive.

- An area within a 64 KB area (OH to OFFFFH) can be referenced using a symbol defined with the EXTRN directive.
A symbol name declared in the format of "BASE(symbol name)" can be referenced from the 64 KB area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 306 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
- Module 1
NAME SAMP1
EXTRN SYM1, SYM2, BASE (SYM3) ; (1)
CSEG
S1 DW SYM1 (2)
MOV A, SYM2 i (3)
BR 1SYM3 (4)
END
- Module 2
NAME SAMP2
PUBLIC SYM1, SYM2, SYM3 (5)
CSEG
SYM1 EQU OFFH i (6)
DATA1 DSEG SADDR
SYM2 : DB 012H i (7)
c1 CSEG BASE
SYM3 : MOV A, #20H i (8)
END

(1) This EXTRN directive declares symbols "SYM1", "SYM2" and "SYM3" to be referenced in (2), (3) and (4) as

external references. Two or more symbols may be described in the operand field.

(2) This DW instruction references symbol "SYM1".

(3) This MOV instruction references symbol "SYM2" and outputs a code that references an saddr area.

(4) This BRinstruction references symbol "SYM3" and outputs a code that references an area within a 64 KB
area (OH to OFFFFH).

(5) The symbols "SYM1", "SYM2" and "SYM3" are declared as external definitions.

(6) The symbol "SYM1" is defined.

(7) The symbol "SYM2" is defined.

(8) The symbol "SYM3" is defined.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 307 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EXTBIT

Directive declares to the linker that a bit symbol in another module is to be referenced in this module.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] EXTBIT bit-symbol-namel, ...] [; comment]
[Function]

- The EXTBIT directive declares to the linker that a bit symbol in another module is to be referenced in this module.

[Use]

- When referencing a symbol that has a bit value and has been defined in another module, the EXTBIT directive
must be used to declare the symbol as an external reference.

[Description]

- The EXTBIT directive may be described anywhere in a source program.

- Up to 20 symbols can be specified in the operand field by delimiting each symbol with a comma (,).

- A symbol declared with the EXTBIT directive must be declared with a PUBLIC directive in another module.

- The EXTBIT directive enables only one EXTBIT declaration for a symbol in an entire module. For the second and
subsequent EXTBIT declarations for the symbol, the linker will output a warning.

- No error is output even if a symbol declared with the EXTRN directive is not referenced in the module.

[Example]
- Module 1
NAME SAMP1
EXTBIT FLAGl, FLAG2 ;o(1)
CSEG
SET1 FLAG1 i (2)
CLR1 FLAG2 ;(3)
END
- Module 2
NAME SAMP2
PUBLIC FLAGl, FLAG2 ;o (4)
BSEG
FLAGL DBIT ; (5)
FLAG2 DBIT i (6)
CSEG
NOP
END
R20UT2774EJ0100 Rev.1.00 ;{ENESAS Page 308 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) This EXTBIT directive declares symbols "FLAG1" and "FLAG2" to be referenced as external references.
Two or more symbols may be described in the operand field.

(2) This SET1 instruction references symbol "FLAG1".
This description corresponds to "SET1 saddr.bit".

(3) This CLR1 instruction references symbol "FLAG2".
This description corresponds to "CLR1 saddr.bit".

(4) This PUBLIC directive defines symbols "FLAG1" and "FLAG2".

(5) This DBIT directive defines symbol "FLAG1" as a bit symbol of SADDR area.

(6) This DBIT directive defines symbol "FLAG2" as a bit symbol of SADDR area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 309 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

PUBLIC

Declares to the linker that the symbol described in the operand field is a symbol to be referenced from another module.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] PUBLIC symbol-namel[, ...] [; comment]
[Function]

- The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be refer-
enced from another module.

[Use]

- When defining a symbol (including bit symbol) to be referenced from another module, the PUBLIC directive must
be used to declare the symbol as an external definition.

[Description]

- The PUBLIC directive may be described anywhere in a source program.
- Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).
- Symbol(s) to be described in the operand field must be defined within the same module.
- The PUBLIC directive enables only one PUBLIC declaration for a symbol in an entire module. The second and
subsequent PUBLIC declarations for the symbol will be ignored by the linker.
- Bit symbols in each bit area can be declared with PUBLIC.
- The following symbols cannot be used as the operand of the PUBLIC directive:
(1) Name defined with the SET directive
(2) Symbol defined with the EXTRN or EXTBIT directive within the same module
(3) Segment name
(4) Module name
(5) Macro name
(6) Symbol not defined within the module

(7) Symbol defining an operand with a SFBIT attribute with the EQU directive

(8) Symbol defining an sfr and 2ndSFR with the EQU directive (however, the place where sfr area and saddr
area are overlapped is excluded)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 310 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
- Module 1
NAME SAMP1
PUBLIC Al, A2 ;o (1)
EXTRN Bl
EXTBIT C1
Al EQU 10H
A2 EQU OFFE20H.1
CSEG
BR Bl
SET1 c1
END
- Module 2
NAME SAMP2
PUBLIC Bl i (2)
EXTRN Al
CSEG
Bl :
MOV C, #LOW (A1l)
END
- Module 3
NAME SAMP3
PUBLIC C1 i (3)
EXTBIT A2
c1 EQU OFFE21H.0
CSEG
CLR1 A2
END

(1) This PUBLIC directive declares that symbols "A1" and "A2" are to be referenced from other modules.

(2) This PUBLIC directive declares that symbol "B1" is to be referenced from another module.

(3) This PUBLIC directive declares that symbol "C1" is to be referenced from another module.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 311 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.6 Object module name declaration directive

An object module name directive gives a name to an object module generated by the assembler.

The following object module name declaration directives are available.

Control Instruction

Overview

NAME

Assign the object module name described in the operand field to an object mod-

ule to be output by the assembler.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 312 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NAME

Assign the object module name described in the operand field to an object module to be output by the assembler.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] NAME object-module-name [; comment]
[Function]

- The NAME directive assigns the object module name described in the operand field to an object module to be out-

put by the assembler.

[Use]

- A module name is required for each object module in symbolic debugging with a debugger.

[Description]

- The NAME directive may be described anywhere in a source program.

- For the conventions of module name description, see the conventions on symbol description in "(3) Symbol field".

- Characters that can be specified as a module name are those characters permitted by the operating system of the

assembler software other than "(" (28H) or ")" (29H) or 2-byte characters.

- No module name can be described as the operand of any directive other than NAME or of any instruction.
- If the NAME directive is omitted, the assembler will assume the primary name (first 256 characters) of the input
source module file as the module name. The primary name is converted to capital letters for retrieval.

If two or more module names are specified, the assembler will output a warning and ignore the second and subse-

guent module name declarations.

- A module name to be described in the operand field must not exceed 256characters.
- The uppercase and lowercase characters of a symbol name are distinguished.

[Example]

NAME SAMPLE
DSEG

BIT1 : DBIT

CSEG
MOV A, B

END

i (1)

(1) This NAME directive declares "SAMPLE" as a module name.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 313 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.7 Branch instruction automatic selection directives

There are unconditional branch instructions which write the branch address to the operand directly, "BR $addr20", "BR
laddr16", "BR $!addr20", "BR !"addr20", and etc.

With regard to these instructions, because the number of bytes for instructions differs, it is necessary for the user to use
them after selecting which operand is suitable depending on the range of the branch destination in order to create a pro-
gram with good memory efficiency.

Due to this, the RL78,78KOR assembler has a directive to automatically select 2, 3 or 4-byte branch instructions
depending on the range of the branch destination. This is called the branch destination instruction automatic selection
directive.

The following branch instruction automatic selection directives are available.

Control Instruction Overview

BR Depending on the range of the value of the expression specified by the operand,
the assembler automatically selects 2, 3 or 4-byte branch instructions and gener-
ates corresponding object code.

CALL Depending on the range of the value of the expression specified by the operand,
the assembler automatically selects 3 to 4-byte call branch instructions and gen-
erates corresponding object code.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 314 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

BR

Tells the assembler to automatically select a 2-, 3-, or 4-byte BR branch instruction according to the value range of the
expression specified in the operand field and to generate the object code applicable to the selected instruction.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] BR expression [; comment]
[Function]

- The BR directive tells the assembler to automatically select a 2-, 3-, or 4-byte BR branch instruction according to
the value range of the expression specified in the operand field and to generate the object code applicable to the
selected instruction.

[Use]

- Among the branch instructions listed below, the assembler determines the address range of the branch destination
and automatically selects and outputs an instruction which uses the fewest number of bytes as much as possible.
Use the BR directive if it is unclear whether a 2-byte branch instruction can be described.

Branch instruction Explanation

"BR $addr20" (2 bytes) Can be used if the address range of the branch destination is within the range
of -80H to +7FH, from an address following the BR directive.

"BR laddr16" (3 bytes) Can be used if the address range of the branch destination is within 64 KB.

"BR $!addr20" (3 bytes) Calculates the displacement from the branch destination and can be used if
the displacement is within the range of -8000H to +7FFFH

"BR !laddr20" (4 bytes) Used in cases other than above

If an operand (branch destination) is located in a relocatable segment different from that to which the directive is
located, and outside the BASE area, the directive will be substituted with a 4-byte instruction and the output.

If a directive and an operand (branch destination) are located in different segments and outside the BASE area,
and their types are different, the directive will be substituted with a 4-byte instruction, even if the operand is located
in an absolute segment.

If a directive and the branch destination are located in different segments and in the BASE area, the directive will
be substituted with a 3-byte instruction (BR !addrl6).

Remark The different type means the different relocatable segments if the BR directive is located in an absolute seg-
ment, or an absolute segment if the BR directive is located in a relocatable segment.

- If it is definitely known which of a2-, 3-, or 4-byte branch instruction should be described, describe the applicable
instruction. This shortens the assembly time in comparison with describing the BR directive.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 315 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The BR directive can only be used within a code segment.
- The direct jump destination is described as the operand of the BR directive. "$" indicating the current location
counter at the beginning of an expression cannot be described.
- For optimization, the following conditions must be satisfied.
- No more than 1 label or forward-reference symbol in the expression.
- Do not describe an EQU symbol with the ADDRESS attribute.
- Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with
ADDRESS attribute"”.
- Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/HIGHW/LOWW/MIRHW/
MIRLW/DATAPOS/BITPOS operator has been operated.
If these conditions are not met, the 4-byte BR instruction will be selected.
Even if these conditions are met, however, the 4-byte BR instruction may be selected if the branch address is
around 10000H and forward and backward references are included.

[Example]

ADDRESS NAME SAMPLE

C1 CSEG AT 50H
00050H BR L1l ; (1)
00052H BR L2 ;7 (2)
00055H BR L3 ; (3)
0007DH Ll :
OFFFFH L2 :
10000H L3 :

c2 CSEG AT 20050H
20050H BR L4 ; (4)
27FFFH L4

END

(1) This BR directive generates a 2-byte branch instruction (BR $addr20) because the displacement between
this line and the branch destination is within the range of -80H and +7FH.

(2) The branch destination of this BR directive is within 64 KB, so the BR directive will be substituted with a 3-
byte branch instruction (BR !addr16).

(3) This BR directive will be substituted with the 4-byte branch instruction (BR !laddr20).

(4) This BR directive will be substituted with the 3-byte branch instruction (BR $'addr20) because the dis-
placement between this line and the branch destination is without the range of -8000H and +7FFFH.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 316 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CALL

Tells the assembler to automatically select a 3- or 4-byte CALL branch instruction according to the value range of the
expression specified in the operand field and to generate the object code applicable to the selected instruction.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] CALL expression [; comment]
[Function]

- The CALL directive tells the assembler to automatically select a 3- or 4-byte CALL branch instruction according to
the value range of the expression specified in the operand field and to generate the object code applicable to the
selected instruction.

[Use]

- Among the branch instructions listed below, the assembler determines the address range of the branch destination
and automatically selects and outputs an instruction which uses the fewest number of bytes as much as possible.
Use the CALL directive if it is unclear whether a 3-byte branch instruction can be described.

Branch Instruction Explanation
"CALL !addr16" (3 bytes) Can be used if the address range of the branch destination is within 64 KB.
"CALL $!addr20" (3 bytes) Calculates the displacement from the branch destination and can be used if

the displacement is within the range of -8000H to +7FFFH

"CALL !laddr20" (4 bytes) Used in cases other than above

If an operand (branch destination) is located in a relocatable segment different from that to which the directive is
located, and outside the BASE area, the directive will be substituted with a 4-byte instruction and the output.

If a directive and an operand (branch destination) are located in different segments and outside the BASE area,
and their types are differentN°®, the directive will be substituted with a 4-byte instruction, even if the operand is
located in an absolute segment.

If a directive and the branch destination are located in different segments and in the BASE area, the directive will
be substituted with a 3-byte instruction (BR !addrl6).

Note The different type means the different relocatable segments if the CALL directive is located in an absolute seg-
ment, or an absolute segment if the CALL directive is located in a relocatable segment.

- If it is definitely known which of a 3- or 4-byte branch instruction should be described, describe the applicable
instruction. This shortens the assembly time in comparison with describing the CALL directive.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 317 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The CALL directive can only be used within a code segment.

- The direct jump destination is described as the operand of the CALL directive.
- For optimization, the following conditions must be satisfied.
- No more than 1 label or forward-reference symbol in the expression.
- Do not describe an EQU symbol with the ADDRESS attribute.
- Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with

ADDRESS attribute".

- Do not describe an expression with ADDRESS attribute
- Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/HIGHW/LOWW/MIRHW/
MIRLW/DATAPOS/BITPOS operator has been operated.
If these conditions are not met, the 4-byte CALL instruction will be selected.

Even if these conditions are met, however, the 4-byte BR instruction may be selected if the branch address is

around 10000H and forward and backward references are included.

[Example]

ADDRESS NAME SAMPLE

C1 CSEG AT 50H
00050H CALL L1l ; (1)
00053H CALL L2 ;7 (2)
08052H Ll :
OFFFFH L2 :

c2 CSEG AT 20050H
20050H CALL L3 ; (3)
27FFFH L3 :

END

(1) The branch destination of this CALL directive is within 64 KB, so the CALL directive will be substituted
with a 3-byte branch instruction (CALL 'addr16).

(2) This CALL directive will be substituted with the 4-byte branch instruction (CALL !'addr20).

(3) This CALL directive will be substituted with the 3-byte branch instruction (CALL $!'addr20) because the
displacement between this line and the branch destination is without the range of -8000H and +7FFFH.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS Page 318 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.8 Macro directives

When describing a source it is inefficient to have to describe for each series of high usage frequency instruction groups.
This is also the source of increased errors.

Via macro directives, using macro functions it becomes unnecessary to describe many times to the same kind of
instruction group series, and coding efficiency can be improved.

Macro basic functions are in substitution of a series of statements.

The following macro directives are available.

Control Instruction Overview

MACRO Executes a macro definition by assigning the macro name specified in the sym-
bol field to a series of statements described between MACRO directive and the
ENDM directive.

LOCAL Declares that the symbol name specified in the operand column is a local symbol
only effective in that macro body.

REPT Only the value of the expression specified by the series of statements written
between the REPT directive and the ENDM directive is developed repeatedly.

IRP Only the number of actual arguments is repeatedly developed while the dummy
argument is replaced by the actual argument specified by the operand in the
series of statements between the IRP directive and ENDM directive.

EXITM Develops the macro body defined with the MACRO directive, and also via REPT-
ENDM, IRP-END M repeat is forced to complete.

ENDM Completes a set of statements defined as a macro function.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 319 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MACRO

Executes a macro definition by assigning the macro name specified in the symbol field to a series of statements
described between MACRO directive and the ENDM directive.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

macro-name MACRO [formal-parameter[, ...]1] [; comment]

Macro body

ENDM [; comment]

[Function]

- The MACRO directive executes a macro definition by assigning the macro name specified in the symbol field to a
series of statements (called a macro body) described between this directive and the ENDM directive.

[Use]

- Define a series of frequently used statements in the source program with a macro name. After its definition only
describe the defined macro name (see "(2) Referencing macros"), and the macro body corresponding to the
macro name is expanded.

[Description]

- The MACRO directive must be paired with the ENDM directive.

- For the macro name to be described in the symbol field, see the conventions of symbol description in "(3) Symbol
field".

- To reference a macro, describe the defined macro name in the mnemonic field.

- For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol
description will apply.

- Up to 16 formal parameters can be described per macro directive.

- Formal parameters are valid only within the macro body.

- An error occurs if any reserved word is described as a formal parameter. However, if a user-defined symbol is
described, its recognition as a formal parameter will take precedence.

- The number of formal parameters must be the same as the number of actual parameters.

- A name or label defined within the macro body if declared with the LOCAL directive becomes effective with respect
to one-time macro expansion.

- Nesting of macros (i.e., to see to other macros within the macro body) is allowed up to eight levels including REPT
and IRP directives.

- The number of macros that can be defined within a single source module is not specifically limited. In other words,
macros may be defined as long as there is memory space available.

- Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.

- Two or more segments must not be defined in a macro body. If defined, an error will be output.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 320 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]

NAME SAMPLE

ADMAC MACRO PARAl, PARA2 ;o(1)
MOV A, #PARA1
ADD A, #PARA2
ENDM i (2)
ADMAC 10H, 20H i (3)
END

(1) A macro is defined by specifying macro name "ADMAC" and two formal parameters "PARA1" and
"PARA2".

(2) This directive indicates the end of the macro definition.

(3) Macro "ADMAC" is referenced.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 321 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LOCAL

Declares that the symbol name specified in the operand field is a local symbol that is valid only within the macro body

[Description Format]

Symbol field Mnemonic field Operand field Comment field
None LOCAL symbol-namel[, ...] [; comment]
[Function]

- The LOCAL directive declares that the symbol name specified in the operand field is a local symbol that is valid
only within the macro body.

[Use]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will output a
double definition error for the symbol. By using the LOCAL directive, you can reference (or call) a macro, which
defines symbol(s) within the macro body, more than once.

[Description]

- For the conventions on symbol names to be described in the operand field, see the conventions on symbol
description in "(3) Symbol field".

- A symbol declared as LOCAL will be substituted with a symbol "??RAnnnn" (where n = 0000 to FFFF) at each
macro expansion. The symbol "??RAnnnn" after the macro replacement will be handled in the same way as a glo-
bal symbol and will be stored in the symbol table, and can thus be referenced under the symbol name
"??RANNNN".

- If a symbol is described within a macro body and the macro is referenced more than once, it means that the sym-
bol would be defined more than once in the source module. For this reason, it is necessary to declare that the
symbol is a local symbol that is valid only within the macro body.

- The LOCAL directive can be used only within a macro definition.

- The LOCAL directive must be described before using the symbol specified in the operand field (in other words, the
LOCAL directive must be described at the beginning of the macro body).

- Symbol names to be defined with the LOCAL directive within a source module must be all different (in other words,
the same name cannot be used for local symbols to be used in each macro).

- The number of local symbols that can be specified in the operand field is not limited as long as they are all within a
line. However, the number of symbols within a macro body is limited to 64. If 65 or more local symbols are
declared, the assembler will output an error and store the macro definition as an empty macro body. Nothing will
be expanded even if the macro is called.

- Macros defined with the LOCAL directive cannot be nested.

- Symbols defined with the LOCAL directive cannot be called (referenced) from outside the macro.

- No reserved word can be described as a symbol name in the operand field. However, if a symbol same as the
user-defined symbol is described, its recognition as a local symbol will take precedence.

- A symbol declared as the operand of the LOCAL directive will not be output to a cross-reference list and symbol
table list.

- The statement line of the LOCAL directive will not be output at the time of the macro expansion.

- If a LOCAL declaration is made within a macro definition for which a symbol has the same name as a formal
parameter of that macro definition, an error will be output.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 322 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
NAME SAMPLE
; Macro definition
MAC1 MACRO
LOCAL LLAB ; (1)
LLAB : ;
BR SLLAB ; (2)
ENDM ;
; Source text
REF1 : MAC1 ;i (3)
??RA0000 :
BR $S??RA0000 ;7 (2)
BR ILLAB ; (4) <- Error
REF2 : MAC1 ; (5)
??RA0001 :
BR $??RA0001 ; (2)
END

(1) This LOCAL directive defines symbol name "LLAB" as a local symbol.

(2) This BRinstruction references local symbol "LLAB" within macro MACL1.

(3) This macro reference calls macro MACL1.

(4) Because local symbol "LLAB" is referenced outside the definition of macro MACL1, this description results
in an error.

(5) This macro reference calls macro MACL1.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 323 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

The assemble list of the above application example is shown below.

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 NAME SAMPLE

2 2 M MAC1 MACRO

3 3 M LOCAL LLAB ; (1)
4 4 M LLAB

5 5 M BR SLLAB i (2)
6 6 M ENDM

7 7

8 8 000000 REF1 : MAC1 i (3)

9 #1 ;

10 000000 #1 ??RA0000
11 000000 14FE #1 BR $??RA0000 ;o (2)
9 12
10 13 000002 2C0000 BR ILLAB ; (4)

**% ERROR E2407 , STNO 13 (0) Undefined symbol reference 'LLAB'

**% ERROR E2303 , STNO 13 (13) Illegal expression

11 14
12 15 000005 REF2 : MACL i (5)
16 #1 i
17 000005 #1 ??RA0001
18 000005 14FE #1 BR $??RA0001 ;7 (2)
13 19
14 20 END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 324 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

REPT

Tells the assembler to repeatedly expand a series of statements described between this directive and the ENDM direc-
tive the number of times equivalent to the value of the expression specified in the operand field.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] REPT absolute-expression [; comment]
ENDM [; comment]
[Function]

- The REPT directive tells the assembler to repeatedly expand a series of statements described between this direc-
tive and the ENDM directive (called the REPT-ENDM block) the number of times equivalent to the value of the
expression specified in the operand field.

[Use]

- Use the REPT and ENDM directives to describe a series of statements repeatedly in a source program.

[Description]

- An error occurs if the REPT directive is not paired with the ENDM directive.

- In the REPT-ENDM block, macro references, REPT directives, and IRP directives can be nested up to eight levels.

- If the EXITM directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by the
assembler is terminated.

- Assembly control instructions may be described in the REPT-ENDM block.

- Macro definitions cannot be described in the REPT-ENDM block.

- The absolute expression described in the operand field is evaluated with unsigned 16 bits.
If the value of the expression is 0, nothing is expanded.

[Example]

NAME SAMP1
CSEG

; REPT-ENDM block

REPT 3 i (1)
INC B
DEC c

; Source text
ENDM i (2)

END

(1) This REPT directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 325 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

When the above source program is assembled, the REPT-ENDM block is expanded as shown in the following assem-

ble list:

NAME SAMP1

CSEG

REPT 3
INC B
DEC C

ENDM
INC B
DEC C
INC B
DEC C
INC B
DEC C

END

The REPT-ENDM block defined by statements (1) and (2) has been expanded three times.

On the assemble list, the definition statements (1) and (2) by the REPT directive in the source module is not displayed.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 326 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

IRP

Tells the assembler to repeatedly expand a series of statements described between IRP directive and the ENDM direc-
tive the number of times equivalent to the number of actual parameters while replacing the formal parameter with the
actual parameters (from the left, the order) specified in the operand field.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] IRP formal-parameter, < [actual-parameter[, ...]11> [; comment]
ENDM [; comment]

[Function]

- The IRP directive tells the assembler to repeatedly expand a series of statements described between this directive
and the ENDM directive (called the IRP-ENDM block) the number of times equivalent to the number of actual

parameters while replacing the formal parameter with the actual parameters (from the left, the order) specified in
the operand field.

[Use]

- Use the IRP and ENDM directives to describe a series of statements, only some of which become variables,
repeatedly in a source program.

[Description]

- The IRP directive must be paired with the ENDM directive.

- Up to 16 actual parameters may be described in the operand field.

- In the IRP-ENDM block, macro references, REPT and IRP directives can be nested up to eight levels.

- If the EXITM directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the
assembler is terminated.

- Macro definitions cannot be described in the IRP-ENDM block.

- Assembly control instructions may be described in the IRP-ENDM block.

[Example]
NAME SAMP1
CSEG
IRP PARA, <OAH, O0BH, O0CH> ; (1)

; IRP-ENDM block

ADD A, #PARA
MOV [DE], A
ENDM i (2)

; Source text

END

R20UT2774EJ0100 Rev.1.00 RENESAS Page 327 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) The formal parameter is "PARA" and the actual parameters are the following three: "0AH", "OBH", and
"OCH".
This IRP directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number of actual
parameters) while replacing the formal parameter "PARA" with the actual parameters "0AH", "OBH", and
"OCH".

(2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM block is expanded as shown in the following assemble
list:

NAME SAMP1
CSEG

; IRP-ENDM block

ADD A, #0AH i (3)
MOV [DE], A
ADD A, #O0BH i (4)
MOV [DE], A
ADD A, #O0CH i (5)
MOV [DE], A

;Source text

END

The IRP-ENDM block defined by statements (1) and (2) has been expanded three times (equivalent to the number of
actual parameters).

(3) In this ADD instruction, PARA is replaced with OAH.
(4) In this ADD instruction, PARA is replaced with OBH.

(5) In this ADD instruction, PARA is replaced with OCH.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 328 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EXITM

Forcibly terminates the expansion of the macro body defined by the MACRO directive and the repetition by the REPT-
ENDM or IRP-ENDM block.

[Description Format]

Symbol field Mnemonic field Operand field Comment field
[label:] EXITM None [; comment]
[Function]

- The EXITM directive forcibly terminates the expansion of the macro body defined by the MACRO directive and the
repetition by the REPT-ENDM or IRP-ENDM block.

[Use]

- This function is mainly used when a conditional assembly function (see "4.3.7 Conditional assembly control
instructions™) is used in the macro body defined with the MACRO directive.

- If conditional assembly functions are used in combination with other instructions in the macro body, part of the
source program that must not be assembled is likely to be assembled unless control is returned from the macro by
force using this EXITM directive. In such cases, be sure to use the EXITM directive.

[Description]

- If the EXITM directive is described in a macro body, instructions up to the ENDM directive will be stored as the
macro body.

- The EXITM directive indicates the end of a macro only during the macro expansion.

- If something is described in the operand field of the EXITM directive, the assembler will output an error but will
execute the EXITM processing.

- If the EXITM directive appears in a macro body, the assembler will return by force the nesting level of IF/_IF/ELSE/
ELSEIF/_ELSEIF/ENDIF blocks to the level when the assembler entered the macro body.

- If the EXITM directive appears in an INCLUDE file resulting from expanding the INCLUDE control instruction
described in a macro body, the assembler will accept the EXITM directive as valid and terminate the macro expan-
sion at that level.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 329 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Example]
NAME SAMP1
MAC1 MACRO i (1)
; macro body
NOT1 cYy
$ IF (SWl) i (2) <- IF block
BT A.1, $L1
EXITM i (3)
$ ELSE i (4) <- ELSE block
MOV1 cY, A.1
MOV A, #0
$ ENDIF i (5)
s IF (SW2) ; (6) <- IF block
BR [HL]
$ ELSE ;o (7) <- ELSE block
BR [DE]
$ ENDIF i (8)
; Source text
ENDM i (9)
CSEG
s SET (SW1) i (10)
MAC1 ;o (11) <- Macro reference
L1 : NOP
END
(1) The macro "MAC1" uses conditional assembly functions (2) and (4) through (8) within the macro body.

@)

@)

(4)

(®)

(6)

@)

An IF block for conditional assembly is defined here.
If switch name "SW1" is true (not "0"), the ELSE block is assembled.

This directive terminates by force the expansion of the macro body in (4) and thereafter.
If this EXITM directive is omitted, the assembler proceeds to the assembly process in (6) and thereafter

when the macro is expanded.

An ELSE block for conditional assembly is defined here.
If switch name "SW1" is false ("0"), the ELSE block is assembled.

This ENDIF control instruction indicates the end of the conditional assembly.

Another IF block for conditional assembly is defined here.
If switch name "SW2" is true (not "0"), the following IF block is assembled.

Another ELSE block for conditional assembly is defined.
If switch name "SW2" is false ("0"), the ELSE block is assembled.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 330 of 872

Dec 01,

2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(8) This ENDIF instruction indicates the end of the conditional assembly processes in (6) and (7).

(9) This directive indicates the end of the macro body.

(10) This SET control instruction gives true value (not "0") to switch name "SW1" and sets the condition of the

conditional assembly.

(11) This macro reference calls macro "MAC1".

Remark Inthe example here, conditional assembly control instructions are used. See "4.3.7 Conditional assembly

control instructions". See "4.4 Macros" for the macro body and macro expansion.

The assemble list of the above application example is shown below.

NAME SAMP1

MAC1 MACRO

ENDM
CSEG
$ SET (SW1

MAC1

NOT1 CcYy
$ IF (SWl)
BT
; Source text
L1l : NOP

END

; Macro-expanded part

The macro body of macro "MAC1" is expanded by referring to the macro in (11).

Because true value is set in switch name "SW1" in (10), the first IF block in the macro body is assembled. Because the

EXITM directive is described at the end of the IF block, the subsequent macro expansion is not executed.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 331 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ENDM

Instructs the assembler to terminate the execution of a series of statements defined as the functions of the macro.

[Description Format]

Symbol field Mnemonic field Operand field Comment field

None ENDM None [; comment]

[Function]

- The ENDM directive instructs the assembler to terminate the execution of a series of statements defined as the
functions of the macro.

[Use]

- The ENDM directive must always be described at the end of a series of statements following the MACRO, REPT,
and/or the IRP directives.

[Description]

- A series of statements described between the MACRO directive and ENDM directive becomes a macro body.
- A series of statements described between the REPT directive and ENDM directive becomes a REPT-ENDM block.
- A series of statements described between the IRP directive and ENDM directive becomes an IRP-ENDM block.

[Example]

(1) MACRO-ENDM

NAME SAMP1
ADMAC MACRO PARA1l, PARA2
MOV A, #PARA1
ADD A, #PARA2
ENDM
END
(2) REPT-ENDM
NAME SAMP2
CSEG
REPT 3
INC B
DEC C
ENDM
END
R20UT2774EJ0100 Rev.1.00 RENESANAS Page 332 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) IRP-ENDM

NAME SAMP3

CSEG

IRP PARA, <1, 2, 3>
ADD A, #PARA
MOV [DE], A

ENDM

END

R20UT2774EJ0100 Rev.1.00 RENESAS Page 333 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.2.9 Assemble termination directive

The assemble termination directive specifies completion of the source module to the assembler. This assembly termi-
nation directive must always be described at the end of each source module.

The assembler processes as a source module until the assemble completion directive. Consequently, with REPT block
and IRP Block, if the assemble directive is before ENDM, the REPT block and IRP block become ineffective.
The following assemble termination directives are available.

Control Instruction

Overview

END

Declares termination of the source module

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 334 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

END

Declares termination of the source module

[Description Format]

Symbol field Mnemonic field Operand field Comment field

None END None [; comment]

[Function]

- The END directive indicates to the assembler the end of a source module.

[Use]

- The END directive must always be described at the end of each source module.

[Description]

- The assembler continues to assemble a source module until the END directive appears in the source module.
Therefore, the END directive is required at the end of each source module.

- Always input a line-feed (LF) code after the END directive.

- If any statement other than blank, tab, LF, or comments appears after the END directive, the assembler outputs a
warning message.

[Example]

NAME SAMPLE

DSEG

CSEG

END

(1) Always describe the END directive at the end of each source module.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 335 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3 Control Instructions

This chapter describes control instructions.
Control Instructions provide detailed instructions for assembler operation.

4.3.1 Overview

Control instructions provide detailed instructions for assembler operation and so are written in the source.
Control instructions do not become the target of object code generation.
Control instruction categories are displayed below.

Table 4-20. Control Instruction List

Control Instruction Type Control Instruction
Assemble target type specification control instruction PROCESSOR
Debug information output control instructions DEBUG, NODEBUG, DEBUGA, NODEBUGA

Cross-reference list output specification control instructions XREF, NOXREF, SYMLIST, NOSYMLIST

Include control instruction INCLUDE

Assembly list control instructions EJECT, LIST, NOLIST, GEN, NOGEN, COND, NOCOND,
TITLE, SUBTITLE, FORMFEED, NOFORMFEED, WIDTH,
LENGTH, TAB

Conditional assembly control instructions IF, IF, ELSEIF, ELSEIF, ELSE, ENDIF, SET, RESET

Kaniji code control instruction KANJICODE

RAM area allocation-specification control instruction RAM_ALLOCATE

Other control instructions TOL_INF, DGS, DGL

As with directives, control instructions are specified in the source.
Also, among the control instructions displayed in "Table 4-20. Control Instruction List", the following can be written as
an assembler option even in the command line when the assembler is activated.

Table 4-21. Control Instructions and Assembler Options

Control Instruction Assembler Options
PROCESSOR -C
DEBUG/NODEBUG -gl-ng
DEBUGA/NODEBUGA -ga/-nga
XREF/NOXREF -kx/-nkx
SYMLIST/NOSYMLIST -ks/-nks
TITLE -lh
FORMFEED/NOFORMFEED -If/-nif
WIDTH -lw
LENGTH -ll
TAB -It
KANJICODE -zs/-zel-zn
R20UT2774EJ0100 Rev.1.00 RENESAS Page 336 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.2 Assemble target type specification control instruction

Assemble target type specification control instructions specify the assemble target type in the source module file.
The following assemble target type specification control instructions are available.

Control Instruction

Overview

PROCESSOR

Specifies in a source module file the assemble target type.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 337 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

PROCESSOR

Specifies in a source module file the assemble target type.

[Description Format]

[1$[1PROCESSORI[] ([] processor-typel 1)
[1$[1PC[]([]processor-typel]) ; DAbbreviated format
[Function]

- The PROCESSOR control instruction specifies in a source module file the processor type of the target device sub-
ject to assembly.

[Use]

- The processor type of the target device subject to assembly must always be specified in the source module file or
in the startup command line of the assembler.

- If you omit the processor type specification for the target device subject to assembly in each source module file,
you must specify the processor type at each assembly operation. Therefore, by specifying the target device sub-
ject to assembly in each source module file, you can save time and trouble when starting up the assembler.

[Description]

- The PROCESSOR control instruction can be described only in the header section of a source module file. If the
control instruction is described elsewhere, the assembler will be aborted.

- For the specifiable processor name, see the user's manual of the device used or "Functions Supported by Cube-
Suite+".

- If the specified processor type differs from the actual target device subject to assembly, the assembler will be
aborted.

- Only one PROCESSOR control instruction can be specified in the module header.

- The processor type of the target device subject to assembly may also be specified with the assembler option (-c) in
the startup command line of the assembler. If the specified processor type differs between the source module file
and the startup command line, the assembler will output a warning message and give precedence to the processor
type specification in the startup command line.

- Even when the assembler option (-c) has been specified in the startup command line, the assembler performs a
syntax check on the PROCESSOR control instruction.

- If the processor type is not specified in either the source module file or the startup command line, the assembler
will be aborted.

[Application example]

s PROCESSOR (f1166a0)
$ DEBUG
s XREF
NAME TEST
CSEG
R20UT2774EJ0100 Rev.1.00 RENESAS Page 338 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.3 Debug information output control instructions

With debug information output control instructions is is possible to specify the output of debug information for the object
module file in the source module file.
The following debug information output control instrucitons are available.

Control Instruction Overview
DEBUG Adds local symbol information in the object module file.
NODEBUG Does not add local symbol information in the object module file.
DEBUGA Adds assembler source debug information in the object module file.
NODEBUGA Does not add assembler source debug information in the object module file.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 339 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DEBUG

Adds local symbol information in the object module file.

[Description Format]

[1$[1DEBUG ; Default assumption
[1s[1DG ; Abbreviated format
[Function]

- The DEBUG control instruction tells the assembler to add local symbol information to an object module file.
- The NODEBUG control instruction tells the assembler not to add local symbol information to an object module file.
However, in this case as well, the segment name is output to an object module file.

[Use]

- Use the DEBUG control instruction when symbolic debugging including local symbols is to be performed.

[Description]

- The DEBUG or NODEBUG control instruction can be described only in the header section of a source module file.

- If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG control
instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- The addition of local symbol information can be specified using the assembler option (-g/-ng) in the startup com-
mand line.

- If the control instruction specification in the source module file differs from the specification in the startup command
line, the specification in the command line takes precedence.

- Even when the assembler option (-ng) has been specified, the assembler performs a syntax check on the DEBUG
or NODEBUG control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 340 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NODEBUG

Does not add local symbol information in the object module file.

[Description Format]

[1$[1NODEBUG

[1$[1NODG ; Abbreviated format

[Function]

- The NODEBUG control instruction tells the assembler not to add local symbol information to an object module file.
However, in this case as well, the segment name is output to an object module file.

- "Local symbol information" refers to symbols other than module names and PUBLIC, EXTRN, and EXTBIT sym-
bols.

[Use]

- Use the NODEBUG control instruction when:

- Symbolic debugging is to be performed for global symbols only
- Debugging is to be performed without symbols

- Only objects are required (as for evaluation with PROM)

[Description]

- The DEBUG or NODEBUG control instruction can be described only in the header section of a source module file.

- If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG control
instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- The addition of local symbol information can be specified using the assembler option (-g/-ng) in the startup com-
mand line.

- If the control instruction specification in the source module file differs from the specification in the startup command
line, the specification in the command line takes precedence.

- Even when the assembler option (-ng) has been specified, the assembler performs a syntax check on the DEBUG
or NODEBUG control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 341 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

DEBUGA

Adds assembler source debug information in the object module file.

[Description Format]

[1$[]1DEBRUGA ; Default assumption

[Function]

- The DEBUGA control instruction tells the assembler to add assembler source debugging information to an object
module file.

[Use]

- Use the DEBUGA control instruction when debugging is to be performed at the assembler source level. An inte-
grated debugger will be necessary for debugging at the source level.

[Description]

- The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source module
file.

- If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA control
instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- The addition of assembler source debugging information can be specified using the assembler option (-ga/-nga) in
the startup command line.

- If the control instruction specification in the source module file differs from the specification in the startup command
line, the specification in the command line takes precedence.

- Even when the assembler option (-nga) has been specified, the assembler performs a syntax check on the
DEBUGA or NODEBUGA control instruction.

- If compiling the debug information output by the C compiler, do not describe the debug information output control
instructions when assembling the output assemble source. The control instructions necessary at assembly are
output to assembler source as control statements by the C compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 342 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NODEBUGA

Does not add assembler source debug information in the object module file.

[Description Format]

[1$[]NODEBUGA

[Function]

- NThe NODEBUGA control instruction tells the assembler not to add assembler source debugging information to
an object module file.

[Use]

- Use the NODEBUGA control instruction when:
- Debugging is to be performed without the assembler source
- Only objects are required (as for evaluation with PROM)

[Description]

- The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source module
file.

- If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA control
instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- The addition of assembler source debugging information can be specified using the assembler option (-ga/-nga) in
the startup command line.

- If the control instruction specification in the source module file differs from the specification in the startup command
line, the specification in the command line takes precedence.

- Even when the assembler option (-nga) has been specified, the assembler performs a syntax check on the
DEBUGA or NODEBUGA control instruction.

- If compiling the debug information output by the C compiler, do not describe the debug information output control
instructions when assembling the output assemble source. The control instructions necessary at assembly are
output to assembler source as control statements by the C compiler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 343 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.4 Cross-reference list output specification control instructions

cross-reference list output specification control instructions specify cross-reference list output in a source module file.
The following cross-reference list output specification control instructions are available.

Control Instruction Overview
XREF Outputs a cross-reference list to an assembile list file.
NOXREF Does not output a cross-reference list to an assembile list file.
SYMLIST Outputs a symbol list to a list file.
NOSYMLIST Does not output a symbol list to a list file.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 344 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

XREF

Outputs a cross-reference list to an assemble list file.

[Description Format]

[1$[1XREF
[1S[1XR ; Abbreviated format
[Function]

- The XREF control instruction tells the assembler to output a cross-reference list to an assembly list file.

[Use]

- Use the XREF control instruction to output a cross-reference list when you want information on where each of the
symbols defined in the source module file is referenced or how many such symbols are referenced in the source
module file.

- If you must specify the output or non-output of a cross-reference list at each assembly operation, you may save
time and labor by specifying the XREF and NOXREF control instruction in the source module file.

[Description]

- The XREF or NOXREF control instruction can be described only in the header section of a source module file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- Output or non-output of a cross-reference list can also be specified by the assembler option (-kx/-nkx) in the star-
tup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the
startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the XREF/NOXREF control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 345 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOXREF

Does not output a cross-reference list to an assembile list file.

[Description Format]

[1$[]NOXREF ; Default assumption
[1$[INOXR ; Abbreviated format
[Function]

- The NOXREF control instruction tells the assembler not to output a cross-reference list to an assembly list file.

[Use]

- Use the XREF control instruction to output a cross-reference list when you want information on where each of the
symbols defined in the source module file is referenced or how many such symbols are referenced in the source
module file.

- If you must specify the output or non-output of a cross-reference list at each assembly operation, you may save
time and labor by specifying the XREF and NOXREF control instruction in the source module file.

[Description]

- The XREF or NOXREF control instruction can be described only in the header section of a source module file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- Output or non-output of a cross-reference list can also be specified by the assembler option (-kx/-nkx) in the star-
tup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the
startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the XREF/NOXREF control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 346 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SYMLIST

Outputs a symbol list to a list file

[Description Format]

[1$[1SYMLIST

[Function]

- The SYMLIST control instruction tells the assembler to output a symbol list to a list file.

[Use]

- Use the SYMLIST control instruction to output a symbol list.

[Description]

- The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source module
file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- Output of a symbol list can also be specified by the assembler option (-ks/-nks) in the startup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the
startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the SYMLIST/NOSYMLIST control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 347 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOSYMLIST

Does not output a symbol list to a list file.

[Description Format]

[1$[INOSYMLIST ; Default assumption

[Function]

- The NOSYMLIST control instruction tells the assembler not to output a symbol list to a list file.

[Use]

- Use the NOSYMLIST control instruction not to output a symbol list.

[Description]

- The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source module
file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence
over the others.

- Output of a symbol list can also be specified by the assembler option (-ks/-nks) in the startup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the
startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the SYMLIST/NOSYMLIST control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 348 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

435 Include control instruction

Include control instructions are used when quoting other source module files in the source module
By using include control instructions effectively, the labor hours for describing source can be reduced.

The following include control instructions are available.

Control Instruction

Overview

INCLUDE

Quote a series of statements from another source module file.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 349 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

INCLUDE

Quote a series of statements from another source module file.

[Description Format]

[ISI]1INCLUDE[]([]filenamel 1)
[1$[]1IC[]1([]filename[]) ; Abbreviated format
[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file beginning
on a specified line in the source program for assembly.

[Use]

- Arelatively large group of statements that may be shared by two or more source modules should be combined into
a single file as an INCLUDE file.
If the group of statements must be used in each source module, specify the filename of the required INCLUDE file
with the INCLUDE control instruction.
With this control instruction, you can greatly reduce time and labor in describing source modules.

[Description]
- The INCLUDE control instruction can only be described in ordinary source programs.

- The pathname or drive name of an INCLUDE file can be specified with the assembler option (-1).
- The assembler searches INCLUDE file read paths in the following sequence:

(1) When an INCLUDE file is specified without pathname specification
(@) Path in which the source file exists
(b) Path specified by the assembler option (-1)
(c) Path specified by the environment variable INC78KOR

(2) When an INCLUDE file is specified with a pathname
If the INCLUDE file is specified with a drive name or a pathname which begins with backslash (\), the path specified
with the INCLUDE file will be prefixed to the INCLUDE filename. If the INCLUDE file is specified with a relative
path (which does not begin with \), a pathname will be prefixed to the INCLUDE filename in the order described in
(1) above.

- Nesting of INCLUDE files is allowed up to seven levels. In other words, the nesting level display of INCLUDE files
in the assembly list is up to 8 (the term "nesting" here refers to the specification of one or more other INCLUDE
files in an INCLUDE file).

- The END directive need not be described in an INCLUDE file.

- If the specified INCLUDE file cannot be opened, the assembler will abort operation.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 350 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- An INCLUDE file must be closed with IF or _IF control instruction that is properly paired with an ENDIF control
instruction within the INCLUDE file. If the IF level at the entry of the INCLUDE file expansion does not correspond
with the IF level immediately after the INCLUDE file expansion, the assembler will output an error message and
force the IF level to return to that level at the entry of the INCLUDE file expansion.

- When defining a macro in an INCLUDE file, the macro definition must be closed in the INCLUDE file. If an ENDM
directive appears unexpectedly (without the corresponding MACRO directive) in the INCLUDE file, an error mes-
sage will be output and the ENDM directive will be ignored. If an ENDM directive is missing for the MACRO direc-
tive described in the INCLUDE file, the assembler will output an error message but will process the macro
definition by assuming that the corresponding ENDM directive has been described.

- Two or more segments cannot be defined in an include file. An error is output, if defined.

[Application example]

<Source program>Note 1 <EQU.INC>Note 2 <SET1.INC>Noe 3
NAME SAMPLE SYMA EQU 10H SYM1 SET 10H
EXTRN L1, L2 $ INCLUDE (SET1.INC) ; (2)]

PUBLIC L3 SYMB EQU 20H
$ INCLUDE (EQU.INC) ; (1) $ INCLUDE (SET2.INC) ; (3) S <SET2INC >Nowe3
CSEG : SYM1 SET 20H
$ INCLUDE (SET3.INC) ; (4)
END SYMZ EQU 100H

< SET3.INC >Note 3

SYM1 SET 30H

(1) This control instruction specifies "EQU.INC" as the INCLUDE file.
(2) This control instruction specifies "SET1.INC" as the INCLUDE file.
(3) This control instruction specifies "SET2.INC" as the INCLUDE file.
(4) This control instruction specifies "SET3.INC" as the INCLUDE file.
Notes 1. Two or more $IC control instructions can be specified in the source file. The same INCLUDE file may also
be specified more than once.
2. Two or more 3$IC control instructions may be specified for INCLUDE file "EQU.INC".

3. No $IC control instruction can be specified in any of the INCLUDE files "SET1.INC", "SET2.INC", and
"SET3.INC".

R20UT2774EJ0100 Rev.1.00 RENESAS Page 351 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

When this source program is assembled, the contents of the INCLUDE file will be expanded as follows:

i

NAME SAMPLE
EXTRN L1, L2
PUBLIC L3
$ INCLUDE (EQU.INC) ;o (1)
SYMA EQU 10H
& INCLUDE (SET1.INC) ;o (2)
SYM1 SET 10H F/////
SYMB EQU 20H
& INCLUDE (SET2.INC) ; (3)
| SYM1 SET 20H
& INCLUDE (SET3.INC) ; (4)
| SYM1 SET 30H
SYMZ EQU 100H
CSEG
END

:

The contents of INCLUDE file "EQU.INC"

have been expanded.

The contents of INCLUDE file "SET1.INC"

have been expanded.

The contents of INCLUDE file "SET2.INC"

have been expanded.

The contents of INCLUDE file "SET3.INC"

have been expanded.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 352 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.6 Assembly list control instructions

The assembly list control instructions are used in a source module file to control the output format of an assembly list

such as page ejection, suppression of list output, and subtitle output.
The following assembly list control instructions are available.

Control Instruction

EJECT Indicates an Assembly List page break.

LIST Indicates starting location of output of assembly list.

NOLIST Indicates stop location of output of assembly list.

GEN Outputs macro definition lines, reference line and also macro-expanded lines to
assembly list.

NOGEN Does not output macro definition lines, reference line and also macro-expanded
lines to assembly list.

COND Outputs approved and failed sections of the conditional assemble to the assem-
bly list.

NOCOND Does not output approved and failed sections of the conditional assemble to the
assembly list

TITLE Prints character strings in the TITLE column at each page header of an assem-
bly list, symbol table list, or cross-reference list.

SUBTITLE Prints character strings in the SUBTITLE column at header of an assembly list.

FORMFEED Outputs form feed at the end of a list file.

NOFORMFEED Does not output form feed at the end of a list file.

WIDTH Specifies the maximum number of characters for one line of a list file.

LENGTH Specifies the number of lines for 1 page of a list file.

TAB Specifies the number of characters for list file tabs.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 353 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

EJECT

Indicates an assembly list page break.

[Description Format]

[1$[]1EJECT

[1S[]EJ ; Abbreviated format

[Default Assumption]

- EJECT control instruction is not specified.

[Function]

- The EJECT control instruction causes the assembler to execute page ejection (formfeed) of an assembly list.

[Use]

- Describe the EJECT control instruction in a line of the source module at which page ejection of the assembly list is
required.

[Description]

- The EJECT control instruction can only be described in ordinary source programs.

- Page ejection of the assembly list is executed after the image of the EJECT control instruction itself is output.

- If the assembler option (-np) or (-llo) is specified in the startup command line or if the assembly list output is dis-
abled by another control instruction, the EJECT control instruction becomes invalid.

- If an illegal description follows the EJECT control instruction, the assembler will output an error message.

[Application example]

MOV [DE+], A
BR s$S
$ EJECT i (1)
CSEG
END

(1) Page ejection is executed with the EJECT control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 354 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

The assemble list of the above application example is shown below.

MOV [DE+], A
BR $3
S EJECT (1)
——— page ejection-------------------~----
CSEG
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 355 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LIST

Indicates starting location of output of assembly list.

[Description Format]

[1$[]LIST ; Default assumption
[I1s[]LI ; Abbreviated format
[Function]

- The LIST control instruction indicates to the assembler the line at which assembly list output must start.

[Use]

- LUse the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST control
instruction.
By using a combination of NOLIST and LIST control instructions, you can control the amount of assembly list out-
put as well as the contents of the list.

[Description]

- The LIST control instruction can only be described in ordinary source programs.

- If the LIST control instruction is specified after the NOLIST control instruction, statements described after the LIST
control instruction will be output again on the assembly list. The image of the LIST or NOLIST control instruction
will also be output on the assembly list.

- If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be output to
an assembly list.

[Application example]

NAME SAMP1
$ NOLIST i (1)
DATA1 EQU 10H ; The statement will not be output to the assembly list.
DATA2 EQU 11H ; The statement will not be output to the assembly list.

; The statement will not be output to the assembly list.

DATAX EQU 20H ; The statement will not be output to the assembly list.
DATAY EQU 20H ; The statement will not be output to the assembly list.
$ LIST i (2)

CSEG

END

(1) Because the NOLIST control instruction is specified here, statements after "$ NOLIST" and up to the LIST
control instruction in (2) will not be output on the assembly list.
The image of the NOLIST control instruction itself will be output on the assembly list.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 356 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Because the LIST control instruction is specified here, statements after this control instruction will be out-
put again on the assembly list.
The image of the LIST control instruction itself will also be output on the assembly list.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 357 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOLIST

Indicates stop location of output of assembly list.

[Description Format]

[1$[INOLIST
[1$[]INOLI ; Abbreviated format
[Function]

- The NOLIST control instruction indicates to the assembler the line at which assembly list output must be sup-
pressed.
All source statements described after the NOLIST control instruction specification will be assembled, but will not be
output on the assembly list until the LIST control instruction appears in the source program.

[Use]

- Use the NOLIST control instruction to limit the amount of assembly list output.

- Use the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST control
instruction.
By using a combination of NOLIST and LIST control instructions, you can control the amount of assembly list out-
put as well as the contents of the list.

[Description]

- The NOLIST control instruction can only be described in ordinary source programs.

- The NOLIST control instruction functions to suppress assembly list output and is not intended to stop the assembly
process.

- If the LIST control instruction is specified after the NOLIST control instruction, statements described after the LIST
control instruction will be output again on the assembly list. The image of the LIST or NOLIST control instruction
will also be output on the assembly list.

- If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be output to
an assembly list.

[Application example]

NAME SAMP1
$ NOLIST i (1)
DATA1 EQU 10H ; The statement will not be output to the assembly list.
DATA2 EQU 11H ; The statement will not be output to the assembly list.

; The statement will not be output to the assembly list.

DATAX EQU 20H ; The statement will not be output to the assembly list.
DATAY EQU 20H ; The statement will not be output to the assembly list.
$ LIST i (2)

CSEG

END

R20UT2774EJ0100 Rev.1.00 RENESAS Page 358 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) Because the NOLIST control instruction is specified here, statements after "$ NOLIST" and up to the LIST
control instruction in (2) will not be output on the assembly list.
The image of the NOLIST control instruction itself will be output on the assembly list.

(2) Because the LIST control instruction is specified here, statements after this control instruction will be out-
put again on the assembly list.
The image of the LIST control instruction itself will also be output on the assembly list.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 359 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

GEN

Outputs macro definition lines, reference line and also macro-expanded lines to assembly list.

[Description Format]

[1$[]1GEN ; Default assumption

[Function]

- The GEN control instruction tells the assembler to output macro definition lines, macro reference lines, and macro-
expanded lines to an assembly list.

[Use]

- Use the GEN control instruction to limit the amount of assembly list output.

[Description]

- The GEN control instruction can only be described in ordinary source programs.

- If neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines, and
macro-expanded lines will be output to an assembly list.

- The specified list control takes place after the image of the GEN or NOGEN control instruction itself has been
printed on the assembly list.

- If the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the out-
put of macro-expanded lines.

[Application example]

NAME SAMP
$ NOGEN i (1)
ADMAC MACRO PARAl, PARA2
MOV A, #PARA1
ADD A, #PARA2
ENDM
CSEG

ADMAC 10H, 20H

END

R20UT2774EJ0100 Rev.1.00 RENESAS Page 360 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

The assemble list of the above application example is shown below.

ADMAC

NAME

NOGEN

MACRO

ENDM

CSEG

ADMAC

MOV

AUD

END

SAMP1

PARAl, PARA2

MOV A, #PARA1

ADD A, #PARA2

10H, 20H

A, #10H ; The macro-expanded lines will not be output.
A, #20H ; The macro-expanded lines will not be output.

(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the

assembly list.

R20UT2774EJ0100 Rev.1.00 RENESAS

Dec 01, 2013

Page 361 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOGEN

Does not output macro definition lines, reference line and also macro-expanded lines to assembly list.

[Description Format]

[15[INOGEN

[Function]

- The NOGEN control instruction tells the assembler to output macro definition lines and macro reference lines but
to suppress macro-expanded lines.

[Use]

- Use the NOGEN control instruction to limit the amount of assembily list output.

[Description]

- The NOGEN control instruction can only be described in ordinary source programs.

- If neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines, and
macro-expanded lines will be output to an assembly list.

- The specified list control takes place after the image of the GEN or NOGEN control instruction itself has been
printed on the assembly list.

- The assembler continues its processing and increments the statement number (STNO) count even after the list
output control by the NOGEN control instruction.

- If the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the out-
put of macro-expanded lines.

[Application example]

NAME SAMP
$ NOGEN i (1)
ADMAC MACRO PARA1l, PARA2
MOV A, #PARA1l
ADD A, #PARA2
ENDM
CSEG
ADMAC 10H, 20H

END

R20UT2774EJ0100 Rev.1.00 RENESAS Page 362 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

The assemble list of the above application example is shown below.

ADMAC

NAME

NOGEN

MACRO

ENDM

CSEG

ADMAC

MOV

AUD

END

SAMP1

PARAl, PARA2

MOV A, #PARA1

ADD A, #PARA2

10H, 20H

A, #10H ; The macro-expanded lines will not be output.
A, #20H ; The macro-expanded lines will not be output.

(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the

assembly list.

R20UT2774EJ0100 Rev.1.00 RENESAS

Dec 01, 2013

Page 363 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

COND

Outputs approved and failed sections of the conditional assemble to the assembly list.

[Description Format]

[1$[]1COND ; Default assumption

[Function]

- The COND control instruction tells the assembler to output lines that have satisfied the conditional assembly con-
dition as well as those which have not satisfied the conditional assembly condition to an assembly list.

[Use]

- Use the COND control instruction to limit the amount of assembly list output.

[Description]

- The COND control instruction can only be described in ordinary source programs.

- If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have satis-
fied the conditional assembly condition as well as those which have not satisfied the conditional assembly condi-
tion to an assembly list.

- The specified list control takes place after the image of the COND or NOCOND control instruction itself has been
printed on the assembly list.

- If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume the
output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF, ELSEIF/
_ELSEIF, ELSE, and ENDIF have been described.

[Application example]

NAME SAMP
S NOCOND
$ SET (SW1)
s IF (SW1) ; This part, though assembled, will not be outout
; to the list.
MOV A, #1H
s ELSE ; This part, though assembled, will not be outout
; to the list.
MOV A, #0H ; This part, though assembled, will not be outout
; to the list.
s ENDIF ; This part, though assembled, will not be outout
; to the list.
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 364 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOCOND

Does not output approved and failed sections of the conditional assemble to the assembly list.

[Description Format]

[1$[INOCOND

[Function]

- The NOCOND control instruction tells the assembler to output only lines that have satisfied the conditional assem-
bly condition to an assembly list. The output of lines that have not satisfied the conditional assembly condition and
lines in which IF/_IF, ELSEIF/_ELSEIF, ELSE, and ENDIF have been described will be suppressed.

[Use]

- Use the NOCOND control instruction to limit the amount of assembly list output.

[Description]

- The NOCOND control instruction can only be described in ordinary source programs.

- If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have satis-
fied the conditional assembly condition as well as those which have not satisfied the conditional assembly condi-
tion to an assembly list.

- The specified list control takes place after the image of the COND or NOCOND control instruction itself has been
printed on the assembly list.

- The assembler increments the ALNO and STNO counts even after the list output control by the NOCOND control
instruction.

- If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume the
output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF, ELSEIF/
_ELSEIF, ELSE, and ENDIF have been described.

[Application example]

NAME SAMP
S NOCOND
$ SET (SW1)
s IF (SW1) ; This part, though assembled, will not be outout
; to the list.
MOV A, #1H
3 ELSE ; This part, though assembled, will not be outout
; to the list.
MOV A, #0H ; This part, though assembled, will not be outout
; to the list.
s ENDIF ; This part, though assembled, will not be outout
; to the list.
END
R20UT2774EJ0100 Rev.1.00 RENESAS Page 365 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

TITLE

Prints character strings in the TITLE column at each page header of an assembly list, symbol table list, or cross-refer-
ence list.

[Description Format]

[1STITITLEL] ([]'title-string' [])

[1S[ITT[]([]'title-string'[]) ; Abbreviated format

[Default Assumption]

- When the TITLE control instruction is not specified, the TITLE column of the assembly list header is left blank.

[Function]

- The TITLE control instruction specifies the character string to be printed in the TITLE column at each page header
of an assembily list, symbol table list, or cross-reference list.

[Use]

- Use the TITLE control instruction to print a title on each page of a list so that the contents of the list can be easily
identified.

- If you need to specify a title with the assembler option at each assembly time, you can save time and labor in start-
ing the assembler by describing this control instruction in the source module file.

[Description]

- The TITLE control instruction can be described only in the header section of a source module file.

- If two or more TITLE control instructions are specified at the same time, the assembler will accept only the last
specified TITLE control instruction as valid.

- Up to 60 characters can be specified as the title string. If the specified title string consists of 61 or more charac-
ters, the assembler will accept only the first 60 characters of the string as valid.
However, if the character length specification per line of an assembly list file (a quantity "X") is 119 characters or
less, "X - 60 characters" will be acceptable.

- If a single quotation mark (') is to be used as part of the title string, describe the single quotation mark twice in
succession.

- If no title string is specified (the number of characters in the title string = 0), the assembler will leave the TITLE col-
umn blank.

- If any character not included in "(2) Character set" is found in the specified title string, the assembler will output "!"
in place of the illegal character in the TITLE column.

- A title for an assembly list can also be specified with the assembler option (-lh) in the startup command line of the
assembler.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 366 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Application example]

S PROCESSOR (fl1l66a0)
S TITLE ('THIS IS TITLE')
NAME SAMPLE
CSEG
MOV A, B
END

The assemble list of the above application example is shown below. (with the number of lines per page specified as

72).

78KOR Assembler Vx.xx THIS IS TITLE

Command -1172 sample.asm

Para-file

In-file sample.asm
Obj-file sample.rel
Prn-file sample.prn
Assemble list

ALNO STNO ADRS OBJECT M I

1 1

2 2

3 3

4 4 -—--

5 5 00000 63

6 6

Segment information
ADRS LEN NAME
00000

00001H *?CSEG

Target chip
Device file

uPD78F1166_A0
: VX.xXX

Date:xx xxX XX Page:1l

SOURCE STATEMENT

S PROCESSOR (fll66a0)
S TITLE ('THIS IS TITLE'
NAME SAMPLE
CSEG
MOV A, B
END

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

)

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 367 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SUBTITLE

Prints character strings in the SUBTITLE column at header of an assembly list.

[Description Format]

[1$[]1SUBTITLE[] ([]'title-string'[])

[1s[1ST[]([]'title-string'[]) ; Abbreviated format

[Default Assumption]

- When the SUBTITLE control instruction is not specified, the SUBTITLE section of the assembly list header is left
blank.

[Function]

- The SUBTITLE control instruction specifies the character string to be printed in the SUBTITLE section at each
page header of an assembly list.

[Use]

- Use the SUBTITLE control instruction to print a subtitle on each page of an assembly list so that the contents of the
assembly list can be easily identified.
The character string of a subtitle may be changed for each page.

[Description]

- The SUBTITLE control instruction can only be described in ordinary source programs.

- Up to 72 characters can be specified as the subtitle string.

If the specified title string consists of 73 or more characters, the assembler will accept only the first 72 characters
of the string as valid. A 2-byte character is counted as two characters, and tab is counted as one character.

- The character string specified with the SUBTITLE control instruction will be printed in the SUBTITLE section on the
page after the page on which the SUBTITLE control instruction has been specified. However, if the control instruc-
tion is specified at the top (first line) of a page, the subtitle will be printed on that page.

- If the SUBTITLE control instruction has not been specified, the assembler will leave the SUBTITLE section blank.

- If a single quotation mark (') is to be used as part of the character string, describe the single quotation mark twice
in succession.

- If the character string in the SUBTITLE section is 0, the SUBTITLE column will be left blank.

- If any character not included in "(2) Character set" is found in the specified subtitle string, the assembler will out-
put "!" in place of the illegal character in the SUBTITLE column. If CR (ODH) is described, an error occurs and
nothing will be output in the assembly list. If 00H is described, nothing from that point to the closing single quota-
tion mark (') will be output.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 368 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Application example]

NAME SAMP
CSEG
$ SUBTITLE ('THIS IS SUBTITLE 1') ; (1)
$ EJECT i (2)
CSEG
$ SUBTITLE ('THIS IS SUBTITLE 2') ; (3)
$ EJECT i (4)
$ SUBTITLE ('THIS IS SUBTITLE 3') ; (5)
END

(1) This control instruction specifies the character string "THIS IS SUBTITLE 1".

(2) This control instruction specifies a page ejection.

(3) This control instruction specifies the character string "THIS IS SUBTITLE 2".

(4) This control instruction specifies a page ejection.

(5) This control instruction specifies the character string "THIS IS SUBTITLE 3".

The assembly list for this example appears as follows (with the number of lines per page specified as 80).

78KOR Assembler Vx.xx Date:xx xxx xx Page:1

Command : -cfll66a0 -1180 sample.asm

Para-file :

In-file : sample.asm
Obj-file : sample.rel
Prn-file : sample.prn

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 NAME SAMP

2 2 ----- CSEG

3 3 S SUBTITLE ('THIS IS SUBTITLE 1') ; (1)

4 4 S EJECT ; (2)
——— page ejection--------------------~-~--~--
78KOR Assembler Vx.xx Date:xx xxx xx Page:2

THIS IS SUBTITLE 1

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

R20UT2774EJ0100 Rev.1.00 RENESAS Page 369 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

5 5 -----
6 6
7 7

78K0R Assembler Vx.xx

THIS IS SUBTITLE 2

Segment informations :

ADRS LEN NAME

00000 00000H ?CSEG

Target chip :

Device file : Vx.xx

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

uPD78F1166 AQ

Assembly complete, 0 error(s

CSEG
$ SUBTITLE ('THIS IS SUBTITLE 2') ;(3)
S EJECT ;o (4)

Date:xx XXX XX Page:3

S SUBTITLE ('THIS IS SUBTITLE 3') i (5)

END

) and 0 warning(s) found. (0)

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 370 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

FORMFEED

Outputs form feed at the end of a list file.

[Description Format]

[1$[]FORMFEED

[Function]

- The FORMFEED control instruction tells the assembler to output a FORMFEED code at the end of an assembly
list file.

[Use]
- Use the FORMFEED control instruction when you want to start a new page after printing the contents of an assem-

bly list file.

[Description]

- The FORMFEED control instruction can be described only in the header section of a source module file.

- At the time of printing an assembly list, the last page of the list may not come out if printing ends in the middle of a
page.

In such a case, add a FORMFEED code to the end of the assembly list using the FORMFEED control instruction
or assembler option (-If).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code exists
at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED control
instruction or assembler option (-nlf) has been set by default value.

- If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last spec-
ified control instruction will become valid.

- The output or non-output of a formfeed code may also be specified with the assembler option (-If) or (-nlif) in the
startup command line of the assembler.

- If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the specifi-
cation (-If/-nlf) in the startup command line, the specification in the startup command line will take precedence over
that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the FORMFEED or NOFORMFEED control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 371 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

NOFORMFEED

Does not output form feed at the end of a list file.

[Description Format]

[1$[INOFORMFEED ; Default assumption

[Function]

- The NOFORMFEED control instruction tells the assembler not to output a FORMFEED code at the end of an
assembly list file.

[Use]
- Use the FORMFEED control instruction when you want to start a new page after printing the contents of an assem-

bly list file.

[Description]

- The NOFORMFEED control instruction can be described only in the header section of a source module file.

- At the time of printing an assembly list, the last page of the list may not come out if printing ends in the middle of a
page.

In such a case, add a FORMFEED code to the end of the assembly list using the FORMFEED control instruction
or assembler option (-If).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code exists
at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED control
instruction or assembler option (-nlf) has been set by default value.

- If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last spec-
ified control instruction will become valid.

- The output or non-output of a formfeed code may also be specified with the assembler option (-If) or (-nlif) in the
startup command line of the assembler.

- If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the specifi-
cation (-If/-nlf) in the startup command line, the specification in the startup command line will take precedence over
that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the FORMFEED or NOFORMFEED control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 372 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

WIDTH

Specifies the maximum number of characters for one line of a list file.

[Description Format]

[1STIWIDTH[] ([]columns-per-1inel[])

[Default Assumption]

$WIDTH (132)

[Function]

- The WIDTH control instruction specifies the number of columns (characters) per line of a list file.
"columns-per-line" must be a value in the range of 72 to 260.

[Use]

- Use the WIDTH control instruction when you want to change the number of columns per line of a list file.

[Description]

- The WIDTH control instruction can be described only in the header section of a source module file.

- If two or more WIDTH control instructions are specified at the same time, only the last specified control instruction
will become valid.

- The number of columns per line of a list file may also be specified with the assembler option (-lw) in the startup
command line of the assembler.

- If the control instruction specification (WIDTH) in the source module differs from the specification (-lw) in the star-
tup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the WIDTH control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 373 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

LENGTH

Specifies the number of lines for 1 page of a list file

[Description Format]

[1$[]JLENGTH[] ([]lines-per-pagel])

[Default Assumption]

$LENGTH (66)

[Function]

- The LENGTH control instruction specifies the number of lines per page of a list file.
"lines-per-page" may be "0" or a value in the range of 20 to 32767.

[Use]

- Use the LENGTH control instruction when you want to change the number of lines per page of a list file.

[Description]

- The LENGTH control instruction can be described only in the header section of a source module file.

- If two or more LENGTH control instructions are specified at the same time, only the last specified control instruc-
tion will become valid.

- The number of columns per line of a list file may also be specified with the assembler option (-Il) in the startup com-
mand line of the assembler.

- If the control instruction specification (LENGTH) in the source module differs from the specification (-Il) in the star-
tup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the LENGTH control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 374 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

TAB

Specifies the number of characters for list file tabs.

[Description Format]

[1$[1TAB[] ([] number-of-columnsl[])

[Default Assumption]

$TAB (8)

[Function]

- The TAB control instruction specifies the number of columns as tab stops on a list file.
"number-of-columns" may be a value in the range of O to 8.

- The TAB control instruction specifies the number of columns that becomes the basis of tabulation processing to
output any list by replacing a HT (Horizontal Tabulation) code in a source module with several blank characters on
the list.

[Use]

- Use HT code to reduce the number of blanks when the number of characters per line of any list is reduced using
the TAB control instruction.

[Description]

- The TAB control instruction can be described only in the header section of a source module file.

- If two or more TAB control instructions are specified at the same time, only the last specified control instruction will
become valid.

- The number of tab stops may also be specified with the assembler option (-It) in the startup command line of the
assembler.

- If the control instruction specification (TAB) in the source module differs from the specification (-It) in the startup
command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a
syntax check on the TAB control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 375 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.7 Conditional assembly control instructions

Conditonal assembly control instructions select, with the conditonal assemble switch, whether to to make a series of
statements in the source module into an assemble target or not.

If conditional assemble instructions are made effective, it is possible to assemble without unnecessary statements and

hardly changing the source module.

The following conditonal assembly control instructions are available.

Control Instruction

Overview

IF

_IF

ELSEIF

_ELSEIF

ELSE

ENDIF

Sets conditions in order to limit the assembly target source statements.

SET

RESET

Sets value for switch name specified by IF/ELSEIF control instruction.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 376 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

IF

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[1S[]IF[]([]lswitch-name[[]:[]switch-name]l ... [1])
[1$S[]ELSEIF[] ([lswitch-name[[]:[]1switch-name] ... [1])
[1$[]ELSE
[1$[1ENDIF

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF control instruction and the ENDIF control instruction are subject to
conditional assembly.

If the evaluated value of the conditional expression or the switch name specified by the IF control instruction (i.e.,
IF or _IF condition) is true (other than 00H), source statements described after this IF control instruction until the
appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in the source
program will be assembled. For subsequent assembly processing, the assembler will proceed to the statement
next to the ENDIF control instruction.

If the IF condition is false (OOH), source statements described after this IF control instruction until the appearance
of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source program will
not be assembled.

The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-
ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-
trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or
_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/
_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.

If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-
trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-
tional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 377 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.
Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in
a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)
Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch
name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF
condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the
SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source
module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an
error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the
ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by
EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this
case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements
will be output without change on the assembly list. If you do not wish to output these statements, use the
$NOCOND control instruction.

[Application example]

- Example 1
textO0
S IF (SWl) ;7 (1)
textl
$ ENDIF ;o (2)
END
R20UT2774EJ0100 Rev.1.00 :{ENESAS Page 378 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) If the value of switch name "SW1" is true, statements in "text1" will be assembled.
If the value of switch name "SW1" is false, statements in "text1l" will not be assembled.
The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction
described in "text0".

(2) This instruction indicates the end of the source statement range for conditional assembly.

- Example 2
textO0
$ IF (SW1) ;7 (1)
textl
$ ELSE ;o (2)
text2
$ ENDIF ;i (3)
END

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction
described in "text0".
If the value of switch name "SW1" is true, statements in "text1" will be assembled and statements in
"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and state-
ments in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

- Example 3
text0
s IF (SW1 : SW2) i (1)
textl
s ELSEIF (SW3) i (2)
text2
s ELSEIF (SwW4) i (3)
text3
$ ELSE i (4)
text4
$ ENDIF i (5)
END

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or
RESET control instruction described in "text0".
If the value of switch name "SW1" or "SW2" is true, statements in "text1l" will be assembled and state-
ments in "text2", "text3", and "text4" will not be assembled.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 379 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and
statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,
statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-
bled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch
statements in "text4" will be assembled and statements in "textl", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-
ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 380 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

_IF

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[1$[]_IF conditional-expression

[1$[]_ELSEIF conditional-expression

[1$[]1ELSE

[1$[1ENDIF

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the _IF control instruction and the ENDIF control instruction are subject to
conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the _IF control instruction (i.e.,
IF or _IF condition) is true (other than 00H), source statements described after this _IF control instruction until the
appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in the source
program will be assembled. For subsequent assembly processing, the assembler will proceed to the statement
next to the ENDIF control instruction.

If the _IF condition is false (O0H), source statements described after this _IF control instruction until the appear-
ance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source pro-
gram will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-
ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied
(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-
trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or
_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/
_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-
trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-
tional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 381 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.
Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in
a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)
Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch
name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF
condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the
SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source
module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an
error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the
ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by
EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this
case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements
will be output without change on the assembly list. If you do not wish to output these statements, use the
$NOCOND control instruction.

[Application example]

textO0
$ _IF (SYMA) i (1)
textl
$ _ELSEIF (SYMB = SYMC) ; (2)
text2
$ ENDIF i (3)
END
R20UT2774EJ0100 Rev.1.00 :{ENESAS Page 382 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".
If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not
be assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value, statements
in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 383 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ELSEIF

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[1S[]IF[]([]lswitch-name[[]:[]switch-name]l ... [1])
[1$S[]ELSEIF[] ([lswitch-name[[]:[]1switch-name] ... [1])
[1$[]ELSE
[1$[1ENDIF

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.
Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-
ject to conditional assembly.
- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction
(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction
until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in
the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the
statement next to the ENDIF control instruction.
If the IF or _IF condition is false (OOH), source statements described after this IF or _IF control instruction until the
appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source
program will not be assembled.
The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-
ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied
(i.e. the evaluated values are false).
If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-
trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or
_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/
_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF control instruction.
If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.
If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-
trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.
- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-
tional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 384 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.
Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in
a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)
Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch
name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF
condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the
SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source
module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an
error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the
ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by
EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this
case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements
will be output without change on the assembly list. If you do not wish to output these statements, use the
$NOCOND control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 385 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Application example]

text0

$ IF (SW1 : SW2) i (1)
textl

S ELSEIF (SW3) i (2)
text2

S ELSEIF (SwW4) i (3)
text3

$ ELSE i (4)
text4

$ ENDIF i (5)

END

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or
RESET control instruction described in "text0".
If the value of switch name "SW1" or "SW2" is true, statements in "text1" will be assembled and state-
ments in "text2", "text3", and "text4" will not be assembled.
If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and
statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,
statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-
bled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch
statements in "text4" will be assembled and statements in "text1l", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-
ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 386 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

_ELSEIF

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[1$[]_IF conditional-expression

[1$[]_ELSEIF conditional-expression

[1$[]1ELSE

[1$[1ENDIF

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.
Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-
ject to conditional assembly.
- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction
(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction
until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in
the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the
statement next to the ENDIF control instruction.
If the IF or _IF condition is false (OOH), source statements described after this IF or _IF control instruction until the
appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source
program will not be assembled.
The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-
ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied
(i.e. the evaluated values are false).
If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-
trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or
_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/
_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF control instruction.
If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.
If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-
trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.
- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-
tional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 387 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.
Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in
a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)
Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch
name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF
condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the
SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source
module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an
error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the
ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by
EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this
case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements
will be output without change on the assembly list. If you do not wish to output these statements, use the
$NOCOND control instruction.

[Application example]

textO0
$ _IF (SYMA) i (1)
textl
$ _ELSEIF (SYMB = SYMC) ; (2)
text2
$ ENDIF i (3)
END
R20UT2774EJ0100 Rev.1.00 :{ENESAS Page 388 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".
If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not
be assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value, statements
in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 389 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ELSE

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[1SI1IF[]([]1switch-name[[]:[]1switch-namel ... [])
or[1$[] _IF conditional-expression
[1S[IELSEIF[] ([lswitch-name[[]:[]switch-name] ... [1])
or[1$[]_ELSEIF conditional-expression
[1$[]1ELSE
[1$[1ENDIF

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.
Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-
ject to conditional assembly.
- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction
(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction
until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in
the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the
statement next to the ENDIF control instruction.
If the IF or _IF condition is false (O0H), source statements described after this IF or _IF control instruction until the
appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source
program will not be assembled.
The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-
ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied
(i.e. the evaluated values are false).
If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-
trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or
_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/
_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF control instruction.
If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.
If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-
trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.
- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-
tional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 390 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.
Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in
a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)
Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch
name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF
condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the
SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source
module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an
error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the
ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by
EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this
case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements
will be output without change on the assembly list. If you do not wish to output these statements, use the
$NOCOND control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 391 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Application example]

- Example 1
text0
$ IF (SW1) ;7 (1)
textl
$ ELSE ;o (2)
text2
$ ENDIF ;i (3)
END

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction
described in "text0".

If the value of switch name "SW1" is true, statements in "text1l" will be assembled and statements in

"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and state-

ments in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

- Example 2
textO0
S IF (SW1 : SW2) i (1)
textl
S ELSEIF (SW3) i (2)
text2
S ELSEIF (SwW4) ;o (3)
text3
$ ELSE i (4)
text4
$ ENDIF i (5)
END

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or
RESET control instruction described in "text0".
If the value of switch name "SW1" or "SW2" is true, statements in "text1l" will be assembled and state-

ments in "text2", "text3", and "text4" will not be assembled.

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,
statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-

bled.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS Page 392 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch
statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-
ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 393 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ENDIF

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[1SI1IF[]([]1switch-name[[]:[]1switch-namel ... [])
or[1$[] _IF conditional-expression
[1S[IELSEIF[] ([lswitch-name[[]:[]switch-name] ... [1])
or[1$[]_ELSEIF conditional-expression
[1$[]1ELSE
[1$[1ENDIF

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.
Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-
ject to conditional assembly.
- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction
(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction
until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in
the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the
statement next to the ENDIF control instruction.
If the IF or _IF condition is false (O0H), source statements described after this IF or _IF control instruction until the
appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source
program will not be assembled.
The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-
ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied
(i.e. the evaluated values are false).
If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-
trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or
_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/
_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF control instruction.
If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.
If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control
instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-
trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.
- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-
tional assembly.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 394 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-
out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a
source program, whether or not the debugging statement should be assembled (translated into machine language)
can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.
Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in
a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)
Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch
name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF
condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the
SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source
module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an
error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the
ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by
EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this
case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.
Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements
will be output without change on the assembly list. If you do not wish to output these statements, use the
$NOCOND control instruction.

[Application example]

- Example 1
textO0
S IF (SWl) ;7 (1)
textl
$ ENDIF ;o (2)
END
R20UT2774EJ0100 Rev.1.00 :{ENESAS Page 395 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) If the value of switch name "SW1" is true, statements in "text1" will be assembled.
If the value of switch name "SW1" is false, statements in "text1l" will not be assembled.
The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction
described in "text0".

(2) This instruction indicates the end of the source statement range for conditional assembly.

- Example 2
textO0
$ IF (SW1) ;7 (1)
textl
$ ELSE ;o (2)
text2
$ ENDIF ;i (3)
END

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction
described in "text0".
If the value of switch name "SW1" is true, statements in "text1" will be assembled and statements in
"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and state-
ments in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

- Example 3
text0
s IF (SW1 : SW2) i (1)
textl
s ELSEIF (SW3) i (2)
text2
s ELSEIF (SwW4) i (3)
text3
$ ELSE i (4)
text4
$ ENDIF i (5)
END

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or
RESET control instruction described in "text0".
If the value of switch name "SW1" or "SW2" is true, statements in "text1l" will be assembled and state-
ments in "text2", "text3", and "text4" will not be assembled.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 396 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,
statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-

bled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch
statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be will not
be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-
ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

- Example 4
texto
$ _IF (SYMA) i (1)
textl
$ _ELSEIF (SYMB = SYMC) ; (2)
text2
$ ENDIF ;i (3)
END

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".
If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not

be assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value, statements

in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 397 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SET

Sets value for switch name specified by IF/ELSEIF control instruction.

[Description Format]

[1ISTISET[]([]1switch-namel[[]:[]lswitch-name] ... [1])

[Function]

- The SET control instructions give a value to each switch name to be specified with the IF or ELSEIF control
instruction.
- The SET control instruction gives a true value (OFFH) to each switch name specified in its operand.

[Use]

- Describe the SET control instruction to give a true value (OFFH) to each switch name to be specified with the IF or
ELSEIF control instruction.

[Description]

- With the SET and RESET control instructions, at least one switch name must be described.
The conventions for describing switch names are the same as the conventions for describing symbols (see "(3)
Symbol field").
However, the maximum number of characters that can be recognized as a switch name is always 31.

- The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and other
switch names.

- If two or more switch names are to be specified with the SET or RESET control instruction, delimit each switch
name with a colon (:). Up to 1,000 switch names can be used per module.

- A switch name once set to "true" with the SET control instruction can be changed to "false" with the RESET control
instruction, and vice versa.

- A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with the SET
or RESET control instruction in the source module before describing the IF or ELSEIF control instruction.

- Switch names will not be output to a cross-reference list.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 398 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Application example]

S SET (SW1) ;7 (1)
$ IF (SW1l) ;o (2)
textl
$ ENDIF ;i (3)
s RESET (SW1 : SwW2) ;i (4)
$ IF (SW1) i (5)
text2
S ELSEIF (SW2) i (6)
text3
$ ELSE i (7)
text4
$ ENDIF i (8)

END

(1) This instruction gives atrue value (OFFH) to switch name "SW1".

(2) Because the true value has been given to switch name "SW1" in (1) above, statements in "text1" will be
assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly that starts from

2).
(4) This instruction gives a false value (00H) to switch names "SW1" and "SW2", respectively.

(5) Because the false value has been given to switch name "SW1" in (4) above, statements in "text2" will not
be assembled.

(6) Because the false value has also been given to switch name "SW2" in (4) above, statements in "text3" will
not be assembled.

(7) Because both switch names "SW1" and "SW2" are false in (5) and (6) above, statements in "text4" will be
assembled.

(8) This instruction indicates the end of the source statement range for conditional assembly that starts from

().

R20UT2774EJ0100 Rev.1.00 RENESAS Page 399 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

RESET

Sets value for switch name specified by IF/ELSEIF control instruction.

[Description Format]

[ISTIRESET[] ([]lswitch-name[[]:[]1switch-namel ... [])

[Function]

- The RESET control instructions give a value to each switch name to be specified with the IF or ELSEIF control
instruction.
- The RESET control instruction gives a false value (00H) to each switch name specified in its operand.

[Use]

- Describe the RESET control instruction to give a false value (00H) to each switch name to be specified with the IF
or ELSEIF control instruction.

[Description]

- With the SET and RESET control instructions, at least one switch name must be described.
The conventions for describing switch names are the same as the conventions for describing symbols (see "(3)
Symbol field").
However, the maximum number of characters that can be recognized as a switch name is always 31.

- The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and other
switch names.

- If two or more switch names are to be specified with the SET or RESET control instruction, delimit each switch
name with a colon (:). Up to 1,000 switch names can be used per module.

- A switch name once set to "true" with the SET control instruction can be changed to "false" with the RESET control
instruction, and vice versa.

- A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with the SET
or RESET control instruction in the source module before describing the IF or ELSEIF control instruction.

- Switch names will not be output to a cross-reference list.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 400 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Application example]

S SET (SW1) ;7 (1)
$ IF (SW1l) ;o (2)
textl
$ ENDIF ;i (3)
s RESET (SW1 : SwW2) ;i (4)
$ IF (SW1) i (5)
text2
S ELSEIF (SW2) i (6)
text3
$ ELSE i (7)
text4
$ ENDIF i (8)

END

(1) This instruction gives atrue value (OFFH) to switch name "SW1".

(2) Because the true value has been given to switch name "SW1" in (1) above, statements in "text1" will be
assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly that starts from

2).
(4) This instruction gives a false value (00H) to switch names "SW1" and "SW2", respectively.

(5) Because the false value has been given to switch name "SW1" in (4) above, statements in "text2" will not
be assembled.

(6) Because the false value has also been given to switch name "SW2" in (4) above, statements in "text3" will
not be assembled.

(7) Because both switch names "SW1" and "SW2" are false in (5) and (6) above, statements in "text4" will be
assembled.

(8) This instruction indicates the end of the source statement range for conditional assembly that starts from

().

R20UT2774EJ0100 Rev.1.00 RENESAS Page 401 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.8 Kanji code control instruction

This is a control instruction which specifies which character code to use to interpret kanji characters described in the

comment.

The following kanji code control instructions are available.

Control Instruction

Overview

KANJICODE Interprets Kanji character code for specified Kanji characters described in the
comment.
R20UT2774EJ0100 Rev.1.00 RENESANS Page 402 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

KANJICODE

Interprets Kanji character code for specified Kanji characters described in the comment.

[Description Format]

[1$[]KANJICODE [] kanji-code

[Default Assumption]

$KANJICODE SJIS

[Function]

- Interprets Kanji character code for specified Kanji characters described in the comment.
- A kanji code can describe SJIS/EUC/NONE.

SJIs . Interpreted as a Shift JIS code.
EUC : Interpreted as a EUC code.
NONE : Not interpreted as a kanji.

[Use]

- Use to specify the interpretation of the kanji code (2-byte code) of the kanji (2-byte character) in the comment line.

[Description]

- The KANJICODE control instruction can be described only in the header section of a source module file.

- If two or more KANJICODE control instructions are specified in the header section of a source module file at the
same time, only the last specified control instruction will become valid.

- Kanji code specification stops may also be specified with the assembler option (-zs/-ze/-zn) in the startup com-
mand line of the assembler.

- If the control instruction specification (KANJICODE) in the source module differs from the specification (-zs/-ze/-zn)
in the startup command line, the specification in the command line will take precedence over that in the source
module.

- Even when the assembler option (-zs/-ze/-zn) has been specified in the startup command line, the assembler per-
forms a syntax check on the KANJICODE control instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 403 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.9 RAM area allocation-specification control instruction

This is a control instruction for allocating the segment with the specified segment name to the memory area name

"RAM".

The following RAM area allocation-specification control instructions are available.

Control Instruction

Overview

RAM_ALLOCATE

Allocate the segment with the specified segment name to the memory area

name "RAM".

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 404 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

RAM_ALLOCATE

Allocate the segment with the specified segment name to the memory area hame "RAM".

[Description Format]

[1$[JRAM_ALLOCATE[] ([1 segment-name[11[, ...1)I[]I[;comment]

[Default Assumption]

- Allocate in memory area name "ROM".

[Function]

- Allocate the segment with the specified segment name to the memory area name "RAM".

[Description]

- If two or more RAM_ALLOCATE control instructions are specified in the source module file at the same time, only
the last specified control instruction will become valid.

- The only segment that can be specified are CSEG. If all except for CSEG was specified, a warning is output and
the description is ignored.

- If the two or more segment are to be specified with 1 RAM area allocation-specification control instruction, delimit
each segment name with ",".
Up to 256 segment can be specified per module.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 405 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.3.10 Other control instructions

The control instructions shown below are special control instructions output by an upper level program such as C com-
piler.

- $TOL_INF
- $DGS
- $DGL
R20UT2774EJ0100 Rev.1.00 RENESAS Page 406 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.4 Macros

This section explains how to use macros.

Macros are very useful when you need to use a series of statements repeatedly in a source program.

441 Overview

Macros make it easy to repeat a series of statements over and over again in a source program.

A macro contains a series of instructions in a macro body, which is defined between MACRO and ENDM directives.
These instructions are inserted into the source program at any location that references the macro.

Macros make it easier to write source programs. They are different from subroutines.

The difference between macros and subroutines is explained below. For effective use, select either a macro or a sub-
routine according to the specific purpose.

(1) Subroutines
- Subroutines handle processing that must be repeated many times in a program. A subroutine is converted

into machine language once by the assembler.

- To use a subroutine, simply call it with a subroutine call instruction. (Usually you will also need to set the argu-
ments of the subroutine before calling it, and adjust for them afterwards.)
Effective use of subroutines enables program memory to be used with high efficiency.

- Subroutines are also important in structured programming. Dividing the program into functional blocks clari-
fies the overall structure of the program and makes it easier to understand. There are benefits for design, cod-

ing, and maintenance.

(2) Macros
- The basic function of macros is to replace a series of instructions with a macro name.

A macros is defined as a series of instruction between MACRO and ENDM directives. When the macro name
appears in the source code, the instructions are inserted at that location. The assembler replaces any formal
parameters of the macro with actual parameters and converts the instructions into machine language.

- Macros can have parameters.
For example, if there are instruction groups that are the same in processing procedure but are different in the
data to be described in the operand, define a macro by assigning formal parameter(s) to the data. By describ-
ing the macro name and the actual parameter(s) at macro reference time, the assembler can cope with vari-
ous instruction groups that differ only in part of the statement description.

Subroutines are used mainly to reduce memory requirements and clarify the structure of programs. Macros are used to
make programs easier to describe and understand.

4.4.2 Using macros

(1) Macro definitions
Use the MACRO and ENDM directives to define macros.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 407 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(@) Format
Symbol field Mnemonic field Operand field Comment field
macro-name MACRO [formal-parameter[, ...]1] [; comment]

ENDM [; comment]

(b) Function
Define a macro, assigning the macro name specified in the symbol field to the series of statements (called the
macro body) between the MACRO directive and the ENDM directive

(c) Example

ADMAC MACRO PARALl, PARA2

MOV A, #PARAl
ADD A, #PARA2
ENDM

The above example shows a simple example that adds the two values PARA1 and PARA2, and stores the
result in register A. The macro is named ADMAC. PARA1 and PARAZ2 are formal parameters.
For details, see "4.2.8 Macro directives".

(2) Referencing macros
To reference an already defined macro, specify the macro name in the mnemonic field.

(@) Format
Symbol field Mnemonic field Operand field Comment field
[label:] macro-name [actual-parameter[, ...]11] [; comment]

(b) Function
Reference the macro body to which the specified name has been assigned.

(c) Use
Use the above format to reference a macro body.

(d) Explanation

- The macro name specified in the mnemonic field must have been defined before the macro reference.

- Delimit actual parameters with commas (,). Up to 16 actual parameters can be specified, provided that
they all appear in the same line.

- Space characters cannot appear in an actual parameter string.

- If an actual parameter string contains a comma (,), semicolon (;), blank, or a tab, enclose the string in
single quotation marks ().

- Formal parameter are converted to actual parameters from the left, in the order that they occur in the macro definition.
The number of actual parameters must match the number of formal parameters. If it does not, a warning is issued.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 408 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Example

ADMAC

NAME SAMPLE

MACRO PARAL,
MOV
ADD

ENDM

CSEG

ADMAC 10H, 20H

END

A, #PARAl

A, #PARA2

The already defined macro "ADMAC" is referenced.

10H and 20H are actual parameters.

(3) Macro expansion
The assembler processes a macro as follows:
- When it encounters a macro name, the assembler inserts the corresponding macro body at the location of the

macro name.

- The inserted macro body is then assembled in the same way as other stateme

(4) Example

When the macro shown above in "(2) Referencing macros" is referenced, it is expanded as shown below.

7

7

7

7

NAME SAMPLE

Macro definition

ADMAC MACRO PARA1l, PARA2

MOV A, #PARAl
ADD A, #PARA2

ENDM

Source code

CSEG

Macro expansion

ADMAC 10H, 20H
MOV A, #10H

ADD A, #20H

Source code

END

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 409 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(@) The macro body is inserted when the macro name is referenced.
In the macro body, formal parameters are replaced by actual parameters.

4.4.3 Symbols in macros

Two types of symbols can be defined in macros: global symbols and local symbols.

(1) Global symbols
- A global symbol is a symbol that can be referenced from any statement in a source program.
Therefore, if a macro that defines a global symbol is referenced more than once when expanding a series of
statements, a double definition error will occur.
- Symbols not defined with the LOCAL directive are global symbols.

(2) Local symbols
- A local symbol is a symbol defined with the LOCAL directive (see "4.2.8 Macro directives").
- A local symbol can be referenced only within the macro that declares it as LOCAL.
- No local symbol can be referenced from outside the macro that declares it

<Application example>

NAME SAMPLE

; Macro definition

MAC1 MACRO
LOCAL LLAB ; (a)
LLAB : i (b)
GLAB : i (<)
BR LLAB ;o (d)
BR GLAB i (e)
ENDM

; Source code

REF1 : MAC1 ; (f) <- Macro reference
BR LLAB ; (g) <- Error
REF2 : MAC1 ; (h) <- Macro reference
GLAB : ; (1) <- Error
END

(@) This declares label LLAB as alocal symbol.

(b) This defines label LLAB as a local symbol.

(c) This defines label GLAB as a global symbol.

(d) This references the local symbol LLAB in macro MACL1.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 410 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) This references the global symbol GLAB from inside the definition of macro MACL1.

(f) This references macro MAC1.

(g) This reference the local symbol LLAB from outside the definition of macro MAC1,

causing an error when the program is assembled.

(h) This references macro MAC1

The same macro is referenced twice.

(i) This defines the label GLAB as a global symbol.
The same label is already defined, so this causes an error when the program is assembled.

<Assemble list for the above application example>

NAME SAMPLE
REF1 : MAC1
; Macro expansion
??RA0000 :
GLAB :
BR ??RA0000
BR GLAB
; Source code
BR LLAB
BR !GLAB
REF2 : MAC1
; Macro expansion
??RA0001 :
GLAB :
BR ??RA0001
BR GLAB
; Source code
END

Error

Error

Error

Macro MAC1 defines the global symbol GLAB.
Macro MAC1 is referenced twice. An error occurs when the macro is expanded the second time, because the global

symbol GLAB is defined twice.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 411 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.4.4 Macro operators

There are two macro operators: "&" (ampersand) and ", " (single quotation mark).

(1) & (Concatenation)

- The ampersand "&" concatenates one character string to another within a macro body.

At macro expansion time, the character string on the left of the ampersand is concatenated to the character
string on the right of the sign. The "&" itself disappears after concatenating the strings.

- At macro definition time, strings before and after "&" in symbols are recognized as local symbols and formal
parameters. At macro expansion time, strings before and after the "&" in the symbol are evaluated as the local
symbols and formal parameters, and concatenated into single symbols.

- The "&" sign enclosed in a pair of single quotation marks is simply handled as data.

- Two "&" signs in succession are handled as a single "&" sign.

Following is an application example.

(@) Macro definition

MAC MACRO P
LAB&P : <- Formal parameter P is recognized
D&B 10H
DB 'p!
DB P
DB '&P!
ENDM

(b) Macro reference

MAC 1H
LAB1H :
DB 10H <- D&B has been concatenated to DB
DB 'p!
DB 1H
DB '&P! <- Quoted '&' is simply data

(2) ' (Single quotation mark)

- If a character string enclosed by a pair of single quotation marks appears at the beginning of an actual param-
eter in a macro reference line or an IRP directive, or if it appears after a delimiting character, the character
string is interpreted as an actual parameter. The character string is passed as a actual parameter without the
enclosing single quotation marks.

- If a character string enclosed by a pair of single quotation marks appears in a macro body, it is simply handled
as data.

- To use a single quotation mark as a single quotation mark in text, write the single quotation mark twice in suc-
cession.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 412 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

<Application example>

NAME SAMP
MAC1 MACRO P
IRP Q, <P>
MOV A, #Q
ENDM
ENDM
MAC1 '10, 20, 30'

When the source code in the above example is assembled, macro MAC1 is expanded as shown below.

IRP Q, <10, 20, 30>
MOV A, #Q

ENDM
MOV A, #10 ; IRP expansion
MOV A, #20 ; IRP expansion
MOV A, #30 ; IRP expansion

4.5 Reserved Words

Reserved words are character strings reserved in advance by the assembler. They include machine language instruc-
tions, directives, control instructions, operators, register names, and sfr symbols. Reserved words cannot be used for
other than the intended purposes.

The following tables explain where reserved words can appear in source code statements and list the words reserved
by the assembler.

Table 4-22. Fields Where Reserved Words Can Appear

Field Explanation
Symbol field No reserved words can appear in this field.
Mnemonic field Only machine language instructions and directives can appear in this field.
Operand field Only operators, sfr symbols, and register names can appear in this field.
Comment field All reserved words can appear in this field.

Table 4-23. List of Reserved Words

Type Reserved Word

Operators AND, BITPOS, DATAPOS, EQ (=), GE (>=), GT (>), HIGH, HIGHW, LE (<=), LOW, LOWW, LT (<),
MASK, MIRHW, MIRLW, MOD, NE (<>), NOT, OR, SHL, SHR, XOR

Directives AT, BASE, BASEP, BR, BSEG, CALL, CALLTO, CSEG, DB, DBIT, DG, DS, DSEG, DSPRAM, DW, END,
ENDM, ENDS, EQU, EXITM, EXTBIT, EXTRN, FIXED, IHRAM, IRP, IXRAM, LOCAL, LRAM, MACRO,
MIRRORP, NAME, OPT_BYTE, ORG, PAGE64KP, PUBLIC, REPT, SADDR, SADDRP, SECUR_ID, SET,
UNIT, UNIT64KP, UNITP

R20UT2774EJ0100 Rev.1.00 RENESAS Page 413 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Type Reserved Word

Control instruc- COND, NOCOND, DEBUG, NODEBUG, DEBUGA [DG], NODEBUGA [NODG], EJECT [EJ], FORM-
tions FEED, NOFORMFEED, GEN, NOGEN, IF, _IF, ELSEIF, _ELSEIF, ELSE, ENDIF, INCLUDE [IC], KANJI-
CODE, LENGTH, LIST [LI], NOLIST [NOLI], PROCESSOR [PC], SET, RESET, SUBTITLE [ST],
SYMLIST, NOSYMLIST, TAB, TITLE [TT], WIDTH, XREF[XR], NOXREF [NOXR]

Other DGL, DGS, SFR, SFRP, TOL_INF

Remark Items in brackets following control instructions indicate the abbreviated format.

See the user's manual of the target device for a list of sfr names, a list of interrupt request sources, and lists of machine
language instructions and register names.

4.6 Instructions

This section explains the functions of RL78 family, 78KOR microcontroller instructions.

Caution For details of each operation and instruction code, see to the separate document "RL78 family
User's Manual: Software"/"78K0OR Microcontrollers Instructions User's Manual".
And, see to the user's manual of the target microcontroller.

4.6.1 Differences from 78K0 microcontrollers

This section explains differences from 78K0 microcontrollers (for assembler users).

- The new pipeline architecture reduces the number of clock cycles for all instructions. Existing programs must be
re-evaluated.

- All instruction code maps have changed. Programs must be reassembled. When you reassemble, the code size
is likely to increase, but in some cases the overall code size may shrink if old instructions are replaced with new
ones.

- The memory space has changed from 64 KB to 1 MB, allowing greater stack depth. Address changes are required
if assembly programs manipulate RAM that is accessed with the stack pointer. Depending on the multiple CALL
and multiple interrupt depth, the stack size should be set to slightly more than is normally required.

- The CALLT table has been moved from [0040H to 007FH] to [0080H to 00BFH]. References to CALLT table
addresses must be changed.

- Assembler programs must be rewritten if they utilized the bank switching mechanisms of 78K0 microcontrollers.

- Addresses have changed when expansion RAM is used. Update these addresses.

- If your programs execute instructions from expansion RAM, they will be affected by changes in memory space addresses.
Change BR !addrl16 statements to BR !'addr20, and change CALL 'addr16 statements to CALL !laddr20.

- There are no IMS or IXS registers (used to set memory space). Unless external memory is used, code that uses
those registers must be deleted. If external memory is used, note that the specifications of the MM/MEM registers
(used to set memory space) have changed. For details, see to the user's manual of the target microcontroller.

- The following instructions have been deleted, and alternative code is output, resulting in code size increases.
These instructions can still be used by specifying the -compati option, but the assembler replaces them automati-
cally with the replacement code.

Instruction Operand Remarks

DIVUwW C The alternative instructions divide while shifting, which increases execution
time.

A shift instruction has been added, so it is recommended that this instruction be
changed to the new shift instruction.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 414 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Instruction Operand Remarks

ROR4 [HL] The alternative instructions take longer to execute.

A shift instruction has been added, so it is recommended that this instruction be
changed to the new shift instruction.

ROL4 [HL] The alternative instructions take longer to execute.

A shift instruction has been added, so it is recommended that this instruction be
changed to the new shift instruction.

ADJBA None The alternative instructions take longer to execute. There is no equivalent
additional instruction.

ADJBS None The alternative instructions take longer to execute. There is no equivalent
additional instruction.

CALLF laddrll CALLF is changed automatically to a 3-byte CALL !addr16 instruction.

This instruction can still be used with no modifications required.

DBNZz B, $addr16 This instruction is split into the following instructions: DEC B/ DEC C/ DEC
C, $addr16 saddr, and BNZ $addr20. This instruction can still be used with no modifica-

saddr, $addr16 tions required.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 415 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.6.2 Memory space

(1) Memory space
The memory space of 78K0 microcontrollers was limited to 64 KB, but this has been expanded to 1 MB in RL78
family, 78KOR microcontrollers.

Figure 4-8. Memory Maps of 78K0 and RL78 family, 78KOR Microcontrollers

< 78K0 microcontrollers > < RL78 family, 78KOR microcontrollers >
FFFFH Special function registers f FFFFFH - - -
SFR addressing Special function registers | SER addressing
FF20H | (SFR) FFF20H
FFIFH ["~ " 586x@bits™ ~ =~~~ TC1TATT T FFFIFH| SFR) . Y
256x8 bits
FFOOH FFFOOH

FEFFH - FFEFFH -
General registers | General registers |

FEEOQH | 32x8 bits Short direct addressin FFEEOH [32x8 bits Short direct addressin
FEDFH FFEDFH
FE20H Internal high-speed RAM l FFE20H RAM l
FE1FH © T Ti02ax8bitsT T T T T FFE1FH " 61.75 Kx8bits (max.) ™~
FBOOH
FAFFH

Area 1
FAOOH
FOFFH

Area 2 FO800H
FO00H FO7FFH)))
FSFFH Special function registers

Area 3 (2nd SFR)
F800H
F7FFH 7 2 Kx8 bits (max.)

FOO00OH
Internal expansion RAM EFFFFH
14 Kx8 bits (max.) EEOQOH
EDFFFH External memory
Qf‘ supported

External memory

Flash memory supported \f:
60 Kx8 bits (max.) PP B
Flash memory
960 Kx8 bits (max.)
0000H 00000H
- Program memory space is 60 KB (max.). - Program memory space is 960 KB (max.).
- Internal high-speed RAM area is 1 KB (max.) (stacken- - RAM space is 61.75 KB (max.) (stack enabled, fetchen-
abled). abled).
Internal expansion RAM area is 14 KB (max.) (fetchen- - 2nd SFR area (name changed) is 2 KB (max.),from
abled). FOOOOH to FO7FFH.
- Areal, area 2, and area 3 are from F800H to - Supports external expansion memory.
FAFFH (fixed). The external expansion memory space can be allocated
- External expansion memory supported. from the product-mounted flash memory area to EDFFFH.

(2) Internal program memory space
In RL78 family, 78KOR microcontrollers, the address range of program memory space is from 00000H to EFFFFH.
For information about the maximum size of internal ROM (flash memory), see to the user's manual of the target
microcontroller.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 416 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(@) Mirror area
In the RL78 family, 78KOR microcontrollers, the data flash areas from 00000H to OFFFFH (when MAA = 0) and
from 10000H to 1FFFFH (when MAA = 1) are mirrored to the addresses from FOOOOH to FFFFFH. Data flash
contents can be read with shorter code by reading from FOOO0OH to FFFFFH. However, data flash areas are
not mirrored to the SFR, second SFR, RAM, and use-prohibited areas.

Mirror areas can only be read, and instruction fetch is not possible.
The following figure shows two examples. Specifications vary for each product, so for details see to the user's

manual of the target microcontroller.

Example 1 (Flash memory: 32 KB, RAM: 1 KB)

Setting MAA =0

FRFFFH Special function registers
(SFR)
256 bytes
FFFOOH
FFEFFH)
General registers
FFEEOH 32 bytes
FFEDFH RAM
FFBOOH 1KB
FFAFFH
F8000H
F7FFFH Flash- memory
(same data as 01000H
E(l)gg?:"'H to 07FFFH)
FOS00H Use prohibited
FO7FFH
Special function registers
(2nd SFR)
2 KB
FOOO0OH
EFFFFH
08000H
07FFFH
Flash memory
01000H
OOFFFH ["""~ " """~ ===°°°
Flash memory
00000H
Remark

control register (PMC)".)

Figure 4-9. Mirror Area Examples

Example 2 (Flash memory: 512 KB, RAM: 32 KB)

Setting MAA =1

FFFFFH Special function registers
(SFR)
256 bytes
FFFOOH
FFEFFH)
General registers
FFEEOH 32 bytes
FFEDFH
RAM
32 KB
F7FOOH
F7EFFH Flash- memory
(same data as 11000H
E(l)gg?:: to 17EFFH)
FOS00H Use prohibited
FO7FFH
Special function registers
(2nd SFR)
2 KB
FOOO0OH
EFFFFH
Mirror
80000H
7FFFFH
Flash memory
17F00H | & . e e e e e e e e
17EFFH
Flash memory
11000H
10FFFH [""" """""~~===°=°°
Flash memory
00000H

Mirror

MAA: Bit 0 of the processor mode control register (PMC). (For details, see "(a) Processor mode

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 417 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) Vector table area
In the RL78 family, 78KOR microcontrollers, the 128-byte area from 0000H to 007FH is reserved as the vector
table area. The number of interrupts is 61 (maximum) + RESET vector + on-chip debugging vector + software
break vector. Since a vector is only 2 bytes of code, the interrupt branch destination address range is 64 KB
from 00000H to OFFFFH. In the 78K0 microcontrollers, addresses from 0040H to 007FH are used for the
CALLT table, but in the RL78 family, 78KOR microcontrollers they have been changed to vector addresses.

(c) CALLT instruction table area
In the RL78 family, 78KOR microcontrollers, the 64-byte area from 0080H to 00BFH is reserved as the CALLT
instruction table area.
In 78K0 microcontrollers, the CALL instruction is 1 byte, but RL78 family, 78KOR microcontrollers have 2-byte
CALL instructions. Addresses have also changed.
Since address codes are only 2 bytes long, interrupt branch destination addresses are the 64 KB from 00000H
to OFFFFH.

(3) Internal data memory (internal RAM) space
78K0 microcontrollers have internal high-speed RAM and internal expansion RAM. The internal high-speed RAM
can be used for stack, and the internal expansion RAM can be used for fetch. By contrast, RL78 family, 78KOR
microcontrollers have just one RAM area that can be used for both stack and fetch.
The upper address limit is fixed at FFEFFH, and the lower limit extends downward according to the amount of RAM
mounted on the product. The maximum size is 61.75 KB. For more information about the lower limit, see to the
user's manual of the target microcontroller.
The general register area and saddr space (from FFEEOH to FFEFFH) have the same addresses in the 78K0
microcontrollers and the RL78 family, 7BKOR microcontrollers. The stack can be located anywhere within the
mounted RAM.

(4) Special function register (SFR) area
Unlike general registers, SFRs have special functions.
The SFR space is allocated to the area from FFFOOH to FFFFFH.
Although SFR specifications are the same as for 78K0 microcontrollers, there have been changes that affect some
registers that had fixed addresses in the 78K0 series. For details, see to the user's manual of the target microcon-
troller.

(5) Extended SFR (2nd SFR) area
Unlike general registers, 2nd SFRs have special functions.
The, 2nd SFR space is from FOOOOH to FO7FFH. SFRs outside of the SFR area (from FFFOOH to FFFFFH) are
assigned to this extended SFR space. However, instructions to access the extended SFR area are 1 byte longer
than instructions to access the SFR area.

(6) External memory space
The external memory space is space that can be accessed by setting the memory expansion mode register. This
memory space is extends up from flash memory to EDFFFH.
In separate mode, 28 external pins (A19 to A0 and D7 to DO) are available. In multiplexed mode, 20 external pins
(A19 to AO,D7 to DO) area available.
For pin settings when using external memory, see to the chapter describing port functions in the user's manual of
the target device.

Caution To fetch instructions from the external memory area, start with a branch instruction (CALL or
BR) in flash or RAM memory and end with a return instruction (RET, RETB, or RETI) in the exter-
nal memory area.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 418 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Although the flash memory area is adjacent to the external memory area, programs cannot be
located so as to straddle these two areas.

4.6.3 Registers

(1) Control registers
Control registers are registers with special functions for controlling the program sequence, program status, and
stack memory. They include the program counter, the program status word, and the stack pointer.

(@) Program counter (PC)
The program counter is a 20-bit register that holds the address of the next program to be executed.

Figure 4-10. Configuration of Program Counter

19 0

PC PC

(b) Program status word (PSW)
The program status word is an 8-bit register consisting of flags that are set and reset by instruction execution.
The ISP1 flag is added as bit 2 in products that support 4 interrupt levels.
The program status word is automatically saved on the stack when an interrupt request occurs and a PUSH
PSW instruction is executed, and is automatically restored when an RETB or RETI instruction and a POP
PSW instruction are executed.
The PSW is set to 06H on reset signal input.

Figure 4-11. Configuration of Program Status Word

PSW IE z RBS1 AC |RBSO | ISP1 | ISPO CY

- Interrupt enable flag (IE)
This flag controls interrupt request acknowledgement by the CPU.
When IE = 0, interrupts are disabled (DI), and interrupts other than non-maskable interrupts are all dis-
abled.
When IE = 1, interrupts are enabled (El), and interrupt request acknowledgement is controlled by the
interrupt mask flags for the various interrupt sources, and by the priority specification flags.
This flag is reset (0) by execution of the Dl instruction or by interrupt request acknowledgment. Itis set (1)
by execution of the El instruction.
- Zero flag (2)
This flag is set (1) when the result of an operation is zero. It is reset (0) in all other cases.
- Register bank selection flags (RBS0,RBS1)
These are two 1-bit flags used to select one of the 4 register banks.
The 2 hits of information in these flags indicate the bank selected by execution of an SBL RBn instruction.
- Auxiliary carry flag (AC)
This flag is set (1) if an operation has a carry from bit 3 or a borrow to bit 3. Itis reset (0) in all other cases.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 419 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

- In-service priority flags (ISPO and ISP1)
These flags manage the priority of acknowledgeable maskable vectored interrupts. Acknowledgment is
disabled for vectored interrupt requests with priorities lower than the ISPO and ISP1 values, as specified
by the priority specification flag registers (PR). Actual acknowledgment for interrupt requests is controlled
by the state of the interrupt enable flag (IE).

- Carry flag (CY)
This flag stores overflow or underflow on execution of an add/subtract instruction. It stores the shift-out
value on execution of a rotate instruction, and functions as a bit accumulator during execution of bit

manipulation instructions.

(c) Stack pointer (SP)

This is a 16-bit register that holds the start address of the stack. The stack can be located in internal RAM.

SP

Figure 4-12. Configuration of Stack Pointer

15

SP

SP is decremented before write (save) to the stack and is incremented after read (restored) from the stack.
RESET input leaves the contents of SP undefined, so be sure to initialize SP before instruction execution.
Always specify the SP address as an even address. If an odd address is specified, the LSB is set to fixed 0.
Because the memory space of RL78 family, 78BKOR microcontrollers has been expanded, stack addresses
used for call instructions and interrupts are 1 byte longer. Due to the 16-bit width of stack RAM, the stack data
size is 2 bytes or 4 bytes. (See the following "Table 4-24. Stack Data Size Differences Between 78K0 and

RL78 family, 78KOR Microcontrollers".)

Table 4-24. Stack Data Size Differences Between 78K0 and RL78 family, 78KOR Microcontrollers

Save Restore Stack Data Sizes of 78K0 Stack Data Sizes of RL78 family,
Instruction Instruction Microcontrollers 78KOR Microcontrollers
PUSH rp POP rp 2 bytes 2 bytes
PUSH PSW POP PSW 1 byte 2 bytes
CALL, CALLT RET 2 bytes 4 bytes
Interrupt RETI 3 bytes 4 bytes
BRK RETB 3 bytes 4 bytes

The following figure shows the data savedby stack operations in RL78 family, 78KOR microcontrollers.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 420 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-13. Data Saved to Stack Memory

PUSH rp instruction PUSH PSW instruction
(2-byte stack (2-byte stack)
SP <- SP-2 SP <- SP-2
A . . 4
Sp-2 Lower half register pairs Sp-2 00H
A _ : A
SP-1 Upper half register pairs SP-1 PSW
A A
SP-> SP->
CALL and CALLT instructions Interrupt and BRK instructions
(4-byte stack) (4-byte stack)
SP <- SP-4 SP <- SP-4
4 4
SP-4 PC7-PCO SP-4 PC7-PCO
A 4
SP-3 PC15-PC8 SP-3 PC15-PC8
A A
SP-2 PC19-PC16 SP-2 PC19-PC16
sP 00H st PSW
SP-> SP4->

The stack pointer may point to internal RAM only. It is possible to specify addresses in the range FOOOOH to
FFFFFH, so be careful not to exceed the memory space of internal RAM. If an address outside the internal
RAM space is specified, write operations to that address are ignored and read operations return undefined val-
ues.

(2) General registers
On-chip general registers are mapped to RAM addresses FFEEOH to FFEFFH. There are 4 register banks, each
bank consisting of eight 8-bit registers (X, A, C, B, E, D, L and H). The CPU control instruction "SEL RBn" selects
the bank to be used in instruction execution.
Each register can be used as an 8-bit register, and register pairs of two 8-bit registers can be used as 16-bit regis-
ters.
Programs can specify registers by their function names (X, A, C, B, E, D, L, H, AX, BC, DE, HL) or by their absolute
names (RO to R7, RPO to RP3).

Caution Use of the general register space (FFEEOH to FFEFFH) as an instruction fetch area or stack area
is prohibited.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 421 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Table 4-25. List of General-purpose Registers (78K0 Compatible)

Bank Name Register Absolute
Function Name Absolute Name Address
16-bit 8-hit 16-bit 8-bit
BANKO HL H RP3 R7 FFEFFH
L R6 FFEFEH
DE D RP2 R5 FFEFDH
E R4 FFEFCH
BC B RP1 R3 FFEFBH
C R2 FFEFAH
AX A RPO R1 FFEF9H
X RO FFEF8H
BANK1 HL H RP3 R7 FFEF7H
L R6 FFEF6H
DE D RP2 R5 FFEF5H
E R4 FFEF4H
BC B RP1 R3 FFEF3H
C R2 FFEF2H
AX A RPO R1 FFEF1H
X RO FFEFOH
BANK2 HL H RP3 R7 FFEEFH
L R6 FFEEEH
DE D RP2 R5 FFEEDH
E R4 FFEECH
BC B RP1 R3 FFEEBH
C R2 FFEEAH
AX A RPO R1 FFEE9H
X RO FFEF8H
BANK3 HL H RP3 R7 FFEE7H
L R6 FFEEGH
DE D RP2 R5 FFEES5H
E R4 FFEE4H
BC B RP1 R3 FFEE3H
C R2 FFEE2H
AX A RPO R1 FFEE1H
X RO FFEEOH
R20UT2774EJ0100 Rev.1.00 RENESAS Page 422 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) ES and CS registers

The ES and CS registers were added for the RL78 family, 78KOR microcontrollers. The ES register specifies the
high-order address byte for data instructions, and the CS register specifies the high-order address byte for branch
instructions. See "(2) Addressing of data addresses" for more information about how to use the ES register, and
see "(1) Addressing of instruction addresses" for more information about how to use the CS register.

On reset, ES is set to OFH and CS is set to 00H

Figure 4-14. Configurations of ES and CS Registers

7 6 5 4 3 2 1 0
ES 0 0 0 0 ES3 ES2 ES1 ESO

7 6 5 4 3 2 1 0
CS 0 0 0 0 CS3 CP2 CP1 CPO

(4) Special function registers (SFR)

The following table lists the fixed-address SFRs of RL78 family, 78KOR microcontrollers.

Table 4-26. List of Fixed-address SFRs

Address Register Name
FFFF8H SPL
FFFFOH SPH
FFFFAH PSwW
FFFFBH Reserve
FFFFCH cs
FFFFDH ES
FFFFEH PMC
FFFFFH MEM

(@) Processor mode control register (PMC)

This is an 8-bit register for control of processor modes. For details, see "(2) Internal program memaory space".

On reset, PMC is set to 00H.

Figure 4-15. Configuration of Processor Mode Control Register

Address:FFFFEH On reset:00H R/W

Symbol 7 6 5 4 3 2 1 El

PMC 0 0 0 0 0 0 0 MAA
R20UT2774EJ0100 Rev.1.00 RENESAS Page 423 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MAA Flash Memory Space Mirrored to Area FOOOOH to FFFFFH Note
0 00000H to OFFFFH is mirrored to FOOOOH to FFFFFH
1 10000H to 1FFFFH is mirrored to FOOOOH to FFFFFH

Note SFR and RAM areas are also allocated to the range from FOOOOH to FFFFFH. In areas of overlap, they
take priority.

Cautions 1. The processor mode control should be set once only, when it is first initialized. After
initialization, writing to PMC is prohibited.
2. After setting PMC, wait for at least one instruction before accessing the mirror area.

4.6.4 Addressing

There are two types of addressing: addressing of data addresses, and addressing of program addresses. This section
describes the addressing modes of both types of addressing.

(1) Addressing of instruction addresses

(@) Relative addressing
Relative addressing adds a displacement value from the instruction word (signed complement data: -128 to
+127 or -32768 to +32767) to the value in the program counter (PC), and stores the sum in the program
counter. Execution branches to the specified program address.
Relative addressing is applied only to branch instructions.

Figure 4-16. How Relative Addressing Works

PC

OP code

DISPLACE 8/16 bits

(b) Immediate addressing
Immediate addressing specifies a branch destination program address by storing immediate data from the pro-
gram word in the program counter.
There are two types of Immediate addressing: CALL !laddr20 or BR !laddr20 specifies 20-bit addresses, and
CALL 'addr16 or BR !addrl6 specifies 16-bit addresses. When a 16-bit address is specified, 0000 is set in the
high-order 4 bits.

Figure 4-17. Example of CALL !laddr20/BR !'addr20 Addressing

PC
OP code
Low Addr.
High Addr.
Seg Addr.
R20UT2774EJ0100 Rev.1.00 RENESAS Page 424 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-18. Example of CALL !addr16/BR 'addr16 Addressing

PCs | PCH PCL
PC OP code
b, 1t Cow Add
0000 ow r.
High Addr.

(c) Table indirect addressing
Table indirect addressing specifies an address in the CALLT table area (0080H to 00BFH) with 5 bits of imme-
diate data in the instruction word. Then it stores the contents of that CALLT table address, and the next
CALLT table address, as 16-bit data in the program counter. This specifies a program address to be called.
Table indirect addressing is applied only to the CALLT instruction.
In RL78 family, 78KOR microcontrollers, branching is enabled only to the 64 KB space from 00000H to
OFFFFH.

Figure 4-19. How Table Indirect Addressing Works

OP code

> Low Addr.

00000000 10 0

> High Addr.

Table address

Memory

0000

PC PCs | PCH | PCL

(d) Register direct addressing
In register direct addressing, the program instruction word specifies a general-purpose register pair (AX/BC/
DE/HL) in the current register bank. The content of that register pair and the current CS register is then stored
in the program counter as 20-bit data. This specifies a call or branch program address. Register direct
addressing is applied only to the CALL AX/BC/DE/HL instructions and the BR AX instruction.

Figure 4-20. How register Direct Addressing Works

OP code
y
CS p
y y
PC PCs PCH PCL
R20UT2774EJ0100 Rev.1.00 RENESAS Page 425 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Addressing of data addresses

@)

(b)

Implied addressing

Implied addressing is used by instructions that access a register with a special function, such as the accumu-
lator. The instruction word contains no special field to specify a register. The register specification is implied
by the instruction word itself.

Because register specification is implied, the instruction has no operand.

In RL78 family, 78KOR microcontrollers, implied addressing is applied to the MULU X instruction only.

Figure 4-21. How Implied Addressing Works

OP code A register

Memory

Register addressing

Register addresses accesses memory using a general register an operand. It uses 3 bits in the instruction
word to specify an 8-hit register, or 2 bits to specify a 16-bit register.

The operand format is shown below.

Format Description

r X,A,C,B,ED,LH

P AX, BC, DE, HL

Figure 4-22. How Register Addressing Works

OP code register

Memory

(c) Direct addressing

Direct addressing uses immediate data in the instruction word as the operand. It specifies the target address

directly.

The operand format is shown below.

Format Description
ADDR16 Label, or 16-bit immediate data (FOOOOH to FFFFFH only)
ES:ADDR16 Label, or 16-bit immediate data (high-order 4 bits specified by ES register)
R20UT2774EJ0100 Rev.1.00 RENESANAS Page 426 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-23. Example of ADDR16 Addressing

OP code

Low Addr.

High Addr.

Memory

FFFFFH

FOOO0OH

Figure 4-24. Example of ES:ADDR16 Addressing

ES

OP code

Low Addr.

High Addr.

(d) Short direct addressing

Memory

FFFFFH
A

v
FOOOOH

Short direct addressing specifies the target address directly using 8 bits of data in the instruction word. This
type of addressing is applied only to the space from FFE20H to FFF1FH.
The operand format is shown below.

OFE20H to OFF1FH (even addresses only)
(Limited to space from FFE20H to FFF1FH)

Format Description
SADDR Label, or immediate data for FFE20H to FFF1FH, or immediate data for
OFE20H to OFF1FH
(Limited to space from FFE20H to FFF1FH)
SADDRP Label, or immediate data for FFE20H to FFF1FH, or immediate data for

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 427 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Remark

Figure 4-25. How Short Direct Addressing Works

OP code
"""""" FFF1FH
saddr saddr

FFE20H

Memory

A SADDR or SADDRP specification (omitting the high-order 4 bits of the address) can specify the
values FE20H to FF1FH as 16 bits of immediate data or the values FFE20H to FFF1FH as 20 bits
of immediate data.

Regardless of which format is used, the specified addresses are those in the memory space
FFE20H to FFF1FH.

(e) SFR addressing
SFR addressing specifies a target SFR address directly using 8 bits of data in the instruction word. This type
of addressing is applied only to the space from FFFOOH to FFFFFH.
The operand format is shown below.

Format Description
SFR SFR register name
SFRP 16-bit SFR register name (even address only)
Figure 4-26. How SFR Addressing Works
FFFFFH
OP code g SFR
FFFOOH
5] = = S e N
Memory
R20UT2774EJ0100 Rev.1.00 RENESANAS Page 428 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Register indirect addressing
Register indirect addressing uses data in the instruction word to specify a register pair. The contents of the

specified register pair are then used as the operand to specify the target memory address.
The operand format is shown below.

Format Description

[DE], [HL]
(FOOOOH to FFFFFH only)

ES:[DE], ES:[HL]
(high-order 4 bits of address specified by ES register)

Figure 4-27. Example of [DE] and [HL] Addressing

FFFFFH

OP code » p »| Target memory

FOOO0OH

Memory

Figure 4-28. Example of ES:[DE] and ES:[HL] Addressing

FFFFFH
A

ES

OP code » p » Target memory

v
FOOOOH

Memory

R20UT2774EJ0100 Rev.1.00 RENESAS Page 429 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(g) Based addressing

In based addressing, the instruction word specifies a register pair and an offset. The offset (8-bit or 16-bit
immediate data) is added to the contents of the base register pair to specify the target address.
The operand format is shown below.

Format Description
[HL + byte], [DE + byte], [SP + byte]
(FOOOOH to FFFFFH only)
word[B], word[C]
(FOOOOH to FFFFFH only)
word[BC]
(FOOOOH to FFFFFH only)
ES:[HL + byte], ES:[DE + byte]
(high-order 4 bits of address specified by ES register)
ES:word[B], ES:word[C]
(high-order 4 bits of address specified by ES register)
ES:word[BC]
(high-order 4 bits of address specified by ES register)
Figure 4-29. Example of [SP+byte] Addressing
FFFFFH
SP Target memory
OP code FOOOOH
byte

Memory

Figure 4-30. Example of [HL+byte] and [DE+byte] Addressing

FFFFFH
rp (HL/DE) -T-ar-g-et-n:le-n;o-r); -
OP code FOOOOH
byte
Memory
R20UT2774EJ0100 Rev.1.00 RENESAS Page 430 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-31. Example of word[B] and word[C] Addressing

FFFFFH
r (B/C) Target memory
OP code FOOOOH
Low Addr.
High Addr.
Memory
Figure 4-32. Example of word[BC] Addressing
FFFFFH
rp (BC) Target memory
OP code FOOOOH
Low Addr.
High Addr.
Memory

Figure 4-33. Example of ES:[HL+byte] and ES:[DE+byte] Addressing

FFFFFH
A
ES
P (05 (4 Trgetmemon
v
FOOOOH
OP code
Memory
byte
R20UT2774EJ0100 Rev.1.00 RENESAS Page 431 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-34. Example of ES:word[B] and ES:word[C] Addressing

FFFFFH
A
ES
r (BIC) » + Target memory
4 v
FOOOOH
OP code
Memory
Low Addr.
High Addr.
Figure 4-35. Example of ES:word[BC] Addressing
FFFFFH
A
ES
rp (BC) » + Target memory
4 v
FOOOOH
OP code
Memory
Low Addr.
High Addr.

(h) Based indexed addressing
In based index addressing, the instruction word specifies a register pair as a base register and either the B or
C register as an offset register. The contents of the base register are added to the contents of the offset regis-
ter to specify the target address.
The operand format is shown below.

Format Description

[HL + B], [HL + C]
(FOOO0H to FFFFFH only)

ES:[HL + B], ES:[HL + C]
(high-order 4 bits of address specified by ES register)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 432 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Figure 4-36. Example of [HL+B] and [HL+C] Addressing

OP code

rp (HL)

r (BIC)

Memory

Figure 4-37. Example of ES:[HL+B] and ES:[HL+C] Addressing

OP code

ES

rp (HL)

) 4
+
g
Q
®
@
3
]
3
=]
<

Memory

r (BIC)

(i) Stack addressing

FFFFFH

FOOOOH

FFFFFH

A

v
FOOOOH

Stack addressing accesses the stack indirectly using the contents of the stack pointer (SP). This type of
addressing is employed automatically when the PUSH and POP instructions are executed, when subroutine
call and return instructions are executed, and when registers are saved and restored upon generation of an

interrupt request.

Stack addressing is applied only to the internal RAM area.

The operand format is shown below.

Format

Description

PUSH AX/BC/DE/HL

POP AX/BC/DE/HL
CALL/CALLT

RET

BRK

RETB

(interrupt request generated)
RETI

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 433 of 872

CubeSuite+ v2.01.00

4.6.5 Instruction set

This chapter lists the instructions of the RL78 family, 78KOR microcontroller instruction set.
These instructions are common to all microcontrollers in the RL78 family, 78KOR microcontroller.

(1) Expressive form of the operand and description method

The operands in the "Operands" field of each instruction are shown in the representation for that type of operand.
(For details, see the assembler specifications.) When there are two or more ways to specify an operand in source
code, select one of them. Alphabetic characters written by a capital letter, the symbols #, !, !, $, $!, [], and ES: are

keywords and should be written just as they appear. Symbols have the following meanings.

Immediate data specification

! 16-bit absolute address specification
1 20-bit absolute address specification
$ 8-bit relative address specification

$! 16-hbit relative address specification
[] Indirect address specificatio

ES Extension address specification

Specify immediate data with an appropriate value or label. When specifying a label, be sure to include the #, !, !,

$, $!, [], or ES: symbol.

For register operands, r and rp can be replaced by register function names (X, A, C, etc.) or register absolute

names (RO, R1, R2, etc., as shown in parentheses in the following table).

Table 4-27. Operand Type Representations and Source Code Formats

Format Description
r X(R0), A(R1), C(R2), B(R3), E(R4), D(R5), L(R6), H(R7)
p AX(RP0), BC(RP1), DE(RP2), HL(RP3)
sfr Special-function register name (SFR name)
sfrp Special-function register name (16-bit SFR, even addresses onIyNOte)
saddr FFE20H to FFF1FH : Immediate data or label
saddrp FFE20H to FFF1FH : Immediate data or labels (even addresses onIyNOte)
addr20 00000H to FFFFFH : Immediate data or label
addr16 0000H to OFFFFH : Immediate data or label (even addresses only for 16-bit data transfer instruc-
tionsNote)
addr5 0080H to 00BFH : Immediate data or label (even addresses only)
word 16-bit immediate data or label
byte 8-bit immediate data or label
bit 3-bit immediate data or label
RBn RBO, RB1, RB2, RB3

Note Bit 0 =0 when an odd address is specified.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 434 of 872

Dec 01, 2013

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) Operation field symbols
The "Operation"” field uses the following symbols to designate the operation that occurs when the instruction is exe-

cuted.
Table 4-28. Operation Field Symbols
Symbol Function

A A register:8-bit accumulator
X X register

B B register
C C register

D D register

E E register

H H register

L L register

ES ES register
CS CS register
AX AX register pair:16-bit accumulator

BC BC register pair

DE DE register pair

HL HL register pair

PC Program counter
SP Stack pointer

PSW Program status word
CY Carry flag
AC Auxiliary carry flag
4 Zero flag

RBS Register bank selection flag

IE Interrupt request enable flag
0) Memory contents indicated by address or register contents in parentheses
XH, XL 16-bit registers: XH = high-order 8 bits, XL = low-order 8 bits
XS, XH, XL 20-bit registers: XS = bits 19 to 16, XH = bits 15 to 8, XL = bits 7to 0
n Logical AND
Y Logical OR
v Exclusive OR

o Inverted data
addrl6 16-bit immediate data
addr20 20-bit immediate data
jdisp8 Signed 8-bit data (displacement value)
jdisp16 Signed 16-bit data (displacement value)

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 435 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) Flag field symbols

The "Flag" field uses the following symbols to designate flag changes that occur when the instruction is executed.

Table 4-29. Flag Field Symbols

Symbol Flag Change
(Blank) Unchanged
0 Cleared to 0
1 Setto 1
X Set or cleared according to the result
R Previously saved value is restored

(4) PREFIX instructions

Some instructions are shown with the ES: prefix. The addition of the prefix makes it possible to expand the acces-
sible data space from the 64 KB space [FOOO0H to FFFFFH] to the 1 MB space [00000H to FFFFFH]. This is done
by adding the value of the ES register to the address specification. When a PREFIX operation code is attached as
a prefix to the target instruction, only one instruction immediately after the PREFIX operation code is executed as

the addresses with the ES register value added.

Table 4-30. Examples of PREFIX Instructions in Use

Instruction Opcode
1 2 3 4 5
MOV laddri6, #byte CFH laddr16 #byte -
MOV ES:laddr16, #byte 11H CFH laddr16 #byte
MOV A, [HL] 8BH - - - -
MOV A, ES:[HL] 11H 8BH - - -

Caution Before executing a PREFIX instruction, always set the correct value in the ES register, for exam-

ple with MOV ES, A.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 436 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(5) Operation list

(@) 8-bit data transfer instructions

Table 4-31. Operation List (8-bit Data Transfer Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 4
Note 1 | Note 2 AC | CY

MOV r, #byte 2 1 - r <- byte
saddr, #byte 3 1 - (saddr) <- byte
sfr, #byte 3 1 - sfr <- byte
laddr16, #byte 4 1 - (addrl6) <- byte
A, rNoes 1 1 - A<
r, ANowes 1 1 - r<-A
A, saddr 2 1 - A <- (saddr)
saddr, A 2 1 - (saddr) <- A
A, sfr 2 1 - A <- sfr
sfr, A 2 1 - sfr<-A
A, laddrl6 3 1 4 A <- (addr16)
laddrl6, A 3 1 - (addrl6) <- A
PSW, #byte 3 3 - PSW <- byte X X
A, PSW 2 1 - A <- PSW
PSW, A 2 3 - PSW <- A X X
ES, #byte 2 1 - ES <- byte
ES, saddr 3 1 - ES <- (saddr)
A, ES 2 1 - A<-ES
ES, A 2 1 - ES <-A
CS, #byte 3 1 - CS <- byte
A, CS 2 1 - A<-CS
CS, A 2 1 - CS<-A
A, [DE] 1 1 4 A <- (DE)
[DE], A 1 1 - (DE) <- A
[DE+byte], #byte 3 1 - (DE + byte) <- byte
A, [DE+byte] 2 1 4 A <- (DE + byte)
[DE+byte], A 2 1 - (DE + byte) <- A
A, [HL] 1 1 4 A <- (HL)
[HL], A 1 1 - (HL) <- A
[HL+byte], #byte 3 1 - (HL + byte) <- byte
A, [HL+byte] 2 1 4 A <- (HL + byte)
[HL+byte], A 2 1 - (HL + byte) <- A

R20UT2774EJ0100 Rev.1.00 RENESAS Page 437 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation FlagN°® 4
Note 1 | Note 2 AC CYy
A, [HL+B] 2 1 4 A <- (HL + B)
[HL+B], A 2 1 - (HL+B) <- A
A, [HL+C] 2 1 4 A<-(HL +C)
[HL+C], A 2 1 - (HL+C)<-A
word[B], #byte 4 1 - (B + word) <- byte
A, word[B] 3 1 4 A <- (B + word)
word[B], A 3 1 - (B +word) <- A
word[C], #byte 4 1 - (C + word) <- byte
A, word[C] 3 1 4 A <- (C + word)
word[C], A 3 1 - (C + word) <- A
word[BC], #byte 4 1 - (BC + word) <- byte
A, word[BC] 3 1 4 A <- (BC + word)
word[BC], A 3 1 - (BC +word) <- A
[SP+byte], #byte 3 1 - (SP + byte) <- byte
A, [SP+byte] 2 1 - A <- (SP + byte)
[SP+byte], A 2 1 - (SP + byte) <- A
B, saddr 2 1 - B <- (saddr)
B, laddr16 3 1 4 B <- (addr16)
C, saddr 2 1 - C <- (saddr)
C, laddr16 3 1 4 C <- (addr16)
X, saddr 2 1 - X <- (saddr)
X, laddr16 3 1 4 X <- (addr16)
ES:laddr16, #byte 5 2 - (ES, addr16) <- byte
A, ES:laddr16 4 2 5 A <- (ES, addr16)
ES:laddr16, A 4 2 - (ES, addr16) <- A
A, ES:[DE] 2 2 5 A <- (ES, DE)
ES:[DE], A 2 2 - (ES, DE) <- A
ES:[DE+byte], #byte 4 2 - ((ES, DE) + byte) <- byte
A, ES:[DE+byte] 3 2 5 A <- ((ES, DE) + byte)
ES:[DE+byte], A 3 2 - ((ES, DE) + byte) <- A
A, ES:[HL] 2 2 5 A <- (ES, HL)
ES:[HL], A 2 2 - (ES, HL) <- A
ES:[HL+byte], #byte 4 2 - ((ES, HL) + byte) <- byte
A, ES:[HL+byte] 3 2 5 A <- ((ES, HL) + byte)
ES:[HL+byte], A 3 2 - ((ES, HL) + byte) <- A
A, ES:[HL+B] 3 2 5 A <- ((ES, HL) + B)
R20UT2774EJ0100 Rev.1.00 RENESAS Page 438 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation Flag°t® 4
Note 1 | Note 2 AC CY
ES:[HL+B], A 3 2 - ((ES, HL) + B) <- A
A, ESI[HL+C] 3 2 5 A <- ((ES, HL) + C)
ES:[HL+C], A 3 2 ((ES,HL) + C) <- A
ES:word[B], #byte 5 2 - ((ES, B) + word) <- byte
A, ES:word[B] 4 2 5 A <- ((ES, B) + word)
ES:word[B], A 4 2 ((ES, B) + word) <- A
ES:word[C], #byte 5 2 ((ES, C) + word) <- byte
A, ES:word[C] 4 2 5 A <- ((ES, C) + word)
ES:word[C], A 4 2 ((ES, C) + word) <- A
ES:word[BC], #byte 5 2 - ((ES, BC) + word) <- byte
A, ES:word[BC] 4 2 5 A <- ((ES, BC) + word)
ES:word[BC], A 4 2 ((ES, BC) + word) <- A
B, ES:laddr16 4 2 5 B <- (ES, addr16)
C, ES:laddr16 4 2 5 C <- (ES, addr16)
X, ES:laddr16 4 2 5 X <- (ES, addr16)
XCH A, rNotes3 1(r=X) 1 - A<
2 (except
r=X)
A, saddr 3 2 - A <--> (saddr)
A, sfr 3 2 - A <-->sfr
A, laddr16 4 2 - A <--> (addr16)
A, [DE] 2 2 - A <> (DE)
A, [DE+byte] 3 2 - A <--> (DE + byte)
A, [HL] 2 2 - A <> (HL)
A, [HL+byte] 3 2 - A <--> (HL + byte)
A, [HL+B] 2 2 - A <--> (HL + B)
A, [HL+C] 2 2 - A <--> (HL + C)
A, ES:laddr16 5 3 - A <--> (ES, addr16)
A, ES:[DE] 3 3 - A <--> (ES, DE)
A, ES:[DE+byte] 4 3 - A <--> ((ES, DE) + byte)
A, ES{[HL] 3 3 - A <--> (ES, HL)
A, ES:[HL+byte] 4 3 A <--> ((ES, HL) + byte)
A, ES:[HL+B] 3 3 - A <--> ((ES, HL) + B)
A, ES:[HL+C] 3 3 - A <-->((ES, HL) + C)
R20UT2774EJ0100 Rev.1.00 RENESAS Page 439 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation Flag°t® 4
Note 1 | Note 2 Z | AC CY
ONEB A 1 1 - A <-01H
X 1 1 - X <-01H
B 1 1 - B <- 01H
C 1 1 - C<-01H
saddr 2 1 - (saddr) <- 01H
laddrl6 3 1 - (addr16) <- 01H
ES:laddrl6 4 2 - (ES, addr16) <- 01H
CLRB A 1 1 - A <- O0H
X 1 1 - X <- 00H
B 1 1 - B <- OOH
C 1 1 - C <- 00H
saddr 2 1 - (saddr) <- O0OH
laddr16 3 1 - (addr16) <- O0OH
ES:laddr16 4 2 - (ES,addr16) <- 00H
MOVS [HL+byte], X 3 1 - (HL + byte) <- X X X
ES:[HL+byte], X 4 2 - (ES, HL + byte) <- X X X

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.
3. Exceptr=A.
4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Clearedto 0

1 : Settol

X . Set or cleared according to the result
R Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 440 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(b) 16-bit data transfer instructions

Table 4-32. Operation List (16-bit Data Transfer Instructions)

Mnemonic Operand Byte Clock Operation Flag°t® 4
Note 1 | Note 2 AC CY

MOVW rp, #word 3 1 - rp <- word
saddrp, #word 4 1 - (saddrp) <- word
sfrp, #word 4 1 - sfrp <- word
AX, saddrp 2 1 - AX <- (saddrp)
saddrp, AX 2 1 - (saddrp) <- AX
AX, sfrp 2 1 - AX <- sfrp
sfrp, AX 2 1 - sfrp <- AX
AX, rp Note 3 1 1 - AX <-1p
rp, AX Note 3 1 1 - rp <- AX
AX, laddr16 3 1 4 AX <- (addr16)
laddrl6, AX 3 1 - (addr16) <- AX
AX, [DE] 1 1 4 AX <- (DE)
[DE], AX 1 1 - (DE) <- AX
AX, [DE+byte] 2 1 4 AX <- (DE + byte)
[DE+byte], AX 2 1 - (DE + byte) <- AX
AX, [HL] 1 1 4 AX <- (HL)
[HL], AX 1 1 - (HL) <- AX
AX, [HL+byte] 2 1 4 AX <- (HL + byte)
[HL+byte], AX 2 1 - (HL + byte) <- AX
AX, word[B] 3 1 4 AX <- (B + word)
word[B], AX 3 1 - (B + word) <- AX
AX, word[C] 3 1 4 AX <- (C + word)
word[C], AX 3 1 - (C + word) <- AX
AX, word[BC] 3 1 4 AX <- (BC + word)
word[BC], AX 3 1 - (BC + word) <- AX
AX, [SP+byte] 2 1 - AX <- (SP + byte)
[SP+byte], AX 2 1 - (SP + byte) <- AX
BC, saddrp 2 1 - BC <- (saddrp)
BC, laddr16 3 1 4 BC <- (addr16)
DE, saddrp 2 1 - DE <- (saddrp)
DE, laddr16 3 1 4 DE <- (addr16)
HL, saddrp 2 1 - HL <- (saddrp)
HL, 'addr16 3 1 4 HL <- (addrl16)
AX, ES:laddr16 4 2 5 AX <- (ES, addr16)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 441 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation Flag°t® 4
Note 1 | Note 2 Z | AC CY

ES:laddrl6, AX 4 2 - (ES, addr16) <- AX
AX, ES:[DE] 2 2 5 | AX <-(ES, DE)
ES:[DE], AX 2 2 - | (s, DE) < AX
AX, ES:[DE-+byte] 3 2 5 | AX <- (ES, DE) + byte)
ES:[DE+byte], AX 3 2 - | (Es, DE) + byte) <- AX
AX, ES:[HL] 2 2 5 | AX <- (ES, HL)
ES:[HL], AX 2 2 - | (ES, HL) <- AX
AX, ES:[HL+byte] 3 2 5 | AX <- ((ES, HL) + byte)
ES:[HL+byte], AX 3 2 - ((ES, HL) + byte) <- AX
AX, ES:word[B] 4 2 5 | AX < ((ES, B) + word)
ES:word[B], AX 4 2 - | (€S, B) + word) <- AX
AX, ES:word[C] 4 2 5 | AX<((ES, C) + word)
ES:word[C], AX 4 2 - | (&S, C) + word) <- AX
AX, ES:word[BC] 4 2 5 | AX < ((ES, BC) + word)
ES:word[BC], AX 4 2 - | (Es, BC) + word) <- AX
BC, ES:laddr16 4 2 5 | BC< (ES, addr16)
DE, ES:!addr16 4 2 5 DE <- (ES, addr16)
HL, ES:!laddr16 4 2 5 HL <- (ES, addrl6)

XCHW AX, rp Note 3 1 1 - AX <-->1p

ONEW AX 1 1 - AX <- 0001H
BC 1 1 - BC <- 0001H

CLRW AX 1 1 - AX <- 0000H
BC 1 1 - BC <- 0000H

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.
3. Exceptrp=AX
4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged
0 : Clearedto 0
1 : Settol
X . Set or cleared according to the result
R Previously saved value is restored
Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

R20UT2774EJ0100 Rev.1.00 RENESAS Page 442 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 443 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) 8-bit operation instructions

Table 4-33. Operation List (8-bit Operation Instructions)

Mnemonic Operand Byte Clock Operation FlagNot 4
Note 1 | Note 2 AC CY
ADD A, #ibyte 2 1 - A, CY <- A + byte X X
saddr, #byte 3 2 - (saddr), CY <- (saddr) + byte X X
A, rNoes 2 1 - A CY<-A+r x x
rnA 2 1 - LCY<-r+A X X
A, saddr 2 1 - A, CY <- A + (saddr) X X
A, laddr16 3 1 4 A, CY <- A + (addr16) X X
A, [HL] 1 1 4 A, CY <- A + (HL) X X
A, [HL+byte] 2 1 4 A, CY <- A + (HL + byte) X X
A, [HL+B] 2 1 4 A, CY <-A+ (HL + B) X X
A, [HL+C] 2 1 4 A, CY <-A+ (HL + C) X X
A, ES:laddr16 4 2 5 A, CY <- A + (ES, addr16) X X
A, ES{[HL] 2 2 5 ACY <- A + (ES, HL) X X
A, ES:[HL+byte] 3 2 5 A,CY <- A + ((ES, HL) + byte) X X
A, ES:[HL+B] 3 2 5 A,CY <- A+ ((ES, HL) + B) X X
A, ES:[HL+C] 3 2 5 A,CY <- A+ ((ES, HL) + C) X X
ADDC A, #ibyte 2 1 - A, CY <- A + byte + CY X X
saddr, #byte 3 2 - (saddr), CY <- (saddr) + byte + X X
CYy
A, rNoes 2 1 - A, CY<-A+r+CY x x
rnA 2 1 - nCY<-r+A+CY X X
A, saddr 2 1 - A, CY <- A + (saddr) + CY X X
A, laddr16 3 1 4 A, CY <- A + (addr16) + CY X X
A, [HL] 1 1 4 A, CY<-A+ (HL)+CY X X
A, [HL+byte] 2 1 4 A, CY <- A + (HL + byte) + CY X X
A, [HL+B] 2 1 4 A, CY <-A+ (HL +B) +CY X X
A, [HL+C] 2 1 4 A, CY <-A+ (HL +C) + CY X X
A, ES:laddr16 4 2 5 A, CY <- A + (ES, addri16) + X X
CcYy
A, ES:[HL] 2 2 5 A, CY <- A+ (ES, HL) + CY X X
A, ES:[HL+byte] 3 2 5 A, CY <- A+ ((ES, HL) + byte) X X
+ CY
A, ES{[HL+B] 3 2 5 A, CY <- A+ ((ES, HL) + B) + X X
CcY
A, ESI[HL+C] 3 2 5 A, CY <- A+ ((ES, HL) + C) + X X
CY
SUB A, #byte 2 1 - A, CY <- A - byte X X
R20UT2774EJ0100 Rev.1.00 RENESAS Page 444 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation Flag'ote 4
Note 1 | Note 2 AC CYy

saddr, #byte 3 2 - (saddr), CY <- (saddr) - byte X X

A, rNoes 2 1 - A CY<-A-r x x

rnA 2 1 - LCY<-r-A X X

A, saddr 2 1 - A, CY <- A - (saddr) X X

A, laddr16 3 1 4 A, CY <- A - (addr16) X X

A, [HL] 1 1 4 A, CY <- A - (HL) X X

A, [HL+byte] 2 1 4 A, CY <- A - (HL + byte) X X

A, [HL+B] 2 1 4 A, CY<-A-(HL+B) X X

A, [HL+C] 2 1 4 A, CY<-A-(HL+C) X X

A, ES:laddr16 4 2 5 A, CY <- A - (ES:addr16) X X

A, ESIHL] 2 2 5 A, CY <- A - (ES:HL) X X

A, ES:[HL+byte] 3 2 5 A, CY <- A - ((ES:HL) + byte) X X

A, ES:[HL+B] 3 2 5 A, CY <- A - ((ES:HL) + B) X X

A, ES:[HL+C] 3 2 5 A, CY <-A-((ES:HL) +C) X X

SUBC A, #byte 2 1 - A, CY <- A-byte - CY X X

saddr, #byte 3 2 - (saddr), CY <- (saddr) - byte - X X
CY

A, rNoes 2 1 - A, CY<-A-r-CY x x

rnA 2 1 - nLCY<-r-A-CY X X

A, saddr 2 1 - A, CY <- A - (saddr) - CY X X

A, laddr16 3 1 4 A, CY <- A - (addr16) - CY X X

A, [HL] 1 1 4 A, CY<-A-(HL)-CY X X

A, [HL+byte] 2 1 4 A, CY <-A-(HL + byte) - CY X X

A, [HL+B] 2 1 4 A, CY<-A-(HL+B)-CY X X

A, [HL+C] 2 1 4 A, CY<-A-(HL+C)-CY X X

A, ES:laddr16 4 2 5 A, CY <- A - (ES:addr16) - CY X X

A, ES{[HL] 2 2 5 A, CY <-A-(ES:HL) - CY X X

A, ES:[HL+byte] 3 2 5 A, CY <- A - ((ES:HL) + byte) - X X
CcYy

A, ES:[HL+B] 3 2 5 A, CY <- A - ((ES:HL) + B) - X X
CcY

A, ES:[HL+C] 3 2 5 A, CY<-A-((ES:HL)+C) - X X
CcY

AND A, #byte 2 1 - A<-A”byte

saddr, #byte 3 2 - (saddr) <- (saddr) ” byte

A, rNoes 2 1 - A< Anrr

rnLA 2 1 - r<-r™~A

A, saddr 2 1 - A <- A (saddr)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 445 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation FlagNote 4
Note 1 | Note 2 AC CYy

A, laddr16 3 1 4 A <- A" (addrl6)

A, [HL] 1 1 4 A<-AN(HL)

A, [HL+byte] 2 1 4 A <- A™(HL + byte)

A, [HL+B] 2 1 4 A<-AA~(HL +B)

A, [HL+C] 2 1 4 A<-A~(HL+C)

A, ES:laddr16 4 2 5 A <- A" (ES:addrl6)

A, ES{[HL] 2 2 5 A <- AN (ES:HL)

A, ES:[HL+byte] 3 2 5 A <- A" ((ES:HL) + byte)

A, ES{[HL+B] 3 2 5 A <- A~ ((ES:HL) + B)

A, ESI[HL+C] 3 2 5 A <- AN ((ES:HL) + C)
OR A, #byte 2 1 - A <- Av byte

saddr, #byte 3 2 - (saddr) <- (saddr) v byte

A, rNoes 2 1 - A< Avr

rnLA 2 1 - r<-rvA

A, saddr 2 1 - A <- Av (saddr)

A, laddr16 3 1 4 A <- Av (addrl6)

A, [HL] 1 1 4 A<-Av (HL)

A, [HL+byte] 2 1 4 A <-Av (HL + byte)

A, [HL+B] 2 1 4 A<-Av (HL +B)

A, [HL+C] 2 1 4 A<-Av(HL+C)

A, ES:laddr16 4 2 5 A <- Av (ES:addr16)

A, ES{[HL] 2 2 5 A<-Av (ES:HL)

A, ES:[HL+byte] 3 2 5 A <- Av ((ES:HL) + byte)

A, ES{[HL+B] 3 2 5 A<-Av ((ES:HL) + B)

A, ESI[HL+C] 3 2 5 A<-Av ((ES:HL) + C)
XOR A, #byte 2 1 - A<-AV byte

saddr, #byte 3 2 - (saddr) <- (saddr) V byte

A, rNoes 2 1 - A< AVr

rnA 2 1 - r<-rvaA

A, saddr 2 1 - A <- AV (saddr)

A, laddr16 3 1 4 A <- AV (addr16)

A, [HL] 1 1 4 A<-AY (HL)

A, [HL+byte] 2 1 4 A <-AY (HL + byte)

A, [HL+B] 2 1 4 A<-AV (HL +B)

A, [HL+C] 2 1 4 A<-AVY (HL+C)

A, ES:laddr16 4 2 5 A <- AV (ES:addrl6)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 446 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation Flag'ote 4
Note 1 | Note 2 AC CYy

A, ES{[HL] 2 2 5 A<-AV (ES:HL)
A, ES:[HL+byte] 3 2 5 A <- AV ((ES:HL) + byte)
A, ES{[HL+B] 3 2 5 A<-AV ((ES:HL) + B)
A, ES{[HL+C] 3 2 5 A<-AV ((ES:HL) + C)

CMP A, #byte 2 1 - A - byte X X
saddr, #byte 3 1 - (saddr) - byte X X
A, rNoes 2 1 - A-r x x
rnA 2 1 - r-A X X
A, saddr 2 1 - A - (saddr) X X
A, laddr16 3 1 4 A - (addr16) X X
A, [HL] 1 1 4 A - (HL) X X
A, [HL+byte] 2 1 4 A - (HL + byte) X X
A, [HL+B] 2 1 4 A-(HL +B) X X
A, [HL+C] 2 1 4 A-(HL+C) X X
laddr16, #byte 4 1 4 (addr16) - byte X X
A, ES:laddr16 4 2 5 A - (ES:addrl6) X X
A, ES{[HL] 2 2 5 A - (ES:HL) X X
A, ES:[HL+byte] 3 2 5 A - (ES:HL) + byte) X X
A, ES{[HL+B] 3 2 5 A - ((ES:HL) + B) X X
A, ES{[HL+C] 3 2 5 A-((ES:HL) + C) X X
ES:laddr16, #byte 5 2 5 (ES:addr16) - byte X X

CMPO A 1 1 - A - O0H X X
X 1 1 - X - 00H X X
B 1 1 - B - O0OH X X
C 1 1 - C - 00H X X
saddr 2 1 - (saddr) - OOH X X
laddr16 3 1 4 (addr16) - OOH X X
ES:laddri6 4 2 5 (ES:addr16) - 00H X X

CMPS X, [HL+byte] 3 1 4 X - (HL + byte) X X
X, ES:[HL+byte] 4 2 5 X - (ES:HL) + byte) X X

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.
3. Exceptr=A.

4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank :
0
1

Unchanged
Cleared to 0
Setto 1

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 447 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

X . Set or cleared according to the result
R . Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 448 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(d) 16-bit operation instructions

Table 4-34. Operation List (16-bit Operation Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CY
ADDW AX, #word 3 1 - AX, CY <- AX + word X X
AX, AX 1 1 - AX, CY <- AX + AX X X
AX, BC 1 1 - AX, CY <- AX + BC X X
AX, DE 1 1 - AX, CY <- AX + DE X X
AX, HL 1 1 - AX, CY <- AX + HL X X
AX, saddrp 2 1 - AX, CY <- AX + (saddrp) X X
AX, laddr16 3 1 4 AX, CY <- AX + (addr16) X X
AX, [HL+byte] 3 1 4 AX, CY <- AX + (HL + byte) X X
AX, ES:laddr16 4 2 5 AX, CY <- AX + (ES:addr16) X X
AX, ES:[HL+byte] 4 2 5 AX, CY <- AX + ((ES:HL) + X X
byte)
SUBW AX, #word 3 1 - AX, CY <- AX - word X X
AX, BC 1 1 - AX, CY <- AX-BC X X
AX, DE 1 1 - AX, CY <- AX - DE X X
AX, HL 1 1 - AX, CY <- AX - HL X X
AX, saddrp 2 1 - AX, CY <- AX - (saddrp) X X
AX, laddr16 3 1 4 AX, CY <- AX - (addr16) X X
AX, [HL+byte] 3 1 4 AX, CY <- AX - (HL - byte) X X
AX, ES:laddr16 4 2 5 AX, CY <- AX - (ES:addr16) X X
AX, ES:[HL+byte] 4 2 5 AX, CY <- AX - ((ES:HL) + X X
byte)
CMPW AX, #word 3 1 - AX - word X X
AX, BC 1 1 - AX -BC X X
AX, DE 1 1 - AX - DE X X
AX, HL 1 1 - AX - HL X X
AX, saddrp 2 1 - AX - (saddrp) X X
AX, laddr16 3 1 4 AX - (addr16) X X
AX, [HL+byte] 3 1 4 AX - (HL + byte) X X
AX, ES:laddr16 4 2 5 AX - (ES:addrl16) X X
AX, ES:[HL+byte] 4 2 5 AX - ((ES:HL) + byte) X X
Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS Page 449 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

: Clearedto 0
. Settol
. Set or cleared according to the result

o X b O

. Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 450 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(e) Multiply/Divide/Multiply & Accumulate instructions

Table 4-35. Operation List (Multiply/Divide/Multiply & Accumulate instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CY
MULU X 1 1 - AX <- A x X
MULHUNote - 3 2 - BCAX <- AX X BC
4
MULHNote 4 - 3 2 - BCAX <- AX X BC
DIVHUNote 4 - 3 9 - AX (quotient), DE (remainder)
<- AX /DE
DIvwuNote 4 - 3 17 - BCAX (quotient), HLDE
(remainder) <- BCAX / HLDE
MACHUNote - 3 3 - MACR <- MACR + AX x BC X X
4
MACHNote 4 - 3 3 - MACR <- MACR + AX x BC X X

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.
Blank : Unchanged

0
1
X
R

. Clearedto 0
. Settol

. Set or cleared according to the result

Previously saved value is restored

4. These instructions are expanded instructions and mounted or not mounted by product. For details, see to

user's manual of each product.

Remarks 1.

One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

Clock number when there is a program in the internal ROM (Flash memory) area.

In products in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 451 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(f) Increment/decrement instructions
Table 4-36. Operation List (Increment/Decrement Instructions)
Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CY
INC r 1 1 - r<-r+1 X
saddr 2 2 - (saddr) <- (saddr) + 1 X
laddr16 3 2 - (addr16) <- (addrl6) + 1 X
[HL+byte] 3 2 - (HL + byte) <- (HL + byte) + 1 X
ES:laddrl6 4 3 - (ES, addr16) <- (ES, addr16) X
+1
ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) + X
byte) + 1
DEC r 1 1 - r<-r-1 X
saddr 2 2 - (saddr) <- (saddr) - 1 X
laddrl6 3 2 - (addr16) <- (addr16) - 1 X
[HL+byte] 3 2 - (HL + byte) <- (HL + byte) - 1 X
ES:laddrl16 4 3 - (ES, addr16) <- (ES, addr16) - X
1
ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) + X
byte) - 1
INCW p 1 1 - mp<-rp+1
saddrp 2 2 - (saddrp) <- (saddrp) + 1
laddr16 3 2 - (addr16) <- (addrl6) + 1
[HL+byte] 3 2 - (HL + byte) <- (HL + byte) + 1
ES:laddr16 4 3 - (ES, addr16) <- (ES, addr16)
+1
ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) +
byte) + 1
DECW p 1 1 - mp<-rp-1
saddrp 2 2 - (saddrp) <- (saddrp) - 1
laddr16 3 2 - (addr16) <- (addr16) - 1
[HL+byte] 3 2 - (HL + byte) <- (HL + byte) - 1
ES:laddr16 4 3 - (ES, addr16) <- (ES, addr16) -
1
ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) +
byte) - 1
Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.
3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 452 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

: Clearedto 0
. Settol
. Set or cleared according to the result

o X b O

. Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 453 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(g) Shiftinstructions

Table 4-37. Operation List (Shift Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 z AC CY
SHR A, cnt 2 1 - (CY <- Ao, Am1 <- Am, A7 <-0) X
x cnt
SHRW AX, cnt 2 1 - (CY <- AXo, AXm-1 <- AXm, X
AXis <- 0) x cnt
SHL A, cnt 2 1 - (CY <- A7, Am <- Am1, Ao <- 0) X
x cnt
B, cnt 2 1 - | (CY < B, Bm <- Bn1, Bo <- 0) X
x cnt
C, cnt 2 1 - | (€Y <-C7, Cm<- Cma, Co <-0) X
x cnt
SHLW AX, cnt 2 1 - (CY <- AXis, AXm <- AXm-1, X
AXo <- 0) x cnt
BC, cnt 2 1 - (CY <- BCis, BCm <- BCm1, X
BCo <- 0) x cnt
SAR A, cnt 2 1 - (CY <- Ao, Am1 <- Am, A7 <- A7) X
xcnt
SARW AX, cnt 2 1 - (CY <- AXo, AXm-1 <- AXm, X
AXis <- AX1s) x cnt

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged
0 Cleared to 0
1 Setto 1l
X Set or cleared according to the result
R Previously saved value is restored
Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. cntis the number of bit shifts.

4. In products in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 454 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(h) Rrotate instructions

Table 4-38. Operation List (Rotate Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CY
ROR Al 2 1 - (CY, A7 <- Ao, Am1 <- Am)x1 X
ROL Al 2 1 - (CY, Ao <- A7, Am+1 <- Am)x1 X
RORC Al 2 1 - (CY <- Ao, A7 <- CY, Am1 <- X
Am)Xl
ROLC Al 2 1 - (CY <- A7, Ao <- CY, Am+1 <- X
Am)Xl
ROLWC AX, 1 2 1 - (CY <- AXis, AXo <- CY, AXm+1 X
<= AXm)x1
BC, 1 2 1 - (CY <- BCis, BCo <- CY, BCm+1 X
<- BCm)x1

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.
3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank :
0

1
X
R

Remarks 1.

Unchanged

. Clearedto 0
: Settol
. Set or cleared according to the result

Previously saved value is restored

One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

Clock number when there is a program in the internal ROM (Flash memory) area.

In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 455 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(i) Bit manipulation instructions

Table 4-39. Operation List (Bit Manipulation Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CY

MOV1 CY, saddr.bit 3 1 - CY <- (saddr).bit X
CY, sfr.bit 3 1 - CY <- sfr.bit X
CY, A.bit 2 1 - CY <- A.bit X
CY, PSW.bit 3 1 - CY <- PSW.hit X
CY, [HL].bit 2 1 4 CY <- (HL).bit X
saddr.bit, CY 3 2 - (saddr).bit <- CY
sfr.bit, CY 3 2 - sfr.bit <- CY
A.bit, CY 2 1 - A.bit<- CY
PSW.bit, CY 3 4 - PSW.bit <- CY X
[HL].bit, CY 2 2 - (HL).bit <- CY
CY, ES:[HL].bit 3 2 5 CY <- (ES, HL).bit X
ES:[HL].bit, CY 3 3 - (ES, HL).bit <- CY

AND1 CY, saddr.bit 3 1 - CY <- CY ~ (saddr).bit X
CY, sfr.bit 3 1 - CY <- CY ~ sfr.bit X
CY, A.bit 2 1 - CY <- CY ™ A.bit X
CY, PSW.bit 3 1 - CY <- CY A PSW.hit X
CY, [HL].bit 2 1 4 CY <- CY A~ (HL).bit X
CY, ES:[HL].bit 3 2 5 CY <- CY " (ES, HL).bit X

OR1 CY, saddr.bit 3 1 - CY <- CY v (saddr).bit X
CY, sfr.bit 3 1 - CY <- CY v sfr.bit X
CY, A.bit 2 1 - CY <- CY v A.bit X
CY, PSW.bit 3 1 - CY <- CY v PSW.hit X
CY, [HL].bit 2 1 4 CY <- CY v (HL).hit X
CY, ES:[HL].bit 3 2 5 CY <- CY v (ES, HL).bit X

XOR1 CY, saddr.bit 3 1 - CY <- CY V (saddr).bit X
CY, sfr.bit 3 1 - CY <- CY V sfr.bit X
CY, A.bit 2 1 - CY <- CY V A.bit X
CY, PSW.hit 3 1 - CY <- CY V PSW.hit X
CY, [HL].bit 2 1 4 CY <- CY V (HL).hit X
CY, ES:[HL].bit 3 2 5 CY <- CY V (ES, HL).bit X

R20UT2774EJ0100 Rev.1.00 RENESAS Page 456 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CYy

SET1 saddr.bit 3 2 (saddr).bit <- 1

sfr.bit 3 2 sfr.bit<- 1

A.bit 2 1 A.bit<-1

laddri16.bit 4 2 (addr16).bit <- 1

PSW.bit 3 4 PSW.bit <- 1 X X

[HL].bit 2 2 (HL).bit <- 1

ES:laddr16.bit 5 3 (ES, addr16).bit <- 1

ES:[HL].bit 3 3 (ES, HL).bit <- 1

CY 2 1 Cy<-1 1
CLR1 saddr.bit 3 2 (saddr).bit <- 0

sfr.bit 3 2 sfr.bit <- 0

A.bit 2 1 A.bit<-0

laddri16.bit 4 2 (addr16).bit <- 0

PSW.bit 3 4 PSW.bit <- 0 X X

[HL].bit 2 2 (HL).bit <- 0

ES:laddr16.bit 5 3 (ES, addr16).bit <- 0

ES:[HL].bit 3 3 (ES, HL).bit<- 0

CYy 2 1 CY<-0 0
NOT1 cy 2 1 CY <-CY X

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank :
0

1
X
R

Remarks 1.

Unchanged

: Clearedto 0
. Settol
. Set or cleared according to the result

Previously saved value is restored

One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).
Clock number when there is a program in the internal ROM (Flash memory) area.

In products in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 457 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(i) Call return instructions

Table 4-40. Operations List (Call Return Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 | Note 2 z AC CY

CALL p 2 3 - (SP - 2) <- (PC + 2)s,
(SP - 3) <- (PC + 2)n,
(SP - 4) <- (PC + 2)1,
PC <-CS, rp,
SP <-SP - 4

$laddr20 3 3 - (SP - 2) <- (PC + 3)s,
(SP - 3) <- (PC + 3),
(SP - 4) <- (PC + 3)1,
PC <- PC + 3 + jdisp16,
SP<-SP-4

laddr16 3 3 - (SP - 2) <- (PC + 3)s,
(SP - 3) <- (PC + 3)u,
(SP - 4) <- (PC + 3)1,
PC <- 0000, addri6,
SP<-SP-4

Naddr20 4 3 - (SP - 2) <- (PC + 4)s,
(SP - 3) <- (PC + 4)n,
(SP - 4) <- (PC + 4)1,
PC <- addr20,
SP<-SP-4

CALLT [addr5] 2 5 - (SP - 2) <- (PC + 2)s,

(SP - 3) <- (PC + 2)n,

(SP - 4) <- (PC + 2)1,

PCs <- 0000,

PChx <- (000000000000, addr5
+1),

PC. <- (000000000000,
addr5),

SP<-SP-4

BRK - 2 5 - (SP - 1) <- PSW,
(SP - 2) <- (PC + 2)s,
(SP - 3) <- (PC + 2)u,
(SP - 4) <- (PC + 2)1,
PCs <- 0000,

PCh <- (0007FH),
PCL <- (0007EH),
SP <-SP -4,

IE<-0

RET - 1 6 - PCL <- (SP),
PCh <- (SP + 1),
PCs <- (SP + 2),
SP <-SP + 4

R20UT2774EJ0100 Rev.1.00 RENESAS Page 458 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand

Byte

Clock

Note 1 | Note 2

Operation

HagNme3

AC | CY

RETI

PCL <- (SP),

PCh <- (SP +1),
PCs <- (SP + 2),
PSW <- (SP + 3),
SP<-SP +4

R R

RETB

PCL <- (SP),

PCh <- (SP +1),
PCs <- (SP + 2),
PSW <- (SP + 3),
SP<-SP+4

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Clearedto 0

1 : Settol

X . Set or cleared according to the result
R . Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).
2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 459 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(k) Stack manipulation instructions

Table 4-41. Operation List (Stack Manipulation Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 z AC CY
PUSH PSW 2 1 - (SP - 1) <- PSW,
(SP - 2) <- 00H,
SP<-SP-2
p 1 1 - (SP - 1) <-rpH,
(SP - 2) <-rpy,
SP<-SP-2
POP PSW 2 3 - PSW <- (SP + 1), R R R
SP<-SP+2
p 1 1 - rpL <- (SP),
rpu <- (SP + 1),
SP<-SP+2
MOVW SP, #word 4 1 - SP <- word
SP, AX 2 1 - SP <- AX
AX, SP 2 1 - AX <- SP
HL, SP 3 1 - HL <- SP
BC, SP 3 1 - BC <- SP
DE, SP 3 1 - DE <- SP
ADDW SP, #byte 2 1 - SP <- SP + byte
SuUBwW SP, #byte 2 1 - SP <- SP - byte

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged
0 : Cleared to O
1 : Settol
X . Set or cleared according to the result
R Previously saved value is restored
Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 460 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

() Unconditional branch instructions

Table 4-42. Operation List (Unconditional Branch Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC | CY
BR AX 2 3 - PC <- CS, AX
$addr20 2 3 - PC <- PC + 2 + disp8
$laddr20 3 3 - PC <- PC + 3 + jdisp16
laddr16 3 3 - PC <- 0000, addr16
lladdr20 4 3 - PC <- addr20

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank :
0

1
X
R

Remarks 1.

Unchanged

. Clearedto 0
: Settol
1 Set or cleared according to the result

Previously saved value is restored

One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).
Clock number when there is a program in the internal ROM (Flash memory) area.

In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 461 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(m) Conditional branch instructions

Table 4-43. Operation List (Conditional Branch Instructions)

Mnemonic Operand Byte Clock Operation Flag'ote 4
Note 1 Note 2 AC CY
BC $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if CY =
1
BNC $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if CY =
0
BZ $addr20 2 2/4Note 3 - PC<-PC+2+jdisp8ifZ=1
BNZ $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if Z= 0
BH $addr20 3 2/4Note 3 - PC <- PC + 3 + jdisp8 if (Z v
CY)=0
BNH $addr20 3 2/4Note 3 - PC <- PC + 3 + jdisp8 if (Z v
cy)=1
BT saddr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if
(saddr).bit =1
sfr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if sfr.bit
=1
A.bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if A.bit =
1
PSW.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if
PSW.bit = 1
[HL].bit, $addr20 3 3/5No€3 | g/8 | PC<- PC + 3 + jdisp8 if
(HL).bit =1
ES:[HL].bit, $addr20 4 4/6Noe3 | 7/9 | PC <- PC + 4 + jdisp8 if (ES,
HL).bit = 1
BF saddr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if
(saddr).bit =0
sfr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if sfr.bit
=0
A.bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if A.bit =
0
PSW.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if
PSW.bit =0
[HL].bit, $addr20 3 3/5No€3 | g/8 | PC<- PC + 3 + jdisp8 if
(HL).bit=0
ES:[HL].bit, $addr20 4 4/6Noe3 | 7/9 | PC <- PC + 4 + jdisp8 if (ES,
HL).bit=0
R20UT2774EJ0100 Rev.1.00 RENESANAS Page 462 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Mnemonic Operand Byte Clock Operation Flag'ote 4
Note 1 Note 2 z AC CY
BTCLR saddr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if

(saddr).bit =1
then reset (saddr).bit

sfr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if sfr.bit
=1
then reset sfr.bit

A.bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if A.bit =
1
then reset A.bit

PSW.bit, $addr20 4 5/7Note 3 - PC <- PC + 4 + jdisp8 if X X X
PSW.bit = 1
then reset PSW.bit

[HL].bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if
(HL).bit = 1
then reset (HL).bit

ES:[HL].bit, $addr20 4 4/eNote 3 - PC <- PC + 4 + jdisp8 if (ES,
HL).bit = 1
then reset (ES, HL).bit

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.
3. The clock number shows the condition satisfied or condition unsatisfied.
4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged
0 Cleared to 0
1 Setto 1
X Set or cleared according to the result
R Previously saved value is restored
Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 ;{ENESAS Page 463 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(n) Conditional skip instructions

Table 4-44. Operation List (Conditional Skip Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 z AC CY
SKC - 2 1 - Next instruction skip if CY =1
SKNC - 2 1 - Next instruction skip if CY =0
SKZ - 2 1 - Next instruction skip if Z =1
SKNZ - 2 1 - Next instruction skip if Z =0
SKH - 2 1 - Next instruction skip if (Z v
CY)=0
SKNH - 2 1 - Next instruction skip if (Z v
cY)=1

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.
3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 . Clearedto 0

1 : Settol

X 1 Set or cleared according to the result
R Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock
control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. Inproducts in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the
instruction code, flash space is exceeded and external memory space is accessed and so an external
memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-
bers.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 464 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(0) CPU control instruction

Table 4-45. Operation List (CPU Control Instruction)

Mnemonic Operand Byte Clock Operation FlagNote 3
Note 1 | Note 2 AC CY

SEL RBn 2 1 - RBS[1:0] <- n

NOP - 1 1 - No Operation

El - 3 4 - |IE <- 1 (Enable Interrupt)

DI - 3 4 - |IE <- 0 (Disable Interrupt)

HALT - 2 3 - Set HALT Mode

STOP - 2 3 - Set STOP Mode

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.
2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank :
0

1
X
R

Remarks 1.

Unchanged

: Clearedto 0
: Settol
1 Set or cleared according to the result

. Previously saved value is restored

One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).
Clock number when there is a program in the internal ROM (Flash memory) area.

n is the number of register banks (n = 0 to 3).

In products in which external memory area connects to internal flash area, when using external bus
interface function, wait number is added to the instruction execution clock number that is mapped to the
final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 465 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

4.6.6 Explanation of instructions

This section explains the instructions of RL78 family, 78KOR microcontrollers.

Table 4-46. Assembly Language Instruction List

Function Instruction
8-bit data transmission instructions MOV, XCH, ONEB, CLRB, MOVS
16-bit data transmission instructions MOVW, XCHW, ONEW, CLRW
8-bit operation instructions ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, CMP0O, CMPS
16-bit operation instructions ADDW, SUBW, CMPW
Multiply/Divide/Multiply & Accumulate instruc- | MULU, MULHU, MULH, DIVHU, DIVWU, MACHU, MACH
tions
Increment/Decrement instructions INC, DEC, INCW, DECW
Shift instructions SHR, SHRW, SHL, SHLW, SAR, SARW
Rotate instructions ROR, ROL, RORC, ROLC, ROLWC
Bit manipulation instructions MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1
Call return instructions CALL, CALLT, BRK, RET, RETI, RETB
Stack manipulation instructions PUSH, POP, MOVW, ADDW, SUBW
Unconditional branch instruction BR
Conditional branch instructions BC, BNC, BZ, BNZ, BH, BNH, BT, BF, BTCLR
Conditional skip instructions SKC, SKNC, SKZ, SKNZ, SKH, SKNH
CPU control instructions SEL, NOP, El, DI, HALT, STOP

The following information explains the individual instructions.

[Instruction format]

Shows the basic written format of the instruction.

[Operation]

The instruction operation is shown by using the code address.

[Operand]

The operand that can be specified with this instruction is shown. Please see "(2) Operation field symbols" for descrip-
tions of each operand.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 466 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Flag]

Indicates the flag operation that changes by instruction execution.
Each flag operation symbol is shown in the conventions.

Symbol Description
Blank Unchanged
0 Cleared to O
1 Setto 1l
X Set or cleared according to the result
R Previously saved value is restored
[Description]
Describes the instruction operation in detail.
[Description example]
Description example of an instruction is indicated.
R20UT2774EJ0100 Rev.1.00 .IENESAS Page 467 of 872

Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(1) 8-bit data transmission instructions
The following 8-bit data transmission instructions are available.

Instruction

Overview

MOV

Byte data transfer

XCH

Byte data exchange

ONEB

Byte data 01H set

CLRB

Byte data clear

MOVS

Byte data transfer and PSW change

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 468 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MOV

Byte data transfer

[Instruction format]

MOV dst, src

[Operation]

dst <- src

[Operand]

Operand (dst, src)

r, #byte

saddr, #byte

sfr, #byte

laddrl6, #byte

A rNote

T, ANote

A, saddr

saddr, A

A, sfr

sfr, A

A, 'laddrl6

laddr16, A

PSW, #byte

A, PSW

PSW, A

ES, #byte

ES, saddr

A, ES

ES, A

CS, #byte

A, CS

CS,A

A, [DE]

[DE], A

[DE+byte], #byte

A, [DE+byte]

[DE+byte], A

R20UT2774EJ0100 Rev.1.00 RENESAS Page 469 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Operand (dst, src)

A, [HL]

[HL], A

[HL+byte], #byte

A, [HL+byte]

[HL+byte], A

A, [HL+B]

[HL+B], A

A, [HL+C]

[HL+C], A

word[B], #byte

A, word[B]

word[B], A

word[C], #byte

A, word[C]

word[C], A

word[BC], #byte

A, word[BC]

word[BC], A

[SP+byte], #byte

A, [SP+byte]

[SP+byte], A

B, saddr

B, laddr16

, saddr

, laddr16

, saddr

X | X[0O]0O

, laddr16

ES:laddrl6, #byte

A, ES:laddrl6

ES:laddrl6, A

A, ES:[DE]

ES:[DE], A

ES:[DE+byte], #byte

A, ES:[DE+byte]

ES:[DE+byte], A

A, ES:[HL]
ES:[HL], A
R20UT2774EJ0100 Rev.1.00 RENESAS Page 470 of 872

Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Operand (dst, src)

ES:[HL+byte], #byte

A, ES:[HL+byte]

ES:[HL+byte], A

A, ES:[HL+B]

ES:[HL+B], A

A, ES:[HL+C]

ES:[HL+C], A

ES:word[B], #byte

A, ES:word[B]

ES:word[B], A

ES:word[C], #byte

A, ES:word[C]

ES:word[C], A

ES:word[BC], #byte

A, ES:word[BC]

ES:word[BC], A

B, ES:laddrl6

C, ES:laddr16

X, ES:laddr16

Note Exceptr=A.

[Flag]

(1) PSW, #byte and PSW, A operands

z AC CcYy
X X X
X . Set or cleared according to the result
(2) All other operand combinations
z AC CcYy

Blank : Unchanged

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 471 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand
(dst) specified by the 1st operand.

- No interrupts are acknowledged between the MOV PSW, #byte instruction/MOV PSW, A instruction and the next
instruction.

[Description example]

MOV A, #4DH i (1)

(1) 4DHis transferred to the A register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 472 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

XCH

Byte data exchange

[Instruction format]

XCH dst, src

[Operation]

dst <--> src

[Operand]

Operand (dst, src)

rNote

, saddr

sfr

, laddr16

» [DE]

, [DE+byte]

»[HL]

, [HL + byte]

,[HL + B]

,[HL+ C]

, ES:laddr16

, ES:[DE]

, ES:[DE+byte]

, ES:[HL]

, ES:[HL+byte]

, ES:[HL+B]

- - I I I I 2 I I I N S R 5 P I I I

, ES:[HL+C]

Note Exceptr=A.

[Flag]

Blank : Unchanged

[Description]

- The 1st and 2nd operand contents are exchanged.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 473 of 872
Dec 01, 2013

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description example]

XCH A, FFEBCH ;o (1)

(1) The A register contents and address FFEBCH contents are exchanged.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 474 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ONEB

Byte data 01H set

[Instruction format]

ONEB dst

[Operation]
dst <- 01H

[Operand]

Operand (dst)

A

X

B

C

saddr

laddr16

ES:laddrl6

[Flag]

Blank : Unchanged

[Description]

- 01H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

ONEB A ;o (1)

(1) Transfers 01H to the A register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 475 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CLRB

Byte data clear

[Instruction format]

CLRB dst

[Operation]
dst <- O0OH

[Operand]

Operand (dst)

A

X

B

C

saddr

laddr16

ES:laddrl6

[Flag]

Blank : Unchanged

[Description]

- OOH is transferred to the destination operand (dst) specified by the first operand.

[Description example]

CLRB A ;o (1)

(1) Transfers O0H to the A register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 476 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MOVS

Byte data transfer and PSW change

[Instruction format]

MOVS dst, src

[Operation]

dst <- src

[Operand]

Operand (dst, src)

[HL+byte], X

ES:[HL+byte], X

[Flag]

Blank : Unchanged
X . Set or cleared according to the result

[Description]

- The contents of the source operand specified by the second operand is transferred to the destination operand (dst)
specified by the first operand.

- If the src value is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the register A value is 0 or if the src value is 0, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

[Description example]

MOVS [HL+2H], X ;o (1)

(1) When HL = FEOOH, X =55H, A =0H : "X =55H" is stored at address FEO2H.
Z flag =0 CY flag = 1 (since A register = 0)

R20UT2774EJ0100 Rev.1.00 RENESAS Page 477 of 872
Dec 01, 2013

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(2) 16-bit data transmission instructions
The following 16-bit data transmission instructions are available.

Instruction

Overview

MOVW

Word data transfer

XCHW

Word data exchange

ONEW

Word data 0001H set

CLRW

Word data clear

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 478 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

MOVW

Word data transfer

[Instruction format]

MOVW dst, src

[Operation]

dst <- src

[Operand]

Operand (dst, src)

rp, #word

saddrp, #word

sfrp, #word

AX, saddrp

saddrp, AX

AX, sfrp

sfrp, AX

AX, rpNote

p AXNote

AX, laddr16

laddrl6, AX

AX, [DE]

[DE], AX

AX, [DE+byte]

[DE+byte], AX

AX, [HL]

[HL], AX

AX, [HL+byte]

[HL+byte], AX

AX, word[B]

word[B], AX

AX, word[C]

word[C], AX

AX, word[BC]

word[BC], AX

AX, [SP+byte]

[SP+byte], AX

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 479 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

Operand (dst, src)

BC, saddrp

BC, 'addrl16

DE, saddrp

DE, 'addr16

HL, saddrp

HL, 'addr16

AX, ES:laddr16

ES:laddrl6, AX

AX, ES:[DE]

ES:[DE], AX

AX, ES:[DE+byte]

ES:[DE+byte], AX

AX, ES:[HL]

ES:[HL], AX

AX, ES:[HL+byte]

ES:[HL+byte], AX

AX, ES:word[B]

ES:word[B], AX

AX, ES:word[C]

ES:word[C], AX

AX, ES:word[BC]

ES:word[BC], AX

BC, ES:!addr16

DE, ES:laddr16

HL, ES:laddr16

Note Only when rp = BC, DE or HL

[Flag]

AC

CY

Blank : Unchanged

[Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand

(dst) specified by the 1st operand.

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 480 of 872

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description example]

MOVW AX, HL i (1)

(1) The HL register contents are transferred to the AX register.

[Cautions]

- Only an even address can be specified. An odd address cannot be specified.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 481 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

XCHW

Word data exchange

[Instruction format]

XCHW dst, src

[Operation]

dst <--> src

[Operand]

Operand (dst, src)

AX, rpNote

Note Only when rp = BC, DE or HL

[Flag]

CY

Blank : Unchanged

[Description]

- The 1st and 2nd operand contents are exchanged.

[Description example]

XCHW AX, BC i (1)

(1) The memory contents of the AX register are exchanged with those of the BC register.

R20UT2774EJ0100 Rev.1.00 RENESAS
Dec 01, 2013

Page 482 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ONEW

Word data 0001H set

[Instruction format]

ONEW dst

[Operation]
dst <- 0001H

[Operand]

Operand (dst)

AX

BC

[Flag]

AC

CY

Blank : Unchanged

[Description]

- 0001H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

ONEW AX ;o (1)

(1) O001H is transferred to the AX register.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 483 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CLRW

Word data clear

[Instruction format]

CLRW dst

[Operation]
dst <- 0000H

[Operand]

Operand (dst)

AX

BC

[Flag]

AC

CY

Blank : Unchanged

[Description]

- O000H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

CLRW AX ;o (1)

(1) OOOOH is transferred to the AX register.

R20UT2774EJ0100 Rev.1.00

Dec 01, 2013

RENESAS

Page 484 of 872

CubeSuite+ v2.01.00

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) 8-bit operation instructions

The following 8-bit operation instructions are available.

Instruction Overview
ADD Byte data addition
ADDC Byte data addition including carry
SUB Byte data subtraction
SUBC Byte data subtraction including carry
AND Byte data AND operation
OR Byte data OR operation
XOR Byte data exclusive OR operation
CMP Byte data comparison
CMPO Byte data zero comparison
CMPS Byte data comparison

R20UT2774EJ0100 Rev.1.00
Dec 01, 2013

RENESAS

Page 485 of 872

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ADD

Byte data addition

[Instruction format]

ADD dst, src

[Operation]

dst, CY <- dst + src

[Operand]

Operand (dst, src)

A, #byte

saddr, #byte

A rNote

rnA

A, saddr

A, 'laddrl6

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:laddrl6

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Note Exceptr=A.

[Flag]
Zz AC CY
X X X
X 1 Set or cleared according to the result
R20UT2774EJ0100 Rev.1.00 RENESAS Page 486 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The destination operand (dst) specified by the 1st operand is added to the source operand (src) specified by the
2nd operand and the result is stored in the CY flag and the destination operand (dst).

- If the addition result shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the addition generates a carry out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

- If the addition generates a carry for bit 4 out of bit 3, the AC flag is set (1). In all other cases, the AC flag is cleared

(0).

[Description example]

ADD CR10, #56H

(1) 56H is added to the CR10 register and the result is stored in the CR10 register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 487 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

ADDC

Byte data addition including carry

[Instruction format]

ADDC dst, src

[Operation]
dst, CY <-dst+ src + CY

[Operand]

Operand (dst, src)

A, #byte

saddr, #byte

A rNote

rnA

A, saddr

A, 'laddrl6

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:laddrl6

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Note Exceptr=A.

[Flag]
Zz AC CY
X X X
X 1 Set or cleared according to the result
R20UT2774EJ0100 Rev.1.00 RENESAS Page 488 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The destination operand (dst) specified by the 1st operand, the source operand (src) specified by the 2nd operand
and the CY flag are added and the result is stored in the destination operand (dst) and the CY flag.
The CY flag is added to the least significant bit. This instruction is mainly used to add two or more bytes.

- If the addition result shows that dst is O, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the addition generates a carry out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

- If the addition generates a carry for bit 4 out of bit 3, the AC flag is set (1). In all other cases, the AC flag is cleared

(0).

[Description example]

ADDC A, [HL+B] i (1)

(1) The A register contents and the contents at address (HL register + (B register)) and the CY flag are added
and the result is stored in the A register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 489 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SUB

Byte data subtraction

[Instruction format]

SUB dst, src

[Operation]

dst, CY <- dst - src

[Operand]

Operand (dst, src)

A, #byte

saddr, #byte

A rNote

rnA

A, saddr

A, 'laddrl6

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:laddrl6

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Note Exceptr=A.

[Flag]
Zz AC CY
X X X
X 1 Set or cleared according to the result
R20UT2774EJ0100 Rev.1.00 RENESAS Page 490 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified
by the 1st operand and the result is stored in the destination operand (dst) and the CY flag.
The destination operand can be cleared to 0 by equalizing the source operand (src) and the destination operand
(dst).

- If the subtraction shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared
(0).

- If the subtraction generates a borrow for bit 3 out of bit 4, the AC flag is set (1). In all other cases, the AC flag is
cleared (0).

[Description example]

SUB D, A ;o (1)

(1) The A register is subtracted from the D register and the result is stored in the D register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 491 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

SUBC

Byte data subtraction including carry

[Instruction format]

SUBC dst, src

[Operation]
dst, CY <-dst-src-CY

[Operand]

Operand (dst, src)

A, #byte

saddr, #byte

A rNote

rnA

A, saddr

A, 'laddrl6

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:laddrl6

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Note Exceptr=A.

[Flag]
Zz AC CY
X X X
X 1 Set or cleared according to the result
R20UT2774EJ0100 Rev.1.00 RENESAS Page 492 of 872

Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]

- The source operand (src) specified by the 2nd operand and the CY flag are subtracted from the destination oper-
and (dst) specified by the 1st operand and the result is stored in the destination operand (dst).
The CY flag is subtracted from the least significant bit. This instruction is mainly used for subtraction of two or
more bytes.

- If the subtraction shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared
(0).

- If the subtraction generates a borrow for bit 3 out of bit 4, the AC flag is set (1). In all other cases, the AC flag is
cleared (0).

[Description example]

SUBC A, [HLI]

(1) The (HL register) address contents and the CY flag are subtracted from the A register and the result is
stored in the A register.

R20UT2774EJ0100 Rev.1.00 RENESAS Page 493 of 872
Dec 01, 2013

CubeSuite+ Vv2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

AND

Byte data AND operation

[Instruction format]

AND dst, src

[Operation]

dst <- dst ” src

[Operand]

Operand (dst, src)

A, #byte

saddr, #byte

A rNote

rnA

A, saddr

A, 'laddrl6

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:laddrl6

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Note Exceptr=A.

[Flag]

Blank : Unchanged