

Application Note DA9070 Power Profile Manager and SOCF

AN-SW-121

Abstract

The application note describes the State of Charge Function (SOCF) with DA9070 and how its functionality is realized with DA9070 and the target system. It describes the list of features provided by the related code and how it is incorporated into the target system. It also introduces a tool which is used to calibrate the Fuel Gauge (FG) demo board and characterize a battery.

DA9070 Power Profile Manager and SOCF

Contents

Ab	Abstract1			
Со	ntents	\$		2
Fig	jures.			
Та	bles			
1	Term	s and De	finitions	
2				
2				-
4	State 4.1	-	ge Concept and Algorithms	
	4.1 4.2		b Count Based Algorithm Itage Based Algorithm	
	4.2 4.3	•	Igorithm	
5			e Process	
5	5.1		on and Parameters	
	5.2		Profile	
	5.3		ance Test	
6			Manager	
U	6.1		in Window	
	6.2		rt Selection	
	6.3		on and Parameters	
		6.3.1	Measure	
		6.3.2	Board Calibration	
		6.3.3	Resistors Setting	
		6.3.4	Parameters Setting	12
		6.3.5	Control Buttons	13
	6.4	Battery F	Profile	13
	6.5		ance Test	
	6.6	Profile D	ata	14
7	Profi	-	ttery	
	7.1	-	the Board and Battery	
	7.2		the Battery and USB Cable	
	7.3	-	FTDI Ports	
	7.4		ng and Setting Parameters	
		7.4.1 7.4.2	Find Current Offset	
		7.4.2	Find VDD STM32 Voltage	
		7.4.3	Set Resistor Values	
		7.4.5	Set Parameters Values	
		7.4.6	Export all Values	
	7.5	-	a Battery Profile	
8		-	rmance	
9		-	file Data	
3	9.1		vata from Battery Manufacturer	
	9.2		Profile Data (from Three Batteries)	
Ар	plicati	ion Note	Revision 1.7	22-Feb-2022

DA9070 Power Profile Manager and SOCF

10	Fuel Gauge Application			
	10.1	Required Information in socf_profile_data.h		
	10.2	Functions in socf_client.c		
	10.3	Functions in socf_hal.c		
	10.4	Development Environment		
11	Perfo	rmance Test Result with SOCF Algorithm		
12	Know	n Limitations		
	12.1	Temperature Compensation		
Ap	pendix	A The Update of a Firmware to DA9070 FG Demo Board		
Ap	pendix	x B Troubleshooting Guides with Message		
Re	vision	History		

Figures

Figure 1: Battery Voltage versus Battery Capacity	. 6
Figure 2: SOCF Algorithm	. 7
Figure 3: Battery Profile Process with the PPM	. 8
Figure 4: DA9070 FG Demo Board	
Figure 5: Main Menu of the PPM	
Figure 6: Initial Screen of the Calibration and Parameters	11
Figure 7: Initial Screen of the Battery Profile	13
Figure 8: Initial Screen of the Performance Test	14
Figure 9: Initial Screen of the Profile Data	15
Figure 10: FG Board with Battery and USB Cable Connected	15
Figure 11: USB Serial Ports in Device Manager of Windows 10	16
Figure 12: USB Serial Ports in the PPM	16
Figure 13: USB Serial Ports in the PPM Selected	17
Figure 14: Imported Data from the MCU Automatically	17
Figure 15: The Jumper Configurations for Finding Current Offset	18
Figure 16: Measure Current Offset and Enter Values	18
Figure 17: Exported Values to the MCU	19
Figure 18: Jumper Configurations for Battery Profile and Performance Test	
Figure 19: Start of Battery Profile	
Figure 20: Output File of Battery Profile	20
Figure 21: Profile Data of BP_DISCHG_TB_xxx.txt	
Figure 22: Profile Data of BP_CHG_TB_xxx.txt	
Figure 23: Preparation Process of Performance Test	22
Figure 24: Finished Screen of Performance Test	
Figure 25: Output File of Performance Test	23
Figure 26: Added or Imported Profile Data1	
Figure 27: Added or Imported Profile Data2	25
Figure 28: Added or Imported Profile Data3	
Figure 29: Averaged Profile Data	25
Figure 30: Result of Performance Test with Battery D	29
Figure 31: Error Message	30

Tables

Table 1: Jumper Configurations	. 9
Table 2: Allowed Range for Board Calibration	
Table 3: Possible Load Values with 3 Resistors	
Table 4: Recommended Value of Each Parameter	12

Application Note

22-Feb-2022

DA9070 Power Profile Manager and SOCF

Table 5: Information Required in socf_profile_data.h	26
Table 6: Functions in socf_client.c	
Table 7: Functions in socf_hal.c	
Table 8: Troubleshooting Guides	

DA9070 Power Profile Manager and SOCF

1 Terms and Definitions

ADC	Analog to Digital Converter
CC	Constant Current
COM	Communication Port
CV	Constant Voltage
EOC	End Of Charge
FG	Fuel Gauge
FTDI	Future Technology Devices International
HW	Hard Ware
IBAT	Current to/from Battery
IMON	Battery discharge current Monitor
MCU	Micro Controller Unit
PPM	Power Profile Manager
SOC	State Of Charge
SOCF	State Of Charge Function
USB	Universal Serial Bus
VBAT	Voltage of Battery

2 References

[1] DA9070, Datasheet, Dialog Semiconductor.

5 of 34

3 Introduction

The State of Charge (SOC) is an important parameter in modern day applications that will provide the energy level of a rechargeable battery. It is an abstract energy concept which is typically the ratio of the available capacity to the attainable capacity of a battery pack. This Application Note first introduces the SOC concept followed by the algorithm implemented in our system. Then it describes how to deploy the State Of Charge Function (SOCF) for DA9070 based applications and Power Profile Manager (PPM) is also introduced to characterize the battery. The SOCF consists of interface code and a library. The usage of the code and library is described within this document.

4 State of Charge Concept and Algorithms

As defined earlier, the SOC is the ratio of the available capacity to the total capacity of a battery pack. However, modelling a battery is a complex task. The battery specification only provides its capacity for a given discharge rate. If one draws a different current from a battery which in turn means a different discharge rate, then the capacity of the battery changes. In Figure 1, the battery voltage versus the capacity of the battery is plotted for different discharge rate.

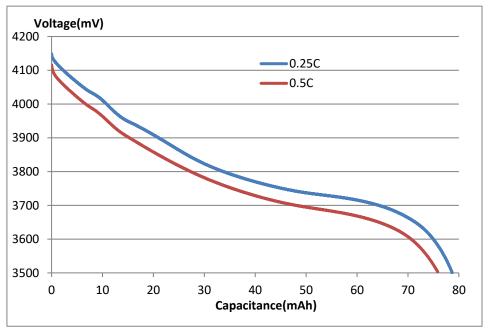


Figure 1: Battery Voltage versus Battery Capacity

A C-rate is a measure of the rate at which a battery is discharged relative to its maximum capacity. A 0.5C rate means that the discharge current will discharge the entire battery in two hours. In the graph, given that the cut off voltage of the battery is 3.5 V, it is evident that the battery has a lower capacity for a higher discharge rate. Hence, the current drawn from the battery is needed to estimate the SOC accurately.

4.1 Coulomb Count Based Algorithm

Generally, hardware (HW) coulomb counter integrates a voltage which is the result of a current flowing through a sensing resistor. The coulomb counting is maintained continually and SOC is calculated from the coulomb counting result directly. This algorithm has several weak points. This HW-based algorithm must always run on the target system. It is not a good solution for an application requiring very low power consumption like BLE or wearable devices. Additionally, an offset error due to some tolerance of a component or ADC itself can be accumulated for a long time. Therefore, some complex algorithms for cancelling this accumulated error are required.

			-	
Ap	b	icatio	on N	lote
	· • •			

4.2 Only Voltage Based Algorithm

This solution is SOC estimation from a lookup table of voltage versus SOC. This table can be generated through the measurement of the voltage of a battery during a specific constant power consumption. Though this algorithm is very simple, it is not suitable for any application with dynamic power consumption like wearable devices.

4.3 SOCF Algorithm

The SOCF algorithm is based on the voltage and the current of the battery. The voltage is from ADC of the target system and current is from IMON of DA9070. The SOC is worked out with parameters and battery profile data, see Figure 2. There is no accumulation error in this algorithm and SOC can be estimated accurately at various ranges of power consumption. There is no apparent power consumption by the SOC estimation because a measurement is done very quickly with intervals over 10 seconds.

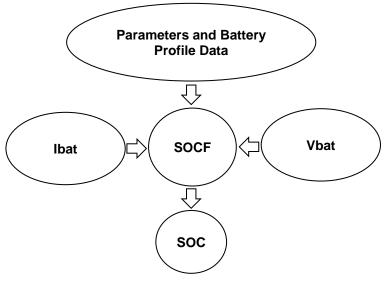


Figure 2: SOCF Algorithm

5 Battery Profile Process

The SOCF algorithm is based on battery profile data which can be generated using DA9070 Fuel Gauge (FG) demo board and the PPM. The battery profile process with the PPM consists of three sub-processes, see Figure 3. It is recommended that all processes are performed at room temperature for accurate data, measurement, and comparison.

Figure 3: Battery Profile Process with the PPM

5.1 Calibration and Parameters

The voltage and current are measured during battery profile process. To achieve accurate measurement, power calibrations are required for reducing potential differences due to the tolerance of components and power levels on the board. Various parameters for correct PPM operation must be loaded from the DA9070 FG demo board. This process must always be performed before a battery profile or a performance test.

5.2 Battery Profile

Battery profile can start after all values and parameters are set. No manual control is needed during battery profile and the profile data is automatically sent to a PC when completed.

5.3 **Performance Test**

Performance test starts automatically after a battery profile is done. The SOC from Reference HW FG on the board and SOCF algorithm in the MCU are compared during full discharging and charging cycle. The result should be stored in the specified path of the PC.

DA9070 Power Profile Manager and SOCF

6 Power Profile Manager

This section describes the PPM which is designed for calibration, managing profile data, battery profile, and performance test. The PPM runs on a PC connected to a DA9070 FG demo board, see Figure 4. The major functions of the PPM are:

- Configuration of FTDI device for serial communication
- Power calibration
- Set parameters
- Battery profile
- Performance test
- Manage/import/export battery profile data

Figure 4: DA9070 FG Demo Board

NOTE

Confirm the jumper configurations shown in Table 1 before performing any test.

Table 1: Jumper Configurations

Jumper	Pin Connection	Jumper	Pin Connection
J23	2-3	J18	1-2
J22	1-2	J19	1-2
J25	3-4	J20	1-2
J15	2-3	J11	1-2
J6	2-3	J10	1-2
J12	1-2	J9	1-2
J24	2-3	J2	1-2

	1.00	1.0	
Ap	plica	ation	Note

6.1 **PPM Main Window**

Figure 5 shows the main screen of the PPM, which has six options:

- **FTDI port selection**: Select a port of the FTDI device on the board for serial communication between the PPM and DA9070 FG demo board.
- **Calibration and Parameters**: Power calibration and set parameters for battery profile or performance test.
- **Profile Data**: Manage/import/export battery profile data.
- **Battery Profile**: Generates the battery profile data which characterizes the battery under consideration.
- Performance Test: Compares the SOC from Reference FG and SOCF algorithm.
- File Path: Setting a default directory for importing/exporting profile data and the result of battery profile.

🖳 Power Profile Ma	- 🗆 ×					
FTDI port selection						
Port1	, Port2: NONE					
Port3 NONE	Port4 NONE					
S	can					
Function	Function					
Calibration and Parameters	Profile Data					
Battery Profile	Performance Test					
File Path						
Browse C:	Dialog Semiconc					

Figure 5: Main Menu of the PPM

6.2 FTDI Port Selection

The FTDI device on DA9070 FG demo board creates four USB serial ports in Windows OS. The control of the battery profile, performance test, export/import profile data, and communication to the target system are done through these ports.

• Scan: Scan possible FTDI UART port

6.3 Calibration and Parameters

Before battery profile or performance test, power calibration and setting the parameters are required for accurate measurement and data. If the **Calibration and Parameters** button is clicked, all these values should be imported from the MCU on the board. Figure 6 shows the initial window of **Calibration and Parameters** when the values and parameters are imported from DA9070 FG demo board. There are four menu groups.

🔢 Calibration and Param	eters		-		×
Reference Version Package: 1.0.5 PF	PM: 1v5	Firmware:	1.0.4 Ap	op Note: 1	v5
Measure					
Avg Current	0.0 u/	A Now Cu	urrent	0.0	uA
Avg Voltage	0.0 m	Now Vo	oltage	0.0 n	nV
Board Calibration					
VREF	5000 n	nV VDD_S	тмза	2000 1	mV
Current Offset	-100 u	IA			
Resistors Setting		Paramete	rs Setting		
R72 30.9 OHN	1	Capacitan	ice	80	mAh
R9 62 OHN	1	Charging	Voltage	4200	mV
R11 154 OHM	1	Charging (Current	40	mA
Elapsed time 00d:00h	:00m:00s	EOC Curre	ent	4	mA
Sample Num.	0.0 sps	Max Dis Ci	urr. 26	mA	\sim
Measure	Import fr	rom MCU	Exp	ort to MCU	

Figure 6: Initial Screen of the Calibration and Parameters

6.3.1 Measure

The measured instant current, average current, instant voltage, and average voltage of battery are shown in this group. These are used during calibration.

6.3.2 Board Calibration

In this group, the VREF, VDD_STM32, and current should be calibrated. These are used for accurate measurement of voltage and current on the board during battery profile or performance test. The allowed ranges for board calibration are shown in Table 2.

Table 2: Allowed Range for Board Calibration

Calibration Item	Allowed Range
VREF	4800 ~ 5200 mV
VDD_STM32	1950 ~ 2050 mV
Current Offset	-1000 ~ 1000 μA

6.3.3 Resistors Setting

R72, R9, and R11 on the board are used as a load during discharging. The resistance of each resistor decides possible **Max Dis Curr** values. The default values in the board are 30.9, 62, and 154 Ohms. The possible load values with the combination of 3 resistors are shown in Table 3.

NOTE

If larger **Max Dis Curr** than the default values are required for the battery profiling, the resistors on the board must be replaced with the same value of this settings. The possible minimum resistance of each resistor is 9.4 Ohms. The tolerance of resistors must be as low as possible for exact load and allowable power must be over 0.5 W considering maximum power. Do not battery profile or performance test with different setting values from the resistance of the resistors on the board.

Table 3: Possible Load Values with 3 Resistors

1 800 / R11 + 3 8 88	Index	Index Equation for Possible Load (mA)		With all 9.4 Ohms (mA)
	1	800 / R11 + 3	8	88

Application Not	te
------------------------	----

Index	Equation for Possible Load (mA)	Default (mA)	With all 9.4 Ohms (mA)
2	800 / R9 + 3	16	88
3	800 / R11 +800 / R9 + 3	21	173
4	800 / R72 + 3	29	88
5	800 / R72 + 800 / R11 +3	34	173
6	800 / R72 + 800 / R9 + 3	42	173
7	800 / R72 + 800 / R11 + 800 / R9 + 3	47	258
8	1400 / R11 + 3	12	152
9	1400 / R9 + 3	26	152
10	1400 / R11 +1400 / R9 + 3	35	301
11	1400 / R72 + 3	48	152
12	1400 / R72 + 1400 / R11 +3	57	301
13	1400 / R72 + 1400 / R9 + 3	71	301
14	1400 / R72 + 1400 / R11 + 1400 / R9 + 3	80	450

6.3.4 Parameters Setting

The parameters must be loaded from or updated to the board before the battery profile or performance test. The recommended values of each parameter are shown in Table 4.

- **Battery Capacity** (mAh): The capacity of the battery to be used by the target system. Normally the specification of the battery provides a total capacitance figure, but it has a tolerance (usually 5 ~ 10 %) and the usable capacity is related to the maximum discharging current of the target system as described in Section 4. The minimum voltage the target requires to operate must be sustained at the maximum current draw. So, it is necessary to select the capacity of the fully charged battery which can be used without a risk of reaching the minimum voltage requirement, even under full load. If such information for capacitance is unavailable, then the minimum capacitance from the specification can be used.
- **Charging Voltage** (mV): The voltage value of the battery during Constant Voltage (CV) charging period as detailed in the battery specification. The charging voltage of most lithium type battery is 4200 ~ 4400 mV.
- **Charging Current** (mA): The current value during Constant Current (CC) charging period as detailed in the battery specification or set for target application. 0.5C charging current is recommended considering the specification and lifecycle of battery.
- **EOC Current** (mA): The End Of Charge (EOC) current which should be set in the DA9070 charger. 10% of **Charging Current** is recommended.
- Max Dis Curr (mA): The maximum average discharging current whilst the target works in the active state. The average measurement should be taken over dozens of milliseconds. This then excludes some peak discharging current from consideration. The maximum current supplied by an LDO of DA9070 is around 150 mA. So, the maximum possible Max Dis Curr is around 450 mA with 3 LDOs. A value within 450 mA must be defined with the combination of 3 resistors. According to the battery specification, the capacitance of a battery is measured with 0.2C or 0.25C. If full capacitance of the battery is required at target application, it is recommended that 0.2C or 0.25C is set as Max Dis Curr.

Table 4: Recommended Value of Each Parameter

Parameter Recommended Value		Example
Battery Capacity	The minimum capacitance from the specification	200 mAh
Charging Voltage	A specified value in the specification	4200 mV

Application Note

Parameter	Recommended Value	Example
Charging Current	0.5C	100 mA
EOC	10 % of Charging Current	10 mA
Max Dis Curr	0.2 ~ 0.25C	40 ~ 50 mA

6.3.5 Control Buttons

- Measure: Start measuring the current and voltage of the battery.
- **Import from MCU**: Import all values from the MCU.
- **Export to MCU**: Export all values to the MCU.

6.4 Battery Profile

After all values are set in the **Calibration and Parameters**, the battery profile can start, and all processes are completed automatically. The **Status** field displays the elapsed time, which depends on the capacitance, load, and charging current. An estimated time remaining is also shown in the **Status** field during the battery profiling. The process number and sampling speed are shown for debug purpose. The output files are written to the **File Path**, as defined in Section 6.1.

- Status: Elapsed time, remained time, progress bar, process number, and ADC sampling speed.
- Setting
 - The parameter values which are defined in the Calibration and Parameters.
 - **Min Battery Voltage**: Minimum battery voltage during discharging state. It is defined as discharging cut-off voltage, minimum discharging voltage or end voltage in the specification.
- Start: Start a battery profile

🖶 Battery Profile	-		×			
Status						
Elapsed time	00d	:00h:00r	n:00s			
Remained time	Remained time 00d:00h:00m:00s					
Process Numbe	er ()				
Sampling Speed 0						
S	tart					
0	unt					
Setting						
Batt Capacitance	е	80	mAh			
Charging Voltag	е	4200	mV			
Charging Curren	40	mA				
EOC Current		4	mA			
Max Dis Curr.	Max Dis Curr.		mA			
Min Battery Volta	ige	3000	mV			

Figure 7: Initial Screen of the Battery Profile

6.5 Performance Test

The performance test for the comparison of SOC from Reference FG and SOCF algorithm starts automatically after battery profile, or it can be done manually later. Everything processed during full discharge and charging cycles are performed automatically. The **Done** dialog appears when the **Performance Test** is complete. The initial screen of the performance test is shown in Figure 8.

Application Note

Revision 1.7

DA9070 Power Profile Manager and SOCF

- **Start**: Start a performance test.
- Load Profile: Select load during performance.
- Elapsed Time: Elapsed time after starting.
- State: The state of performance test.
- **SOCF**: SOC from SOCF.
- **REF**: SOC from Reference FG.
- Now Voltage: The voltage of battery.
- Now Current: The current to/from battery.
- Avg Current: The averaged current during test.
- Max Diff: The maximum difference between SOC from SOCF and Reference FG.

Figure 8: Initial Screen of the Performance Test

6.6 Profile Data

The profile data can be imported from PC or the MCU. Also, the data can be manipulated and exported to PC or the MCU. The exported data to the MCU should be applied to SOCF algorithm immediately. The initial screen of the Profile Data is shown in Figure 9.

- Data1, Data2, Data3: Imported or selected 3 battery profile data.
- Change: Add or update selected value of lookup tables.
- Parameters: The parameters related with SOCF algorithm.
- **Import**: Import to the MCU or PC.
- Export: Export from the MCU or PC.
- Average: Average 3 profile data and set the values to Data1.
- Clear: Clear all values of selected Data.

🖳 Profile Data				- 🗆 X
Data1 Data2 Data3 Lookup Tables				Parameters Capacitance Charging Voltage 0 mAh 0 mV
SOC(%)	LOW	HIGH	CHG	Charging Current Profiled CC
100	0	0	0	0 mA 0 mA
90	0	0	0	EOC Current
80	0	0	0	0 mA
70	0	0	0	High Current Low Current
60	0	0	0	
50	0	0	0	0 mA 3 mA
40	0	0	0	Import
30	0	0	0	
20	0	0	0	From MCU From PC
10	0	0	0	Funet
5	0	0	0	Export
2	0	0	0	To MCU To PC
0	0	0	0	TOMOG
0	mV	Change		Average Clear

Figure 9: Initial Screen of the Profile Data

7 Profiling a Battery

7.1 Prepare the Board and Battery

A DA9070 FG demo board and a rechargeable battery should be prepared for battery profiling. The jumper configurations on the DA9070 FG demo board must be as shown in Figure 4 and Table 1.

NOTE

Confirm the jumper configurations shown in Table 1.

7.2 Connect the Battery and USB Cable

The prepared battery must be connected to **J27** and then connect the USB cable to the PC. Figure 10 shows the board with battery and USB cable connected.

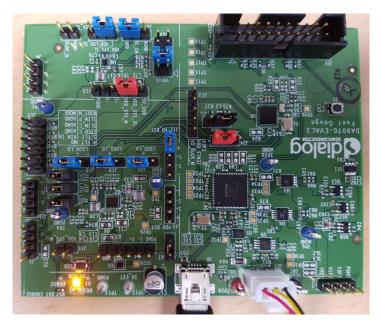
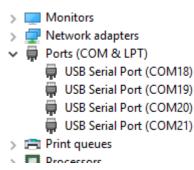


Figure 10: FG Board with Battery and USB Cable Connected


Application Note	App	lication	Note
-------------------------	-----	----------	------

Revision 1.7

7.3 Finding FTDI Ports

When PPM is started in a Windows system, the main menu is shown, see Figure 5.

When a USB cable is connected between the PC and the USB port of DA9070 FG demo board, the four sequential ports of FTDI are generated, see Figure 11. If the ports in the device manager are observed when the cable is connected, it is easy to find which ports are for DA9070 FG demo board. If the **Scan** button is clicked, the ports will be shown in the drop-down list, see Figure 12. Choosing the first of the four sequential ports automatically populates the others, see Figure 13.

🖳 Power	r Profile Ma	-		×
FTDI port selection				
Port1	~	Port2:	NON	IE
Port3	COM18 COM19 COM20 COM21	Port4 an	NOM	IE
Function				
Calibration and Parameters Profile Data				
Battery Profile Performance Test				
File Path				
Browse C:\Dialog Semiconc				

Figure 12: USB Serial Ports in the PPM

🖳 Power Profile Ma	– 🗆 ×			
FTDI port selection				
Port1 COM18 ~	Port2: COM19			
Port3 COM20	Port4 COM21			
So	an			
Function				
Calibration and Parameters Profile Data				
Battery Profile Performance Test				
File Path				
Browse C:\Dialog Semiconc				

Figure 13: USB Serial Ports in the PPM Selected

7.4 Calibrating and Setting Parameters

When the **Calibration and Parameters** menu is selected, all default values for calibration and parameters from the previous battery are imported from the MCU automatically, see Figure 14.

NOTE

The board has been pre-calibrated. The Section 7.4.1 - 7.4.3 can be skipped unless you want to re-calibrate.

🔢 Calibration and F	arameters		_		\times
Reference Versio Package: 1.0.5	PPM: 1v5	Firmware:	1.0.4 A	pp Note:	lv5
Measure					
Avg Current	0.0 u.	A Now Cu	urrent	0.0	uA
Avg Voltage	0.0 n	nV Now Vo	oltage	0.0	mV
Board Calibration					
VREF	CONFIRM		\times	2000	mV
Current Offset	-				
Resistors Setting	(ј) м229	Done reading	data!		
R72 30.9				80	mAh
			ОК		
R9 62			OK I	4200	mV
R11 154	OHM	Charging (Current	40	mA
Elapsed time 000	d:00h:00m:00s	EOC Curre	ent	4	mA
Sample Num.	0.0 sps	Max Dis C	urr. 26	mA	~
Gample Num.	u.u sps				
Measure	Import f	rom MCU	Exp	port to MC	J

Figure 14: Imported Data from the MCU Automatically

7.4.1 Find Current Offset

The procedure for finding current offset is:

- 1. Remove the jumpers of J2, see Figure 15.
- 2. Enter 0 in the Current Offset field.
- 3. Click the **Measure** button and then after one minute, click **Stop**.
- 4. Enter the value (-100 the value of the Avg Current) in the Current Offset field.

Application Note

Revision 1.7

22-Feb-2022

DA9070 Power Profile Manager and SOCF

- 5. Connect the jumpers of **J2** again, see Figure 10.
- 6. Reset MCU by pressing and releasing S1.
- Follow Section 7.4.2 or Export the value to the MCU by clicking Export to MCU button, see Figure 17.

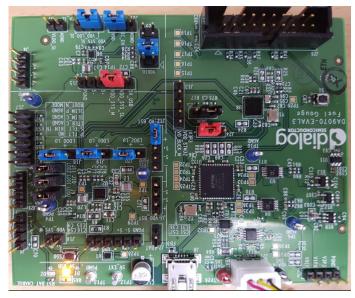


Figure 15: The Jumper Configurations for Finding Current Offset

🖳 Calibration and P	arameters				-		×
Reference Versio Package: 1.0.5	n PPM: 1v5	F	irmware:	1.0.4	Арр	o Note:	1v5
Measure							
Avg Current	113.75	uA	Now Cu	irrent		063.52	uA
Avg Voltage	4080.84	mV	Now Vo	oltage		4081.04	mV
Board Calibration							
VREF	5000	mV	VDD_S	TM32		2000	mV
Current Offset	-214	uA					
Resistors Setting		P	aramete	rs Sett	ing		
R72 30.9	OHM	С	apacitan	се		80	mAh
R9 62	онм	С	harging \	/oltage	•	4200	mV
R11 154	онм	С	harging (Current		40	mA
Elapsed time 00d	00h:01m:00s	, E	OC Curre	nt		4	mA
Sample Num.	50708.4 sp:		ax Dis Cı	urr.	26	mA	~
Measure	Import	t from	MCU		Ехро	rt to MC	U

Figure 16: Measure Current Offset and Enter Values

7.4.2 Find VREF Voltage

The procedure for finding VREF voltage is:

- 1. Confirm the jumper configurations of the board, see Figure 10.
- 2. Click Measure.
- 3. Measure the voltage between VREF and PGND at J5 using a multimeter.
- 4. Enter the value in the **VREF Voltage** field, see Figure 16.
- 5. Follow Section 7.4.3 or Export the value to the MCU by clicking **Export to MCU** button, see Figure 17.

```
Application Note
```

7.4.3 Find VDD_STM32 Voltage

The procedure for finding VDD_STM32 voltage is:

- 1. Confirm the jumper configurations of the board, see Figure 10.
- 2. Measure the voltage between VDD_STM32 and PGND at J24 using a multimeter.
- 3. Enter the value in the VDD_STM32 Voltage field, see Figure 16.
- 4. Export the value to the MCU by clicking **Export to MCU** button, see Figure 17.

7.4.4 Set Resistor Values

Once **Max Dis Curr** value is decided, proper resistor values must be selected and replaced in accordance with Table 3.

7.4.5 Set Parameters Values

Battery capacitance, charging voltage, charging current, EOC current, and max discharging current must be updated according to the battery and target system, see Section 6.3.4.

7.4.6 Export all Values

After all settings are complete, the values must be exported to the MCU by clicking **Export to MCU** button. A **Done** popup message is shown once the export is complete, see Figure 17.

🔡 Calibration and Pa	arameters				- 🗆	\times
Reference Version Package: 1.0.5	n PPM: 1v5	F	irmware:	1.0.4	App Note:	1v5
Measure						
Avg Current	-3194.53	uA	Now Cu	irrent	-3152.13	uA
Avg Voltage	4076.00	mV	Now Vo	oltage	4075.42	mV
Board Calibration						
VREF	4990	mV	VDD_S	TM32	2009	mV
Current Offset	-214	uA				
Resistors Setting	CONFIRM		×	Setti	ng	
R72 30.9	c			э	80	mAh
R9 62		M228 [DONE!	ltage	4200	mV
R11 154				rrent	40	mA
Elapsed time 00d			ОК	:	4	mA
Sample Num.	50185.7 sp	os M	ax Dis Cu	urr.	26 mA	~
Measure	Impor	t from	MCU	E	Export to MC	CU

Figure 17: Exported Values to the MCU

7.5 Starting a Battery Profile

Figure 18 shows the jumper configurations required for battery profile on DA9070 FG demo board. A difference from Figure 10 is the connection of (2) and (3) of **J14**.

The battery profile is launched by clicking the **battery profile** button of the PPM main menu, as shown in Figure 13. The battery profiling starts by clicking the **Start** button, see Figure 19.

When the battery profile is complete, the 3 files (BP_CHG_TB_xxx.txt, BP_DISCHG_TB_ xxx.txt and BP_ProfileData_xxx.txt) are written to the **File Path**, as defined in Section 6.1. Figure 20 shows example files, and Figure 21 and Figure 22 show example file contents. The profile data and parameters within the files are used for SOCF application. BP_ProfileData_xxx.txt can be used for importing and exporting profile data at the **Profile Data** menu.

Application	Note
-------------	------

NOTE

Confirm the jumper configurations shown in Table 1 and J14.

The time for a battery profile depends on the capacitance, discharging, and charging current. The typical time for 80 mAh capacitance, 20mA discharging current and 40mA charging current is around 12 ~ 15 hours. Please confirm the PC should not go to sleep during this process.

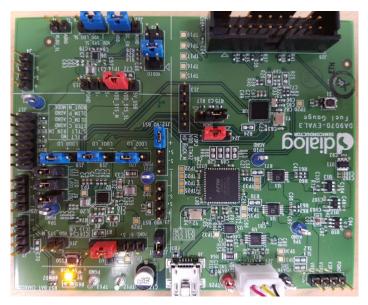
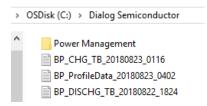



Figure 18: Jumper Configurations for Battery Profile and Performance Test

🚪 Battery Profile 🛛 —		>			
Status					
Elapsed time 00d	00h:00r	n:04s			
Remained time Unk	own				
Process Number 2					
Sampling Speed 5	6050.0				
Stop					
Q-Hi					
Setting					
Batt Capacitance	80	mAh			
Charging Voltage	4200	mV			
Charging Current	40	mA			
EOC Current	4	mA			
Max Dis Curr.	26	mA			
Min Battery Voltage	3000	mV			

Figure 19: Start of Battery Profile

Figure 20: Output File of Battery Profile

	-	-	
Application Note		Revision 1.7	22-Feb-2022

SOCF_MIN_DIS = 3
SOCF_MAX_DIS = 27
socf_lvolt[V0L2SOC_LUT_SIZE] = {3631,3652,3669,3695,3741,3764,3780,3807,3849,3921,3980,4068,4162,}
socf_hvolt[V0L2SOC_LUT_SIZE] = {3477,3511,3558,3612,3674,3703,3724,3756,3799,3859,3927,4021,4115,}

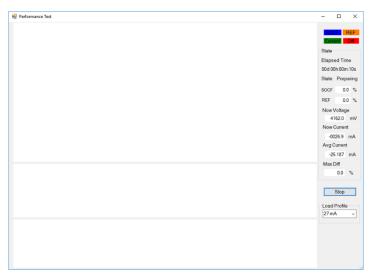
Figure 21: Profile Data of BP_DISCHG_TB_xxx.txt

SOCF_CHG_CV = 4200
SOCF_N_CHG_CC = 40
SOCF_M_CHG_CC = 38
SOCF_CHG_EOC = 4
socf_cvolt[V0L2SOC_LUT_SIZE] = {3767,3788,3810,3839,3866,3883,3909,3950,3997,4049,4120,4195,4200,}

Figure 22: Profile Data of BP_CHG_TB_xxx.txt

8 Testing Performance

Once the battery profile is complete, all battery profile data is exported to the MCU and a performance test starts automatically. Additional performance tests can be performed later. The preparation for a performance test is the same as for the battery profiling, see Sections 7.1 to 7.4. If the **Start** button is clicked or it starts automatically after a battery profile, PPM manages the state of the battery through the MCU for starting performance test. After some preparation process, shown in in Figure 23, the performance test continues for full discharging and charging cycle. The load profile can be changed manually during preparation or test.


During the performance test, SOC from Reference FG and SOCF, average current for 1 second, and the difference between two SOCs are shown graphically. When the performance test is completed, the results image is saved to the PC automatically in the **File Path** and a **Done** message appears, see Figure 24 and Figure 25.

NOTE

The jumper configurations are the same as for the battery profile, see Figure 18. Please confirm the default jumper configuration shown in table 1 and that J14 has (2)-(3) pin connection.

The time for a performance test depends on the capacitance, discharging, and charging current. The typical time for 80 mAh capacitance, 20mA discharging current and 40mA charging current is around 7 ~ 10 hours.

Please confirm the PC should not go to sleep during this process.

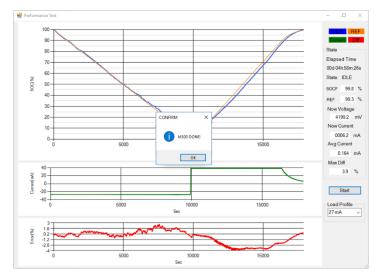


Figure 24: Finished Screen of Performance Test

OSDisk (C:) > Dialog Semiconductor			
Name	✓ Date ✓	Туре	Size Tags
Power Management	6/22/2018 5:09 PM	File folder	
PTR_20181012_0733	10/12/2018 7:33 AM	PNG File	61 KB

Figure 25: Output File of Performance Test

9 Managing Profile Data

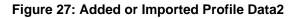
9.1 **Profile Data from Battery Manufacturer**

A battery manufacturer could provide the profile data for a customer and most of parameters are defined in the specification document of the battery. Additionally, the manufacturer might provide the voltage lookup tables for specified currents. If all profile data are available, these can be exported to the MCU using this menu without additional battery profile, see Figure 26. In this case, the **Profiled CC** should be the same as the **Charging Current**.

🖶 Profile Data					- 0	×
Data1 Lookup Table SOC(%) 100 90	LOW 4162 4071	HIGH 4116 4026	Data3 CHG 4200 4195 4120	Parameters Capacitance 80 mAh Charging Current 40 mA EOC Current	Charging Vol 4200 Profiled CC 40	tage mV mA
80 70 60 50 40 30 20 10 5	3988 3935 3867 3817 3787 3770 3756 3726 3700	3939 3876 3815 3769 3737 3716 3695 3653 3618	4120 4049 3997 3950 3909 3883 3866 3839 3810	4 mA High Current 27 mA Import From MCU Export	Low Current	mA
2 0	3683 3674 mV	3595 3582 Change	3788 3767	To MCU Average	To PC Clear	

Figure 26: Added or Imported Profile Data1

9.2 Average Profile Data (from Three Batteries)


Even though batteries are produced at the same factory, the batteries have some tolerance for characteristics like capacitance. So, the profile data at each battery might be different due to the tolerance. Therefore, the average of different profile data from several batteries would be helpful for reducing the tolerances. This averaging process is to:

- 1. Select 3 batteries randomly.
- 2. Run battery profile with battery 1 and generate profile data1.
- 3. Run battery profile with battery 2 and generate profile data2.
- 4. Run battery profile with battery 3 and generate profile data3.
- 5. Import the profile data 1, data 2, and data 3 from the PC.
- 6. Average data 1, data 2, and data 3.
- 7. The averaged value is filled in data1.
- 8. Export the averaged data1 to the MCU and PC.
- 9. Run performance test.

10. Update socf_profile_data.h with the averaged profile data, see Table 5.

Figure 26, Figure 27, and Figure 28 show imported Data1, Data2, and Data3. These 3-profile data can be averaged by clicking the **Average** button and the data can be exported to the MCU, see Figure 29.

Profile Data				- D >
Data1	Data	2	Data3	Parameters Capacitance Charging Voltage
Lookup Tabl	es			80 mAh 4200 mV
SOC(%)	LOW	HIGH	CHG	Charging Current Profiled CC
100	4160	4115	4200	40 mA 38 mA
90	4071	4028	4195	EOC Current
80	3988	3941	4116	4 mA
70	3937	3880	4049	High Current Low Current
60	3877	3821	3997	
50	3821	3775	3952	27 mA 3 mA
40	3790	3742	3911	Import
30	3772	3720	3883	5 1011 5 55
20	3760	3702	3866	From MCU From PC
10	3735	3669	3847	Export
5	3713	3642	3821	
2	3698	3624	3800	To MCU To PC
0	3686	3613	3775	
0	mV	Change		Average Clear

Profile Data				- 🗆 X
Data1 Lookup Tabl	Data	2	Data3	Parameters Capacitance Charging Voltage 80 mAh 4200 mV
SOC(%) 100 90 80 70 60 50 40 30 20 10 5 2 2 0	LOW 4162 4068 3980 3921 3849 3807 3780 3764 3741 3665 3665 3652 3631	HIGH 4115 4021 3927 3859 3799 3756 3724 3703 3674 3612 3558 3511 3477	CHG 4200 4195 4110 4043 3990 3945 3910 3886 3867 3820 3791 3780 3752	00 mAn +200 mV Charging Current Profiled CC 40 mA 38 mA EOC Current 4 mA High Current Low Current 27 mA 3 mA Import From MCU From PC Export To MCU To PC
0	mV	Change		Average Clear

Figure 28: Added or Imported Profile Data3

🚽 Profile Data				- 🗆 X
Data1 Lookup Tabl	1		Data3	Parameters Capacitance Charging Voltage 80 mAh 4200 mV
SOC(%)	LOW	HIGH	CHG	Charging Current Profiled CC
100	4161	4115	4200	40 mA 38 mA
90	4070	4025	4195	EOC Current
80	3985	3935	4115	4 mA
70	3931	3871	4047	High Current Low Current
60	3864	3811	3994	Tigir ourient
50	3815	3766	3949	27 mA 3 mA
40	3785	3734	3910	Import
30	3768	3713	3884	
20	3752	3690	3866	From MCU From PC
10	3718	3644	3835	
5	3694	3606	3807	Export
2	3677	3576	3789	To MCU To PC
0	3663	3557	3764	TOMOG
0	mV	Change		Average Clear

Figure 29: Averaged Profile Data

Δn	nlice	ation	Note
rμ	pile	ation	NOLE

DA9070 Power Profile Manager and SOCF

10 Fuel Gauge Application

The Fuel Gauge application is composed of two source files, four header files, and one library.

- libsocf_da9070.a: SOCF library
- socf_client.c/h: system independent function
- socf_hal.c/h: system dependent function
- socf_profile_data.h: the output tables from battery profile
- socfi.h: internal function

10.1 Required Information in socf_profile_data.h

The profile data from **Battery Profile** or **Profile Data** must be copied for the target system. The contents are shown in Table 5.

Name	Description	Value
SOCF_CAP	Battery Capacitance	Example value 80 (80 mAh)
SOCF_N_CHG_CC	Charging Current set in DA9070	Figure 22 Example value 40 (40 mA charging current)
SOCF_M_CHG_CC	Charging Current during actual battery profile	Figure 22 Example value 39 (39 mA charging current)
SOCF_CHG_EOC	End Of Charge current	Figure 22 Example value 4 (4 mA)
SOCF_CHG_CV	Charging Voltage	Figure 22 Example value 4200 (4200 mV)
SOCF_MAX_DIS	Max discharging current during battery profile	Figure 21 Example value -26 (27 mA discharging current)
SOCF_MIN_DIS	Low discharging current during battery profile	Figure 21 A fixed value -3 (3 mA discharging current)
SOCF_SHUNT	The resistance value of shunt resistor A shunt resistor for Reference FG is used in demo board. But normally there is no shunt resistor in a target system. In case of this, the value must be 0.	Example value 0 (0 mOhm)
socf_lvolt/socf_hvolt/ socf_cvolt	Copied from the output file of Battery Profile or Profile Data	Figure 21 and Figure 22

Table 5: Information Required in socf_profile_data.h

10.2 Functions in socf_client.c

The functions in socf_client.c are independent of the target system, so no modification is required.

-				
An	olica	atio	n N	ote

Table 6:	Functions	in socf	_client.c
----------	-----------	---------	-----------

Name	Description
socf_set_pre_time	Set previous sample time used in client
<pre>socf_set_client_voltage</pre>	Set voltage value used in client
socf_set_client_current	Set current value used in client
socf_get_pre_time	Get previous sample time used in client
<pre>socf_get_client_voltage</pre>	Get voltage value used in client
socf_get_client_current	Get current value used in client
socf_get_soc	Get SOC as 100 percent standard
socf_calculation	Calculate soc with Vbat and Ibat
socf_init	The function called for SOCF initialization

10.3 Functions in socf_hal.c

The functions in socf_hal.c depend on the target system, so each function must be implemented according to the target system.

Table 7: Functions in socf_hal.c

Name	Description
socf_measure_vbat_ibat	Read the voltage of battery from ADC and the current through IMON
socf_is_charging	Return whether it is charging state
socf_hal_get_time	Get now time
socf_hal_get_duration	Get the duration between two times as milli second
socf_hal_timer_cb	SOCF HAL timer callback function Signal SOCF_FROM_ACTIVE_CAL_BIT must be sent to socf thread
socf_hal_stop_timer	Stop SOCF HAL timer
socf_hal_start_timer	Start SOCF HAL timer
socf_hal_create_timer	Create SOCF HAL timer
socf_calcaulation_after_wakeup	SOC calculation function at very early time after wakeup from sleep state. (This function must be called in PostSleepProcessing in case of FreeRTOS.) Signal SOCF_FROM_WAKEUP_CAL_BIT must be sent to socf thread.
socf_hal_calcaulation_before_sleep	SOC calculation function just before sleep state. (This function must be called in PreSleepProcessing in case of FreeRTOS.)
socf_cal_thread	Thread function for SOC calculation
socf_hal_create_thread	Create a SOCF thread

10.4 Development Environment

The development environment of SOCF in the DA9070 FG demo board is:

• OS: Window 7/10

```
Application Note
```


DA9070 Power Profile Manager and SOCF

- SDK: STM32Cube_FW_L1_V1.7.0
- IDE: system workbench for STM32 (Eclipse Neo 3)
- Target OS: FreeRTOS

11 Performance Test Result with SOCF Algorithm

To evaluate the performance of SOCF,

- 1. Select 4 x 80 mAh batteries (A, B, C, D) randomly.
- 2. Generate a battery profile data with each battery A, B, and C, see Figure 26, Figure 27, and Figure 28.
- 3. Average 3 batteries profile data as shown in Figure 29.
- 4. Export the averaged battery profile data to the MCU.
- 5. Complete a performance test with the averaged battery profile data and battery D.

The Reference FG in the FG demo board has 1~2 % accuracy in measuring coulomb with a fixed capacitance. However, Reference FG requires exact capacitance of the battery to generate very accurate reference SOC. Each battery normally has a tolerance of capacitance. The actual capacitance of a battery can be known with a full discharging cycle. So, after performance test, the SOC from Reference FG must be adjusted and updated based on the measured capacitance. The result of a performance test with battery D is shown in Figure 30. As shown, the maximum difference of SOCs is around 3.9 %.

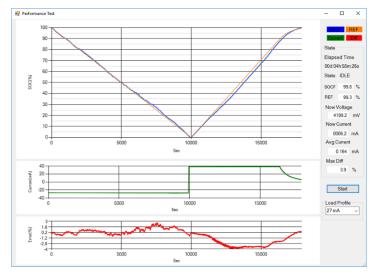


Figure 30: Result of Performance Test with Battery D

12 Known Limitations

12.1 Temperature Compensation

There is no temperature compensation in this FG application, but the voltage-based FG algorithm has temperature compensation itself. At low temperature, though the energy of the coulomb in the battery is the same, the internal resistance is very large, and it causes a huge voltage drop. The SOC of SOCF simply follows the change of the voltage, so SOC will go to 0 % when the voltage drops to the equivalent value of 0 % SOC at room temperature. In the HW coulomb counter case, it requires a special algorithm for temperature compensation because the coulomb is available, but the voltage drop is huge at low temperature. At present there is no compensation algorithm in this FG demo board. So, the comparison of SOC between SOCF and Reference FG at low temperature is not valid.

NOTE

The JTAG for download consumes approximately 4 to 6 mA, so it must be disconnected during any test.

Appendix A The Update of a Firmware to DA9070 FG Demo Board

The firmware of DA9070 FG demo board can be updated using ST-LINK utility and JTAG JIG (ST-LINK/V2 ISOL). The utility can be download from https://www.st.com/en/development-tools/stsw-link004.html. The utility includes a user manual which describes how to download a firmware. If there is any difficulty in updating a firmware, please contact Dialog.

Appendix B Troubleshooting Guides with Message

Any error message during the PPM process consists of a number and message, See Figure 31. The troubleshooting guide for each message is shown in Table 8.

ERROR		×
\bigotimes	M000 Check it is the first port of FTDI!	
	ОК	

Figure 31: Error Message

Table 8:	Troubleshooting Guides	
----------	------------------------	--

Error Message Number	Message	Action
M000	"Check it is the first port of FTDI!"	1. Refer to Section 7.3.
M100	"The voltage is under the minimum battery voltage. Please check the value or the capacitance!"	 Refer to Section 6.3.4 and Section 6.4. Check the battery is a new one. The capacitance is too small. Reduce the capacitance by 10 % steps and retry the battery profiling.

Error Message Number	Message	Action
M101, M103, M104, M200, M201, M224, M225, M227, M234, M235, M236, M238, M239, M301, M302, M303, M304, M305, M306, M400, M401, M402, M403, M404	"Error in communicating with target!" "Error in FTDI or ADC!" "Error in staring the battery profiling!" "Error in starting Performance Test!" "Failed in opening the Port!"	 Check the USB connection. Check if the port is used by another device. Check the jumper configurations on the board, especially J2 and J14. Check if the PC went to sleep during the PPM process. Do not use the PC during the PPM process, other applications may interfere with the process.
M237	"Incorrect firmware version: xxx"	1. Check that the correct firmware is being used.
M102, M202, M203, M204, M205, M206, M207, M208, M209, M210, M211, M212, M213, M214, M215, M216, M217, M218, M219, M220, M221, M222, M223, M226, M230, M231, M232, M233, M409, M410, M411, M412, M413, M414, M415, M416, M417	"Check empty values!"	 Check that the values are within the allowed range.
M240	"Parameters has been changed but not exported. It must be exported or imported for battery profile and performance test."	 Export the changed values to MCU, or import the values from MCU again.

Revision History

Revision	Date	Description
1.7	22-Feb-2022	Document rebranded to Renesas.
1.6	06-Nov-2018	Update typos and incorrect description about jumper.
1.5	31-Oct-2018	Updated descriptions and snapshots of GUI for exceptional cases.
1.4	10-Oct-2018	Added troubleshooting guides with messages.
1.3	21-Sep-2018	Added more notes and cautions about jumper configurations.
1.2	13-Sep-2018	Updated for EVAL3.
1.1	31-Aug-2018	Fixed typos.
1.0	24-Aug-2018	Fully updated for BA device.

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

Important Notice and Disclaimer

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2022 Renesas Electronics Corporation. All rights reserved.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

https://www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Δ	n	nli	cat	ion	N	lote
	μ	рп	ιaι			OLE

Revision 1.7

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.