

 © 2022 Renesas Electronics Corporation

AN-1118
Eight Output 8-bit PCM LED Dimming

Using ASM
Author: Yu-Han Sun

Date: August 31, 2016

Introduction

This application note will explain how to

create an eight output LED controller, each

channel with 8-bit resolution PCM (Pulse

Code Modulation), using little more than the

ASM block in GreenPAK5. Furthermore, the

I2C interface enables offloading LED driving

functions from an MCU, as shown in Figure 1.

Only a portion of GreenPAK5’s resources are

needed in this implementation; many blocks

are left available to implement other user

functions.

Background

The ASM block in GreenPAK5 has built-in

capability to simultaneously drive 8 outputs

each with individual 8-bit codes which can be

set arbitrarily by I2C. An 8-bit serial code

which represents analog signal is referred to

as Pulse Code Modulation (PCM).

In this application, we convert the PCM code

to an analog dimming level by binary-

weighting the serial timing of each output bit

such that time-averaged voltage is

proportional to the binary value of the code.

The result is very similar to PWM (Pulse

Width Modulation) where the digital signal

can be converted to analog simply by

filtering.

The difference between the PCM scheme and

PWM can be seen in Figure 2. Both the PCM

and PWM waveforms have the same average

value of 700mV. However, PWM requires

fewer transitions per cycle, and thus can

more suitable for applications where energy

lost from switching needs to be minimized.

However, in LED applications the cycle rate is

relatively slow, so the additional transitions

of the PCM dimming scheme are not

problematic.

Figure 1. System Level View

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

The advantage is that the natural translation

from binary code to PCM is more resource

efficient for implementation in GreenPAK5.

GreenPAK Design, the ASM

states

The design begins with the ASM, an eight-

state asynchronous state machine. Each state

represents a binary bit in the code.

 State0 State1 State2 State3 State4 State5 State6 State7

Bit bit0 (LSB) bit1 bit2 bit3 bit4 bit5 bit6 bit7
(MSB)

Period (T) T/256 T/128 T/64 T/32 T/16 T/8 T/4 T/2

Duty % 0.390625% 0.78125% 1.5625% 3.125% 6.25% 12.5% 25% 50%

Transitions CLK/2 CLK/4 CLK/8 CLK/16 CLK/32 CLK/64 CLK/128 Restart
signal

Table 1. ASM State Machine

Figure 2. PWM vs PCM

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

The state machine loops through all of the

states, making sure each state lasts a

specified amount of time. One complete loop

through the ASM corresponds to one period.

See the state diagram in Figure 3. The state

diagram depicts the direction of state

transitions starting with State 0, the initial

state, and travels clockwise to State 7. State

7 then loops back to State 0, starting a new

period.

State 0 represents the least significant bit,

bit0, while State 7 represents the most

significant bit, bit7. Refer to Table 1 for the

bit, fraction of the period and duty cycle that

each state represents.

The state transitory signals occurs at strict

intervals to ensure each state lasts only a

specified amount of time.

Figure 3. ASM State Machine

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

This amount is a fraction of the period

calculated as for States 0 to 7

respectively. Refer to Figure 4. Each OSC

division is connected to sequential

transitioning signals. Each subsequent state

lasts twice as long as the previous one since

each subsequent state is a binary place to

the left. I.e. State 0 has a duration of T/256

and State 1 has a period of T/128.

GreenPAK Design, the ASM

inputs

The ASM state transitory inputs must be a

binary division of the CLK, as explained in the

previous section. In this design, the divisions

are done with DFFs. There are a few ways to

implement this and we will be looking at a

brute force method as well as a more elegant

solution.

The first method is chaining one DFF after the

next to get 8 divided clocks. The second

method is using a PGEN to generate all

necessary transition signals. These are

discussed below.

Note 1: It is important to remember that

ASM transition inputs are active high, and

that will be taken into consideration when

generating ASM input signals.

Method #1 – Eight DFFs

The first method uses a total of 8 DFF, one

for each ASM input. Here, the Pipe Delay is

used as a DFF but with an extra inverted

output. Each DFF toggles to clock the next

DFF such that each DFF is half the frequency

of its preceeding DFF, generating the

necessary input signals.

Figure 4. Variation #1, Eight DFFs

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

Each DFF output is inverted to prevent all

signals from being high at the same time,

which would cause the ASM to loop in a

circle. Lastly, the cycle resets through a

rising edge detector (PDLY) at the end of

each period, this will change the period width

from 256 to 255, the effect of which is

discussed in the section ‘Resolution’.

Notice DFF6 is NORed with CLK/128 such that

when CLK/128 goes high, CLK/1 is forced to

zero as seen in Timing Diagram 1. This is

also to prevent both CLK/1 and CLK/128 from

being high at the same time which would

cause an unwanted transition from State 7 to

State 0.

Method #2 – PGEN and Clock

Multiplexing

The second method uses one PGEN and a

clock multiplexing circuit to generate the

timed pulses. The PGEN is configured with a

pattern of 1s and 0s as see the configuration

in Figure 6. The pattern’s 1’s and 0’s are

selected such that the rising and falling edges

correspond with the timing of

signals. EDGE_DET0 detects rising edges and

EDGE_DET1 detects falling edges. The output

of these blocks pulse high when the

component detects an edge.

Timing Diagram 1. ASM inputs for Variation #1

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

We use two edge detectors instead of one

such that every other ASM input has the

same source.

The PGEN is limited to only 16 bit patterns,

which is only enough bits for four consecutive

edges. In order to stretch the PGEN to the

next 4 edges, the input to the PGEN clock is

multiplexed between a fast 2MHz/8 clock and

a slow 2MHz/8/16 clock. The multiplexer’s

select bit comes from DFF5, which toggles

from high to low when two RED pulses have

been detected. DFF5 also enables the /16

Pipe Delay divider.

Figure 5. Variation #2. ASM Transition signals generated by DFFs

Timing Diagram 2. ASM Inputs for Variation #2

Figure 6. PGEN Configuration

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

Comparison

Method #1 uses 17 components while

Method #2 uses just 7, leaving at most, 12

combination function components, 7 of which

can be configured as a counter. While the

first design is easy to understand and port

into another project, the multiplexing in the

second method conserves more resources. In

this app note, we will continue analyzing the

pgen and clock multiplexing solution.

 Method #1
– Eight

DFFs

Method #2 – PGEN
and Clock

Multiplexing

Used
macrocells

16 + 1
PDLY

7

Leftover
macrocells

3 12

Segments 255 255

Table 2. Comparison

GreenPAK Design, the ASM

outputs

The ASM Outputs are the PCM codes

connected to GPIOs 20 through 13.

Timing Diagram 3. ASM Output Timing for the output configuration in Figure 6

 Figure 7. ASM Outputs and the Output

configuration

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

The output table in Figure 7 is configured

such that each ASM output represents one

ASM state. This is to show the relative timing

of each state as seen in Timing Diagram 3.

OUT0 is first and shortest because it

represents State0-bit0. OUT7 is last and

longest because it represents State7-bit7.

Each output has no overlap with its

neighboring outputs and each is twice as long

as the previous one.

Resolution

The total number of unique PCM codes is

256, from 0 to 255. For this design, the

period is divided into 255 segments.

Typically, a GreenPAK’s PWM block outputs a

period with 256 segments.

The last segment being forced high or low,

such that the output duty cycle ranges from

0-99.6% or 0.4-100%.

In order to implement a 256th segment, we

require a ninth state. GreenPAK5’s ASM,

however, has only eight states.

To avoid the reset, we forced the period to

255 segments. This causes the duty cycle to

range from 0 to 100% and the resolution is

0.39215% (1/255) instead of 0.390625%

(1/256). This logic is already integrated into

the PGEN which has a 15 bit pattern. The

PGEN will clock through at 15 fast clocks, and

then 15 slow clocks. Each slow clock is 16

times slower than the fast clock. Therefore,

the total number of segments is: 16*15 + 15

= 255.

14 total modulated outputs

In addition to the eight outputs from the

ASM, we can utilize the leftover counters as

more modulated outputs. Refer to Figure 8.

Since PCM and PWM are interchangeable for

time-averaging voltage applications, the

remaining counters can be used to create

PWM outputs. One counter creates the period

and the rest of them are one-shots shorter

than the period. 8 ASM outputs + 6 CNT

outputs makes 14 total PWM/PCM outputs.

I2C

The MCU can utilize I2C to change the PCM

value, updating only when needed.

Figure 8. Additional Counter Outputs

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

The ASM output configuration is located at

word addresses (0x0h) D0, D1, D2, D3, D4,

D5, D6 and D7. View table 2.

In order to change one ASM output, we must

re-write all 8 registers. For example, in Table

2, OUT2 is changed to 0x42. This requires us

to write 8 bytes of data, D0 through D7

where the 3rd least significant bit is changed

in ‘red’ below. The command would be the

following:

[0xSA, 0xD0, 0x22, 0xE7, 0xB0, 0xE4, 0xB0,

0xE4, 0x70, 0xE8]

Where SA is the slave address.

At 400kHz, the maximum speed that an MCU

can change the code of an output is 225µs

(4.4kHz) not including the start and stop bit.

This gives plenty of margin since the naked

eye cannot decipher changes faster than

24Hz.

During I2C write, the output will not glitch as

the data is being updated. This is because

ASM state outputs are always latched and

don’t change until the states transition.

There could be, however, a period that is

neither one PCM code nor the other but a mix

of the two due to data changing in the middle

of a period.

Other examples commands are:

[0xSA, 0xD0, 0xAA 0xCC 0xF0 0x00 0x00

0x00 0x00 0x00] outputs 7,6,5,4,3,2,1,0

[0xSA, 0xD0, 0x01 0x02 0x04 0x08 0x10

0x20 0x40 0x80] outputs the identity matrix

from Figure 6

Word

Address

7 6 5 4 3 2 1 0 Data

Byte

D0 0 0 1 0 0 0 1 0 0x22

D1 1 1 1 0 0 1 1 1 0xE7

D2 1 0 1 1 0 0 0 0 0xB0

D3 1 1 1 0 0 1 0 0 0xE4

D4 1 0 1 1 0 0 0 0 0xB0

D5 1 1 1 0 0 1 0 0 0xE4

D6 0 1 1 1 0 0 0 0 0x70

D7 1 1 1 0 1 0 0 0 0xE8

Decimal 190 234 255 84 128 42 3 2

Table 3. I2C Word Address and Data Byte Example

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

Functionality Waveforms

D0 – PIN#20 (OUT0)
D1 – PIN#19 (OUT1)

D2 – PIN#18 (OUT2)
D3 – PIN#17 (OUT3)
D4 – PIN#16 (OUT4)

D5 – PIN#15 (OUT5)
D6 – PIN#14 (OUT6)

D7 – PIN#13 (OUT7)
D8 – (RED)
D9 – (FED)

D10 – (PGEN out)
D11 – PIN#8 (SCL)

D12 – PIN#9 (SDA)

Figure 9. Identity Matrix

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

Figure 11. I2C write at 0xD7

Figure 10. Zoom In (20us/div)

© 2022 Renesas Electronics Corporation

Eight Output 8-bit PCM LED

Dimming Using ASM

Conclusion

The SLG46531V ASM can be configured to

implement eight channels of PCM outputs

each with 8-bits of resolution. All outputs are

synced to the ASM period and the output

code can be rewritten with I2C. This allows

GreenPAK5 to run independently of the MCU,

which can wake up once in a while to update

the PCM code, saving power and GPIOs.

With the multiplexed clock and pattern

generator, 7 components were used to make

the ASM inputs, leaving 12 other components

to spare.

Configuring the combinational macrocells in

counter/delay mode allows up to 6 PWM

output signals for a total of 14 pulse

modulated outputs. In a 20 pin GreenPAK5,

we can efficiently drive 14 outputs, receive

information from 2 I2C inputs and still have 2

GPIOs which can be used for enables or

interrupts between the MCU and GreenPAK.

From this app note, you should be able to

make your own basic resource-efficient PCM

outputs using a GreenPAK5 and the ASM.

Figure 12. I2C write at 0xD6

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

