

Micron Technology P5Q Serial Phase Change Memory Control Software

R01AN1439EJ0104 Rev.1.04 Mar 31, 2016

### Introduction

This application note describes how to control P5Q serial phase change memory, manufactured by Micron Technology, Inc., using an MCU manufactured by Renesas Electronics, and it explains the usage of the sample code provided for that purpose.

Note that the sample code is upper-layer software for controlling the serial phase change memory as a slave device.

Lower-layer software (clock synchronous single master control software) for controlling the SPI modes specific to individual MCU models is available separately, and should be obtained by the user, so please obtain this from the following URL as well. In addition, when a new microcontroller is added to the clock synchronous single-master control software, update of this application note may not be in time. Refer to 'Clock Synchronous Single Master Control Software (Lower-level layer of the software)' information in the following URL for the combination information on the latest supported microcontroller and its single-master control software.

SPI/QSPI Serial Flash Memory, QSPI Serial Phase Change Memory Driver
 <u>http://www.renesas.com/driver/spi\_serial\_flash</u>

### **Target Device**

Serial phase change memory: P5Q serial phase change memory, manufactured by Micron Technology, Inc.

Contact Micron Technology, Inc., for information on obtaining P5Q serial phase change memory products.

MCUs on which operation has been confirmed:

| RX600 series | : RX63N (using the RSPI)                             |
|--------------|------------------------------------------------------|
| RX100 series | : RX111 (using the SCI)                              |
|              | : RX111 (using the RSPI)                             |
| RL78/G1x     | : RL78/G14, RL78/G1C group (using the SAU)           |
| RL78/L1x     | : RL78/L12, RL78/L12, RL78/L1C group (using the SAU) |
|              |                                                      |

See 3, Reference Application Notes, regarding MCU models other than those listed above.

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Note that the following abbreviations are used in this application note:

- Single-SPI (communication in single-SPI mode)
- Dual-SPI (communication in single-SPI mode)
- Quad-SPI (communication in single-SPI mode)



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### Contents

| 1. Specifications                                                 | 4  |
|-------------------------------------------------------------------|----|
| 2. Operation Confirmation Conditions                              | 5  |
| 2.1 RX Family                                                     | 5  |
| 2.2 RL78 Family, 78K0R/Kx3-L                                      | 7  |
| 3. Reference Application Notes                                    | 13 |
| 3.1 RX Family: List of Related Application Notes                  | 13 |
| 3.2 RL78 Family, 78K0R Family: List of Related Application Notes  | 13 |
| 4. Hardware                                                       | 14 |
| 4.1 Hardware Configuration                                        | 14 |
| 4.1.1 Pin Assignments for Single-SPI Configuration                | 14 |
| 4.1.2 Single-SPI Connection Example                               | 14 |
| 4.1.3 Pin Assignments for Dual-SPI Configuration                  | 15 |
| 4.1.4 Dual-SPI Connection Example                                 | 15 |
| 4.1.5 Pin Assignments for Quad-SPI Configuration                  | 16 |
| 4.1.6 Quad-SPI Connection Example                                 | 16 |
| E. Oofferen                                                       | 47 |
| 5. Software                                                       |    |
| 5.1 Operation Overview                                            |    |
| 5.1.1 Relationship Between Data Buffers and Transmit/Receive Data |    |
| 5.1.2 Timing Generation in Clock Synchronous Mode                 |    |
| 5.1.3 Serial Phase Change Memory S# Pin Control                   |    |
| 5.1.4 Serial Phase Change Memory Instruction Codes                |    |
| 5.2 Software Configuration                                        |    |
| 5.3 Required Memory Size                                          |    |
| 5.3.1 RX Family                                                   |    |
| 5.3.2 RL78 Family, 78K0R/Kx3-L<br>5.4 File Structure              |    |
| 5.4 File Structure                                                |    |
| 5.5 Constants                                                     |    |
| 5.5.2 Command Definitions                                         |    |
| 5.5.3 Other Definitions                                           |    |
| 5.6 Structure/Union List                                          |    |
| 5.6 Structure/Union List                                          |    |
| 5.7 Variable                                                      |    |
| 5.6 Function Specifications                                       |    |
| 5.9 Function Specifications                                       |    |
| 5.9.2 Status Register Read Processing                             |    |
| J.J.Z JIAIUS NEYISIEI NEAU FIUCESSIIIY                            | 30 |



|    | 5.9.3  | Write Protect Setting Processing                     |
|----|--------|------------------------------------------------------|
|    | 5.9.4  | WRDI Command Issue Processing 40                     |
|    | 5.9.5  | Data Read Processing 41                              |
|    | 5.9.6  | Data Write Processing                                |
|    | 5.9.7  | Data Write Processing (for Single-Page Write)        |
|    | 5.9.8  | Erase Processing                                     |
|    | 5.9.9  | ID Read Processing                                   |
|    | 5.9.10 | Busy Wait Processing51                               |
| 6. | Appl   | ication Example53                                    |
| 6  | .1 Se  | rial Phase Change Memory Control Software Settings54 |
|    | 6.1.1  | r_qspi_pcm_p5q.h                                     |
|    | 6.1.2  | r_qspi_pcm_p5q_sfr.h56                               |
|    | 6.1.3  | r_qspi_pcm_p5q_sub.h59                               |
|    | 6.1.4  | r_qspi_pcm_p5q_sub.c60                               |
|    | 6.1.5  | r_qspi_pcm_p5q_drvif.c62                             |
|    | 6.1.6  | r_qspi_pcm_p5q_sfr_rl78.c65                          |
| 7. | Usag   | e Notes66                                            |
| 7  | .1 No  | tes on Integrating Sample Code66                     |
| 7  | .2 Us  | ing an MCU with On-Chip Cache66                      |
| 7  | .3 Su  | pport for Other Capacities                           |
| 7  | .4 Us  | ing Other Slave Devices                              |
| 7  | .5 Vo  | Itage Stabilization Time After Power-On66            |
| 7  | .6 Se  | rial Phase Change Memory Usage Limitations67         |



#### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 1. Specifications

A Renesas Electronics MCU is used to control P5Q serial phase change memory, manufactured by Micron Technology, Inc.

Separate MCU-specific clock synchronous single master control software is required.

Table 1-1 lists the peripheral functions used and their applications, and Figure 1.1 shows a usage example.

Summaries of the functions are provided below:

- The software functions as a device driver, with a Renesas Electronics MCU operating as the master device and the Micron Technology, Inc., P5Q serial phase change memory operating as the slave device.
- The MCU's on-chip serial communication function (clock synchronous mode) is used in a single-SPI, dual-SPI, or quad-SPI configuration to control operation.
- One serial communication function channel can be specified by the user for use. It is not possible to use multiple channels.
- It is possible to control up to two serial phase change memory devices of the same type name.
- The communication speed can be specified by the user.
- Both big-endian and little-endian operation are supported. (The choice depends on the MCU used.)

| Peripheral Function                                                             | Application                                                                                                                    |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| MCU's on-chip serial<br>communication functionality<br>(clock synchronous mode) | Communication with SPI slave device by means of serial communication function (clock synchronous mode)<br>1 channel (required) |
| Port                                                                            | For SPI slave device select control signal                                                                                     |
|                                                                                 | Number of ports equal to number of devices (required)                                                                          |

#### Table 1-1 Peripheral Functions and Their Applications

| Renesas Electronics<br>MCU                    |                                                              | Micron Technology, Inc.,<br>P5Q |
|-----------------------------------------------|--------------------------------------------------------------|---------------------------------|
| Port<br>Clock synchronous<br>serial interface | Slave device select control signal<br>Clock output, data I/O | Serial Phase Change<br>Memory   |

#### Figure 1.1 Usage Example



### Micron Technology P5Q Serial Phase Change Memory Control Software

### 2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

### 2.1 RX Family

#### (1) **RX63N RSPI**

#### Table 2-1 Operation Confirmation Conditions

| Item                       | Description                                                                              |
|----------------------------|------------------------------------------------------------------------------------------|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                                         |
| Microcontroller used       | RX63N Group (Program ROM: 1 MB/RAM: 128 KB)                                              |
| Operating frequency        | ICLK: 96 MHz, PCLK: 48 MHz                                                               |
| Operating voltage          | 3.3 V                                                                                    |
| Integrated development     | Renesas Electronics Corporation                                                          |
| environment                | High-performance embedded Workshop Version 4.09.01.007                                   |
| C compiler                 | Renesas Electronics Corporation                                                          |
|                            | RX Family C/C++ Compiler Package (Toolchain 1.2.1.0)                                     |
|                            | Compiler options                                                                         |
|                            | The integrated development environment default settings are used.                        |
| Endian order               | Big endian / Little endian                                                               |
| Sample code version number | Ver. 2.20                                                                                |
| Software                   | Clock synchronous single master control software using the RSPI, for RX63N, version 2.04 |
| Board                      | Renesas Starter Kit for RX63N                                                            |



#### (2) **RX111 RSPI**

#### Table 2-2 Operation Confirmation Conditions

| Item                                  | Description                                                                                                                                       |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory                                | Micron Technology P5Q Serial Phase Change Memory                                                                                                  |
| Microcontroller used                  | RX111 Group (Program ROM: 128 KB, RAM: 16 KB)                                                                                                     |
| Operating frequency                   | ICLK: 32 MHz, PCLK: 32 MHz                                                                                                                        |
| Operating voltage                     | 3.3 V                                                                                                                                             |
| Integrated development<br>environment | Renesas Electronics<br>CubeSuite+ V2.01.00                                                                                                        |
| C compiler                            | Renesas Electronics<br>RX family C/C++ compiler package (Toolchain 2.01.00)                                                                       |
|                                       | Compiler options:<br>The default settings (Optimize Level: 2, Optimize for size) for the integrated development environment are used.             |
| Endian order                          | Big endian / Little endian                                                                                                                        |
| Sample code version number            | Ver. 2.21.R01                                                                                                                                     |
| Software                              | RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock<br>Synchronous Single Master Control Software Using the RSPI<br>(R01AN1196EJ), Ver. 2.04.R04 |
| Board                                 | Renesas Starter Kit for RX111                                                                                                                     |

#### (3) **RX111 SCI**

#### Table 2-3 Operation Confirmation Conditions

| Item                                  | Description                                                                                                                                     |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory                                | Micron Technology P5Q Serial Phase Change Memory                                                                                                |
| Microcontroller used                  | RX111 Group (Program ROM: 128 KB, RAM: 16 KB)                                                                                                   |
| Operating frequency                   | ICLK: 32 MHz, PCLK: 32 MHz                                                                                                                      |
| Operating voltage                     | 3.3 V                                                                                                                                           |
| Integrated development<br>environment | Renesas Electronics<br>CubeSuite+ V2.01.00                                                                                                      |
| C compiler                            | Renesas Electronics<br>RX family C/C++ compiler package (Toolchain 2.01.00)                                                                     |
|                                       | Compiler options:<br>The default settings (Optimize Level: 2, Optimize for size) for the integrated development environment are used.           |
| Endian order                          | Big endian / Little endian                                                                                                                      |
| Sample code version number            | Ver. 2.21.R01                                                                                                                                   |
| Software                              | RX210, RX21A, RX220, RX63N, RX63T,RX111 Group Clock Synchronous<br>Single Master Control Software Using the SCI (R01AN1229EJ), Ver.<br>2.01.R05 |
| Board                                 | Renesas Starter Kit for RX111                                                                                                                   |



### 2.2 RL78 Family, 78K0R/Kx3-L

(1) RL78/G14 Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)

#### Table 2-4 Operation Confirmation Conditions

| Item                       | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                           |
| Microcontroller used       | RL78/G14 Group (Program ROM: 256 KB/RAM: 24 KB)                            |
| Operating frequency        | Main system clock: 24 MHz                                                  |
|                            | CPU/peripheral hardware clock: 24 MHz                                      |
|                            | Serial clock: 6 MHz                                                        |
| Operating voltage          | 3.3 V                                                                      |
| Integrated development     | Renesas Electronics                                                        |
| environment                | CS+ for CA, CX V3.01.00                                                    |
| C compiler                 | Renesas Electronics                                                        |
|                            | RL78,78K0R compiler CA78K0R V1.71                                          |
|                            | Compiler options:                                                          |
|                            | The default settings (-qx2) for the integrated development environment are |
|                            | used.                                                                      |
| Endian order               | Little endian                                                              |
| Sample code version number | Ver. 2.22                                                                  |
| Software                   | RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group                     |
|                            | Clock Synchronous Single Master Control Software Using CSI Mode of         |
|                            | Serial Array Unit (R01AN1195EJ), Ver. 2.05                                 |
| Board                      | Renesas Starter Kit for RL78/G14                                           |

#### (2) RL78/G14 Integrated Development Environment CS+ for CC (Compiler: CC-RL)

#### Table 2-5 Operation Confirmation Conditions

| Item                       | Description                                                           |
|----------------------------|-----------------------------------------------------------------------|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                      |
| Microcontroller used       | RL78/G14 Group (Program ROM: 256 KB/RAM: 24 KB)                       |
| Operating frequency        | Main system clock: 24 MHz                                             |
|                            | CPU/peripheral hardware clock: 24 MHz                                 |
|                            | Serial clock: 6 MHz                                                   |
| Operating voltage          | 3.3 V                                                                 |
| Integrated development     | Renesas Electronics                                                   |
| environment                | CS+ for CC V3.03.00                                                   |
| C compiler                 | Renesas Electronics                                                   |
|                            | RL78 compiler CC-RL V1.02.00                                          |
|                            | Compiler options:                                                     |
|                            | The default settings (Perform the default optimization(None)) for the |
|                            | integrated development environment are used.                          |
| Endian order               | Little endian                                                         |
| Sample code version number | Ver. 2.22                                                             |
| Software                   | RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group                |
|                            | Clock Synchronous Single Master Control Software Using CSI Mode of    |
|                            | Serial Array Unit (R01AN1195EJ), Ver. 2.05                            |
| Board                      | Renesas Starter Kit for RL78/G14                                      |



#### (3) RL78/G14 Integrated Development Environment IAR Embedded Workbench

| Table 2-6 | <b>Operation Confirmation Conditions</b> |
|-----------|------------------------------------------|
|-----------|------------------------------------------|

| Item                       | Description                                                               |
|----------------------------|---------------------------------------------------------------------------|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                          |
| Microcontroller used       | RL78/G14 Group (Program ROM: 256 KB/RAM: 24 KB)                           |
| Operating frequency        | Main system clock: 24 MHz                                                 |
|                            | CPU/peripheral hardware clock: 24 MHz                                     |
|                            | Serial clock: 6 MHz                                                       |
| Operating voltage          | 3.3 V                                                                     |
| Integrated development     | IAR Systems                                                               |
| environment                | IAR Embedded Workbench for Renesas RL78 (Ver.1.30.2)                      |
| C compiler                 | IAR Systems                                                               |
|                            | IAR Assembler for Renesas RL78 (Ver.1.30.2.50666)                         |
|                            | IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.2.50666)                    |
|                            | Compiler options: The default settings (Low) for the integrated           |
|                            | development environment are used.                                         |
| Endian order               | Little endian                                                             |
| Sample code version number | Ver. 2.21                                                                 |
| Software                   | Clock synchronous single master control software using CSI mode of serial |
|                            | array unit, version 2.03                                                  |
| Board                      | Renesas Starter Kit for RL78/G14                                          |

#### (4) RL78/G1C Integrated Development Environment CubeSuite+

#### Table 2-7 Operation Confirmation Conditions

| Item                       | Description                                                                |  |
|----------------------------|----------------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                           |  |
| Microcontroller used       | RL78/G1C Group (Program ROM: 32 KB/RAM: 5.5 KB)                            |  |
| Operating frequency        | Main system clock: 24 MHz                                                  |  |
|                            | CPU/peripheral hardware clock: 24 MHz                                      |  |
|                            | Serial clock: 12 MHz                                                       |  |
| Operating voltage          | 3.3 V                                                                      |  |
| Integrated development     | Renesas Electronics Corporation                                            |  |
| environment                | CubeSuite+ V2.01.00                                                        |  |
| C compiler                 | Renesas Electronics Corporation                                            |  |
|                            | CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70                               |  |
|                            | Compiler options                                                           |  |
|                            | The integrated development environment default settings ("-qx2") are used. |  |
| Endian order               | Little endian                                                              |  |
| Sample code version number | r Ver. 2.21.R01                                                            |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock                |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial        |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                                    |  |
| Board                      | Renesas RL78/G1C Target Board QB-R5F10JGC-TB                               |  |



#### (5) RL78/G1C Integrated Development Environment IAR Embedded Workbench

| Table 2-8 | Operation | Confirmation | Conditions |
|-----------|-----------|--------------|------------|
|-----------|-----------|--------------|------------|

| Item                       | Description                                                         |  |
|----------------------------|---------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                    |  |
| Microcontroller used       | RL78/G1C Group (Program ROM: 256 KB/RAM: 24 KB)                     |  |
| Operating frequency        | Main system clock: 24 MHz                                           |  |
|                            | CPU/peripheral hardware clock: 24 MHz                               |  |
|                            | Serial clock: 12 MHz                                                |  |
| Operating voltage          | 3.3 V                                                               |  |
| Integrated development     | IAR Systems                                                         |  |
| environment                | IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)                |  |
| C compiler                 | IAR Systems                                                         |  |
|                            | IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)                   |  |
|                            | IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)              |  |
|                            | Compiler options: The default settings (Low) for the integrated     |  |
|                            | development environment are used.                                   |  |
| Endian order               | Little endian                                                       |  |
| Sample code version number | Ver. 2.21.R01                                                       |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock         |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                             |  |
| Board                      | Renesas RL78/G1C Target Board QB-R5F10JGC-TB                        |  |

#### (6) RL78/L12 Integrated Development Environment CubeSuite+

 Table 2-9
 Operation Confirmation Conditions

| Item                       | Description                                                                |  |
|----------------------------|----------------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                           |  |
| Microcontroller used       | RL78/L12 Group (Program ROM: 32 KB, RAM:1.5 KB)                            |  |
| Operating frequency        | Main system clock: 24 MHz                                                  |  |
|                            | CPU/peripheral hardware clock: 24 MHz                                      |  |
|                            | Serial clock: 6 MHz                                                        |  |
| Operating voltage          | 3.3 V                                                                      |  |
| Integrated development     | Renesas Electronics Corporation                                            |  |
| environment                | CubeSuite+ V2.01.00                                                        |  |
| C compiler                 | Renesas Electronics Corporation                                            |  |
|                            | CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70                               |  |
|                            | Compiler options                                                           |  |
|                            | The integrated development environment default settings ("-qx2") are used. |  |
| Endian order               | Little endian                                                              |  |
| Sample code version number | Ver. 2.21.R01                                                              |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock                |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial        |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                                    |  |
| Board                      | Renesas Starter Kit for RL78/L12                                           |  |



#### (7) RL78/L12 Integrated Development Environment IAR Embedded Workbench

| Item                       | Description                                                         |  |
|----------------------------|---------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                    |  |
| Microcontroller used       | RL78/L12 Group (Program ROM: 32 KB, RAM:1.5 KB)                     |  |
| Operating frequency        | Main system clock: 24 MHz                                           |  |
|                            | CPU/peripheral hardware clock: 24 MHz                               |  |
|                            | Serial clock: 6 MHz                                                 |  |
| Operating voltage          | 3.3 V                                                               |  |
| Integrated development     | IAR Systems                                                         |  |
| environment                | IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)                |  |
| C compiler                 | IAR Systems                                                         |  |
|                            | IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)                   |  |
|                            | IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)              |  |
|                            | Compiler options: The default settings (Low) for the integrated     |  |
|                            | development environment are used.                                   |  |
| Endian order               | Little endian                                                       |  |
| Sample code version number | er Ver. 2.21.R01                                                    |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock         |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                             |  |
| Board                      | Renesas Starter Kit for RL78/L12                                    |  |

#### (8) RL78/L13 Integrated Development Environment CubeSuite+

Table 2-11 Operation Confirmation Conditions

| Item                       | Description                                                                |  |
|----------------------------|----------------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                           |  |
| Microcontroller used       | RL78/L13 Group (Program ROM: 128 KB/RAM: 8 KB)                             |  |
| Operating frequency        | Main system clock: 24 MHz                                                  |  |
|                            | CPU/peripheral hardware clock: 24 MHz                                      |  |
|                            | Serial clock: 6 MHz                                                        |  |
| Operating voltage          | 3.3 V                                                                      |  |
| Integrated development     | Renesas Electronics Corporation                                            |  |
| environment                | CubeSuite+ V2.01.00                                                        |  |
| C compiler                 | Renesas Electronics Corporation                                            |  |
|                            | CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70                               |  |
|                            | Compiler options                                                           |  |
|                            | The integrated development environment default settings ("-qx2") are used. |  |
| Endian order               | Little endian                                                              |  |
| Sample code version number | Ver. 2.21.R01                                                              |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock                |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial        |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                                    |  |
| Board                      | Renesas Starter Kit for RL78/L13                                           |  |



#### (9) RL78/L13 Integrated Development Environment IAR Embedded Workbench

| Table 2-12 | <b>Operation Co</b> | onfirmation | Conditions |
|------------|---------------------|-------------|------------|
|------------|---------------------|-------------|------------|

| Item                       | Description                                                         |  |
|----------------------------|---------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                    |  |
| Microcontroller used       | RL78/L13 Group (Program ROM: 128 KB/RAM: 8 KB)                      |  |
| Operating frequency        | Main system clock: 24 MHz                                           |  |
|                            | CPU/peripheral hardware clock: 24 MHz                               |  |
|                            | Serial clock: 6 MHz                                                 |  |
| Operating voltage          | 3.3 V                                                               |  |
| Integrated development     | IAR Systems                                                         |  |
| environment                | IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)                |  |
| C compiler                 | IAR Systems                                                         |  |
|                            | IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)                   |  |
|                            | IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)              |  |
|                            | Compiler options: The default settings (Low) for the integrated     |  |
|                            | development environment are used.                                   |  |
| Endian order               | Little endian                                                       |  |
| Sample code version number | Ver. 2.21.R01                                                       |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock         |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                             |  |
| Board                      | Renesas Starter Kit for RL78/L13                                    |  |

#### (10) RL78/L1C Integrated Development Environment CubeSuite+

 Table 2-13
 Operation Confirmation Conditions

| Item                       | Description                                                                |  |
|----------------------------|----------------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                           |  |
| Microcontroller used       | RL78/L1C Group (Program ROM: 256 KB/RAM: 16 KB)                            |  |
| Operating frequency        | Main system clock: 24 MHz                                                  |  |
|                            | CPU/peripheral hardware clock: 24 MHz                                      |  |
|                            | Serial clock: 6 MHz                                                        |  |
| Operating voltage          | 3.3 V                                                                      |  |
| Integrated development     | Renesas Electronics Corporation                                            |  |
| environment                | CubeSuite+ V2.01.00                                                        |  |
| C compiler                 | Renesas Electronics Corporation                                            |  |
|                            | CubeSuite+ RL78,78K0R Compiler CA78K0R V1.70                               |  |
|                            | Compiler options                                                           |  |
|                            | The integrated development environment default settings ("-qx2") are used. |  |
| Endian order               | Little endian                                                              |  |
| Sample code version number | Ver. 2.21.R01                                                              |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock                |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial        |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                                    |  |
| Board                      | Renesas Starter Kit for RL78/L1C                                           |  |



#### (11) RL78/L1C Integrated Development Environment IAR Embedded Workbench

#### Table 2-14 Operation Confirmation Conditions

| Item                       | Description                                                         |  |
|----------------------------|---------------------------------------------------------------------|--|
| Memory                     | Micron Technology P5Q Serial Phase Change Memory                    |  |
| Microcontroller used       | RL78/L1C Group (Program ROM: 256 KB/RAM: 16 KB)                     |  |
| Operating frequency        | Main system clock: 24 MHz                                           |  |
|                            | CPU/peripheral hardware clock: 24 MHz                               |  |
|                            | Serial clock: 6 MHz                                                 |  |
| Operating voltage          | 3.3 V                                                               |  |
| Integrated development     | IAR Systems                                                         |  |
| environment                | IAR Embedded Workbench for Renesas RL78 (Ver.1.30.5)                |  |
| C compiler                 | IAR Systems                                                         |  |
|                            | IAR Assembler for Renesas RL78 (Ver.1.30.4.50715)                   |  |
|                            | IAR C/C++ Compiler for Renesas RL78 (Ver.1.30.5.50715)              |  |
|                            | Compiler options: The default settings (Low) for the integrated     |  |
|                            | development environment are used.                                   |  |
| Endian order               | Little endian                                                       |  |
| Sample code version number | er Ver. 2.21.R01                                                    |  |
| Software                   | RL78/G14,RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock         |  |
|                            | Synchronous Single Master Control Software Using CSI Mode of Serial |  |
|                            | Array Unit (R01AN1195EJ0103), Ver. 2.03                             |  |
| Board                      | Renesas Starter Kit for RL78/L1C                                    |  |



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 3. Reference Application Notes

For additional information associated with this document, refer to the following application notes.

In the related application notes listed below, refer to the "Target Device" item on the cover for a listing of MCU models on which operation has been confirmed.

### 3.1 RX Family: List of Related Application Notes

- RX610 Group Clock Synchronous Single Master Control Software Using the SCI (R01AN0534EJ)
- RX62N Group Clock Synchronous Single Master Control Software Using the RSPI (R01AN0323EJ)
- RX62N Group Clock Synchronous Single Master Control Software Using the SCI (R01AN1088EJ)
- RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the RSPI (R01AN1196EJ)
- RX210, RX21A, RX220, RX63N, RX63T, RX111 Group Clock Synchronous Single Master Control Software Using the SCI (R01AN1229EJ)

### 3.2 RL78 Family, 78K0R Family: List of Related Application Notes

- 78K0R/Kx3-L Clock Synchronous Single Master Control Software Using CSI Mode of Serial Array Unit (R01AN0708EJ)
- RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C Group Clock Synchronous Single Master Control Software Using CSI Mode of Serial Array Unit (R01AN1195EJ)



### 4. Hardware

#### 4.1 Hardware Configuration

An example hardware configuration is shown below.

### 4.1.1 Pin Assignments for Single-SPI Configuration

The following table lists the MCU pins used for single-SPI operation and their functions.

#### Table 4-1 Single-SPI Pins and Functions

| MCU Pin Name | I/O    | Description                |
|--------------|--------|----------------------------|
| CLK          | Output | Clock output               |
| DataOut      | Output | Master data output         |
| DataIn       | Input  | Master data input          |
| Port (CS#)   | Output | Slave device select output |

#### 4.1.2 Single-SPI Connection Example

A connection example for single-SPI operation is shown below:

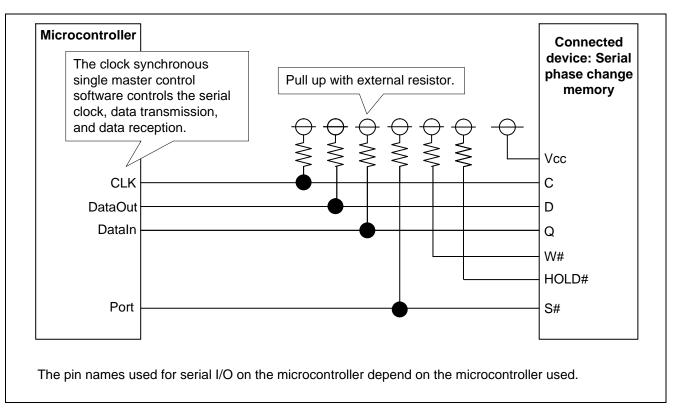



Figure 4.1 MCU and SPI Slave Device Connection Example for Single-SPI



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 4.1.3 Pin Assignments for Dual-SPI Configuration

The following table lists the MCU pins used for dual-SPI operation and their functions.

In order to use a dual-SPI configuration, the MCU must have a quad serial peripheral interface function.

| MCU Pin Name | I/O          | Description                |
|--------------|--------------|----------------------------|
| CLK          | Output       | Clock output               |
| DataIn/Out0  | Input/output | Master data input/output 0 |
| DataIn/Out1  | Input/output | Master data input/output 1 |
| Port(CS#)    | Output       | Slave device select output |

### 4.1.4 Dual-SPI Connection Example

A connection example for dual-SPI operation is shown below:

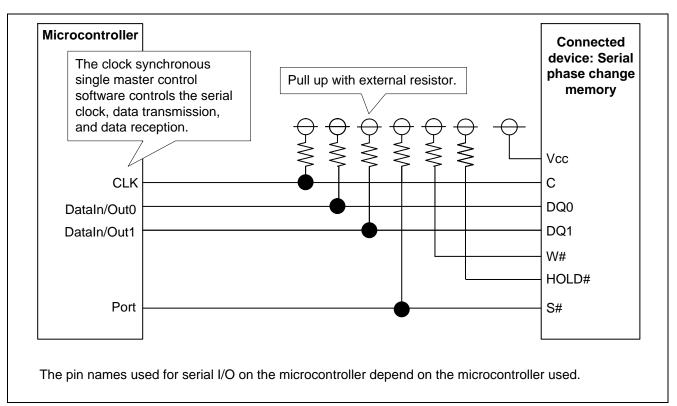



Figure 4.2 MCU and SPI Slave Device Connection Example for Dual-SPI



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 4.1.5 Pin Assignments for Quad-SPI Configuration

The following table lists the MCU pins used for quad-SPI operation and their functions.

In order to use a quad-SPI configuration, the MCU must have a quad serial peripheral interface function.

| Table 4-3 Quad-SPI Pins and Functions | Table 4-3 | <b>Quad-SPI Pins and Functions</b> |
|---------------------------------------|-----------|------------------------------------|
|---------------------------------------|-----------|------------------------------------|

| MCU Pin Name | I/O          | Description                |
|--------------|--------------|----------------------------|
| CLK          | Output       | Clock output               |
| DataIn/Out0  | Input/output | Master data input/output 0 |
| DataIn/Out1  | Input/output | Master data input/output 1 |
| DataIn/Out2  | Input/output | Master data input/output 2 |
| DataIn/Out3  | Input/output | Master data input/output 3 |
| Port (CS#)   | Output       | Slave device select output |

#### 4.1.6 Quad-SPI Connection Example

A connection example for quad-SPI operation is shown below:

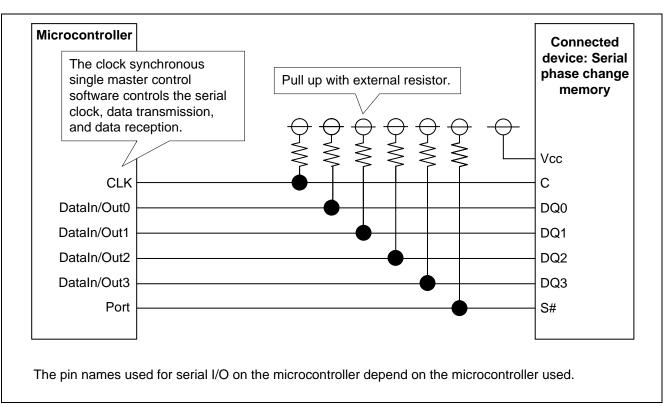



Figure 4.3 MCU and SPI Slave Device Connection Example for Quad-SPI



#### 5. Software

#### 5.1 Operation Overview

The MCU's clock synchronous serial communication function is used to control the serial phase change memory.

The sample code performs the following types of control:

- The S# pin of the SPI slave device is connected to the port of the MCU and is controlled by using MCU general port output. (This control is implemented by the sample code.)
- Data input and output is controlled in clock synchronous mode (using the internal clock of the MCU). (The sample code makes use of the MCU-specific clock synchronous single master control software.)

#### 5.1.1 Relationship Between Data Buffers and Transmit/Receive Data

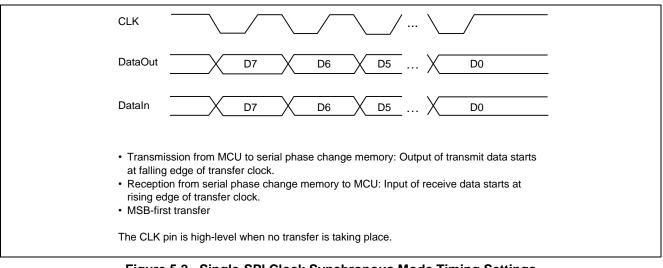
This sample code is a block type device driver and passes the transmit or receive data pointer as an argument. The relationship between the data ordering in the data buffer in RAM and the transmit/receive order is shown below and this sample code both transmits in the order data is stored in the transmit buffer and writes data to the receive data buffer in the order received regardless of the endian order or serial communication function used

Figure 5.1 illustrates the storage of transfer data.

| Master transmission mode |            |                             |   |     |     |     |     |  |
|--------------------------|------------|-----------------------------|---|-----|-----|-----|-----|--|
| Transm                   | it data    | buffer in RAM (bytes shown) | ) |     |     |     |     |  |
| 0                        | 1          |                             |   | 508 | 509 | 510 | 511 |  |
| Data tra                 | ansmiss    | sion order                  |   |     |     |     | →   |  |
|                          |            |                             |   | -   |     |     |     |  |
| Write to                 | the sla    | ave device (bytes shown)    |   |     |     |     |     |  |
| 0                        | 1          |                             |   | 508 | 509 | 510 | 511 |  |
| Data re                  | aantian    | ordor -                     |   |     |     |     |     |  |
| Data le                  | ception    | oldel                       |   |     |     |     |     |  |
|                          |            |                             |   |     |     |     |     |  |
|                          |            |                             |   |     |     |     |     |  |
| Master re                | eceptio    | n mode                      |   |     |     |     |     |  |
| Read fr                  | om the     | slave device (bytes shown)  |   |     |     |     |     |  |
| 0                        | 1          |                             |   | 508 | 509 | 510 | 511 |  |
| Data transmission order  |            |                             |   |     |     |     |     |  |
| Data ira                 | 11311132   | son order                   |   |     |     |     |     |  |
|                          |            |                             |   |     |     |     |     |  |
|                          |            |                             |   | -   |     |     |     |  |
| Data bu                  | uffer in I | RAM (bytes shown)           |   |     |     |     |     |  |
| 0                        | 1          |                             |   | 508 | 509 | 510 | 511 |  |
| Write to                 |            | e data buffer               |   |     |     |     |     |  |
|                          | I ECEIV    |                             |   |     |     |     | -   |  |
|                          |            |                             |   |     |     |     |     |  |

Figure 5.1 Storage of Transfer Data

### Micron Technology P5Q Serial Phase Change Memory Control Software


#### 5.1.2 Timing Generation in Clock Synchronous Mode

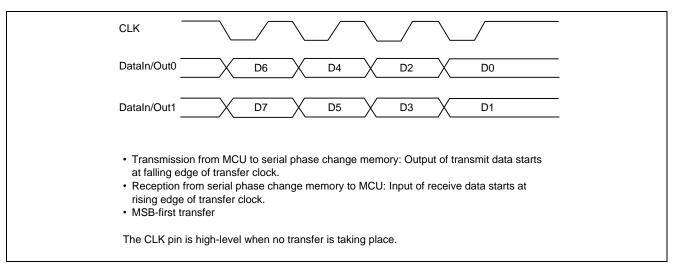
The timings generated in clock synchronous mode are shown below.

Refer to the data sheets of the MCU and SPI device when determining the serial clock frequency to be used.

#### (1) Single-SPI Operation

To control serial phase change memory, the SPI mode 3 (CPOL = 1, CPHA = 1) shown in Figure 5.2 is generated.








#### Micron Technology P5Q Serial Phase Change Memory Control Software

#### (2) Dual-SPI Operation

To control serial phase change memory, the SPI mode 3 (CPOL = 1, CPHA = 1) shown in Figure 5.3 is generated.







#### Micron Technology P5Q Serial Phase Change Memory Control Software

#### (3) Quad-SPI Operation

To control serial phase change memory, the SPI mode 3 (CPOL = 1, CPHA = 1) shown in Figure 5.4 is generated.

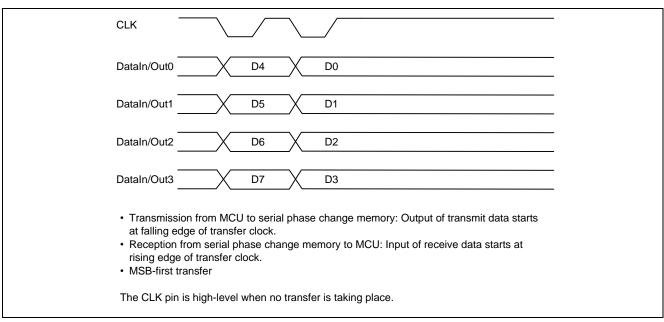



Figure 5.4 Quad-SPI Clock Synchronous Mode Timing Settings

#### 5.1.3 Serial Phase Change Memory S# Pin Control

The S# pin of the serial phase change memory is connected to the port of the MCU, and it is controlled by MCU general port output.

The duration from the falling edge of the S# (MCU port (CS#)) signal of the serial phase change memory to the falling edge of the C (MCU CLK) signal of the serial phase change memory is controlled by means of software wait to accommodate the S# setup time of the serial phase change memory.

The duration from the rising edge of the C (MCU CLK) signal of the serial phase change memory to the rising edge of the S# (MCU port (CS#)) signal of the serial phase change memory controlled by means of software wait to accommodate the S# hold time of the serial phase change memory.

Check the data sheet of the serial phase change memory and set the software wait time as appropriate for the system.



# Micron Technology P5Q Serial Phase Change Memory Control Software

#### 5.1.4 Serial Phase Change Memory Instruction Codes

Instruction codes are used to control the serial phase change memory, and command control is implemented by using these codes.

| Table 5-1 | Instruction Set |
|-----------|-----------------|
|-----------|-----------------|

| Instruction | Description                                   | Instruction format |
|-------------|-----------------------------------------------|--------------------|
| WREN        | Write Enable                                  | 0000 0110 (06 h)   |
| WRDI        | Write Disable                                 | 0000 0100 (04 h)   |
| RDSR        | Read Status-Register                          | 0000 0101 (05 h)   |
| WRSR        | Write Status-Register                         | 0000 0001 (01 h)   |
| FAST READ   | Read Data Bytes at Higher Speed               | 0000 1011 (0b h)   |
| READ        | Read Data Bytes                               | 0000 0011 (03 h)   |
| DOFR        | Dual output fast read                         | 0011 1011 (3b h)   |
| QOFR        | Quad output fast read                         | 0110 1011 (6b h)   |
| PP          | Page Program (legacy program)                 | 0000 0010 (02 h)   |
|             | Page Program (bit-alterable write)            | 0010 0010 (22 h)   |
|             | Page Program (on all 1s)                      | 1101 0001 (d1 h)   |
| DIFP        | Dual Input fast program (legacy program)      | 1010 0010 (a2 h)   |
|             | Dual Input fast program (bit-alterable write) | 1011 0011 (d3 h)   |
|             | Dual Input fast program (on all 1s)           | 1101 0101 (d5 h)   |
| QIFP        | Quad Input fast program (legacy program)      | 0011 0010 (32 h)   |
|             | Quad Input fast program (bit-alterable write) | 1101 0111 (d7 h)   |
|             | Quad Input fast program (on all 1s)           | 1101 1001 (d9 h)   |
| SE          | Sector Erase                                  | 1101 1000 (d8 h)   |
| BE          | Bulk Erase                                    | 1100 0111 (c7 h)   |
| RDID        | Read Identification                           | 1001 1111 (9f h)   |



### Micron Technology P5Q Serial Phase Change Memory Control Software

### 5.2 Software Configuration

The sample code operates as upper-layer control software for controlling the serial phase change memory (indicated as serial phase change memory control software in Figure 5.5).



Figure 5.5 Software Configuration

The control procedure is as follows:

- 1. Port (CS#) signal falling edge
- 2. Software wait
- 3. Transmission and reception of commands and data using clock synchronous single master software
- 4. Software wait
- 5. Port (CS#) rising edge



### Micron Technology P5Q Serial Phase Change Memory Control Software

### 5.3 Required Memory Size

The following table lists the Required Memory Size.

#### 5.3.1 RX Family

(1) **RX63N** 

#### Table 5-2 Required Memory Size

| Memory Used                   | Size                        | Remarks                |
|-------------------------------|-----------------------------|------------------------|
| ROM                           | 2,901 bytes (little endian) | r_qspi_pcm_p5q_usr.c   |
|                               |                             | r_qspi_pcm_p5q_sub.c   |
|                               |                             | r_qspi_pcm_p5q_drvif.c |
| RAM                           | 5 bytes (little endian)     | r_qspi_pcm_p5q_usr.c   |
|                               |                             | r_qspi_pcm_p5q_sub.c   |
|                               |                             | r_qspi_pcm_p5q_drvif.c |
| Maximum user stack usage      | 136 bytes                   |                        |
| Maximum interrupt stack usage | —                           | No interrupts used     |

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### (2) **RX111 RSPI**

#### Table 5-3 Required Memory Size

| Memory Used                   | Size                        | Remarks                |
|-------------------------------|-----------------------------|------------------------|
| ROM                           | 2,850 bytes (little endian) | r_qspi_pcm_p5q_usr.c   |
|                               |                             | r_qspi_pcm_p5q_sub.c   |
|                               |                             | r_qspi_pcm_p5q_drvif.c |
| RAM                           | 5 bytes (little endian)     | r_qspi_pcm_p5q_usr.c   |
|                               |                             | r_qspi_pcm_p5q_sub.c   |
|                               |                             | r_qspi_pcm_p5q_drvif.c |
| Maximum user stack usage      | 152 bytes                   |                        |
| Maximum interrupt stack usage | —                           | No interrupts used     |

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum usable user stack size includes the stack size of the lower-layer clock synchronous single master software.

#### (3) **RX111 SCI**

#### Table 5-4 Required Memory Size

| Memory Used                   | Size                        | Remarks                |
|-------------------------------|-----------------------------|------------------------|
| ROM                           | 2,850 bytes (little endian) | r_qspi_pcm_p5q_usr.c   |
|                               |                             | r_qspi_pcm_p5q_sub.c   |
|                               |                             | r_qspi_pcm_p5q_drvif.c |
| RAM                           | 5 bytes (little endian)     | r_qspi_pcm_p5q_usr.c   |
|                               |                             | r_qspi_pcm_p5q_sub.c   |
|                               |                             | r_qspi_pcm_p5q_drvif.c |
| Maximum user stack usage      | 148 bytes                   |                        |
| Maximum interrupt stack usage | —                           | No interrupts used     |

Note: The required memory size varies depending on the C compiler version and compile options.

The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 5.3.2 RL78 Family, 78K0R/Kx3-L

Show the memory size of the different MCU of the order. Check the order of the MCU and please refer to the following memory sizes.

#### (1) RL78/G14 Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)

#### Table 5-5 Required Memory Size

| Memory Used                   | Size        | Remarks                   |
|-------------------------------|-------------|---------------------------|
| ROM                           | 5,291 bytes | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| RAM                           | 6 bytes     | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| Maximum user stack usage      | 110 bytes   |                           |
| Maximum interrupt stack usage | —           | No interrupts used        |

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum usable user stack size includes the stack size of the lower-layer clock synchronous single master software.

#### (2) RL78/G14 Integrated Development Environment CS+ for CC (Compiler: CC-RL)

#### Table 5-6 Required Memory Size

| Memory Used                   | Size        | Remarks                   |
|-------------------------------|-------------|---------------------------|
| ROM                           | 3,867 bytes | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| RAM                           | 6 bytes     | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| Maximum user stack usage      | 80 bytes    |                           |
| Maximum interrupt stack usage | —           | No interrupts used        |

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### (3) RL78/G14 Integrated Development Environment IAR Embedded Workbench

#### Table 5-7 Required Memory Size

| Memory Used                   | Size        | Remarks                   |
|-------------------------------|-------------|---------------------------|
| ROM                           | 5,534 bytes | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| RAM                           | 6 bytes     | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| Maximum user stack usage      | 154 bytes   |                           |
| Maximum interrupt stack usage | —           | No interrupts used        |

Note: The required memory size varies depending on the C compiler version and compile options.

The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum user stack size is the stack size for the entire project. It includes the stack of the lowerlayer clock synchronous single-master control software.

#### (4) RL78/L13 Integrated Development Environment CubeSuite+

#### Table 5-8 Required Memory Size

| Memory Used                   | Size        | Remarks                   |
|-------------------------------|-------------|---------------------------|
| ROM                           | 4,801 bytes | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| RAM                           | 6 bytes     | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| Maximum user stack usage      | 102 bytes   |                           |
| Maximum interrupt stack usage | —           | No interrupts used        |

Note: The required memory size varies depending on the C compiler version and compile options. The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### (5) RL78/L13 Integrated Development Environment IAR Embedded Workbench

#### Table 5-9 Required Memory Size

| Memory Used                   | Size        | Remarks                   |
|-------------------------------|-------------|---------------------------|
| ROM                           | 4,058 bytes | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| RAM                           | 6 bytes     | r_qspi_pcm_p5q_usr.c      |
|                               |             | r_qspi_pcm_p5q_sub.c      |
|                               |             | r_qspi_pcm_p5q_drvif.c    |
|                               |             | r_qspi_pcm_p5q_sfr_rl78.c |
| Maximum user stack usage      | 120 bytes   |                           |
| Maximum interrupt stack usage |             | No interrupts used        |

Note: The required memory size varies depending on the C compiler version and compile options.

The indicated ROM and RAM sizes do not include the memory used by the lower-layer clock synchronous single master software.

The memory sizes listed above differ depending on the MCU type name.

The maximum user stack size is the stack size for the entire project. It includes the stack of the lowerlayer clock synchronous single-master control software.



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 5.4 File Structure

The following table lists the files used by the sample code.

#### Table 5-10 File Structure

| \an_r0 | 01an1439ej0104_mcu_serial <dir></dir> | Sample code folder                                     |
|--------|---------------------------------------|--------------------------------------------------------|
| rC     | 01an1439ej0104_mcu.pdf                | Application note                                       |
| \s     | source <dir></dir>                    | Program folder                                         |
|        | \r_qspi_pcm_p5q <dir></dir>           | Serial Phase Change Memory control software folder     |
|        | r_qspi_pcm_p5q.h                      | Header file                                            |
|        | r_qspi_pcm_p5q_drvif.c                | Driver interface source file                           |
|        | r_qspi_pcm_p5q_drvif.h                | Driver interface header file                           |
|        | r_qspi_pcm_p5q_sfr.h.rl78g14          | Common definition for registers (RL78/G14)             |
|        | r_qspi_pcm_p5q_sfr.h.rl78g1c          | Common definition for registers (RL78/G1C)             |
|        | r_qspi_pcm_p5q_sfr.h.rl78l1c          | Common definition for registers (RL78/L1C)             |
|        | r_qspi_pcm_p5q_sfr.h.rl78l12          | Common definition for registers (RL78/L12)             |
|        | r_qspi_pcm_p5q_sfr.h.rl78l13          | Common definition for registers (RL78/L13)             |
|        | r_qspi_pcm_p5q_sfr.h.rx63n            | Common definition for registers (RX63N)                |
|        | r_qspi_pcm_p5q_sfr.h.rx111            | Common definition for registers (RX111)                |
|        | r_qspi_pcm_p5q_sfr_rl78g14.c          | Common definition source file for registers (RL78/G14) |
|        | r_qspi_pcm_p5q_sfr_rl78g1c.c          | Common definition source file for registers (RL78/G1C) |
|        | r_qspi_pcm_p5q_sfr_rl78l1c.c          | Common definition source file for registers (RL78/L1C) |
|        | r_qspi_pcm_p5q_sfr_rl78l12.c          | Common definition source file for registers (RL78/L12) |
|        | r_qspi_pcm_p5q_sfr_rl78l13.c          | Common definition source file for registers (RL78/L13) |
|        | r_qspi_pcm_p5q_sub.c                  | Internal function source file                          |
|        | r_qspi_pcm_p5q_sub.h                  | Internal function header file                          |
|        | r_qspi_pcm_p5q_usr.c                  | User interface source file                             |
|        | \sample <dir></dir>                   | Operation verification program storage folder          |
|        | testmain.c                            | Sample source file for operation verification          |

Note: In addition, separate MCU-specific clock synchronous single master control software is required.



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 5.5 Constants

#### 5.5.1 Return Value

The following table lists the return value used in the sample code.

#### Table 5-11 Return Value

| Constant Name   | Setting Value | Contents             |
|-----------------|---------------|----------------------|
| PCM_OK          | (error_t)(0)  | Successful operation |
| PCM_ERR_PARAM   | (error_t)(-1) | Parameter error      |
| PCM_ERR_HARD    | (error_t)(-2) | Hardware error       |
| PCM_ERR_TIMEOUT | (error_t)(-6) | Time out error       |
| PCM_ERR_OTHER   | (error_t)(-7) | Other error          |

### 5.5.2 Command Definitions

The following table lists the command definitions used in the sample code.

| Constant Name   | Setting Value   | Contents                                      |
|-----------------|-----------------|-----------------------------------------------|
| PCM_CMD_WREN    | (uint8_t)(0x06) | Write Enable                                  |
| PCM_CMD_WRDI    | (uint8_t)(0x04) | Write Disable                                 |
| PCM_CMD_RDSR    | (uint8_t)(0x05) | Read Status Register                          |
| PCM_CMD_WRSR    | (uint8_t)(0x01) | Write Status Register                         |
| PCM_CMD_FREAD   | (uint8_t)(0x0b) | Read for Memory Array at Higher Speed         |
| PCM_CMD_READ    | (uint8_t)(0x03) | Read for Memory Array                         |
| PCM_CMD_DOFR    | (uint8_t)(0x3b) | Dual Output Fast Read                         |
| PCM_CMD_QOFR    | (uint8_t)(0x6b) | Quad Output Fast Read                         |
| PCM_CMD_PP_L    | (uint8_t)(0x02) | Page Program (Legacy Program)                 |
| PCM_CMD_PP_BA   | (uint8_t)(0x22) | Page Program (Bit-alterable Write)            |
| PCM_CMD_PP_OA   | (uint8_t)(0xd1) | Page Program (on all 1s)                      |
| PCM_CMD_DIFP_L  | (uint8_t)(0xa2) | Dual Input Fast Program (Legacy Program)      |
| PCM_CMD_DIFP_BA | (uint8_t)(0xd3) | Dual Input Fast Program (Bit-alterable Write) |
| PCM_CMD_DIFP_OA | (uint8_t)(0xd5) | Dual Input Fast Program (on all 1s)           |
| PCM_CMD_QIFP_L  | (uint8_t)(0x32) | Quad Input Fast Program (Legacy Program)      |
| PCM_CMD_QIFP_BA | (uint8_t)(0xd7) | Quad Input Fast Program (Bit-alterable Write) |
| PCM_CMD_QIFP_OA | (uint8_t)(0xd9) | Quad Input Fast Program (on all 1s)           |
| PCM_CMD_SE      | (uint8_t)(0xd8) | Sector Erase for Memory Array                 |
| PCM_CMD_BE      | (uint8_t)(0xc7) | Bulk Erase for Memory Array                   |
| PCM_CMD_RDID    | (uint8_t)(0x9f) | Read Identification                           |



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 5.5.3 Other Definitions

The values of other definitions used in the sample code are listed below.

| Table 5-13 | Values Defined in r_ | _qspi_pcm_p5q.h |
|------------|----------------------|-----------------|
|------------|----------------------|-----------------|

| Constant Name        | Setting Value          | Contents                                       |
|----------------------|------------------------|------------------------------------------------|
| PCM_DEV_NUM          | (1)                    | Number of connected devices                    |
| PCM_DEV0             | (0)                    | Device number 0                                |
| PCM_DEV1             | (1)                    | Device number 1                                |
| PCM_DELAY_TASK       | (uint8_t)(1)           | Wait time of delay task [unit: ms]*1           |
| PCM_LOG_ERR          | (1)                    | Log Type: Error                                |
| PCM_TRUE             | (uint8_t)(0x01)        | Flag "ON"                                      |
| PCM_FALSE            | (uint8_t)(0x00)        | Flag "OFF"                                     |
| PCM_MODE_PP_LEGACY   | (uint8_t)(1)           | Page Program Type: Legacy                      |
| PCM_MODE_PP_BIT_ALTE | (uint8_t)(2)           | Page Program Type: Bit-alterable               |
| RABLE                |                        |                                                |
| PCM_MODE_ON_ALL_1S   | (uint8_t)(3)           | Page Program Type: on all 1s (preset writes)   |
| PCM_B_ERASE          | (uint8_t)(1)           | Erasure Type: Bulk Erase                       |
| PCM_S_ERASE          | (uint8_t)(2)           | Erasure Type: Sector Erase                     |
| PCM_MEM_SIZE         | (uint32_t)(16777216)   | Memory size (byte units)                       |
|                      |                        | Value at left corresponds to size of 128 Mbit. |
| PCM_SECT_ADDR        | (uint32_t)(0xfffe0000) | Sector address mask value for sector erase     |
|                      |                        | Value at left corresponds to size of 128 Mbit. |
| PCM_PAGE_SIZE        | (uint32_t)(64)         | Page size (byte units)                         |
|                      |                        | Value at left corresponds to size of 128 Mbit. |
| PCM_ADDR_SIZE        | (uint8_t)(3)           | Address size (byte units)                      |
|                      |                        | Value at left corresponds to size of 128 Mbit. |
| PCM_WP_WHOLE_MEM     | (uint8_t)(0x1f)        | Whole-chip write protect                       |

Note: 1. The delay task for OS control. The OS control used in the sample code assumes µITRON 4.0.



### Micron Technology P5Q Serial Phase Change Memory Control Software

| Constant Name     | Setting Value     | Contents                                                                                                        |
|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| PCM_DR_CS0        | PORTA.PODR.BIT.B0 | Device number 0 port output data register SFR definition                                                        |
| PCM_DDR_CS        | PORTA.PDR.BIT.B0  | Device number 0 port direction register SFR definition                                                          |
| PCM_DR_CS1        | _                 | Device number 1 port output data register SFR definition (This setting is needed when controlling two devices.) |
| PCM_DDR_CS1       | _                 | Device number 1 port direction register SFR definition (This setting is needed when controlling two devices.)   |
| PCM_HI            | (uint8_t)(0x01)   | Port "H"                                                                                                        |
| PCM_LOW           | (uint8_t)(0x00)   | Port "L"                                                                                                        |
| PCM_OUT           | (uint8_t)(0x01)   | Port Output Setting                                                                                             |
| PCM_IN            | (uint8_t)(0x00)   | Port Input Setting                                                                                              |
| PCM_BR            | (uint8_t)(0x01)   | Transfer rate for command transmission*1                                                                        |
| PCM_BR_WRITE_DATA | (uint8_t)(0x01)   | Transfer rate for data transmission*1                                                                           |
| PCM_BR_READ_DATA  | (uint8_t)(0x01)   | Transfer rate for data reception*1                                                                              |

| Table 5-14 | Values Defined in r_qspi_pcm_p5q_sfr.h.rx63n |
|------------|----------------------------------------------|
|------------|----------------------------------------------|

Note: 1. This value is set in the RSPI bit rate register (SPBR) when using the clock synchronous single master control software with the RSPI. The value shown is for a peripheral module clock setting of 48 [MHz] and a transfer rate of 12 [MHz].

This value is set in the bit rate register (BRR) when using the clock synchronous single master control software with SCI. The value shown is for a peripheral module clock setting of 48 [MHz] and a transfer rate of 6 [MHz].

| Constant Name     | Setting Value   | Contents                                                                                                        |
|-------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| PCM_DR_CS0        | P8.0            | Device number 0 port register SFR definition                                                                    |
| PCM_DDR_CS        | PM8.0           | Device number 0 port mode register SFR definition                                                               |
| PCM_DR_CS1        |                 | Device number 1 port output data register SFR definition (This setting is needed when controlling two devices.) |
| PCM_DDR_CS1       |                 | Device number 1 port direction register SFR definition (This setting is needed when controlling two devices.)   |
| PCM_HI            | (uint8_t)(0x01) | Port "H"                                                                                                        |
| PCM_LOW           | (uint8_t)(0x00) | Port "L"                                                                                                        |
| PCM_OUT           | (uint8_t)(0x00) | Port Output Setting                                                                                             |
| PCM_IN            | (uint8_t)(0x01) | Port Input Setting                                                                                              |
| PCM_BR            | (uint8_t)(0x01) | Transfer rate for command transmission*1                                                                        |
| PCM_BR_WRITE_DATA | (uint8_t)(0x01) | Transfer rate for data transmission*1                                                                           |
| PCM_BR_READ_DATA  | (uint8_t)(0x01) | Transfer rate for data reception*1                                                                              |

Note: 1. This value is set in bits 15 to 9 of the serial data register (SDR) when using the clock synchronous single master control software in the serial array unit CSI mode. The sample code uses this value with an operation clock setting of 24 [MHz] and a transfer rate or 6 [MHz].

### Micron Technology P5Q Serial Phase Change Memory Control Software

| Constant Name  | Setting Value          | Contents                                                            |
|----------------|------------------------|---------------------------------------------------------------------|
| PCM_SHORT_SIZE | (uint32_t)(0x00008000) | Maximum transfer size setting for low-level functions (max.: 32 KB) |

### Table 5-16 Values Defined in r\_qspi\_pcm\_p5q\_sub.c

## Table 5-17 Values Defined in r\_qspi\_pcm\_p5q\_sub.h

| Constant Name    | Setting Value       | Contents                             |
|------------------|---------------------|--------------------------------------|
| PCM_BE_BUSY_WAIT | (uint32_t)(100000)  | Bulk Erase Busy Timeout              |
|                  |                     | 100000 × 1 ms = 100 s                |
| PCM_SE_BUSY_WAIT | (uint32_t)(800)     | Sector Erase Busy Timeout            |
|                  |                     | 800 × 1 ms = 800 ms                  |
| PCM_WBUSY_WAIT   | (uint32_t)(400)     | Write Ready Timeout                  |
|                  |                     | $400 \times 1 \ \mu s = 400 \ \mu s$ |
| PCM_T_WBUSY_WAIT | (uint16_t)MTL_T_1US | Write Busy Polling Time              |
| PCM_T_EBUSY_WAIT | (uint16_t)MTL_T_1MS | Erase Busy Polling Time              |
| PCM_T_CS_HOLD    | (uint16_t)MTL_T_1US | CS Stability Waiting Time            |
| PCM_T_R_ACCESS   | (uint16_t)MTL_T_1US | Reading Start Waiting Time           |
| PCM_REG_SRWD     | (uint8_t)(0x80)     | Status Register Write Disable        |
| PCM_REG_BP3      | (uint8_t)(0x40)     | Block Protection Bit3                |
| PCM_REG_TB       | (uint8_t)(0x20)     | Top/Bottom Bit                       |
| PCM_REG_BP2      | (uint8_t)(0x10)     | Block Protection Bit2                |
| PCM_REG_BP1      | (uint8_t)(0x08)     | Block Protection Bit1                |
| PCM_REG_BP0      | (uint8_t)(0x04)     | Block Protection Bit0                |
| PCM_REG_WEL      | (uint8_t)(0x02)     | Write Enable Latch Bit               |
| PCM_REG_WIP      | (uint8_t)(0x01)     | Write In Progress Bit                |
| PCM_REG          | (uint8_t)(0xfc)     | Write status fixed data              |



### Micron Technology P5Q Serial Phase Change Memory Control Software

### 5.6 Structure/Union List

Show the Structure/Union Used in the Sample Code.

| typedef union { |        |                 |    |
|-----------------|--------|-----------------|----|
| uint32_t        | ul;    |                 |    |
| uint8_t         | uc[4]; |                 |    |
| } PCM_EXCHG_L   | _ONG;  | /* total 4bytes | */ |

Figure 5.6 Union Used in the Sample Code (Refer to r\_qspi\_pcm\_p5q\_sub.c)

| typedef struct       |          |                                                                 |    |
|----------------------|----------|-----------------------------------------------------------------|----|
| uint32_t             | Addr     | /* Address to issue a command                                   | */ |
| uint32_t             | Cnt      | /* Number of bytes to be read/written                           | */ |
| uint16_t             | DataCnt; | /* Temporary counter or Number of bytes to be written in a page | */ |
| uint8_t              | rsv[2];  | /* Reserved                                                     | */ |
| uint8_t FAR*         | pData;   | /* Data storage buffer pointer                                  | */ |
| } r_qspi_pcm_info_t; |          |                                                                 |    |

#### Figure 5.7 Structure Used in the Sample Code (Refer to r\_qspi\_pcm\_p5q.h)

#### Table 5-18 Description of Structure "r\_qspi\_pcm\_info\_t"

| Structure<br>Member | Allowable Setting<br>Range  | Description                                                                  |
|---------------------|-----------------------------|------------------------------------------------------------------------------|
| Addr                | 0000 0000h to FFFF<br>FFFFh | Write/read start address                                                     |
| Cnt                 | 0000 0000h to FFFF<br>FFFFh | Write/read data counter (byte units)                                         |
| DataCnt             | (Setting prohibited.)       | Write: Write data counter temp. (max. 1 page)                                |
|                     |                             | Read: Read data counter temp. (max. 32 KB)                                   |
| rsv[2]              | (Setting has no effect.)    | For alignment adjustment                                                     |
| pData               | —                           | Data storage buffer pointer                                                  |
|                     |                             | Write: Storage source of data to be written in serial phase change<br>memory |
|                     |                             | Read: Storage destination of data to be read from serial phase change memory |



### Micron Technology P5Q Serial Phase Change Memory Control Software

#### 5.7 Variable

The following table lists the Static Variable.

#### Table 5-19 Static Variable (Refer to r\_qspi\_flash\_p5q\_sub.c)

| Туре           | Variable Name   | Contents       | Function Used       |
|----------------|-----------------|----------------|---------------------|
| STATIC uint8_t | g_pcm_cmdbuf[5] | Command buffer | r_qspi_pcm_send_cmd |
|                |                 |                | r_qspi_pcm_set_cmd  |

#### 5.8 Functions

The following table lists the Functions.

#### Table 5-20 Functions

| Function Name                  | Outline                                       |
|--------------------------------|-----------------------------------------------|
| R_QSPI_PCM_Init_Driver()       | Driver initialization processing              |
| R_QSPI_PCM_Read_Status()       | Status register read processing               |
| R_QSPI_PCM_Set_Write_Protect() | Write protect setting processing              |
| R_QSPI_PCM_Write_Di()          | WRDI command issue processing                 |
| R_QSPI_PCM_Read_Data()         | Data read processing                          |
| R_QSPI_PCM_Write_Data()        | Data write processing                         |
| R_QSPI_PCM_Write_Data_Page()   | Data write processing (for single-page write) |
| R_QSPI_PCM_Erase()             | Erase processing                              |
| R_QSPI_PCM_ReadID()            | ID read processing                            |
| R_QSPI_PCM_Wait()              | Busy wait processing                          |

On cache-equipped MCUs, specify a non-cached area as the location of the read/write data storage buffer.

The read/write data storage buffer address is dependent on the lower-layer MCU-specific clock synchronous single master control software, and in some cases it is necessary to specify an address on a 4-byte boundary. For details, refer to the application note for the MCU-specific clock synchronous single master control software.



### Micron Technology P5Q Serial Phase Change Memory Control Software

### 5.9 Function Specifications

The following tables list the sample code function specifications.

#### 5.9.1 Driver Initialization Processing

| R_QSPI_PCM_Init | _Driver                                                                                                                                                                                       |                                                                              |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Outline         | Driver initialization process                                                                                                                                                                 | ing                                                                          |  |  |
| Header          | r_qspi_pcm_p5q.h, r_qspi_                                                                                                                                                                     | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h |  |  |
| Declaration     | error_t R_QSPI_PCM_Init_                                                                                                                                                                      | error_t R_QSPI_PCM_Init_Driver(void)                                         |  |  |
| Description     | <ul> <li>Calls the R_QSPI_PCM_Init_Port() function to initialize the CS# pin.</li> </ul>                                                                                                      |                                                                              |  |  |
|                 | <ul> <li>Calls the initialization function of the clock synchronous single master control software to initialize the I/O ports.</li> <li>Call this function once at system startup</li> </ul> |                                                                              |  |  |
| Arguments       | None                                                                                                                                                                                          |                                                                              |  |  |
| Return Value    | The initialization result is returned.                                                                                                                                                        |                                                                              |  |  |
|                 | PCM_OK                                                                                                                                                                                        | ; Successful operation                                                       |  |  |
|                 | PCM_ERR_OTHER                                                                                                                                                                                 | ; Other error                                                                |  |  |
|                 |                                                                                                                                                                                               |                                                                              |  |  |
|                 | _QSPI_PCM_Init_Driver                                                                                                                                                                         |                                                                              |  |  |

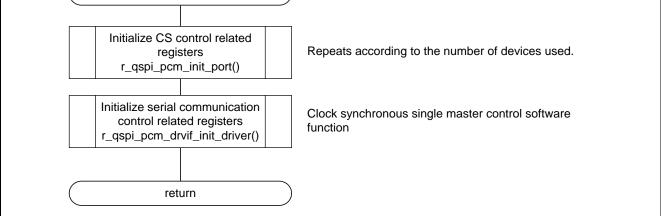
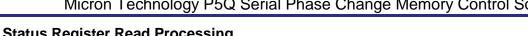




Figure 5.8 Overview of Driver Initialization Processing



| Micron Technology P5Q Serial Phase Change Memory Control Software | Micron | Technology | P5Q Seria | l Phase ( | Change | Memory | Control Software |
|-------------------------------------------------------------------|--------|------------|-----------|-----------|--------|--------|------------------|
|-------------------------------------------------------------------|--------|------------|-----------|-----------|--------|--------|------------------|

| 5.9.2 Status Register Read Processing |                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| R_QSPI_PCM_Read_Status                |                                                                                                                                                                                                          |  |  |  |  |
| Outline                               | Status register read processing                                                                                                                                                                          |  |  |  |  |
| Header                                | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h                                                                                                                             |  |  |  |  |
| Declaration                           | error_t R_QSPI_PCM_Read_Status(uint8_t DevNo, uint8_t FAR* pStatus)                                                                                                                                      |  |  |  |  |
| Description                           | <ul> <li>Reads the status register and stores the result in pStatus.</li> <li>Set 1 byte as a read buffer.</li> </ul>                                                                                    |  |  |  |  |
|                                       | <ul> <li>Stores the following information in the read status storage buffer (pStatus):<br/>Bit 7:SRWD</li> </ul>                                                                                         |  |  |  |  |
|                                       | 1: TB, BP3, BP2, BP1, BP0 are read-only bits                                                                                                                                                             |  |  |  |  |
|                                       | 0: TB, BP3, BP2, BP1, BP0 are read/writable                                                                                                                                                              |  |  |  |  |
|                                       | Bits 6 to 2: BP3, TB, BP2, BP1, BP0                                                                                                                                                                      |  |  |  |  |
|                                       | Bit 1:WEL                                                                                                                                                                                                |  |  |  |  |
|                                       | 1: Internal Write Enable Latch is set                                                                                                                                                                    |  |  |  |  |
|                                       | 0: Internal Write Enable Latch is reset                                                                                                                                                                  |  |  |  |  |
|                                       | Bit 0:WIP                                                                                                                                                                                                |  |  |  |  |
|                                       | 1: Program or Erase cycle is in progress                                                                                                                                                                 |  |  |  |  |
|                                       | 0: No Program or Erase cycle is in progress                                                                                                                                                              |  |  |  |  |
|                                       | <ul> <li>Refer to the data sheet of the serial phase change memory for the relationship<br/>between protect areas and protect bits. It is possible that the BP bits may not be<br/>allocated.</li> </ul> |  |  |  |  |
| Arguments                             | uint8_t DevNo ; Device number                                                                                                                                                                            |  |  |  |  |
|                                       | uint8_t FAR* pStatus ; Read status storage buffer pointer                                                                                                                                                |  |  |  |  |
| Return Value                          | The status register fetch result is returned.                                                                                                                                                            |  |  |  |  |
|                                       | PCM_OK ; Successful operation                                                                                                                                                                            |  |  |  |  |
|                                       | PCM_ERR_PARAM ; Parameter error                                                                                                                                                                          |  |  |  |  |
|                                       | PCM_ERR_HARD ; Hardware error                                                                                                                                                                            |  |  |  |  |
|                                       | PCM_ERR_OTHER ; Other error                                                                                                                                                                              |  |  |  |  |



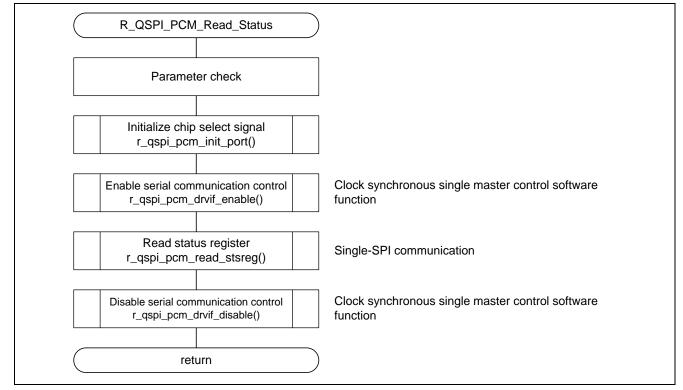
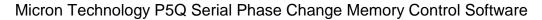



Figure 5.9 Overview of Status Register Read Processing




| 5.9.3 Write Protect Setting Processing |                                                                              |          |          |                     |          |          |                                       |
|----------------------------------------|------------------------------------------------------------------------------|----------|----------|---------------------|----------|----------|---------------------------------------|
| R_QSPI_PCM_Set_Write_                  | Protect                                                                      |          |          |                     |          |          |                                       |
| Outline Wr                             | Write protect setting processing                                             |          |          |                     |          |          |                                       |
| Header r_q                             | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h |          |          |                     |          |          |                                       |
| Declaration erro                       | or_t R_QSPI_F                                                                | PCM_S    | Set_Wr   | ite_Pro             | otect(ui | int8_t [ | DevNo, uint8_t WpSts)                 |
| •                                      |                                                                              | •        |          |                     | -        |          | and 128 Mb serial phase change        |
|                                        |                                                                              |          |          |                     |          |          | ct bit to 1. When using this user     |
|                                        |                                                                              |          |          |                     |          |          | n contained in the latest data        |
|                                        | sheet of the se                                                              |          |          |                     |          |          | ations in the following documents:    |
|                                        | 32Mb                                                                         | /64Mb    | P50 S    | ation o<br>Serial P | hase (   | Change   | Memory Errata Rev. A, 128Mb           |
|                                        | P5Q S                                                                        | Serial F | hase     | Chang               | e Mem    | ory Er   | rata Rev. D                           |
| •                                      | Makes write pr                                                               | otect s  | settings | 5                   |          |          |                                       |
| •                                      | Make settings                                                                | using t  | the foll | owing               | write p  | rotect   | setting data (WpSts):                 |
|                                        | WpSts                                                                        | BP3      | TB1      | BP2                 | BP1      | BP0      | Protected Area                        |
|                                        | 0x00                                                                         | 0        | 0        | 0                   | 0        | 0        | None                                  |
|                                        | 0x01                                                                         | 0        | 0        | 0                   | 0        | 1        | Upper 32nd (sector 31)                |
|                                        | 0x02                                                                         | 0        | 0        | 0                   | 1        | 0        | Upper 16th (sectors 30 to 31)         |
|                                        | 0x03                                                                         | 0        | 0        | 0                   | 1        | 1        | Upper 8th (sectors 28 to 31)          |
|                                        | 0x04                                                                         | 0        | 0        | 1                   | 0        | 0        | Upper 4th (sectors 24 to 31)          |
|                                        | 0x05                                                                         | 0        | 0        | 1                   | 0        | 1        | Upper half (sectors 16 to 31)         |
|                                        | 0x06                                                                         | 0        | 0        | 1                   | 1        | 0        | All sectors (sectors 0 to 31)         |
|                                        | 0x07                                                                         | 0        | 0        | 1                   | 1        | 1        | All sectors (sectors 0 to 31)         |
|                                        | 0x10 – 0x16                                                                  | 1        | 0        | 0/1                 | 0/1      | 0/1      | Setting prohibited for this user API. |
|                                        | 0x17                                                                         | 1        | 0        | 1                   | 1        | 1        | All sectors (sectors 0 to 31)         |
|                                        | 0x08                                                                         | 0        | 1        | 0                   | 0        | 0        | None                                  |
|                                        | 0x09                                                                         | 0        | 1        | 0                   | 0        | 1        | Lower 32nd (sector 0)                 |
|                                        | 0x0a                                                                         | 0        | 1        | 0                   | 1        | 0        | Lower 16th (sectors 0 to 1)           |
|                                        | 0x0b                                                                         | 0        | 1        | 0                   | 1        | 1        | Lower 8th (sectors 0 to 3)            |
|                                        | 0x0c                                                                         | 0        | 1        | 1                   | 0        | 0        | Lower 4th (sectors 0 to 7)            |
|                                        | 0x0d                                                                         | 0        | 1        | 1                   | 0        | 1        | Lower half (sectors 0 to 15)          |
|                                        | 0x0e                                                                         | 0        | 1        | 1                   | 1        | 0        | All sectors (sectors 0 to 31)         |
|                                        | 0x0f                                                                         | 0        | 1        | 1                   | 1        | 1        | All sectors (sectors 0 to 31)         |
|                                        | 0x18 – 0x1e                                                                  | 1        | 1        | 0/1                 | 0/1      | 0/1      | Setting prohibited for this user API. |
|                                        | 0x1f                                                                         | 1        | 1        | 1                   | 1        | 1        | All sectors (sectors 0 to 31)         |
| •                                      | Clears SRWD                                                                  | to 0.    |          |                     |          |          |                                       |

- Refer to the data sheet of the serial phase change memory for the relationship • between protect areas and protect bits. It is possible that the BP bits may not be allocated.
- There are two ways to wait for write completion. These are described below. Note • that the next processing task (write, read, erase, etc.) should be executed after confirming write completion.
- To use the user API to wait for write completion, enable PCM\_WAIT\_READY in r\_qspi\_pcm\_p5q.h.
- To wait for write completion without using the user API, disable PCM\_WAIT\_READY in r\_qspi\_pcm\_p5q.h and call R\_QSPI\_PCM\_Wait() after processing by the user API finishes. This processing method allows the use of a user-defined duration when waiting for write completion. Refer to figure 5.11 for the usage method.

|              | 57                                                                                                       | <u> </u>                                                                                                                                             |
|--------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arguments    | uint8_t DevNo<br>uint8_t WpSts                                                                           | ; Device number<br>; Write protect setting data                                                                                                      |
| Return Value | The write protect setting<br>PCM_OK<br>PCM_ERR_PARAM<br>PCM_ERR_HARD<br>PCM_ERR_TIMEOUT<br>PCM_ERR_OTHER | result is returned.<br>; Successful operation<br>; Parameter error<br>; Hardware error<br>; Time out error (PCM_WAIT_READY enabled)<br>; Other error |

# Micron Technology P5Q Serial Phase Change Memory Control Software





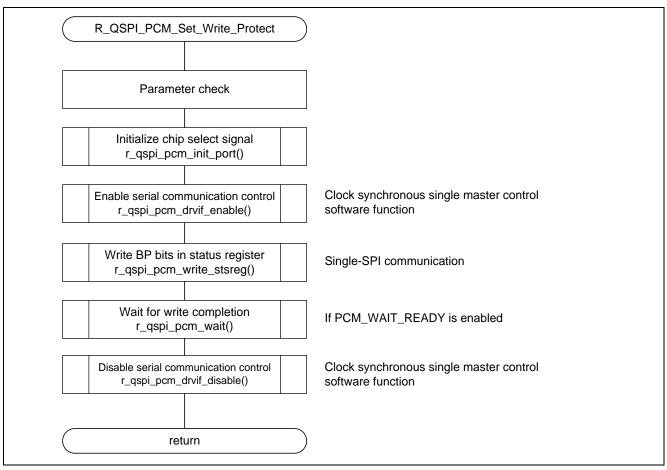



Figure 5.10 Overview of Write Protect Setting Processing

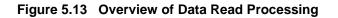


Figure 5.11 Using R\_QSPI\_PCM\_Wait() to Wait for Write Protect Setting Completion



| R_QSPI_PCM_W                                                                                | √rite_Di                                                                                                                     |    |  |  |             |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----|--|--|-------------|--|
| Outline                                                                                     | WRDI command issue processing                                                                                                |    |  |  |             |  |
| Header r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_p5q_sfr.h, r_qspi_pcm_p5q_drvif.h |                                                                                                                              |    |  |  |             |  |
|                                                                                             |                                                                                                                              |    |  |  | Declaration |  |
| <ul> <li>Description</li> <li>Clears the WEL bit in the status register.</li> </ul>         |                                                                                                                              |    |  |  |             |  |
| -                                                                                           | <ul> <li>When a programming error or erase error occurs, this function must be called<br/>clear the WEL bit.</li> </ul>      | to |  |  |             |  |
| Arguments                                                                                   | uint8_t DevNo ; Device number                                                                                                |    |  |  |             |  |
| Return Value                                                                                | The clearing result is returned.                                                                                             |    |  |  |             |  |
|                                                                                             | PCM_OK ; Successful operation                                                                                                |    |  |  |             |  |
|                                                                                             | PCM _ERR_PARAM ; Parameter error                                                                                             |    |  |  |             |  |
|                                                                                             | PCM_ERR_HARD ; Hardware error                                                                                                |    |  |  |             |  |
|                                                                                             | PCM_ERR_OTHER ; Other error                                                                                                  |    |  |  |             |  |
|                                                                                             | Parameter check Initialize chip select signal r_qspi_pcm_init_port() Clock synchronous single master control                 |    |  |  |             |  |
|                                                                                             | r_qspi_pcm_drvif_enable() software function                                                                                  |    |  |  |             |  |
|                                                                                             | r_qspi_pcm_write_di()                                                                                                        |    |  |  |             |  |
| Dis                                                                                         | able serial communication control<br>r_qspi_pcm_drvif_disable() Clock synchronous single master control<br>software function |    |  |  |             |  |
|                                                                                             | return                                                                                                                       |    |  |  |             |  |

5.9.4 WRDI Command Issue Processing


Figure 5.12 Overview of WRDI Command Issue Processing



| Micron Technology P5Q Serial Phase Change Memory Control Software | Micron Techr | nology P5Q Seria | al Phase Change | Memory Control Software |
|-------------------------------------------------------------------|--------------|------------------|-----------------|-------------------------|
|-------------------------------------------------------------------|--------------|------------------|-----------------|-------------------------|

| 5.9.5 C              | Pata Read Processing                                                                                                                                      |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| R_QSPI_PCM_Read_Data |                                                                                                                                                           |  |  |  |
| Outline              | Data read processing                                                                                                                                      |  |  |  |
| Header               | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h                                                                              |  |  |  |
| Declaration          | error_t R_QSPI_PCM_Read_Data(uint8_t DevNo, r_qspi_pcm_info_t FAR*                                                                                        |  |  |  |
|                      | pPcm_Info)                                                                                                                                                |  |  |  |
| Description          | <ul> <li>Reads the specified number of bytes of data from the specified address in the<br/>serial phase change memory, and stores it in pData.</li> </ul> |  |  |  |
|                      | • The final read address is equal to the serial phase change memory capacity – 1.                                                                         |  |  |  |
|                      | • It is not possible to continue reading by means of a rollover. After reading the final                                                                  |  |  |  |
|                      | address, end processing once and then call the user API again after specifying a new address.                                                             |  |  |  |
|                      | • Due to the usage limitations <sup>*1</sup> of 32 Mb and 64 Mb serial phase change memory,                                                               |  |  |  |
|                      | it is not possible to continue reading from the start address because the address                                                                         |  |  |  |
|                      | is not rolled over at the next read operation.                                                                                                            |  |  |  |
|                      | Note: 1. Refer to the information on usage limitations in the following document:<br>32Mb/64Mb P5Q Serial Phase Change Memory Errata Rev. A.              |  |  |  |
| Arguments            | uint8 t DevNo ; Device number                                                                                                                             |  |  |  |
| J                    | r_qspi_pcm_info_t FAR* pPcm_Info ; PCM communication information structure                                                                                |  |  |  |
|                      | uint32_t Addr ; Read start address                                                                                                                        |  |  |  |
|                      | uint32_t Cnt ; Read byte count                                                                                                                            |  |  |  |
|                      | uint16_t DataCnt ; Read byte temp. (setting prohibited)                                                                                                   |  |  |  |
|                      | uint8_t FAR* pData ; Read data storage buffer pointer                                                                                                     |  |  |  |
| Return Valu          | e The read result is returned.                                                                                                                            |  |  |  |
|                      | PCM_OK ; Successful operation                                                                                                                             |  |  |  |
|                      | PCM_ERR_PARAM ; Parameter error                                                                                                                           |  |  |  |
|                      | PCM_ERR_HARD ; Hardware error                                                                                                                             |  |  |  |
|                      | PCM_ERR_OTHER ; Other error                                                                                                                               |  |  |  |
|                      |                                                                                                                                                           |  |  |  |
|                      | R_QSPI_PCM_Read_Data                                                                                                                                      |  |  |  |
|                      |                                                                                                                                                           |  |  |  |
|                      | Descurration should                                                                                                                                       |  |  |  |
|                      | Parameter check                                                                                                                                           |  |  |  |
|                      |                                                                                                                                                           |  |  |  |
|                      | Initialize chip select signal                                                                                                                             |  |  |  |
|                      | r_qspi_pcm_init_port()                                                                                                                                    |  |  |  |
|                      |                                                                                                                                                           |  |  |  |
|                      | Enable serial communication control Clock synchronous single master control                                                                               |  |  |  |

# 5.9.5 Data Read Processing



software function

software function

Single-SPI/dual-SPI/quad-SPI communication

Clock synchronous single master control

r\_qspi\_pcm\_drvif\_enable()

Read data

r\_qspi\_pcm\_read()

Disable serial communication control

r\_qspi\_pcm\_drvif\_disable()

return



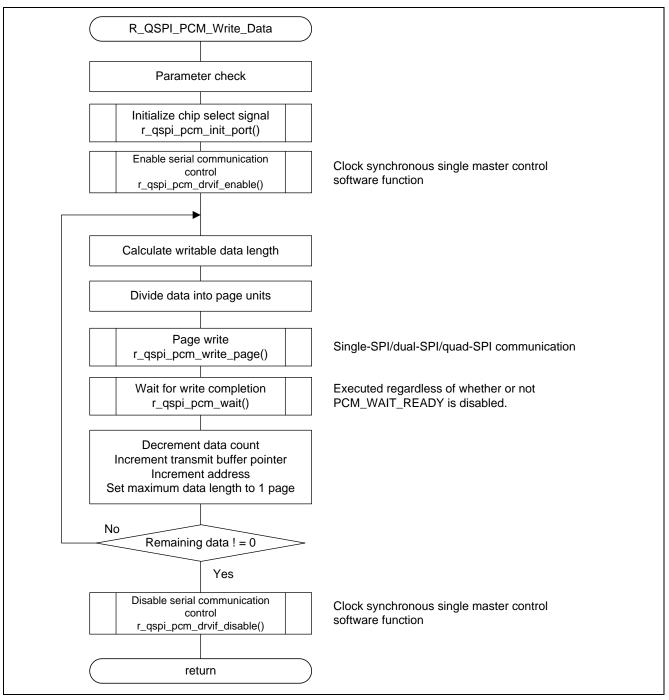
| Micron Technology  | P50 Serial Phase | e Change Memory | Control Software |
|--------------------|------------------|-----------------|------------------|
| wholen reconnology |                  | s onunge memor  |                  |

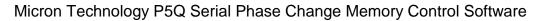
| 5.9.6 Data Wr         | ite Processing                                                                                                                                                                             |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| R_QSPI_PCM_Write_Data |                                                                                                                                                                                            |  |  |  |  |
| Outline               | Data write processing                                                                                                                                                                      |  |  |  |  |
| Header                | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h                                                                                                               |  |  |  |  |
| Declaration           | error_t R_QSPI_PCM_Write_Data(uint8_t DevNo, r_qspi_pcm_info_t FAR*                                                                                                                        |  |  |  |  |
|                       | pPcm_Info, uint8_t Mode)                                                                                                                                                                   |  |  |  |  |
| Description           | <ul> <li>Writes the specified number of bytes of the data in pData to the specified address<br/>in the serial phase change memory.</li> </ul>                                              |  |  |  |  |
|                       | <ul> <li>Writes using legacy program, bit-alterable write, or on all 1s, according to the<br/>Mode setting.</li> </ul>                                                                     |  |  |  |  |
|                       | <ul> <li>Writing to the serial phase change memory can only be performed to areas with<br/>write protect disabled. Also, no error is returned. The WEL bit is in the set state.</li> </ul> |  |  |  |  |
|                       | <ul> <li>It is not possible to write to areas where protect is enabled. Also, no error is<br/>returned. The WEL bit is in the set state.</li> </ul>                                        |  |  |  |  |
|                       | • The final write address is equal to the serial phase change memory capacity – 1.                                                                                                         |  |  |  |  |
|                       | • The maximum value that can be set for the write byte count (Cnt) is equal to the                                                                                                         |  |  |  |  |
|                       | serial phase change memory capacity.                                                                                                                                                       |  |  |  |  |
|                       | <ul> <li>The user API performs a wait for write completion regardless of the setting of<br/>PCM_WAIT_READY in r_qspi_pcm_p5q.h.</li> </ul>                                                 |  |  |  |  |
| Arguments             | uint8_t DevNo ; Device number                                                                                                                                                              |  |  |  |  |
|                       | r_qspi_pcm_info_t FAR* pPcm_Info ; PCM communication information structure                                                                                                                 |  |  |  |  |
|                       | uint32_t Addr ; Write start address                                                                                                                                                        |  |  |  |  |
|                       | uint32_t Cnt ; Write byte count                                                                                                                                                            |  |  |  |  |
|                       | uint16_t DataCnt ; Write byte temp. (setting prohibited)                                                                                                                                   |  |  |  |  |
|                       | uint8_t FAR* pData ; Write data storage buffer pointer                                                                                                                                     |  |  |  |  |
|                       | uint8_t Mode ; Write mode (selectable from the following):                                                                                                                                 |  |  |  |  |
|                       | ; PCM_MODE_PP_LEGACY                                                                                                                                                                       |  |  |  |  |
|                       | ; PCM_MODE_PP_BIT_ALTERABLE                                                                                                                                                                |  |  |  |  |
|                       | ; PCM_MODE_PP_ON_ALL_1S                                                                                                                                                                    |  |  |  |  |
| Return Value          | The read result is returned.                                                                                                                                                               |  |  |  |  |
|                       | PCM_OK ; Successful operation                                                                                                                                                              |  |  |  |  |
|                       | PCM_ERR_PARAM ; Parameter error                                                                                                                                                            |  |  |  |  |
|                       | PCM_ERR_HARD ; Hardware error                                                                                                                                                              |  |  |  |  |
|                       | PCM_ERR_TIMEOUT ; Time out error<br>PCM_ERR_OTHER ; Other error                                                                                                                            |  |  |  |  |
|                       |                                                                                                                                                                                            |  |  |  |  |

| 5.9.6 | Data | Writa | Processing |
|-------|------|-------|------------|
| 5.9.0 | Data | write | Processing |



## Micron Technology P5Q Serial Phase Change Memory Control Software





Figure 5.14 Overview of Data Write Processing



|                  | ite Processing (for Single-Page Write)                                                                                                                                                                                      |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| R_QSPI_PCM_Write | _Data_Page                                                                                                                                                                                                                  |  |  |  |  |  |
| Outline          | Data write processing (for single-page write)                                                                                                                                                                               |  |  |  |  |  |
| Header           | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h                                                                                                                                                |  |  |  |  |  |
| Declaration      | error_t R_QSPI_PCM_Write_Data_Page(uint8_t DevNo, r_qspi_pcm_info_t FAR*                                                                                                                                                    |  |  |  |  |  |
| Description      | pPcm_Info, uint8_t Mode)                                                                                                                                                                                                    |  |  |  |  |  |
| Description      | <ul> <li>Writes the specified number of bytes (maximum: 1 page) of the data in pData to<br/>the specified address in the serial phase change memory.</li> </ul>                                                             |  |  |  |  |  |
|                  | <ul> <li>Writes using legacy program, bit-alterable write, or on all 1s, according to the<br/>Mode setting.</li> </ul>                                                                                                      |  |  |  |  |  |
|                  | <ul> <li>It is possible to avoid situations in which other processing cannot be performed</li> </ul>                                                                                                                        |  |  |  |  |  |
|                  | during data communication because the communication is divided into page units when writing large volumes of data.                                                                                                          |  |  |  |  |  |
|                  | Writing to the serial phase change memory can only be performed to areas with                                                                                                                                               |  |  |  |  |  |
|                  | write protect disabled. Also, no error is returned. The WEL bit is in the set state.                                                                                                                                        |  |  |  |  |  |
|                  | <ul> <li>It is not possible to write to areas where protect is enabled. Also, no error is<br/>returned. The WEL bit is in the set state.</li> </ul>                                                                         |  |  |  |  |  |
|                  | • The final write address is equal to the serial phase change memory capacity – 1.                                                                                                                                          |  |  |  |  |  |
|                  | <ul> <li>The maximum value that can be set for the write byte count (Cnt) is equal to the<br/>serial phase change memory capacity.</li> </ul>                                                                               |  |  |  |  |  |
|                  | • Even if a byte count that exceeds one page is specified, the remaining byte count                                                                                                                                         |  |  |  |  |  |
|                  | and the next address information remains in the PCM communication information                                                                                                                                               |  |  |  |  |  |
|                  | structure (pPcm_Info) after write processing of one page finishes. It is possible to<br>write the remaining byte count by setting pPcm_Info once again without                                                              |  |  |  |  |  |
|                  | modification.                                                                                                                                                                                                               |  |  |  |  |  |
|                  | <ul> <li>There are two ways to wait for write completion. These are described below. Note<br/>that the next processing task (write, read, erase, etc.) should be executed after<br/>confirming write completion.</li> </ul> |  |  |  |  |  |
|                  | <ul> <li>To use the user API to wait for write completion, enable PCM_WAIT_READY in</li> </ul>                                                                                                                              |  |  |  |  |  |
|                  | r_qspi_pcm_p5q.h.                                                                                                                                                                                                           |  |  |  |  |  |
|                  | To wait for write completion without using the user API, disable     DOM WAIT DEADV is a serie per per per per per per per per per pe                                                                                       |  |  |  |  |  |
|                  | PCM_WAIT_READY in r_qspi_pcm_p5q.h and call R_QSPI_PCM_Wait() after<br>processing by the user API finishes. This processing method allows the use of a                                                                      |  |  |  |  |  |
|                  | user-defined duration when waiting for write completion. Refer to figure 5.16 for                                                                                                                                           |  |  |  |  |  |
|                  | the usage method.                                                                                                                                                                                                           |  |  |  |  |  |
| Arguments        | uint8_t DevNo ; Device number                                                                                                                                                                                               |  |  |  |  |  |
|                  | r_qspi_pcm_info_t FAR* pPcm_Info ; PCM communication information structure                                                                                                                                                  |  |  |  |  |  |
|                  | uint32_t Addr ; Write start address                                                                                                                                                                                         |  |  |  |  |  |
|                  | uint32_t Cnt ; Write byte count                                                                                                                                                                                             |  |  |  |  |  |
|                  | uint16_t DataCnt ; Write byte temp. (setting prohibited)                                                                                                                                                                    |  |  |  |  |  |
|                  | uint8_t FAR* pData ; Write data storage buffer pointer                                                                                                                                                                      |  |  |  |  |  |
|                  | uint8_t Mode ; Write mode (selectable from the following):<br>; PCM_MODE_PP_LEGACY                                                                                                                                          |  |  |  |  |  |
|                  | ; PCM_MODE_PP_BIT_ALTERABLE<br>; PCM_MODE_PP_ON_ALL_1S                                                                                                                                                                      |  |  |  |  |  |
| Return Value     | The read result is returned.                                                                                                                                                                                                |  |  |  |  |  |
|                  | PCM_OK ; Successful operation                                                                                                                                                                                               |  |  |  |  |  |
|                  | PCM_ERR_PARAM ; Parameter error                                                                                                                                                                                             |  |  |  |  |  |
|                  | PCM_ERR_HARD ; Hardware error                                                                                                                                                                                               |  |  |  |  |  |
|                  | PCM_ERR_TIMEOUT ; Time out error (PCM_WAIT_READY enabled)                                                                                                                                                                   |  |  |  |  |  |
|                  | PCM_ERR_OTHER ; Other error                                                                                                                                                                                                 |  |  |  |  |  |
|                  |                                                                                                                                                                                                                             |  |  |  |  |  |

5.9.7 Data Write Processing (for Single-Page Write)





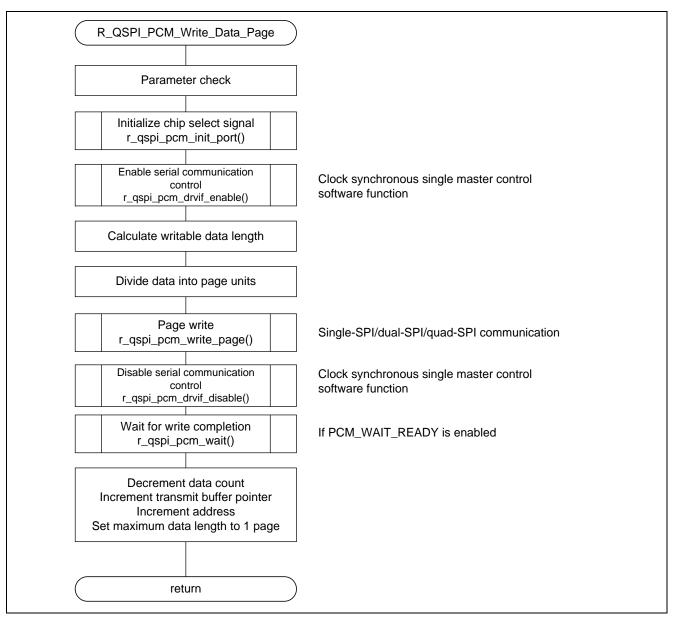
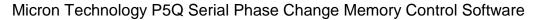
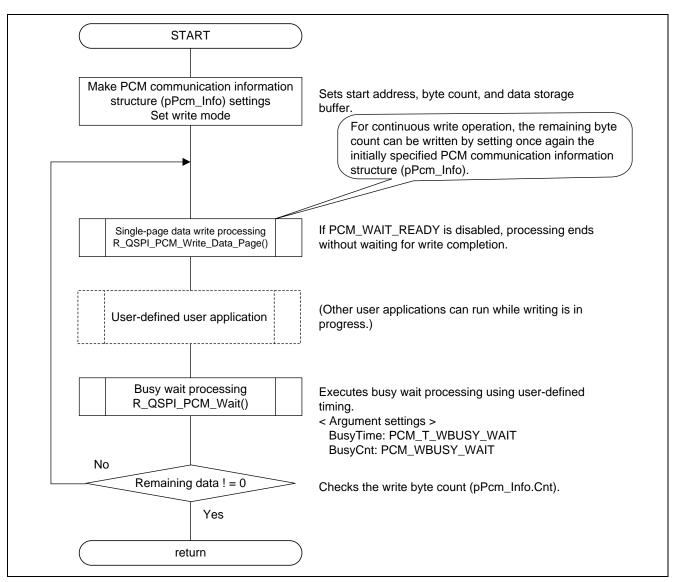
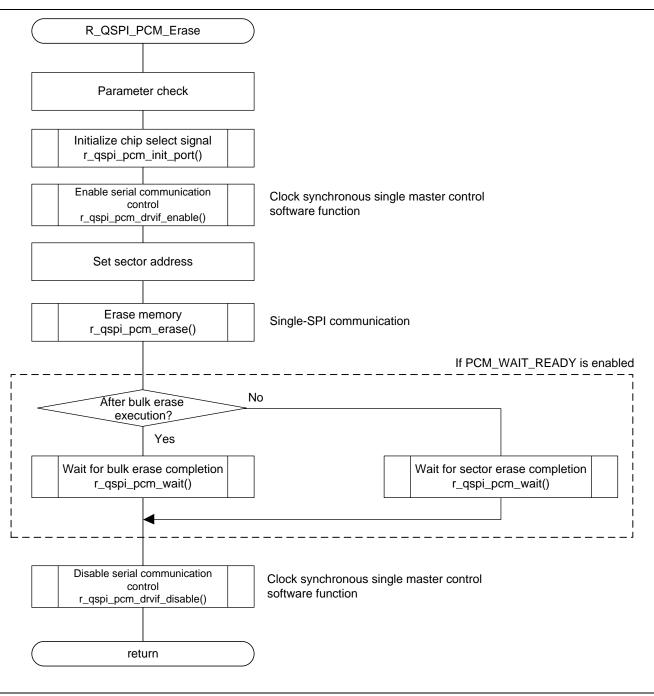




Figure 5.15 Overview of Data Write Processing (for Single-Page Write)





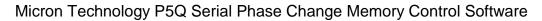




Figure 5.16 Using R\_QSPI\_PCM\_Wait() to Wait for Data Write Processing (for Single-Page Write) Completion



| 5.9.8 Erase                                                       | Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R_QSPI_PCM_Era                                                    | ase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| R_QSPI_PCM_Era<br>Outline<br>Header<br>Declaration<br>Description | <ul> <li>Erase processing <ul> <li>r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h</li> <li>error_t R_QSPI_PCM_Erase(uint8_t DevNo, uint32_t Addr, uint8_t Mode)</li> </ul> </li> <li>Erases all the data in the memory (bulk erase) or all the data in a specified sector (sector erase).</li> <li>Bulk erase or sector erase may be selected by using the Mode setting.</li> <li>For bulk erase, set Addr to 0x00000000.</li> <li>Erasing the serial phase change memory can only be performed on areas with write protect disabled. Also, no error is returned. The WEL bit is in the set state.</li> <li>It is not possible to erase areas of the serial phase change memory where protect is enabled. Also, no error is returned. The WEL bit is in the set state.</li> <li>There are two ways to wait for erase completion. These are described below. Note that the next processing task (write, read, erase, etc.) should be executed after confirming erase completion.</li> <li>To use the user API to wait for completion, enable PCM_WAIT_READY in r_qspi_pcm_p5q.h.</li> <li>To wait for completion without using the user API, disable PCM_WAIT_READY in r_qspi_pcm_p5q.h.</li> </ul> |  |  |
| Arguments                                                         | <ul> <li>when waiting for completion. Refer to figure 5.18 for the usage method.</li> <li>The argument setting (BusyCnt) when calling R_QSPI_PCM_Wait() differs for bulk erase and sector erase.</li> <li>Bulk Erase: BusyCnt = PCM_BE_BUSY_WAIT</li> <li>Sector Erase: BusyCnt = PCM_SE_BUSY_WAIT</li> <li>uint8 t DevNo ; Device number</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                   | uint32_t Addr ; Erase address<br>uint8_t Mode ; Erase mode (selectable from the following):<br>; PCM_MODE_B_ERASE<br>; PCM_MODE_S_ERASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Return Value                                                      | The erase result is returned.PCM_OK; Successful operationPCM_ERR_PARAM; Parameter errorPCM_ERR_HARD; Hardware errorPCM_ERR_TIMEOUT; Time out error (PCM_WAIT_READY enabled)PCM_ERR_OTHER; Other error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

# Micron Technology P5Q Serial Phase Change Memory Control Software






# Micron Technology P5Q Serial Phase Change Memory Control Software

Figure 5.17 Overview of Erase Processing





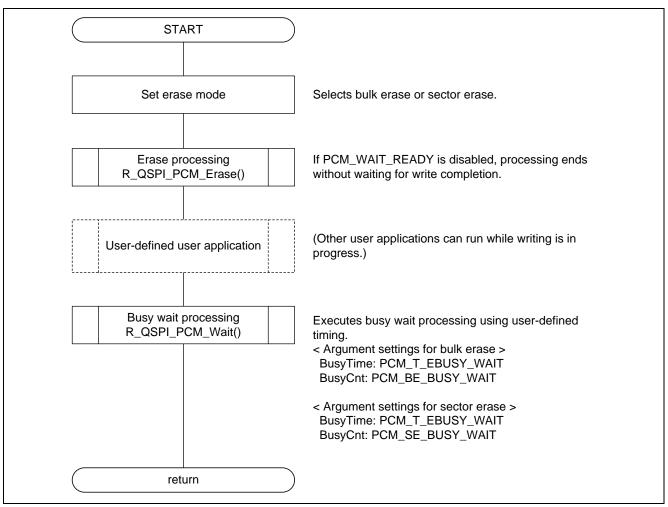



Figure 5.18 Using R\_QSPI\_PCM\_Wait() to Wait for Erase Processing Completion



| Micron Technology | P5Q Serial Phase | Change Memory | Control Software |
|-------------------|------------------|---------------|------------------|
|                   |                  |               |                  |

| 5.9.9 ID Read Processing                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| R_QSPI_PCM_ReadID                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |  |  |  |
| Outline                                                                                                                                                                                                                                                                                                                                                                                                           | ID read processing                                                                                                       |  |  |  |
| Header                                                                                                                                                                                                                                                                                                                                                                                                            | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h                                             |  |  |  |
| Declaration                                                                                                                                                                                                                                                                                                                                                                                                       | error_t R_QSPI_PCM_Read_ID(uint8_t DevNo, uint8_t FAR* pData )                                                           |  |  |  |
| Description                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Reads the manufacturer ID and device ID, and stores them in pData. Set 3 bytes<br/>as a read buffer.</li> </ul> |  |  |  |
| <ul> <li>Due to the usage limitations*<sup>1</sup> of 32 Mb and 64 Mb serial phase change memory, reading the memory capacity (lower byte) of the device ID returns a value of 18h. The correct values are 16h for 32 Mb, 17h for 64 Mb, and 18h for 128 Mb. Note: 1. Refer to the information on usage limitations in the following document: 32Mb/64Mb P5Q Serial Phase Change Memory Errata Rev. A.</li> </ul> |                                                                                                                          |  |  |  |
| Arguments                                                                                                                                                                                                                                                                                                                                                                                                         | uint8_t DevNo ; Device number                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | uint8_t FAR* pData ; Read data storage buffer pointer                                                                    |  |  |  |
| Return Value                                                                                                                                                                                                                                                                                                                                                                                                      | The read result is returned.                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | PCM_OK ; Successful operation                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | PCM_ERR_PARAM ; Parameter error                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | PCM_ERR_HARD ; Hardware error                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | PCM_ERR_OTHER ; Other error                                                                                              |  |  |  |
| R_QSPI_PCM_Read_ID                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |  |  |  |
| Parameter check                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |  |  |  |

## 5.9.9 ID Read Processing

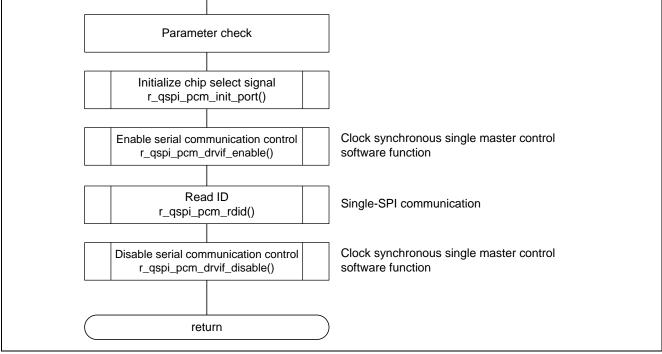



Figure 5.19 Overview of ID Read Processing

|                 | ant Processing                                                                                              |                                                                                                                                                                                  |                          |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| R_QSPI_PCM_Wait |                                                                                                             |                                                                                                                                                                                  |                          |  |  |
| Outline         | , I 8                                                                                                       |                                                                                                                                                                                  |                          |  |  |
| Header          | r_qspi_pcm_p5q.h, r_qspi_pcm_p5q_sub.h, r_qspi_pcm_sfr.h, r_qspi_pcm_drvif.h                                |                                                                                                                                                                                  |                          |  |  |
| Declaration     | error_t R_QSPI_PCM_Wait(uint8_t DevNo, uint16_t BusyTime, uint32_t BusyCnt)                                 |                                                                                                                                                                                  |                          |  |  |
| Description     |                                                                                                             | n completion of write or erase                                                                                                                                                   | e when                   |  |  |
|                 | PCM_WAIT_READY is dis                                                                                       |                                                                                                                                                                                  |                          |  |  |
|                 | <ul> <li>When BusyCnt = 0, a wait<br/>interval.</li> </ul>                                                  | is performed for a busy peric                                                                                                                                                    | od equal to the BusyTime |  |  |
|                 |                                                                                                             | is performed for a busy perio<br>Cnt. If the busy state exceeds<br>s returned                                                                                                    |                          |  |  |
|                 | The BusyCnt and BusyTin<br>timeout error may occur if                                                       | ne setting values are different<br>busy wait takes place using c<br>cording to the following table:                                                                              | other than the expected  |  |  |
|                 | State                                                                                                       | BusyTime                                                                                                                                                                         | BusyCnt                  |  |  |
|                 | Status register write in                                                                                    | PCM_T_WBUSY_WAIT                                                                                                                                                                 | PCM_WBUSY_WAIT           |  |  |
|                 | progress (write protect bit<br>set)                                                                         | FCM_T_WB03T_WAIT                                                                                                                                                                 |                          |  |  |
|                 | Data write in progress                                                                                      | PCM_T_WBUSY_WAIT                                                                                                                                                                 | PCM_WBUSY_WAIT           |  |  |
|                 | Erase in progress (bulk PCM_T_EBUSY_WAIT PCM erase)                                                         |                                                                                                                                                                                  | PCM_BE_BUSY_WAIT         |  |  |
|                 | Erase in progress (sector erase)                                                                            | PCM_T_EBUSY_WAIT                                                                                                                                                                 | PCM_SE_BUSY_WAIT         |  |  |
| Arguments       | uint8_t DevNo                                                                                               | ; Device number                                                                                                                                                                  |                          |  |  |
|                 | uint16_t BusyTime                                                                                           | ; Wait duration (selectable from the following):<br>PCM_T_WBUSY_WAIT: Write                                                                                                      |                          |  |  |
|                 | uint32_t BusyCnt                                                                                            | PCM_T_EBUSY_WAIT: Erase<br>; Counter (selectable from the following):<br>PCM_WBUSY_WAIT: Write<br>PCM_BE_BUSY_WAIT: Erase (Bulk Erase)<br>PCM_SE_BUSY_WAIT: Erase (Sector Erase) |                          |  |  |
| Return Value    | The read result is returned.<br>PCM_OK<br>PCM_ERR_PARAM<br>PCM_ERR_HARD<br>PCM_ERR_TIMEOUT<br>PCM_ERR_OTHER |                                                                                                                                                                                  |                          |  |  |

## 5.9.10 Busy Wait Processing



## Micron Technology P5Q Serial Phase Change Memory Control Software

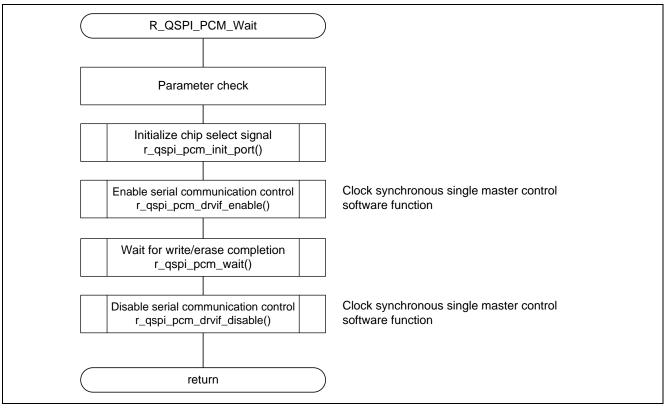



Figure 5.20 Overview of Busy Wait Processing



## Micron Technology P5Q Serial Phase Change Memory Control Software

## 6. Application Example

Example settings for the control portion of the serial phase change memory are shown below. (Clock synchronous single master control software portion is not covered.)

Refer to the MCU-specific application note for details of the clock synchronous single master control software portion.

Note that the communication speed requires settings for each individual slave device, and these setting are included in the sample code.

The setting locations are designated in each file by the comment /\*\* SET \*\*/.

In addition, for functions used in common (mtl\_wait\_lp(), etc.), make sure to use the versions included in the MCU-specific clock synchronous single master control software.



## Micron Technology P5Q Serial Phase Change Memory Control Software

## 6.1 Serial Phase Change Memory Control Software Settings

The setting locations are designated in each file by the comment /\*\* SET \*\*/.

## 6.1.1 r\_qspi\_pcm\_p5q.h

This is the definition file for the serial phase change memory.

The setting locations are designated in each file by the comment /\*\* SET \*\*/.

#### (1) Definition of Number of Devices Used and Device Numbers

Specify the number of devices to be used, and allocate a number to each device.

In the example below, one device is used, and it is allocated the device number 0.

Up to two devices can be controlled.

```
/*-----*/
/* Define number of required serial PCM devices.(1~N devices)
                                                     */
/* Define the device number in accordance with the number of serial PCM
                                                     */
/* devices to be connected.
                                                     */
/*-----*/
/* Define no. of devices */
#define PCM DEV NUM
                                 /* ldevice
                                                     */
                     1
/* Define no. of slots */
                                /* Device 0
#define PCM DEV0
                      0
                                                     */
#define PCM DEV1
                      1
                                 /* Device 1
                                                     */
```

#### (2) Definition of Capacity of Device Used

Specify the capacity of the device(s) used.

In the example below, a device with a capacity of 64 Mbit is used.

| /*<br>/* Define the serial PCM device.<br>/* |           |           | */<br>*/<br>*/ |
|----------------------------------------------|-----------|-----------|----------------|
| //#define P5Q32M                             | /* 64Mbit | ( 4MByte) | * /            |
| #define P5Q64M                               |           | ( 8MByte) | * /            |
| //#define P5Q32M                             |           | (16MByte) | * /            |



## Micron Technology P5Q Serial Phase Change Memory Control Software

#### (3) Delay Task Wait Time Setting (Valid when OS Control is Used)

This setting specifies the OS control\* delay task wait time. The unit is ms.

In the example below, a setting of 1 ms is used.

/\*----- Definitions of delay task wait time -----\*/
#define PCM\_DELAY\_TASK (uint8\_t)1 /\* OS delay task wait time (Uint:ms) \*/

Note: \* The OS control used in the sample code assumes  $\mu$ ITRON 4.0.

#### (4) Write/Erase Completion Wait Processing Integration Setting

The functions listed below support a setting designating waiting for completion following execution of a command. To designate waiting for completion, enable the setting.

Affected functions:

- Write protect setting processing (R\_QSPI\_PCM\_Set\_Write\_Protect())
- Data write processing (for single-page write) (R\_QSPI\_PCM\_Write\_Data\_Page())
- Erase processing (R\_QSPI\_PCM\_Erase())

In the example below, waiting for completion is enabled.

/\*----- Definitions of using wait -----\*/
/\* When you wait completion a PCM writing or erasing, please define it. \*/
#define PCM\_WAIT\_READY



## Micron Technology P5Q Serial Phase Change Memory Control Software

## 6.1.2 r\_qspi\_pcm\_p5q\_sfr.h

A separate version of r\_qspi\_pcm\_p5q\_sfr.h.XXX is provided for each MCU model. Rename the version appropriate for the system to r\_qspi\_pcm\_p5q\_sfr.h in order to use it. If there is no available version corresponding to the MCU to be used, refer to the information below and create an appropriate version of r\_qspi\_pcm\_p5q\_sfr.h.

The setting locations are designated in each file by the comment /\*\* SET \*\*/.

#### (1) Chip Select Signal Setting

Define the port SFR of the chip select signal to be used.

When connecting two devices, two ports must be defined.

In the example below, port A0 is used on the RX63N.

/\*-----\*/
/\* Define the CS port. \*/
/\*-----\*/
#define PCM\_DR\_CS0 PORTA.PODR.BIT.B0 /\* PCM CS0(Negative-true logic)\*/
#define PCM\_DDR\_CS0 PORTA.PDR.BIT.B0 /\* PCM CS0(Negative-true logic)\*/
#if (PCM\_DEV\_NUM > 1)
#define PCM\_DR\_CS1 /\* PCM CS1(Negative-true logic)\*/
#define PCM\_DDR\_CS1 /\* PCM CS1(Negative-true logic)\*/
#endif /\* #if (PCM\_DEV\_NUM > 1) \*/



# Micron Technology P5Q Serial Phase Change Memory Control Software

In the example below, port 80 is used on the RL78/G14.

| /* Define the CS port.                       |                                             | */ |
|----------------------------------------------|---------------------------------------------|----|
| ,                                            | /* Renesas RL78 Compiler                    | */ |
| #define PCM DR CS0 P8.0                      | <pre>/* PCM CS0 (Negative-true logic)</pre> | */ |
| #define PCM_DDR_CS0 PM8.0                    | /* PCM CS0 (Negative-true logic)            | */ |
| <pre>#if (PCM_DEV_NUM &gt; 1)</pre>          |                                             |    |
|                                              | <pre>/* PCM CS1 (Negative-true logic)</pre> | */ |
|                                              | <pre>/* PCM CS1 (Negative-true logic)</pre> | */ |
| <pre>#endif /* #if (PCM_DEV_NUM &gt; 1</pre> | L) */                                       |    |
| #endif /*CA78K0R */                          |                                             |    |
|                                              | /* Renesas CC-RL Compiler                   | */ |
|                                              | <pre>/* PCM CS0 (Negative-true logic)</pre> | */ |
| #define PCM_DDR_CS0 PM8_bit.no0              | 0 /* PCM CS0 (Negative-true logic)          | */ |
| <pre>#if (PCM_DEV_NUM &gt; 1)</pre>          |                                             |    |
|                                              | <pre>/* PCM CS1 (Negative-true logic)</pre> | */ |
|                                              | <pre>/* PCM CS1 (Negative-true logic)</pre> | */ |
| <pre>#endif /* #if (PCM_DEV_NUM &gt; 1</pre> | L) */                                       |    |
| #endif /*CCRL */                             |                                             |    |
| #ifdefICCRL78                                |                                             | */ |
|                                              | /* PCM CS0 (Negative-true logic)            | */ |
| #define PCM_DDR_CS0 PM8_bit.no0              | 0 /* PCM CS0 (Negative-true logic)          | */ |
| <pre>#if (PCM_DEV_NUM &gt; 1)</pre>          |                                             |    |
|                                              | <pre>/* PCM CS1 (Negative-true logic)</pre> | */ |
|                                              | <pre>/* PCM CS1 (Negative-true logic)</pre> | */ |
| <pre>#endif /* #if (PCM_DEV_NUM &gt; 1</pre> | L) */                                       |    |
| #endif /*ICCRL78 */                          |                                             |    |



# Micron Technology P5Q Serial Phase Change Memory Control Software

#### (2) Communication Speed Setting

These settings define the communication speed. The unit is bits per second.

The appropriate setting values depend on the MCU and serial I/O interface used. Separate settings are provided for different communication applications. See Table 6-1 for details.

| #define Definition | Application                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------|
| PCM_BR             | Communication processing for other than the following two items (command transmission, etc.) |
| PCM_BR_WRITE_DATA  | Data write processing                                                                        |
| PCM_BR_READ_DATA   | Data read processing                                                                         |

In the example below, the RSPI of the RX63N is used.

```
/* PCLK = 48MHz, n=0 for RX63N RSPI */
                                       /* SPBR initial setting
                (uint8 t)(0x01)
                                                               */
#define PCM BR
                */
   /* PCLK = 48MHz, n=0 for RX63N RSPI Write Data */
#define PCM BR WRITE DATA (uint8 t) (0x01) /* SPBR initial setting
                                                               */
                /*
                      ++---- 12.00MHz
                                                               */
   /* PCLK = 48MHz, n=0 for RX63N RSPI Read Data */
#define PCM_BR_READ_DATA (uint8_t)(0x01) /* SPBR initial setting
                                                               */
                /*
                       ++---- 12.00MHz
                                                               */
```

In the example below, the CSI of the RL78/G14 is used.

Refer to the hardware manual of the MCU when determining the setting values.



## Micron Technology P5Q Serial Phase Change Memory Control Software

#### 6.1.3 r\_qspi\_pcm\_p5q\_sub.h

The setting locations are designated in each file by the comment /\*\* SET \*\*/.

#### (1) **Erase Timeout Duration Settings**

These settings specify the timeout duration when erasing all the data in the memory (bulk erase) and when erasing all the data in a specified sector (sector erase)

The settings below should be reevaluated if the erase duration differs according to the device.

In the example below, the bulk erase timeout duration is set to 100 seconds, and the sector erase timeout duration is set to 800 ms.

#### (2) Write Timeout Duration Setting

The settings below should be reevaluated if the write duration differs according to the device.

In the example below, the write timeout duration is set 400  $\mu$ s.

#define PCM WBUSY WAIT (uint32 t)(400) /\* Write busy timeout 400\*1us = 400us\*/



# Micron Technology P5Q Serial Phase Change Memory Control Software

## 6.1.4 r\_qspi\_pcm\_p5q\_sub.c

This is the source file for internal functions of the serial phase change memory.

The setting locations are designated in each file by the comment /\*\* SET \*\*/.

#### (1) Macro Function R\_QSPI\_PCM\_CMD\_READ() Definition

This specifies the operation command for read processing. Define one item from the table below.

## Table 6-2 Macro Function R\_QSPI\_PCM\_CMD\_READ() Definition

| No. | #define Definition                                                                               | Instruction<br>Code on Data<br>Sheet | Processing Details            |
|-----|--------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|
| 1   | r_qspi_pcm_send_cmd( <b>PCM_CMD_READ</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE)      | READ                                 | Single-SPI read (normal)      |
| 2   | r_qspi_pcm_send_cmd( <b>PCM_CMD_FREAD</b> ,(uint32_t)<br>Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE + 1) | FAST_READ                            | Single-SPI read (high-speed)  |
| 3   | r_qspi_pcm_send_cmd( <b>PCM_CMD_DOFR</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE + 1)  | DOFR                                 | Dual-SPI read<br>(high-speed) |
| 4   | r_qspi_pcm_send_cmd( <b>PCM_CMD_QOFR</b> , (uint32_t)<br>Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE + 1) | QOFR                                 | Quad-SPI read<br>(high-speed) |

#### (2) Macro Function R\_QSPI\_PCM\_CMD\_PP\_LEGACY() Setting

This specifies the operation command for write processing by legacy program. Define one item from the table below.

#### Table 6-3 Macro Function R\_QSPI\_PCM\_CMD\_PP\_LEGACY() Definition

| No. | #define Definition                                                                            | Instruction<br>Code on Data<br>Sheet | Processing Details                   |
|-----|-----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 1   | r_qspi_pcm_send_cmd( <b>PCM_CMD_PP_L</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE)   | PP                                   | Single-SPI write<br>(legacy program) |
| 2   | r_qspi_pcm_send_cmd( <b>PCM_CMD_DIPP_L</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE) | DIFP                                 | Dual-SPI write<br>(legacy program)   |
| 3   | r_qspi_pcm_send_cmd( <b>PCM_CMD_QIPP_L</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE) | QIFP                                 | Quad-SPI write<br>(legacy program)   |



# Micron Technology P5Q Serial Phase Change Memory Control Software

## (3) Macro Function R\_QSPI\_PCM\_CMD\_PP\_BIT\_ALTERABLE() Setting

This specifies the operation command for write processing by bit-alterable write. Define one item from the table below.

## Table 6-4 Macro Function R\_QSPI\_PCM\_CMD\_PP\_ BIT\_ALTERABLE() Definition

| No. | #define Definition                                                                             | Instruction<br>Code on Data<br>Sheet | Processing Details                        |
|-----|------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
| 1   | r_qspi_pcm_send_cmd(PCM_CMD_PP_BA,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE)            | PP                                   | Single-SPI write<br>(bit-alterable write) |
| 2   | r_qspi_pcm_send_cmd(PCM_CMD_DIPP_BA,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE)          | DIFP                                 | Dual-SPI write<br>(bit-alterable write)   |
| 3   | r_qspi_pcm_send_cmd( <b>PCM_CMD_QIPP_BA</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE) | QIFP                                 | Quad-SPI write<br>(bit-alterable write)   |

## (4) Macro Function R\_QSPI\_PCM\_CMD\_PP\_ON\_ALL\_1S() Setting

This specifies the operation command for write processing by on all 1s. Define one item from the table below.

## Table 6-5 Macro Function R\_QSPI\_PCM\_CMD\_PP\_ON\_ALL\_1S() Definition

| No. | #define Definition                                                                             | Instruction<br>Code on Data<br>Sheet | Processing Details              |  |
|-----|------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|--|
| 1   | r_qspi_pcm_send_cmd( <b>PCM_CMD_PP_OA</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE)   | PP                                   | Single-SPI write<br>(on all 1s) |  |
| 2   | r_qspi_pcm_send_cmd( <b>PCM_CMD_DIPP_OA</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE) | DIFP                                 | Dual-SPI write<br>(on all 1s)   |  |
| 3   | r_qspi_pcm_send_cmd( <b>PCM_CMD_QIPP_OA</b> ,<br>(uint32_t)Addr, PCM_CMD_SIZE + PCM_ADDR_SIZE) | QIFP                                 | Quad-SPI write<br>(on all 1s)   |  |



## Micron Technology P5Q Serial Phase Change Memory Control Software

#### 6.1.5 r\_qspi\_pcm\_p5q\_drvif.c

This is the source file for the clock synchronous single control software interface of the serial phase change memory. The setting locations are designated in each file by the comment /\*\* SET \*\*/.

#### (1) r\_qspi\_pcm\_drvif\_init\_driver() Setting

This specifies the driver initialization processing of the clock synchronous single master control software used. If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_init_driver(void)
{
    return R_SIO_Init_Driver();
}
```

#### (2) r\_qspi\_pcm\_drvif\_disable() Setting

This specifies the communication disable setting processing of the clock synchronous single master control software used.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_disable(void)
{
    return R_SIO_Disable();
}
```

#### (3) r\_qspi\_pcm\_drvif\_enable() Setting

This specifies the communication enable setting processing of the clock synchronous single master control software used.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_enable(uint8_t BrgData)
{
    return R_SIO_Enable(BrgData);
}
```

#### (4) r\_qspi\_pcm\_drvif\_enable\_tx\_data() Setting

This specifies the data write-only communication enable setting processing of the clock synchronous single master control software used.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_enable_tx_data(uint8_t BrgData)
{
    return R_SIO_Enable(BrgData);
}
```



## Micron Technology P5Q Serial Phase Change Memory Control Software

#### (5) r\_qspi\_pcm\_drvif\_enable\_rx\_data() Setting

This specifies the data read-only communication enable setting processing of the clock synchronous single master control software used.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_enable_rx_data(uint8_t BrgData)
{
    return R_SIO_Enable(BrgData);
}
```

#### (6) r\_qspi\_pcm\_drvif\_open() Setting

This specifies the communication open setting processing of the clock synchronous single master control software used. If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_open(void)
{
    return R_SIO_Open_Port();
}
```

#### (7) r\_qspi\_pcm\_drvif\_tx() Setting

This specifies the data transmit processing of the clock synchronous single master control software used. It is used mainly for command transmission and writing to the status register.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_tx(uint16_t TxCnt, uint8_t FAR * pData)
{
    return R_SIO_Tx_Data(TxCnt, pData);
}
```

#### (8) r\_qspi\_pcm\_drvif\_tx\_data() Setting

This specifies the write-only data transmit processing of the clock synchronous single master control software used. If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_tx_data(uint16_t TxCnt, uint8_t FAR * pData)
{
    return R_SIO_Tx_Data(TxCnt, pData);
}
```



## Micron Technology P5Q Serial Phase Change Memory Control Software

#### (9) r\_qspi\_pcm\_drvif\_rx() Setting

This specifies the data receive processing of the clock synchronous single master control software used. It is used mainly for reading the status register.

If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_rx(uint16_t RxCnt, uint8_t FAR * pData)
{
    return R_SIO_Rx_Data(RxCnt, pData);
}
```

#### (10) r\_qspi\_pcm\_drvif\_rx\_data() Settings

This specifies the read-only data receive processing of the clock synchronous single master control software used. If there is no corresponding item, add one as necessary.

```
error_t r_qspi_pcm_drvif_rx_data(uint16_t RxCnt, uint8_t FAR * pData)
{
    return R_SIO_Rx_Data(RxCnt, pData);
}
```



## Micron Technology P5Q Serial Phase Change Memory Control Software

## 6.1.6 r\_qspi\_pcm\_p5q\_sfr\_rl78.c

This is an I/O module file for this Serial Flash memory.

The settings to be made are identified by the comments header "/\*\* SET \*\*/" in the file.

#### 1. Setting the definition of SFR

When an RL78 family or 78K0R family microcontroller is used, there will be predefined preprocessor symbols in the C compiler used. The program is coded using these predefined preprocessor symbols.

Also, when the microcontroller used is an RL78 family or 78K0R family product and furthermore, the IAR Systems integrated development environment is used, it will be necessary to set the header file in which the SFRs for the microcontroller used are defined.

See the clock synchronous single master control software for the individual microcontroller.

These settings are used for the SPI slave device select control signals.

| Integrated<br>development<br>environment | Microcontroller | SFR setting required?            | Method                                                                                                                                                                                                                            |
|------------------------------------------|-----------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CubeSuite+                               | RL78            | Not required                     | Not required                                                                                                                                                                                                                      |
| CS+                                      | 78K0R           | Not required                     | Not required                                                                                                                                                                                                                      |
|                                          | RX              | Not required                     | Not required                                                                                                                                                                                                                      |
| IAR<br>Embedded<br>Workbench             | RL78            | Required                         | <pre>#ifdefICCRL78<br/>#include <ior5f104pj.h> ← Change to match the<br/>microcontroller used.<br/>#include <ior5f104pj_ext.h> ← Change to match<br/>the microcontroller used.<br/>#endif</ior5f104pj_ext.h></ior5f104pj.h></pre> |
|                                          | 78K0R           | Required                         | <pre>#ifdefICC78K #include <io78f1009_64.h> ← Change to match     the microcontroller used. #include <io78f1009_64_ext.h> ← Change to match     the microcontroller used. #endif</io78f1009_64_ext.h></io78f1009_64.h></pre>      |
|                                          | RX              | (Not supported by this software) | (Not supported by this software)                                                                                                                                                                                                  |

#### Table 6-6 Microcontroller and SFR Area Define Settings

The example below is for the 100-pin RL78/G14 microcontroller.

| #ifdef ICCRL78                                            | /* IAR RL78 Compiler              | */ |
|-----------------------------------------------------------|-----------------------------------|----|
| <pre>#include <ior5f104pj.h></ior5f104pj.h></pre>         | /* for RL78/G14 100pin (R5F104PJ) | */ |
| <pre>#include <ior5f104pj_ext.h></ior5f104pj_ext.h></pre> | /* for RL78/G14 100pin (R5F104PJ) | */ |
| #endif /* ICCRL78 */                                      |                                   |    |



# Micron Technology P5Q Serial Phase Change Memory Control Software

# 7. Usage Notes

# 7.1 Notes on Integrating Sample Code

To integrate the sample code, include the following header files:

r\_qspi\_pcm\_p5q.h r\_qspi\_pcm\_p5q\_sub.h r\_qspi\_pcm\_p5q\_sfr.h r\_qspi\_pcm\_p5q\_drvif.h

# 7.2 Using an MCU with On-Chip Cache

Specify a non-cached area for the read/write data storage buffer.

# 7.3 Support for Other Capacities

To support other capacities, the following definitions must be reevaluated:

PCM\_MEM\_SIZE PCM\_SECT\_ADDR PCM\_PAGE\_SIZE PCM\_ADDR\_SIZE PCM\_WP\_WHOLE\_MEM

It may be necessary to reevaluate definitions other than those listed above as well. Obtain the data sheet of the memory, and reevaluate the definitions as appropriate.

# 7.4 Using Other Slave Devices

It is possible to control other slave devices connected to the same SPI bus.

Refer to the sample code when creating slave device control software.

Note that the communication speed may be set individually for each slave device control software program.

# 7.5 Voltage Stabilization Time After Power-On

Make sure to allow sufficient time for the voltage to stabilize after power-on before calling the initialization function.

Check the data sheet of the slave device regarding the voltage stabilization wait time after power-on.



# Micron Technology P5Q Serial Phase Change Memory Control Software

# 7.6 Serial Phase Change Memory Usage Limitations

As of the date of authorship of this application note, Micron Technology has announced the usage limitations listed below. When using the affected functions, make sure to check the latest version of the data sheet and carry out adequate evaluation.

## (1) **128Mb P5Q Serial Phase Change Memory Errata**

| No. | Errata<br>Rev. | Usage Limitation Details                                            | Effect on Sample Code                                                                                         |
|-----|----------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1   | D              | The write protect bits (BP3, BP2, BP1, and BP0) cannot be set to 1. | It is not possible to set write protect bits to 1 by means of R_QSPI_PCM_Set_Write_Protect() in the user API. |

## (2) 64Mb P5Q Serial Phase Change Memory Errata

| No. | Errata<br>Rev. | Usage Limitation Details                                                                                                                                                      | Effect on Sample Code                                                                                                                               |  |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | A              | The write protect bits (BP3, BP2, BP1, and BP0) cannot be set to 1.                                                                                                           | It is not possible to set write protect bits to 1 by means of R_QSPI_PCM_Set_Write_Protect() in the user API.                                       |  |
| 2   | A              | Reading the device ID memory<br>capacity (lower byte) returns a value of<br>18h. The correct value is 17h.                                                                    | When a read is performed using<br>R_QSPI_PCM_RDID() in the user API, the value<br>of the third byte of pData is 18h.                                |  |
| 3   | A              | During data read operations (READ,<br>READ_FAST, DUAL OUTPUT FAST<br>READ, and QUAD OUTPUT FAST<br>READ), the address does not roll over<br>to 000000h after 7FFFFFh is read. | No effect. This is because read operations with rollover are not enabled in the R_QSPI_PCM_Read_Data() read processing function of the sample code. |  |

## (3) **32Mb P5Q Serial Phase Change Memory Errata**

| No. | Errata<br>Rev. | Usage Limitation Details                                                                                                                                                      | Effect on Sample Code                                                                                                                                        |  |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | A              | The write protect bits (BP3, BP2, BP1, and BP0) cannot be set to 1.                                                                                                           | It is not possible to set write protect bits to 1 by means of R_QSPI_PCM_Set_Write_Protect() in the user API.                                                |  |
| 2   | A              | Reading the device ID memory<br>capacity (lower byte) returns a value of<br>18h. The correct value is 16h.                                                                    | When a read is performed using<br>R_QSPI_PCM_RDID() in the user API, the value<br>of the third byte of pData is 18h.                                         |  |
| 3   | A              | During data read operations (READ,<br>READ_FAST, DUAL OUTPUT FAST<br>READ, and QUAD OUTPUT FAST<br>READ), the address does not roll over<br>to 000000h after 3FFFFFh is read. | No effect. This is because read operations with<br>rollover are not enabled in the<br>R_QSPI_PCM_Read_Data() read processing<br>function of the sample code. |  |



# Micron Technology P5Q Serial Phase Change Memory Control Software

## Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.



# **Revision History**

|      |               | Descriptio |                                                                                                    |  |
|------|---------------|------------|----------------------------------------------------------------------------------------------------|--|
| Rev. | Date          | Page       | Summary                                                                                            |  |
| 1.01 | Sep. 26, 2013 |            | First edition issued                                                                               |  |
| 1.03 | Apr. 30, 2014 | 1          | Modified Introduction to add short address.                                                        |  |
|      |               | 1          | Added RX63N, RX63T, RX210, RX21A, RX220, RX111                                                     |  |
|      |               |            | RL78/G1C, RL78/L12, RL78/L13, RL78/L1C and RL78/G14 as                                             |  |
|      |               |            | supported devices.                                                                                 |  |
|      |               | 5, 7       | Added 2.1 RX Family and 2.2 RL78 Family, 78K0R/Kx3-L.                                              |  |
|      |               | 6          | Added the following conditions to section 2.1.                                                     |  |
|      |               |            | (2) RX111 RSPI                                                                                     |  |
|      |               |            | (3) RX111 SCI                                                                                      |  |
|      |               | 7 to 11    | Added the following conditions to section 2.1.                                                     |  |
|      |               |            | (2) RL78/G14 SAU Integrated Development Environment IAR                                            |  |
|      |               |            | Embedded Workbench                                                                                 |  |
|      |               |            | (3) RL78/G1C SAU Integrated Development Environment<br>CubeSuite+                                  |  |
|      |               |            | (4) RL78/G1C SAU Integrated Development Environment IAR<br>Embedded Workbench                      |  |
|      |               |            | (5) RL78/L12 SAU Integrated Development Environment<br>CubeSuite+                                  |  |
|      |               |            | (6) RL78/L12 SAU Integrated Development Environment IAR<br>Embedded Workbench                      |  |
|      |               |            | <ul><li>(7) RL78/L13 SAU Integrated Development Environment<br/>CubeSuite+</li></ul>               |  |
|      |               |            | <ul> <li>(8) RL78/L13 SAU Integrated Development Environment IAR<br/>Embedded Workbench</li> </ul> |  |
|      |               |            | <ul> <li>(9) RL78/L1C SAU Integrated Development Environment<br/>CubeSuite+</li> </ul>             |  |
|      |               |            | (10) RL78/L1C SAU Integrated Development Environment IAR<br>Embedded Workbench                     |  |
|      |               | 12         | Updated application note title in section 3, Related Application                                   |  |
|      |               | 12         | Notes.                                                                                             |  |
|      |               |            | -RX210, RX21A, RX220, RX63N, RX63T, RX111 Group                                                    |  |
|      |               |            | Clock Synchronous Single Master Control Software Using the                                         |  |
|      |               |            | RSPI (R01AN1196EJ)                                                                                 |  |
|      |               |            | -RX210, RX21A, RX220, RX63N, RX63T, RX111 Group                                                    |  |
|      |               |            | Clock Synchronous Single Master Control Software Using the                                         |  |
|      |               |            | SCI (R01AN1229EJ)                                                                                  |  |
|      |               |            | -RL78/G14, RL78/G1C, RL78/L12, RL78/L13, RL78/L1C                                                  |  |
|      |               |            | Group Clock Synchronous Single Master Control Software                                             |  |
|      |               | 22.24      | Using CSI Mode of Serial Array Unit (R01AN1195EJ)                                                  |  |
|      |               | 22, 24     | Added 5.3.1 RX Family and 5.3.2 RL78 Family, 78K0R/Kx3-L.                                          |  |
|      |               | 23         | Added the following to section 5.3.1, Sizes of Required                                            |  |
|      |               |            | Memory.                                                                                            |  |
|      |               |            | (2) RX111 RSPI<br>(2) RX111 SCI                                                                    |  |
|      |               | 24 to 25   | (3) RX111 SCI<br>Added the following to section 5.3.2, Sizes of Required                           |  |
|      |               |            | Memory.<br>(2) RL78/G14 SAU Integrated Development Environment IAR                                 |  |
|      |               |            | Embedded Workbench<br>(3) RL78/L13 SAU Integrated Development Environment                          |  |
|      |               |            | CubeSuite+<br>(4) RL78/L13 SAU Integrated Development Environment IAR                              |  |
|      |               |            | Embedded Workbench                                                                                 |  |

|      |               | 26       | 5.4 File Structure                                      |
|------|---------------|----------|---------------------------------------------------------|
|      |               |          | Changed name for folder for the sample code.            |
|      |               |          | Changed application note number.                        |
|      |               |          | Added new device register common definitions.           |
|      |               | 62       | Added 6.1.6 r_qspi_pcm_p5q_sfr_rl78.c.                  |
|      |               | -        | Changed "Table No" format.                              |
| 1.04 | Mar. 31, 2016 | 7        | Section 2.2 RL78 Family, 78K0R/Kx3-L                    |
|      |               |          | Changed the following conditions.                       |
|      |               |          | (1) RL78/G14 Integrated Development Environment CS+ for |
|      |               |          | CA,CX (Compiler: CA78K0R)                               |
|      |               |          | Added the following conditions.                         |
|      |               |          | (2) RL78/G14 Integrated Development Environment CS+ for |
|      |               |          | CC (Compiler: CC-RL)                                    |
|      |               | 25       | Section 5.3.2 RL78 Family, 78K0R/Kx3-L                  |
|      |               |          | Changed the following sizes.                            |
|      |               |          | (1) RL78/G14 Integrated Development Environment CS+ for |
|      |               |          | CA,CX (Compiler: CA78K0R)                               |
|      |               |          | Added the following sizes.                              |
|      |               |          | (2) RL78/G14 Integrated Development Environment CS+ for |
|      |               |          | CC (Compiler: CC-RL)                                    |
|      |               | 28       | Changed the following table to Section 5.4.             |
|      |               | 56 to 57 | 6.1.2 r_qspi_flash_s25fl_sfr.h                          |
|      |               |          | Changed the example.                                    |

## General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
  these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
   Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
  the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use
  of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

\*Standard\*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 1) Reflessas Electronics as used in this document means Reflessas Electronics Corporation and also includes its majority-owned
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

# RENESAS

#### SALES OFFICES

**Renesas Electronics Corporation** 

http://www.renesas.com

 Reness Electronics America Inc.

 2801 Scott Boulevard Santa Clars, CA 95050-2549, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Reness Electronics Canada Limited

 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

 Tel: +1-405-237-2004

 Reness Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-585-100, Fax: +44-1628-585-000

 Reness Electronics Europe MmbH

 Arcadastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-1503-0, Fax: +49-211-6503-13227

 Reness Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZinChunLu Haidian District, Beijing 100191, P.R.China

 Tel: +80-12226-0888, Fax: +86-10-8235-7679

 Renessa Electronics (Drina) Co., Ltd.

 Yonit 1001, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-2226-0888, Fax: +86-2122-0999

 Renessa Electronics Taiwan Co., Ltd.

 Unit 301.1611, 11, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-2265-6688, Fax: +862 2886-9022

 Renessa Electronics Taiwan Co., Ltd.

 TsF, No. 303, Fu Shing North Road, Taipei 10543, Taiwan

 Tel: +656213-0200, Fax: +865 2-23170-9670

 Renessa El