

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2002/09/09

1/1

HITACHI SEMICONDUCTOR TECHNICAL UPDATE
Classification
of Production Development Environment No TN-CSX-043A/E Rev 1

THEME SuperH RISC engine C/C++ compiler
package Ver.7.1.00 Updates

Classification of
Information

1. Spec change
2. Supplement of Documents
3. Limitation of Use
4. Change of Mask
5. Change of Production Line

Lot No. Effective Date

PRODUCT
NAME

P0700CAS7-MWR
P0700CAS7-SLR
P0700CAS7-H7R All

Reference
Documents

SuperH RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor
User’s Manual
ADE-702-246A
Rev.2.0

Eternity

SuperH RISC engine C/C++ compiler package is updated in Ver.7.1.00.

Refer to the attached document, P0700CAS7-020826E, for details.

Inform the customers who have the package version in the table below.

Package version Compiler version
7.0B 7.0B

7.0.01 7.0.03
7.0.02 7.0.04P0700CAS7-MWR

7.0.03 7.0.06
7.0B 7.0B

7.0.02 7.0.03
7.0.03 7.0.04P0700CAS7-SLR

7.0.04 7.0.06
7.0B 7.0B

7.0.02 7.0.03
7.0.03 7.0.04P0700CAS7-H7R

7.0.04 7.0.06

Attached : P0700CAS7-020826E
 SuperH RISC engine C/C++ Compiler
 Ver.7.1.00 Updates

P0700CAS7-020826E

SuperH RISC engine C/C++ Compiler Package
Ver. 7.1.00 Updates

 The contents of updates in this package are shown below.
 The item 1 and 2 hold true only for PC version. The item 7 and 8 hold true only for UNIX version.

1. Hitachi Embedded Workshop (PC version)
1.1 Loading and Unloading the Project

When two or more projects have been used in the workspace, only the current project is loaded and
referred while the workspace is opened. Other projects can be referred when the target project is selected
on the Workspace window and [Load Project] is specified from the popup menu by clicking the right-
hand mouse button. The project that needs not be referred is temporarily released from the management
on HEW when [Unload Project] is similarly specified from the popup menu. (This operation saves the
memory.)

1.2 Setting the Navigation Tab in the Workspace Window
When [Configure view...] is selected from the popup menu (by clicking the right-hand mouse button)

on the Navigation tab in the Workspace window, the information to be displayed on the Navigation tab
can be set. By default, 'ANSI C Functions' and 'C Defines' are displayed.

1.3 Setting Header and Footer in Printing
When [Page Setup...] is selected from the [File] menu, the header and footer in printing can be set.

1.4 Setting the Custom Placeholder
The user-specific placeholder can be set on the Placeholder tab in [Customize] from the [Tools] menu.

Set 'Application wide custom placeholders:' for using the placeholder in the whole HEW. Set 'Workspace
wide custom placeholders:' for using the placeholder in each workspace.

1.5 Automatic Build Corresponding to MAP Optimization
In HEW2.0, a custom phase has been provided to execute optimization using the external symbol

allocation information that has been output by the optimizing linkage editor in the C compiler.
In HEW2.1, the build for optimization can be executed by setting options only. When 'Include map file'

is specified as Optimize on the C/C++ tab in the Toolchain Option dialog box, a build is automatically
executed again from the C compiler after the optimizing linkage editor has been executed.

1.6 Adding and Modifying the Data Generated by the Project Generator
Project generation of the following CPU has been newly added:

SH7290
The I/O definition file (iodefine.h) of the following CPU has been modified:

SH7727

1.7 To support data merge feature on the Stack Analysis tool
One of the utility tools, Stack Analysis tool supports DataMerge feature. You can see stack data which

has already generated and stack information file which is generated optimize linkage editor as merged
data on it.

1.8 Modification of the generation data for project generator
The following CPU's I/O definition file (iodefine.h) was modified:

SH7622: st_scif0 definition

P0700CAS7-020826E

2. SuperH RISC engine simulator/debugger (PC version)

2.1 Supporting Sessions (Ver. 8.0.01 -> Ver. 8.1.00)
The target-specific information is saved in the session. Two or more sessions can be contained in one

configuration.

2.2 Enabling Specification of the Execution Order of Command Batch File (Ver. 8.0.01 -> Ver. 8.1.00)
The order for automatically executing the command batch file can be specified. The execution timing

can be selected either when the target is connected or before or after loading the user program.

2.3 Enforcing the Source Window (Ver. 8.0.01 -> Ver. 8.1.00)
The corresponding address and coverage information are displayed on the Source window. It is

possible to select whether the address and coverage information is displayed or not.
The coverage information can be displayed in the C-source level.

2.4 Enforcing the Coverage Function (Ver. 8.0.01 -> Ver. 8.1.00)
Saving or loading the coverage information is supported. Merging with the previous coverage method

is possible.

2.5 Enforcing the Watch Function (Ver. 8.0.01 -> Ver. 8.1.00)
The realtime display of the watch infromation is supported. The information is updated in realtime

during program execution.
In addition, saving the watch information in the file is also supported.

2.6 Enforcing the Trace Function (Ver. 8.0.01 -> Ver. 8.1.00)
The statistic analysis function of the trace acquisition information is supported. When the item to be

analyzed is specified, it is possible to display the kind of information and the acquisition times.

2.7 Supporting the Trigger Window (Ver. 8.0.01 -> Ver. 8.1.00)
The Trigger window is supported. A pseudo-interrupt can be generated at any timing.

2.8 Supporting the SH3-DSP (core) Simulator (Ver. 8.0.01 -> Ver. 8.1.00)
The SH3-DSP (core) simulator is supported. Debugging the SH3-DSP for ASIC will be enabled.

3. Compiler
3.1 Added options (Ver.7.0.04 -> Ver.7.0.06)

The following shows the options added to Ver.7.0.06.
(1) global_volatile={0 | 1}
 Treatment of global variables
(2) opt_range={all | noloop | noblock}

 Optimizing range of global variables
(3) del_vacant_loop={0 | 1}
 Deletion of vacant loop
(4) max_unroll=<numeric number>
 Specification of maximum unroll factor
(5) infinite_loop={0 | 1}
 Deletion of assignments before an infinite loop
(6) global_alloc={0 | 1}

 Allocation of global variable
(7) struct_alloc={0 | 1}
 Allocation of struct/union member
(8) const_var_propagate={0 | 1}
 Propagation of const-qualified variable
(9) const_load={inline | literal}
 Inline expansion of constant load
(10) schedule={0 | 1}
 Scheduling of instructions

P0700CAS7-020826E

3.2 Illegal destruction of the R0 register (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When a parameter is passed via the stack, the R0 register may be illegally overwritten.
[Example]

 short func1(short a0, int *a1, int a2, short a3, short a4, short a5, short a6, int a7, int a8, int a9);
 void func0(short a0, int *a1, int a2, short a3, short a4, short a5, short a6) {
 :
 r1=func1(0,a1,0,0,0,0,0,0,0,0);
 if((r1>0)&&(r1!=1)) {
 func1(a0,a1,0,a3,a4,a5,a6,0,0,0); /* R0 is destroyed illegally. */
 }
 :
 }

 :
 MOV.L R0,@(32,R15) ; Stores R0 at @ (32, R15).
 MOV R8,R5
 MOV #66,R0 ; Destroys R0.
 MOV.W @(R0,R15),R3
 MOV R9,R6
 MOV #70,R0 ; Destroys R0.
 MOV.W @(R0,R15),R1
 MOV R0,R4 ; @(32,R15) has been illegally replaced with R0.
 MOV.L R3,@(4,R15)
 MOV.L R1,@(8,R15)
 MOV.L R9,@(12,R15)
 MOV.L R9,@(16,R15)
 BSR _func1
 MOV.L R9,@(20,R15)
 :

[Condition]
This problem may occur when both of the following conditions are satisfied

(1) The optimize=1 option is specified.
(2) A function receives a formal parameter passed via the stack.

3.3 Illegal branch target of the BRA instruction (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

In a program having an unconditional branch, the forward branch target of the BRA instruction may
be illegal if the distance from the instruction to the target is 4094 bytes.

[Condition]
This problem may occur when both of the following conditions are satisfied

(1) Either the code=machinecode option is specified, or the code option is not specified.
(2) The distance from the BRA instruction to the forward branch target is 4094 bytes.

3.4 Illegal deletion of the save/restoration of PR register (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When following program is compiled with the speed option, the saving and restoring code of PR
register may be illegally deleted.

P0700CAS7-020826E

[Example]
 int x;
 extern void f1();
 extern void f2();
 void f() {
 if (x == 2){
 f1(); // The then-clause ends with a function call
 }
 f2(); // The function end with a function call
 return;
 }

 _f:
 MOV.L L14,R6 ; _x
 MOV.L @R6,R0
 CMP/EQ #2,R0
 BT L11
 L12:
 MOV.L L14+4,R2 ; _f2
 JMP @R2 ; The function ends with a function call,
 NOP ; so JSR changed into JMP and RTS is deleted
 L11:
 MOV.L L14+8,R2 ; _f1
 JSR @R2 ; Saving and restoring code of PR register
 NOP ; is deleted though a function call exists
 BRA L12
 NOP

[Condition]
The problem may occur when all of the following conditions are satisfied.

(1) The speed option is specified.
(2) The function ends with a function call.
(3) The if-then clause exists before the function call of (2), and the last statement of then-clause

is function call.
(4) The function call is not in-line expanded.

3.5 Illegal reference of T-bit in SR register (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

In the following case, conditional branch may be illegally done.
(1) When following program is compiled:

[Example]
 #include <machine.h>
 extern void f();
 int a;
 void func() {
 int b;
 b = (a == 0); // Sets the result of comparison to variable b
 f(); // Exists function call or set_cr()
 if (b) { // Compares variable b with 0 or 1
 a=1;
 }
 }

P0700CAS7-020826E

 _func:
 STS.L PR,@-R15
 MOV.L L13,R6 ; _a
 MOV.L @R6,R2
 TST R2,R2 ; Sets the result of comparison to T-bit
 MOV.L L13+4,R2 ; _f
 JSR @R2 ; T-bit may be changed in the callee
 NOP ; function
 BF L12 ; Refers to T-bit and branch
 MOV.L L13,R6 ; _a
 MOV #1,R2
 MOV.L R2,@R6
 L12:
 LDS.L @R15+,PR
 RTS
 NOP

(2) When the class with destructor call which is declared in a local block in a function is written in
 the C++ program

[Condition]
This problem may occur when either (1) to (3) or (4) to (5) conditions are satisfied.
<for C program>

(1) The optimize=1 option is specified.
(2) A result of a comparison is set to a variable.
(3) The variable of (2) is compared with 0 or 1 after a function call or set_cr().

or
<for C++ program>

(4) The optimize=1 option is specified.
(5) The class with destructor call which is declared in a local block in a function is written in the

C++ program

3.6 Illegal unification of constant values (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When following program is compiled with the optimize=1 option, the constant values may be
illegally unified.

[Example]
 #define a (*(volatile unsigned short *)0x400)
 #define b (*(volatile unsigned short *)0x4000)
 #define c (*(volatile unsigned short *)0x402)
 int d;
 void func() {
 a = 0x8000; /* (A) */
 b = 0x8000; /* (A') */
 d = c + 0x8000; /* (B) */
 }

P0700CAS7-020826E

 _func:
 MOV.W L15,R6 ; H'8000 set R6 to 0xFFFF8000
 MOV #4,R5
 MOV #64,R2
 SHLL8 R5
 SHLL8 R2
 MOV.W R6,@R5 ; (A) set variable a to 0x8000
 MOV.W R6,@R2 ; (A') set variable b to 0x8000
 MOV.W @(2,R5),R0
 EXTU.W R0,R2
 ADD R6,R2 ; set R2 to (c+0xFFFF8000)
 MOV R2,R6
 MOV.L L15+4,R2 ; _d
 RTS
 MOV.L R6,@R2 ; (B) set variable d to (c+0xFFFF8000)

; (c+0x00008000) is correct

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) The same value from 128 to 255 or from 32768 to 65535 is used more than once in the

function.
(3) The value of (2) is used with different sizes.
 For above example, (A) and (A') are used as a 2-byte value and (B) is used as a 4-byte value.

3.7 Illegal generation of a literal pool (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When a program is compiled with the align16 option, the reference to a literal pool may be illegal.
When both code=machinecode and goptimize are specified, the error may occur at linkage.
When code=machinecode is specified, an illegal object code may be created at compilation.
When code=asmcode is specified, the error may occur in assembling.

[Example]
 :
 MOV.L L154+2,R2 ; (1) L158 refers to literal (A)
 MOV.L R2,@R15
 MOV.L L154+6,R2 ; (2) _printf refers to literal (B)
 JSR @R2
 NOP
 :
 .ALIGN 16
 L86:
 ADD #1,R2
 BRA L153 ; unconditional branch is created and
 MOV.L R2,@R4 ; a literal pool is generated
 L154:
 .RES.W 1
 .DATA.L L158 ; (A) literal which cannot be reached

; from (1)
 .DATA.L _printf ; (B) literal which cannot be reached

; from (2)
 .ALIGN 16
 L153:
 :

P0700CAS7-020826E

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The align16 option is specified.
(2) An unconditional branch is created and a literal pool is generated.

3.8 Illegal code motion to a delay slot (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When a program is compiled with the optimize=1 option, an instruction may be illegally moved to a
delay slot.

[Example]
<before>

 :
 SHLL R2
 MOV R2,R0
 MOVA L88,R0
 BRA L144
 NOP
 :

<after>
 :
 SHLL R2

; instruction is moved to a delay slot
 MOVA L88,R0 ; set R0
 BRA L144
 MOV R2,R0 ; destroy R0
 :

[Condition]
This problem may occur when the following condition is satisfied.

(1) The same register is updated consecutively by more than one instruction.

3.9 Illegal offset of a GBR-relative logical operation (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When a program is compiled with the optimize=1 option and the compiler creates a GBR-relative
logical operation to a 1-byte struct member, the offset may be illegal.

[Example]
 struct {
 int a;
 unsigned char b;
 } ST;
 char c;
 void f() {
 ST.b |= 1;
 c &= 1;
 }

 _f:
 STC GBR,@-R15
 MOV #0,R0 ; H'00000000
 LDC R0,GBR
 MOV.L L11+2,R0 ; H'00000008+_ST <- (ST+4) is correct
 OR.B #1,@(R0,GBR)
 MOV.L L11+6,R0 ; _c
 AND.B #1,@(R0,GBR)
 RTS
 LDC @R15+,GBR

P0700CAS7-020826E

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) Either the gbr=user option is specified and #pragma gbr_base/gbr_base1 is used, or the

gbr=auto option is specified and the map option is not specified.
(3) A global struct with a 1-byte member exists in a program.
(4) This 1-byte member is not located at the top of the struct.
(5) This member is used for logical operation in a function.
(6) This member is not used except (5).
(7) A global variable except this member exists in a function.

3.10 Illegal EXTU after SWAP instruction (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When a program is compiled with the optimize=1 option and a pointer is used to store the return
value of swapb, swapw, or end_cnvl intrinsic function, EXTU may be illegally created after the
SWAP instruction.

[Example]
 #include <machine.h>
 unsigned short *a,*b;
 void func() {
 *b=swapb(*a);
 }

 _func:
 MOV.L L13+2,R2 ; _a
 MOV.L L13+6,R5 ; _b
 MOV.L @R2,R6
 MOV.W @R6,R2
 SWAP.B R2,R6
 MOV.L @R5,R2
 EXTU.B R6,R6 ; The result of SWAP instruction is illegally expanded
 RTS
 MOV.W R6,@R2

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) A swapb, swapw, or end_cnvl intrinsic function is used.
(3) A pointer is used to store the return value of this intrinsic function.

3.11 Illegal bitfield data (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When an initial value is set to a struct with an anonymous bitfield, the initial value may be illegal.
[Example]

 struct st {
 short a:4;
 short b;
 short :12; // anonymous bitfield
 short c:4;
 } ST={1,1,3};

 _ST:
 .DATA.W H'1000
 .DATA.W H'0001
 .DATAB.B 1,0 ; ".DATA.W H'0003"
 .DATA.W H'0300 ; is correct.

P0700CAS7-020826E

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) (1) A struct has a bitfield, an anonymous bitfield, and a member which is not a bitfield, and
they are defined in the order shown below.

 struct A {
 :
 bitfield
 :
 member which is not bitfield
 anonymous bitfield // (A)
 bitfield // (B)
 :
 }
(2) The size of the underlying type of (A) and (B) is 2-byte or 4-byte.
(3) The bitwidth of (B) is 8-bit or more.
(4) The total bitwidth size of (A) and (B) is below.

(a) When the sizes of the underlying type of (A) and (B) is 2-byte : 16-bit or less
 (b) When the sizes of the underlying type of (A) and (B) is 4-byte : 32-bit or less

(5) The struct declared with an initial value.

3.12 Illegal loop expansion (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When the speed option or the loop option is specified, a loop conditional expression may be illegally
replaced.

[Example]
 int a[100];
 void main(int n) {
 int i;
 for (i=0; i<n; i++) {
 a[i] = 0;
 }
 }

 _main:
 MOV R4,R7
 ADD #-1,R4 ; When a value of R4 is 0x80000000, underflow occurs

; and R4 will have 0x7FFFFFFF.
 MOV R4,R6
 CMP/PL R4 ; The result of the comparison is incorrect.
 MOV #0,R4
 BF L12
 ADD #-1,R6
 :

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The speed option or the loop option is specified.
(2) A loop statement is used in a function.
(3) The loop upper bound is in the range shown below.

(a) When the loop control variable, say i, is incremented like i += step, the value is in the
 range from 0x80000000 to 0x80000000+step-1
(b) When the loop control variable, say i, is decremented like i -= step, the value is in the
 range from 0x7FFFFFFF to 0x7FFFFFFF-step+1
When loop upper bound is in a variable and its value is in the range above, the behavior may
be incorrect.

P0700CAS7-020826E

3.13 Illegal reference to a struct or an array parameter (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When a struct, a union or an array is used in a parameter of a function and this parameter is referred
to in the function, the address to refer to this parameter may be illegal.

[Example]
 typedef struct{
 int A[10];
 double B;
 char F[20];
 } ST;
 extern ST f(ST a,ST b);
 ST S;
 extern int X;
 void func(ST a,ST b) {
 ST t;
 if (a.B!=f(S,t).B){
 X++;
 }
 if (a.B!=b.B){
 X++;
 }
 }

 :
 L12:
 MOV R15,R2
 MOV.W L15+2,R0 ; H'014C
 ADD R0,R2
 MOV R15,R0
 MOV.W L15+4,R0 ; H'0190 R0 is destroyed illegally.
 ADD R0,R0
 MOV.L @R2,R4
 MOV.L @(4,R2),R7
 MOV R0,R2
 MOV.L @R2,R6 ; An address which b.B is not located is accessed.
 :

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) A function has a struct, a union or an array parameter.
(2) This parameter is referred to in the function.

3.14 Illegal deletion of a JMP instruction (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When the speed option is specified, a JMP instruction may be deleted.
[Example]

 void f(){
 int i,j=0;
 for (i=0; i<10; i++)
 if (j%2) j++;
 sub();
 }

 void sub() {
 :
 }

P0700CAS7-020826E

 _f:
 :
 L20:
 ADD #-1,R5
 TST R5,R5
 BF L11
 MOV.L L23,R2 ; _sub These instructions are deleted.
 JMP @R2 ;
 NOP ;
 L18:
 MOV R6,R0
 AND #1,R0
 BRA L16
 MOV R0,R2
 L13:
 MOV R6,R0
 AND #1,R0
 BRA L14
 MOV R0,R2
 _sub:
 :

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The speed option is specified.
(2) The function ends with a function call.
(3) This function call is not in-line expanded.
(4) The definition of the callee function follows that of the caller function.
(5) A loop statement or a conditional statement is used in the caller function.

3.15 Illegal loop expansion (Ver.7.0.04 -> Ver.7.0.06)
The following problem is fixed.

When the following program is compiled with the optimize=1 option, a loop conditional expression
may be illegally replaced.

[Example]
 void f1() {
 int i;
 for (i=-1; i<INT_MAX; i++) {
 a[i] = 0;
 }
 }

 _f1:
 MOV.L L13,R2 ; _a
 MOV #-4,R6 ; H'FFFFFFFC
 MOV R6,R5
 MOV #0,R4 ; H'00000000
 ADD #-4,R2
 L11:
 ADD #4,R6
 MOV.L R4,@R2
 CMP/GE R5,R6 ; compare with H'FFFFFFFC
 ADD #4,R2
 BF L11
 RTS
 NOP

P0700CAS7-020826E

[Condition]
This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) A loop statement is used in the function.
(3) The result of (loop upper bound - loop lower bound) overflows.
 For example : for(i=-1; i<0x7FFFFFFF; i++)

3.16 Illegal stack access (Ver.7.0.06 -> Ver.7.1.00)
The following problem is fixed.

When an address of a parameter passed on a register is referred to, a data on the stack may be
superseded illegally.

[Example]
 extern void er();
 extern char f2(char *a);
 void f(char a) {
 char c;
 a++; // updates the variable which is a parameter on a register
 do {
 c=f2(&a); // refers to an address of a parameter on a register
 if (c) er();
 else return;
 } while(c);
 }

 _f:
 MOV.L R13,@-R15
 MOV.L R14,@-R15
 STS.L PR,@-R15
 ADD #-4,R15
 MOV R4,R0
 ADD #1,R0
 MOV.B R0,@(3,R15) ; updates the variable "a"
 MOV.L R4,@R15 ; the variable "a" is superseded illegally
 MOV.L L14+2,R13 ; _f2
 :

[Condition]
The problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) A parameter on a register exists.
(3) An address of this parameter is referred to in a function.
(4) An assignment to this parameter exists before reference to the address.
(5) Copying a parameter on a register into the stack is moved after assignment to the parameter to

the parameter by the optimization of instruction scheduling.

P0700CAS7-020826E

3.17 Deletion of an assignment to the register (Ver.7.0.06 -> Ver.7.1.00)
The following problem is fixed.

An assignment to the register for which #pragma global_register has been specified may be illegally
deleted.

[Condition]
The problem may occur when all of the following conditions are satisfied.

(1) #pragma global_register is specified.
(2) The optimize=1 option is specified.
(3) The variable specified in (1) is defined or used in a single expression such as a compound

assignment expression.
 <Example>
 #pragma global_register(a=R14)
 :

 a += b; // or a=a+b;

3.18 Illegal comparison of a 32-bit bitfield (Ver.7.0.06 -> Ver.7.1.00)
The following problem is fixed.

Before comparing a 32-bit bitfield to 0, an AND operation with 0 may be illegally generated. The
result will always be true (or false).

[Example]
 struct ST {
 unsigned int b: 32;
 };

 void f(struct ST *x) {
 if (x->b) {
 :
 }
 }
 :
 MOV.L @R4,R0
 AND #0,R0 ; ANDed with 0.
 TST R0,R0 ; Always true.
 BF L12 ; A branch to L12 will not occur.
 :

[Condition]
The problem may occur when all of the following conditions are satisfied.

(1) There is a 32-bit field member in a structure.
(2) The relevant member is compared to 0 (== or !=).

3.19 Illegal instruction to move stacks while the trapa_svc function is in use (Ver.7.0.06 -> Ver.7.1.00)
The following problem is fixed.

If pic=1 is specified for compilation, an illegal instruction to move stacks may be generated when
loading the address of the function that uses the intrinsic function trapa_svc.

[Example]
 #include <machine.h>
 extern char *b(void (*yyy)(char));

 void y(char c) {
 trapa_svc(160, 10, c);
 }

 char *a(void) {
 return b(y);
 }

P0700CAS7-020826E

 _a:
 MOV.L L14,R4 ; _y-L12
 MOVA L12,R0
 ADD R0,R4
 L12:
 MOV.L @R15+,R0 ; <- Unnecessary instruction to move stacks
 MOV.L L14+4,R2 ; b-L13
 MOVA L13,R0
 ADD R0,R2
 L13:
 JMP @R2
 MOV.L @R15+,R0 ; <- Unnecessary instruction to move stacks

[Condition]
The problem may occur when all of the following conditions are satisfied.

(1) An option other than cpu=sh1 is specified.
(2) The pic=1 option is specified.
(3) The intrinsic function trapa_svc is in use.
(4) The location of loading the address that uses the trapa_svc function comes later than the

location where the trapa_svc function is called.

3.20 Illegal movement of a copy instruction for R0-R7 (Ver.7.0.06 -> Ver.7.1.00)
The following problem is fixed.

Due to an optimization, a copy instruction or an extended instruction for R0-R7 may be illegally
moved beyond the range of calling functions. The result of CMP/EQ (TST) may be incorrect.

[Example]
 :
 MOV.L @R4,R2
 MOV R5,R14
 MOV #1,R5 ; H'00000001
 ADD #24,R2
 MOV.L @R2,R6
 EXTU.W R14,R1 ; The definition of R1 moves beyond JSR
 MOV.L @(8,R2),R7
 JSR @R7 ; R1 may be damaged at the callee
 ADD R6,R4
 MOV #4,R2 ; H'00000004
 CMP/EQ R2,R1 ; Compares by using the value of damaged R1
 EXTU.W R0,R0
 BF L16
 :

P0700CAS7-020826E

[Condition]
The problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) The program includes conditional branches and calling of functions.
(3) An optimization has been performed as follows;
 <Before an optimization>
 MOV R0, Rn ; or EXTU R0,Rn
 :
 MOV Rx, R0 ; or EXTU Rx,R0
 TST #imm, R0 ; or CMP/EQ #imm,R0

 MOV Rn, R0 ; or EXTU Rn,R0

<After an optimization>
 MOV Rx, Rm ; or EXTU Rx,Rm
 MOV #imm, Ry
 TST Ry, Rm ; or CMP/EQ Ry,Rm

(4) In the optimization mentioned in (3), the Rm register is R0-R7. No other instruction in this
function uses this register.

(5) Due to another optimization, the MOV Rx,Rm (or EXTU) function, which has been generated
by the optimization mentioned in (3), is moved beyond the range of calling functions.

3.21 Countermeasure against the chip defect regarding SH-2E FDIV (Ver.7.0.06 -> Ver.7.1.00)
The chip defect regarding the FDIV instruction of SH7055RF FPU has been taken into account.

Specify both cpu=sh2e and patch=7055 options to avoid the defect.

4. Standard library Generator
4.1 realloc space (Ver.2.0 -> Ver.2.0(01))

The following problem is fixed.
After the call of realloc(), malloc() may fail to allocate space even though there should be enough
space remaining.

5. Format converter
5.1 Unrecognized input files (Ver.1.0C -> Ver.1.0.04)

Fixed is the problem in which the format converter can not recognize input files when input files exist
in the folder with compress attribute.

6. Optimizing Linkage Editor
6.1 Internal error(7041) with the output option specified (Ver.7.1.04 -> Ver7.1.05)

Fixed is the problem in which an internal error(7041) occurs when the following conditions are
satisfied at the same time.

[Conditions]
(1) The input file is compiled with the goptimize option.
(2) The output option is specified with range specification.
(3) The nooptimize option is not specified.

6.2 Incorrect optimization with partial suppression of the optimization
Fixed is the problem in which the partial suppression of the optimization does not work. The problem

occurs when the following conditions are satisfied at the same time.
 [Condition]

(1) The input file is compiled with the goptimize option.
(2) The nooptimize option is not specified.
(3) The absolute_forbid option is specified.
(4) More than one address ranges are specified to the absolute_forbid option.
 (All but the first becomes ineffective)

P0700CAS7-020826E

6.3 Incorrect object code in generating a relocatable file (Ver.7.1.04 -> Ver7.1.05)
Fixed is the problem in which an incorrect object code is generated when the following conditions are

satisfied at the same time.
[Condition]

(1) The input file is relocatable file.
(2) The form=relocate option is specified.
(3) The delete or rename option is specified.

6.4 Incorrect error(2410) with optimization of external variable accesses (Ver.7.1.04 -> Ver7.1.05)
Fixed is the problem in which an incorrect error occurs when the following conditions are satisfied at

the same time.
[Condition]

(1) The input file is compiled with the map option.
(2) Sections are overlaid in the start option.

6.5 Internal error(1703) regarding the register save/restore optimization (Ver.7.1.04 -> Ver7.1.05)
Fixed is the problem in which an internal error(1703) may occur when the optimization regarding

register save/restore is specified.

6.6 Internal error when optimization is specified (Ver.7.1.05 -> Ver.7.1.06)
Fixed the problem in which an internal error (1703 or 1704) occurs when optimization is specified.

6.7 Internal error when the output option is specified (Ver.7.1.05 -> Ver.7.1.06)
Fixed the problem in which an internal error (7707) occurs when the output range is specified with an

address in the output option.

6.8 Internal error with the HEX, BIN, or Stype output (Ver.7.1.05 -> Ver.7.1.06)
Fixed the problem in which an internal error (3304) occurs when a source program is written in C++

and the output format is HEX, BIN, or Stype.

6.9 Internal error when the map option is specified (Ver.7.1.05 -> Ver.7.1.06)
Fixed problem in which an internal error (8093) occurs when the map option is specified.

6.10 Illegal object when save/restore registers optimization is specified (Ver.7.1.05 -> Ver.7.1.06)
Fixed the problem in which an illegal object code is output when optimization of codes for saving or

restoring registers is specified and either of the following conditions is satisfied:
[Condition]

(1) No literal exists in the final function in the file.
(2) There is a branch destination immediately after the instruction for restoring registers.
(3) The SUBC instruction is included in the function to be optimized.

7. SuperH RISC engine simulator/debugger (UNIX version)
7.1 Supporting the SH3-DSP ASIC core Simulator (Ver.4.11 -> Ver.4.2.00)

This simulator/debugger supports SH3-DSP ASIC core.
The simulator supports co-simulation.

8. Stack Analysis tool
8.1 To support data merge feature on the Stack Analysis tool (Ver.1.2.00 -> Ver.1.3.00)

One of the utility tools, Stack Analysis tool supports DataMerge feature.
You can see stack data which has already generated and stack information file which is generated

optimize linkage editor as merged data on it.

