

M16C Family BlueFree[™] reference design for Hands-Free application

1 Abstract

This application note describes the BlueFree[™] reference design for automotive Hands-Free application.

Image1: The BlueFree[™] reference design

Contents 2

1	Abstract	1
2	Contents	1
3	Introduction	2
4	Hardware description	3
5	Software description	6
6	Demo Setup	8
7	User specific car stereo API	9
8	Schematic	15
9	Component placement specification	17
10	Reference	18

3 Introduction

Due to strict legal restrictions in on car cell phone usage, Hands-Free operation is becoming a must in car designs. By using *Bluetooth*^{TM *} Hands-Free profile and the Renesas Technology Hands-Free reference design, automotive audio designers can meet these requests. This reference design has been developed in order to give an idea of how the M16C family in co-operation with the Renesas *Bluetooth*TM chipset can be used in the automotive Hands-Free application area. Basic of this reference design is the *Bluetooth*TM Hands-Free Profile (HFP) specification, which defines the set of functions that a Mobile Phone provides at a *Bluetooth*TM link to a Hands-Free device, which e.g. can be installed in the car stereo. This *Bluetooth*TM link provides a bi-directional wireless remote control and voice connection between the Mobile Phone and the Hands-Free device.

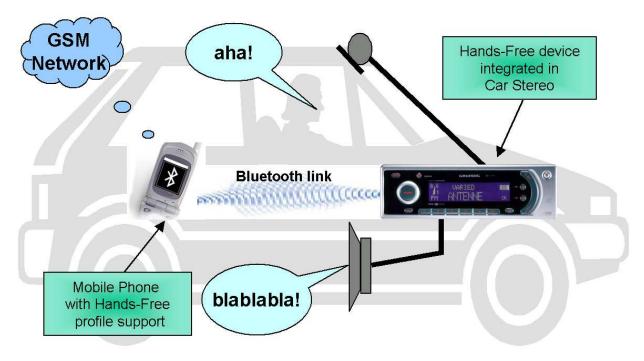


Figure1: General concept of in car Hands-Free application

In general the Hands-Free system should support an ad-hoc connection to your mobile, at the moment you enter the car, so any future call or action of the mobile will be handled by the Hands-Free system. Through this, your phone can stay in your pocket during your drive. The big advantage of such Hands-Free in car system is obviously safety. If you use a Hands-Free cell phone you are allowed to keep your hands on the wheel and your eyes on the road. You

can then get into features such as dialing with your voice instead of your fingers or by switches at your steering wheel.

4 Hardware description

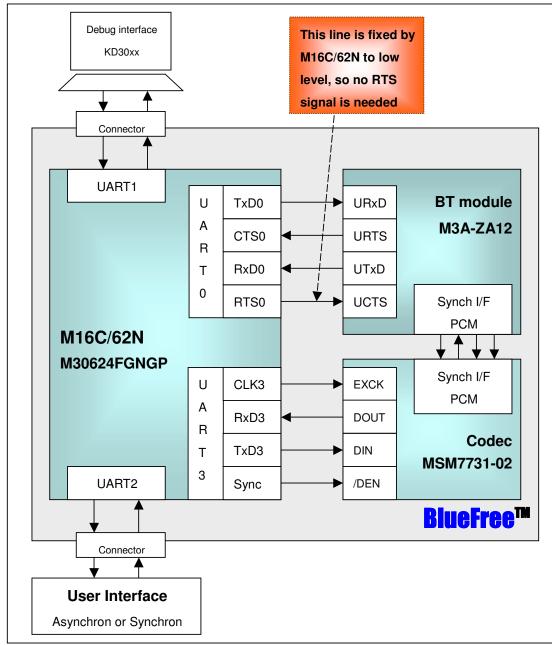


Figure2: Block diagram of BlueFree[™] reference board

The smart 30mm x 60mm BlueFreeTM board consists of the Renesas *Bluetooth*TM module M3A-ZA12, a Renesas M16C/62N 16-bit microcontroller and a OKI Codec MSM7731-02 incl. echo cancellation and noise reduction. The ready to use *Bluetooth*TM module M3A-ZA12 is based on the Renesas chipset of baseband IC M64110WG and the RF transceiver IC M64846FP plus an additional SMD antenna.

Two UART interfaces of the M16C/62N are utilized for external communication.

- **UART1** Optional debug communication to a PC with KD30xx cable debugger, as well as for flash programming of the M16C/62N.
- **UART2** User Interface for communication e.g. to the car stereo or to a PC application for demonstration propose.

Interface Connector	1	2	3	4	5	6	7	8	9	10
KD30xx	DVcc	BUSY	CLK1	RxD1	/WR	HOLD	DGND	/RESET	CNVSS	TxD1
User	DVcc	NC	CLK2	RxD2	NC	NC	DGND	/RESET	CNVSS	TxD2

Table1: Pinning of interface connector

Furthermore, two more UART interfaces are used for board internal communication.

- UART0 Used as asynchronous HCI interface to the *BluetoothTM* module M3A-ZA12
- **UART3** Used as synchronous interface for Codec control

Interface	M16C/62N pin	M16C/62N name	Direction	BT-Module M3A-ZA12	Codec MSM7731-02
0	P6.3	TxD0	\rightarrow	URxD	
LTC	P6.0	CTS0	<i>←</i>	URTS	
UARTO	P6.2	RxD0	\rightarrow	UTxD	
	P6.1	RTS0	\rightarrow	UCTS	
e	P9.0	CLK3	\rightarrow		EXCK
ЗТ3	P9.1	RxD3	\rightarrow		DOUT
UAR.	P9.2	TxD3	\rightarrow		DIN
	P9.3	Synch	\rightarrow		/DEN

Table2: Pinning of board internal interface

Please note that the UART0 - RTS0 signal of the M16C/62N is not generated automatically by the MCU, therefore the RTS0 signal is set to fixed low level just by port setting, to show the BT module a continuous ready signal.

In the end, there is an interface for PCM communication between the BT Module and the Codec, whereby the M3A-ZA12 is the BCLK and SYNC master.

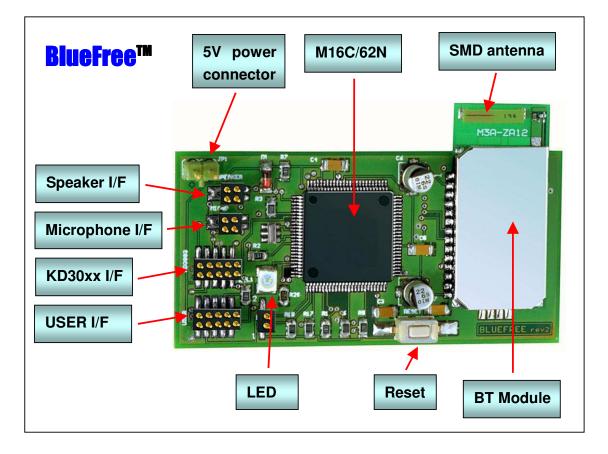


Figure3: Top view of BlueFree[™]

The audio connector for microphone and speaker can be directly connected to a suitable device or can be routed to the car stereo system for further processing, which is actually the more likely case for a final product, because audio adaptation and muting can be done by this concept very easy.

For demonstration purpose a standard active loudspeaker system and a microphone is recommended, which have to be connected to the apposite socket at the board. For this issue may the is not needed anymore, Therefore, all components regarding the amplifier circuit for the loudspeaker can be taken out and can be bridged e.g. by a Zero Ohm resistors. Due to this the occupancy connector can still be used to connect the peripheries.

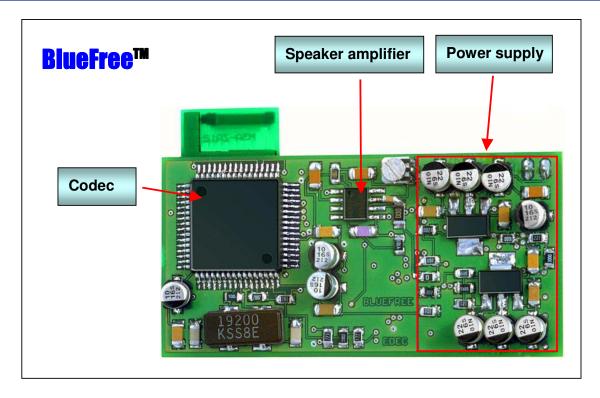


Figure4: Bottom view of BlueFree[™]

5 Software description

The M16C software is utilizing the very compact and easy to configure embedded software stack of IAR Systems. The IAR Systems Embedded *Bluetooth*TM Protocol Stack is already BQB qualified for Renesas M16C Microcontroller and supports the *Bluetooth*TM Hands-Free profile. Furthermore IAR Systems offers all *Bluetooth*TM car profiles as special software package.

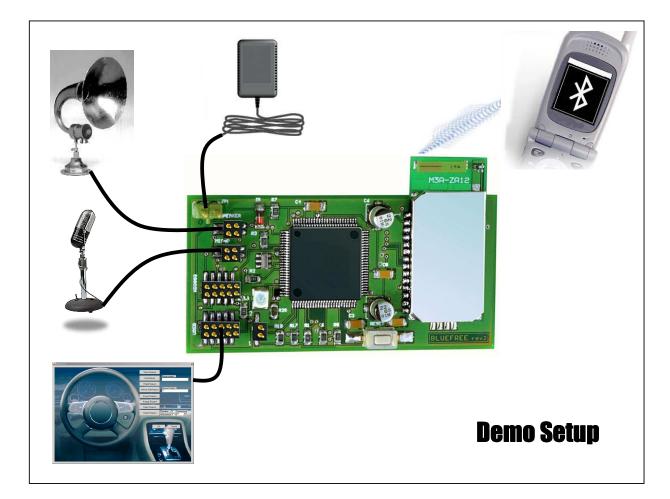
An easy UART3 API serves as connection between the car stereo and this BlueFreeTM add-on module. Please note that for a final product, it is possible to implement the *Bluetooth*TM host stack also within the main controller software of the car stereo. Due to Renesas's MCU family concept you could easily choose another M16C as host MCU out of the wide range of memory and package variations, as well.

Anyway, to realize a transparent reference setup, the UART3 connecter of the BlueFree[™] board has to be connected to a PC, where the WinStereo application simulates the communication between the BlueFree[™] and a car stereo. Because BlueFree[™] need TTL level, a cable with integrated RS232 level converter is recommend, as e.g. the Renesas Technology TenNine cable.

RWinStereo

Figure5: The WinStereo application

The WinStereo allow the user to do various actions of the mobile phone just by a mouse click. In principle, this should just simulate the environment of a real Hands-Free application. Please keep in mind that these features should actually be supported by a car stereo system, by using additional buttons or a command by voice feature.


Anyway, e.g. a phone call can be done, if a valid phone number is been keyed in and the DialRequest button is pressed. In almost the same matter, a phone call, based on a memory location of the mobile phone, can be released, with help of the MemoryDialRequest button and the related position number field. Many other actions are supported as e.g. Redial, Hangup and Reject Requests.

6 Demo Setup

Various peripheries should be connected to be the BlueFree[™] board for the Demo Setup.

- Power Supply
- Loudspeaker
- Microphone
- Mobile phone by Bluetooth link
- PC for WinStereo application (incl. TenNine cable)

Figure6: Demo Setup for BlueFree[™] demonstration

A detailed overview of the connectors and the related pins can be found in the following figure.

Power Su	pply	Description	+ - /
+		+5V - 9V	Power
-		GND	Supply
Loudspea	ker	Description	4 2
1 and 2		Output	Loudspeaker
3 and 4		AGND	
Micropho	ne	Description	4 2
1 and 2		Input	Microphone 📃 🛄 🛛
3 and 4		AGND	
KD30xx I/I	F Des	cription	
all	Not	used for demo setup, pls.	246810
		r to chapter 4. Hardware	
	des	cription	See a see
			KD30xx
User I/F	Desc	cription	1 3 5 7 9
1	Vcc		
4	RxD	2	246810
7	DGN	D	240010
10	TxD2	2	
other	Not	used for demo setup, pls.	
		to chapter 4. Hardware	
		ription	13579

Figure7: Detailed connector plan of BlueFree[™] demo setup

For demonstration purpose a *BluetoothTM* link between the *BluetoothTM* enabled mobile phone and the BlueFreeTM board has to be established. In order to allow the GSM phone to find and use the BlueFreeTM, it is always discoverable and connectable, and has a fixed pin code of "0000". Furthermore, it provides a Hands-Free service as a server.

7 User specific car stereo API

The car stereo host system communicates with the BlueFreeTM is done by using a UART cable connection with following characteristics:

- 19200 baud
- 8 databits
- 1 stopbit
- no parity.

• No H/W or S/W flow control is being used

The BlueFree[™] device accepts commands and returns status information to the host system using the UART link. The protocol is very simple with no checksums or re-transmissions of erroneous packages. A very simple binary UART protocol, that waste minimum memory space in the BlueFree[™] target system is used, with following format:

<LENGTH_BYTE><ID_BYTE><DATA_BYTE_1>...<DATA_BYTE_N>

The length byte determines the package length including the length byte itself.

The following table outlines the commands that can be sent from the car stereo equipment to the BlueFreeTM device:

Command	ID_BYTE	Description
STATUS_REQ	0x00	Ask the HFPF for its status
DIAL_REQ	0x01	Dial phone number
REDIAL_REQ	0x02	Redial the last phone number
MEMORY_DIAL_REQ	0x03	Dial phone number in memory position #x in the phone
		book
ANSWER_REQ	0x04	Answer incoming call
HANGUP_REQ	0x05	Hang-up ongoing call
REJECT_REQ	0x06	Reject incoming call
VOLUME_REQ	0x07	Adjust volume
AUDIO_TRANSFER_REQ	0x08	Ask the HFPF to transfer the audio paths of the ongoing
		call to/from the AG

Table3: Command from car stereo equipment to BlueFree[™]

The following table outlines the indications that can be sent from the BlueFreeTM device to the car stereo equipment:

Indications	ID_BYTE	Description
STATUS_IND	0xF0	Send status to the host
CALL_OPEN_IND	0xF1	Phone call opened
CALL_CLOSE_IND	0xF2	Phone call closed
CLI_IND	0xF3	Calling Line Identification (CLI)
RING_IND	0xF4	Ring signal
AUDIO_TRANSFER_IND	0xF5	AG has transferred the audio paths of the ongoing call to/from the AG

Table4: Indications from BlueFree[™] to car stereo equipment

• Status check

The STATUS_REQ command is sent from the host system to check the BlueFreeTM for its status. BlueFreeTM returns a STATUS_IND indication with the status code. BlueFreeTM may choose to send a STATUS_IND indication to the host at any time, also without the host sending the STATUS_REQ command (i.e. it supports both "polled" and "event driven" status updates).

STATUS REQ

Byte	Value	Description
1	0x02	Length byte
2	0x00	STATUS_REQ command id

Table5: Status request

STATUS_IND

Byte	Value	Description
1	0x03	Length byte
2	0xF0	STATUS_IND command id
3	0x00 = OK	Status code
	0xFF = ERROR	

Table6: Status indication

• Dialling

The DIAL_REQ command is sent from the host system to dial a phone number. REDIAL_REQ can be used to re-dial the last used phone number, and the MEMORY_DIAL_REQ command is used to dial the number in memory position #x in the GSM phone book. Once the phone call is opened, a CALL_OPEN_IND indication is sent from BlueFreeTM to the host.

DIAL REQ

Byte	Value	Description
1	Ν	Length byte
2	0x01	DIAL_REQ command id
3N	String	Phone number

Table7: Dial request

REDIAL REQ

Byte	Value	Description
1	0x02	Length byte
2	0x02	REDIAL_REQ command id

Table8: Redial request

MEMORY DIAL REQ

Byte	Value	Description
1	0x03	Length byte
2	0x03	MEMORY_DIAL_REQ command id
3	?	Number of the memory position entry in the address book

Table9: Memory dial request

CALL OPEN IND

Byte	Value	Description
1	0x02	Length byte
2	0xF1	CALL_OPEN_IND command id

Table10: Call open indication

• Hanging-up

The HANGUP_REQ command is sent from the host system to hang-up an ongoing phone call. When the call is closed by either end, the BlueFreeTM returns CALL_CLOSE_IND.

HANGUP REQ

Byte	Value	Description
1	0x02	Length byte
2	0x05	HANGUP_REQ command id

Table11: Hangup request

CALL CLOSE IND

Byte	Value	Description
1	0x02	Length byte
2	0xF2	CALL_CLOSE_IND command id

Table12: Call Close indication

• Incoming calls

The REJECT_REQ command is sent from the host system to reject an incoming call. When an incoming call is detected, the RING_IND indication is sent repeatedly to the host and the CLI_IND indication is also sent to the host.

REJECT REQ

Byte	Value	Description
1	0x02	Length byte
2	0x06	REJECT_REQ command id

Table13: Reject request

<u>CLI IND</u>

Byte	Value	Description
1	Ν	Length byte
2	0xF3	CLI_IND command id
3N	String	Phone number of incoming call

Table14: CLI indication

RING IND

Byte	Value	Description
1	0x02	Length byte
2	0xF4	RING_IND command id

Table15: Ring indication

• Volume

The VOLUME_REQ command is sent from the host system to adjust the volume.

VOLUME_REQ

Byte	Value	Description
1	0x03	Length byte
2	0x07	VOLUME_REQ command id
3	0x00 = Microphone	Target
	0x01 = Speaker	
4	0x00-0x0F	Volume level

Table16: Volume request

• Audio transfer

AUDIO TRANSFER REQ

Byte	Value	Description
1	0x02	Length byte
2	0x08	Ask the BlueFree [™] to transfer the audio paths of the ongoing call to/from the AG

Table17: Audio transfer request

AUDIO TRANSFER IND

Byte	Value	Description
1	0x02	Length byte
2	0xF5	AG has transferred the audio paths of the ongoing call to/from the AG

Table18: Audio transfer indication

8 Schematic

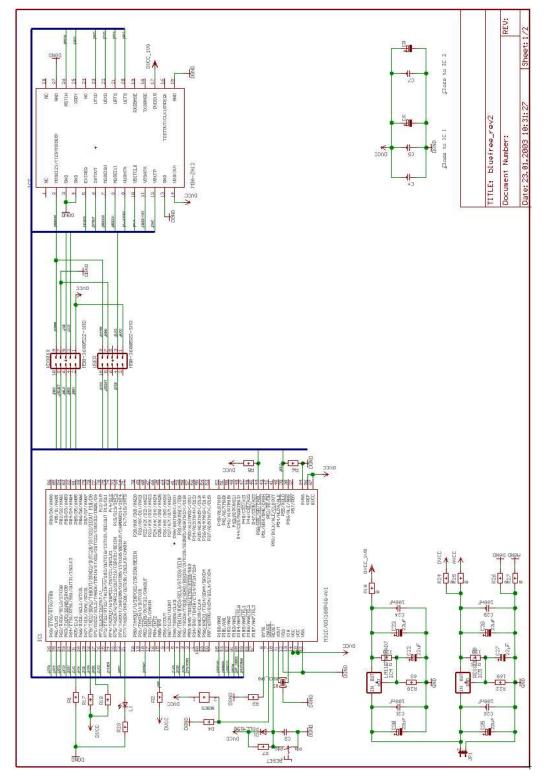


Figure 8: Schematic of Microcontroller, *Bluetooth[™]* module and power supply

M16C Family BlueFree[™] reference design for Hands-Free application

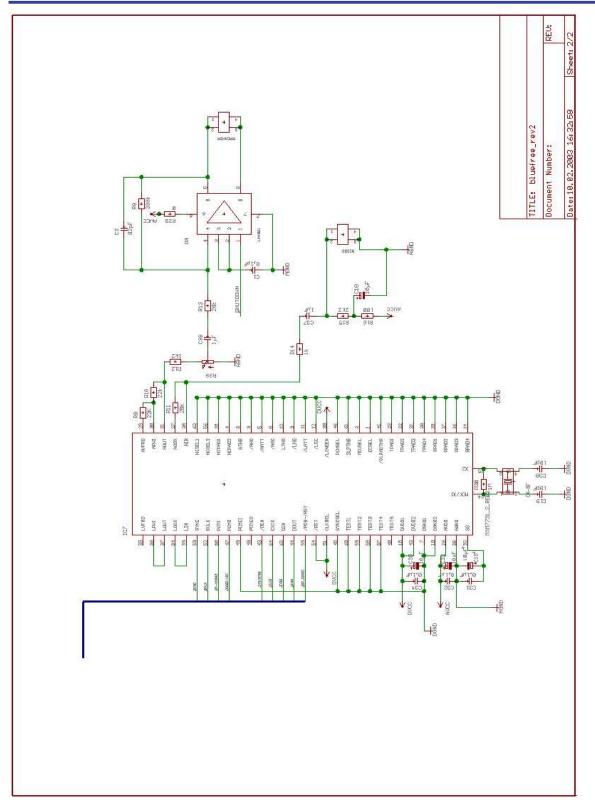


Figure 9: Schematic of codec and audio I/F

9 Component placement specification

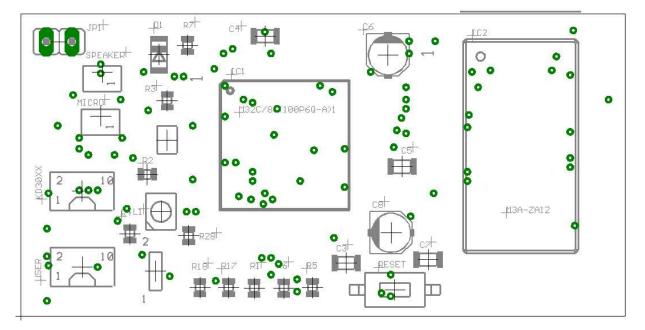


Figure 10: Component placement top layer

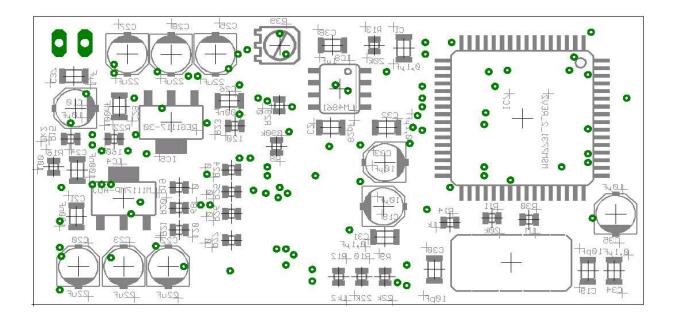


Figure 11: Component placement bottom layer

10 Reference

Renesas Technology Corporation Semiconductor Home Page http://www.renesas.com

Contact for Renesas Technical Support

E-mail: support_apl@renesas.com

Data Sheet & User's Manual

M16C/62N Datasheet, User's Manual, Bluetooth documents (Use the latest version, please check: http://www.renesas.com)

IAR Systems Embedded *Bluetooth[™]* Protocol Stack

http://www.iar.com

BlueFree[™] is a trademark of Renesas Technology Corporation.

* Bluetooth[™]

BLUETOOTH is a trademark owned by BLUETOOTH SIG, Inc. and licensed to Renesas Technology Corporation

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.