RL78/G12

Voltage Detector (Reset Mode)

Introduction

This application note describes the reset mode of the voltage detector (LVD) on the RL78/G12. When the supply voltage (V_{DD}) becomes lower than the LVD detection voltage $\left(\mathrm{V}_{\mathrm{LVI}}\right)$, the voltage detector generates an internal reset. Using LEDs, the internal reset can be distinguished from a power-on reset (POR).

Target Device

RL78/G12

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

Contents

1. Specifications 3
2. Operation Check Conditions 4
3. Related Application Notes 4
4. Description of the Hardware 5
4.1 Hardware Configuration Example 5
4.2 List of Pins to be Used. 5
5. Description of the Software 6
5.1 Operation Outline 6
5.2 List of Option Byte Settings 8
5.3 List of Variables 8
5.4 List of Functions (Subroutines) 8
5.5 Function Specifications 9
5.6 Flowcharts 10
5.6.1 CPU Initialization Function 11
5.6.2 I/O Port Setup 12
5.6.3 Clock Generation Circuit Setup 13
5.6.4 INTP0 Initialization 14
5.6.5 Main Processing 15
5.6.6 INTP0 Interrupt Processing 16
6. Sample Code 17
7. Documents for Reference 17
Revision Record 18
General Precautions in the Handling of MPU/MCU Products 19

1. Specifications

This application note describes the operation (reset mode) of the voltage detector.
When the supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ becomes lower than the LVD detection voltage $\left(\mathrm{V}_{\mathrm{LVI}}\right)$, the voltage detector generates an internal reset. The three LEDs permit a visual distinction between this internal reset and a power-on reset. The indications provided by these LEDs are changed according to the switch input count.

When $V_{D D}$ becomes lower than $V_{\text {LVI }}$, the voltage detector generates an internal reset. Later, when V_{DD} becomes equal to or higher than $V_{\text {LVI }}$, this reset is ended. At this time, the system restarts from the state it was in when the LEDs provided the last indications.
When $V_{D D}$ becomes lower than $V_{\text {PDR }}$ (POR power-supply falling-edge voltage), an internal reset occurs due to a power-on reset. Later, when V_{DD} becomes equal to or higher than $\mathrm{V}_{\mathrm{LVI}}$, this internal reset is ended and the system restarts while all the LEDs are off.

Table 1 lists the peripheral functions to be used and their uses. Figure 1.1 shows the outline of the operation (reset mode) of the voltage detector.

Table 1.1 Peripheral Functions to be Used and their Uses

Peripheral Function	
LVD	Supply voltage $\left(V_{D D}\right)$ monitoring
P137/INTP0	Switch input
P12 to P14	LED lighting control (for LED0 to LED2)

Figure 1.1 Overview of LVD Operation (Reset Mode)

2. Operation Check Conditions

The sample code contained in this application note has been checked under the conditions listed in the table below.

Table 2.1 Operation Check Conditions

Item			
Microcontroller used	RL78/G12 (R5F1026A)		
Operating frequency	$\bullet \quad$ High-speed on-chip oscillator (HOCO) clock: 24 MHz		
	$\bullet \quad$ CPU/peripheral hardware clock: 24 MHz	$]$	Operating voltage
:---			
LVD operation (VLvI): Reset mode $\bullet \quad$ Rising-edge voltage: $2.81 \mathrm{~V}(2.76$ to 2.87 V$)$ $\bullet \quad$ Falling-edge voltage: $2.75 \mathrm{~V}(2.70$ to 2.81 V$)$			
Integrated development environment			
Assembler			
Board to be used			

3. Related Application Notes

The application note related to this application note is listed below for reference.

RL78/G12 Initialization (R01AN1030E) Application Note

4. Description of the Hardware

4.1 Hardware Configuration Example

Figure 4.1 shows an example of hardware configuration that is used for this application note.

Note 1. Only for 30-pin products.
Figure 4.1 Hardware Configuration

Caution The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware's electrical specifications are met (connect the input-only ports separately to V_{DD} or V_{SS} via a resistor).

4.2 List of Pins to be Used

Table 4.1 lists the pins to be used and their functions.

Table 4.1 Pins to be Used and their Functions

Pin Name	I/O	
P12	Output	LED on (LED0) control port
P13	Output	LED on (LED1) control port
P14	Output	LED on (LED2) control port
P137/INTP0	Input	Switch input port

5. Description of the Software

5.1 Operation Outline

The sample program described in this application note monitors the supply voltage using the voltage detector (reset mode).

When V_{DD} becomes lower than $\mathrm{V}_{\mathrm{LVI}}$, the voltage detector generates an internal reset. At this time, various registers are initialized. However, when $V_{D D}$ is higher than $V_{P D R}$, the on-chip RAM retains the state in which it was before the reset generation. Because the on-chip RAM holds the switch input count which was obtained before the reset generation, the system can restart from the state it was in when the LED indications were provided before the reset generation.

Note that the switch input count is initialized when a reset other than the LVD reset occurs.
(1) Initializing the voltage detector
<Conditions for setting>

- When the power is turned on or after the reset is ended, the option byte should be referenced automatically and the voltage detector should be set to reset mode.
- The rising-edge detection voltage should be set to 2.81 V . The falling-edge detection voltage should be set to 2.75 V .

Caution: When reset mode is selected, writing to the voltage detection level register (LVIS) is prohibited. The initial value for the LVIS register is set to 81 H (low-voltage detection level: $\mathrm{V}_{\mathrm{LVI}}$ for reset mode) automatically.
(2) Setting the input and output ports

LED lighting control (for LED0 to LED2): Set P12, P13 and P14 to the output ports.
Switch input: Set P137/INTP0 for detecting INTP0 falling edges (via an external pull-up resistor)
(3) LED indications depending on the switch input count

Interrupt processing is started upon detection of a P137/INTP0 falling edge. Chattering is detected and, if the on state of the input lasts about 10 ms , it is recognized as a switch input and the LED indications are changed. When VDD becomes lower than VLVI, an LVD reset is generated; however the on-chip RAM's state remains unchanged since before the reset generation (see note 1.).
(4) When $V_{D D}$ becomes lower than $V_{P D R}$, a POR internal reset occurs and the LED indication data is deleted.

Note 1. This program reads values in RAM after an LVB reset is ended. In order to prevent a reset by the RAM parity error detection function at this time, disable this function.

Caution: For information about the precautions in using the device, refer to RL78/G12 User's Manual: Hardware.

Figure 5.1 shows the outline of the sample code operation.

Figure 5.1 Overview of Sample Code Operation

Switch (SW) input count Note 1	LED indications		
	LED0	LED1	LED2
0	OFF	OFF	OFF
1	ON	OFF	OFF
2	OFF	ON	OFF
3	ON	ON	OFF
4	OFF	OFF	ON
5	ON	OFF	ON
6	OFF	ON	ON
7	ON	ON	ON

Note 1: For the eighth and subsequent operations, the above LED indications are repeated.

5.2 List of Option Byte Settings

Table 5.1 summarizes the settings of the option bytes.

Table 5.1 Option Byte Settings

Address	Value	Description
000 C 0 H	01101110 B	Disables the watchdog timer. (Stops counting after the release from the reset state.)
000 C 1 H	0111111 B	LVD reset mode Rising-edge voltage: $2.81 \mathrm{~V}(2.76 \mathrm{~V}$ to 2.87 V$)$ Falling-edge voltage: $2.75 \mathrm{~V}(2.70 \mathrm{~V}$ to 2.81 V$)$
000 C 2 H	11100000 B	HS mode HOCO: 24 MHz
000 C 3 H	10000101 B	Enables the on-chip debugger.

5.3 List of Variables

Table 5.2 lists the global variables.
Table 5.2 Global Variables

Type	Variable Name	Contents	Function Used
8 bits	RSWCNT	SW depress count (complement)	main IINTP0

5.4 List of Functions (Subroutines)

Table 5.3 lists the functions (subroutines).

Table 5.3 List of Functions (Subroutines)

Function Name	Outline
RESET_START	Initializes the CPU (port clock external interrupt) and starts the main processing.
SINIPORT	Initializes the input and output ports.
SINICLK	Sets the clock generation circuit setting.
SINIINTPO	Initializes the external interrupt settings.

5.5 Function Specifications

This section describes the specifications for the functions that are used in the sample code.
[Function Name] SINIPORT

Synopsis	Initializes the input and output ports.
Explanation	LED lighting control (for LED 0 to LED2): This function sets P12, P13 and P14 to the output
	ports.
Arguments	None
Return value	None
Remarks	None

[Function Name] SINIINTP0

Synopsis	Initializes the external interrupt settings.
Explanation	This function initializes the external interrupt settings.
	This function clears the interrupt request.
Arguments	None
Return value	None
Remarks	None

[Function Name] SINICLK

Synopsis	Sets the clock generation circuit.
Explanation	This function sets the operation clock to HOCO 24 MHz.
Arguments	None
Return value	None
Remarks	None

5.6 Flowcharts

Figure 5.2 shows the overall flow of the sample program described in this application note.

Figure 5.2 Overall Flow

5.6.1 CPU Initialization Function

Figure 5.3 shows the flowchart for the CPU initialization function.

Figure 5.3 CPU Initialization Function

5.6.2 I/O Port Setup

Figure 5.4 shows the flowchart for I/O port setup.

Figure $5.4 \quad$ I/O Port Setup

Note: Refer to the section entitled "Flowcharts" in RL78/G12 Initialization Application Note (R01AN1030E) for the configuration of the unused ports.

Caution: Provide proper treatment for unused pins so that their electrical specifications are met. Connect each of any unused input-only ports to V_{DD} or $\mathrm{V}_{\text {SS }}$ via a separate resistor.

5.6.3 Clock Generation Circuit Setup

Figure 5.5 shows the flowchart for clock generation circuit setup.

Figure 5.5 Clock Generation Circuit Setup

Caution: For details on the procedure for setting up the clock generation circuit (SINICLK), refer to the section entitled "Flowcharts" in RL78/G12 Initialization Application Note (R01AN1030E).

5.6.4 INTPO Initialization

Figure 5.6 shows the flowchart for INTP0 initialization.

Figure 5.6 INTPO Initialization
(1) Setup for INTP0 pin edge detection

- External interrupt rising edge enable registers (EGP0, EGP1)
- External interrupt falling edge enable registers (EGN0, EGN1)

Select a valid edge for INTP0 to INTP11

Symbol: EGP0

7	6	5	4		3	2	1
0	0	$0^{\text {Note } 1}$	$0^{\text {Note } ~}$	EGP3	EGP2	EGP1	EGP0
0	0	0	0	x	x	x	$\mathbf{0}$

Symbol: EGN0

7	6	5	4	3	2	1	0
0	0	$0^{\text {Note 1 }}$	$0^{\text {Note 1 }}$	EGN3	EGN2	EGN1	EGN0
0	0	0	0	x	x	x	$\mathbf{1}$

Note 1. For 20-pin and 24-pin products.

Bit 0

EGP0	EGNO	INTP0 pin valid edge selection
0	0	Edge detection disabled
$\mathbf{0}$	$\mathbf{1}$	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Caution: For details on the register setup procedures, refer to RL78/G12 User's Manual: Hardware.

5.6.5 Main Processing

Figure 5.7 shows the flowchart for main processing.

Figure 5.7 Main Processing

5.6.6 INTPO Interrupt Processing

Figure 5. shows the flowchart for INTP0 interrupt processing.

Figure 5.8 INTPO Interrupt Processing

6. Sample Code

The sample code is available on the Renesas Electronics Website.

7. Documents for Reference

RL78/G12 User's Manual: Hardware (R01UH0200E)
RL78 Family User's Manual: Software (R01US0015E)
(The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures
(The latest versions of the documents are available on the Renesas Electronics Website.)

Website and Support

Renesas Electronics Website

- http://www.renesas.com/index.jsp

Inquiries

- http://www.renesas.com/contact/

Revision Record	RL78/G12 Voltage Detector (Reset Mode)

Rev.	Date	Description		
		Page		Summary
1.00	Sep. 1. 2012	-	First edition issued	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

- Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. - The input pins of CMOS products are generally in the high-impedance state. In operation with unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

- The state of the product is undefined at the moment when power is supplied.
- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

- Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

- After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

- Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
- The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
10. It is the responsibiiity of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Reneshs

SALES OFFICES
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: $+1-408-588-6130$
Renesas Electronics Canada Limited
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: $+44-1628-585-100$, Fax: $+44-1628-585-900$
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: $+49-211-65030$, Fax: $+49-211-6503-1327$
Renesas Electronics (China) Co., Ltd.
th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
el: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
200120, China
Renesas Electronics Hong Kong Limited
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century P
Renesas Electronics Taiwan Co., Ltd.
Renesas Electronics Taiwan Co., Ltd.
$13 F$, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: $+60-3-7955-9510$
Renesas Electronics Korea Co., Ltd.
1F., Samik Lavied' or BIdg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Kore
+82-2-558-3737, Fax: +82-2-558-5141

