
(c) 2014. Renesas Electronics Corporation. All rights reserved. Page 1 of 6

　　　　　　　　　　
Date: October 14, 2014

RENESAS TECHNICAL UPDATE
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan
Renesas Electronics Corporation
Inquiry http://japan.renesas.com/contact/

E-mail: csc@renesas.com
Product

Category MPU ＆ MCU Document
No. TN-RL*-A036A/E Rev. 1.00

Title RL78/G1G Limitation Information
Category Technical Notification

Applicable
Products

RL78/G1G
R5F11Exx

Lot No

Reference
Document

RL78/G1G User’s Manual: Hardware
Rev.1.10
R01UH0499EJ0110 (Sep. 2014) All lot

The restriction below applies to the divide instruction (DIVHU or DIVWU) in the above mentioned Applicable
Products.

List of Restrictions to be notified

Item New restrictions Corresponding
page

1 Restriction of the divide instruction (DIVHU, DIVWU) p.2-p.6

Revision History
 Revision history of RL78/G1G restrictions

Document Number Date issued Description

TN-RL*-A036A/E October 14, 2014 First edition issued
List of usage restriction: No. 1 (this document)

RENESAS TECHNICAL UPDATE TN-RL*-A036A/E Date: October 14, 2014

(c) 2014. Renesas Electronics Corporation. All rights reserved. Page 2 of 6

1．About the restrication

<Usage subject to the restriction>

 If the software code applies to ALL of the four conditions below, the code is subject to the restriction.

1) A divide instruction (DIVHU or DIVWU) is executed in an interrupt service routine.

A divide instruction (DIVHU or DIVWU) is defined as Group 1 instruction.

2) Multiple interrupts are enabled in the interrupt service routine in which the divide instruction

(DIVHU or DIVWU) is executed.

3) More than one interrupts with different interrupt priorities occur during the process of the interrupt

service routine mentioned in 2) above.

Please refer to Table 1 for the detail of the priorities of the corresponding interrupts.

4) The divide instruction (DIVHU or DIVWU) is followed by a Group 2 instruction.

Please refer to Item 5. “The List of Group 2 Instruction” for the details of Group 2 instructions. Please note, that

any instruction is classified as “Group 2” if the preceding divide instruction is executed in RAM.

2．Details of the restriction
There is a possibility of unintended operation when branching from Interrupt A to Interrupt C, or branching from

Interrupt C to Interrupt A.

I. A “Group 1” instruction (DIVHU, DIVWU) and a “Group 2” instruction are consecutive in Interrupt A in

which multiple interrupts are enabled.

II. Interrupt B, whose request occurs during the process of Interrupt A, is suspended.

III. Interrupt C is generated during the two clock cycles just before the MCU completes the execution of the

divide instruction (8th or 9th cycle for DIVHU, 16th or 17th cycle for DIVWU).

Figure1. Behavior subject to the restriction

Note 1: Please refer to Item 5. “The List of Group 2 Instruction” for the details of Group 2 instruction.

Note 2: Whether the MCU accepts an interrupt or not depends on the combination of the priority levels

(0 to 3) of the interrupts. Table 1 shows the combinations subject to the restriction.

Divide instruction
(DIVHU, DIVWU)

Interrupt A Interrupt C

← Interrupt B
 is suspended

Group 2
Instruction

Software process

RENESAS TECHNICAL UPDATE TN-RL*-A036A/E Date: October 14, 2014

(c) 2014. Renesas Electronics Corporation. All rights reserved. Page 3 of 6

Table1. Combinations subject to the restriction
Priority level of

Interrupt A
Priority level of

Interrupt B
Priority level of

Interrupt C Restriction

Level 0
Level 1/
Level 2/
Level 3

Level 0

Your code could be
subject to the

restriction.

Level 1
Level 1/
Level 2/
Level 3

Level 0

Level 2 Level 2/
Level 3

Level 0/
Level 1

Level 3 Level 3
Level 0/
Level 1/
Level 2

Other than above
The code is not
subject to the

restriction.

3．Software Workaround
Please implement one of the following software workaround.

（A） Disable interrupts during a divide or modulo operation.

Example:

 __asm(“push PSW”);

DI();

Divide or modulo operation in C

__asm(“pop PSW”);

（B） Insert a NOP instruction immediately after the divide instruction.

Also, if the divide instruction (DIVHU or DIVWU) is executed in RAM, move it to code flash.

Example:

DIVWU ; Divide instruction

NOP ; Insert a NOP instruction

RET ; Group 2 instruction

In the case of using a High-level language including C, compilers may generate the instructions

subject to this restriction. In this case, take the workaround (A).

Note: In the case of Renesas compiler CA78K0, “#pragma di” should be declared in the code to use DI();

RENESAS TECHNICAL UPDATE TN-RL*-A036A/E Date: October 14, 2014

(c) 2014. Renesas Electronics Corporation. All rights reserved. Page 4 of 6

4．Permanent Measure
We will implement the software workaround into Renesas compiler CA78K0R V1.7.1.

Detail of the implementation:

CA78K0R V1.7.1 always inserts a NOP instruction immediately after each DIVWU / DIVHU instruction

when building. This Implementation eliminates the need for the software workaround mentioned in

Item 3. Software Workaround”.Note

V1.7.1 Release Schedule: November 18, 2014

Note: If a divide instruction (DIVHU or DIVWU) is executed in RAM, code modification is required.

RENESAS TECHNICAL UPDATE TN-RL*-A036A/E Date: October 14, 2014

(c) 2014. Renesas Electronics Corporation. All rights reserved. Page 5 of 6

5. List of Group2 instruction
 In the case a divide instruction (DIVHU or DIVWU) is followed by an instruction of Group2, it is subject to the restriction

mentioned in this report. Instruction meeting one of the following conditions (Condition 1 to 3) is subject to Group2.

Condition 1: Instruction whose execution cycles are 2 or more.

Instruction Operand

XCH

A, saddr
A, sfr
A, !addr16
A, [DE]
A, [DE+byte]
A, [HL]
A, [HL+byte]

A, [HL+B]

A, [HL+C]
ADD saddr, #byte
ADDC saddr, #byte
SUB saddr, #byte
SUBC saddr, #byte
AND saddr, #byte
OR saddr, #byte
XOR saddr, #byte

Instruction Operand

INC saddr
INC !addr16
INC [HL+byte]
DEC saddr
DEC !addr16
DEC [HL+byte]
INCW saddrp
INCW !addr16

INCW [HL+byte]
DECW saddrp
DECW !addr16
DECW [HL+byte]
MOV1 saddr.bit, CY
MOV1 sfr.bit, CY
MOV1 [HL].bit, CY
SET1 saddr.bit
SET1 sfr.bit
SET1 !addr16.bit
SET1 [HL].bit
CLR1 saddr.bit
CLR1 sfr.bit
CLR1 !addr16.bit
CLR1 [HL].bit

Instruction Operand

CALL All
CALLT All
BRK -
RET -
RETI -
RETB -

BR All

BC All
BNC All
BZ All
BNZ All
BH All
BNH All
BT All
BF All
BTCLR All
HALT -

STOP -

Condition 2: Instruction reading the code flash memory or the mirror area.

Instruction in the tables below of reading the code flash memory or the mirror area is subject to “Group 2”.

Instruction Operand

MOV

A, !addr16
A, [DE]
A, [DE+byte]
A, [HL]
A, [HL+byte]
A, [HL+B]
A, [HL+C]
A, word[B]
A, word[C]
A, word[BC]
B, !addr16
C, !addr16
X, !addr16
A, ES:!addr16
A, ES:[DE]
A, ES:[DE+byte]
A, ES:[HL]
A, ES:[HL+byte]
A, ES:[HL+B]
A, ES:[HL+C]
A, ES:word[B]
A, ES:word[C]
A, ES:word[BC]
B, ES:!addr16
C, ES:!addr16
X, ES:!addr16

Instruction Operand

MOVW

AX, !addr16
AX, [DE]
AX, [DE+byte]
AX, [HL]
AX, [HL+byte]
AX, word[B]
AX, word[C]
AX, word[BC]
BC, !addr16
DE, !addr16
HL, !addr16
AX, ES:!addr16
AX, ES:[DE]
AX,
ES:[DE+byte]
AX, ES:[HL]
AX,
ES:[HL+byte]
AX, ES:word[B]
AX, ES:word[C]
AX,
ES:word[BC]
BC, ES:!addr16
DE, ES:!addr16
HL, ES:!addr16

Instruction Operand

ADD
ADDC
SUB
SUBC
AND
OR
XOR

A, !addr16
A, [HL]
A, [HL+byte]
A, [HL+B]
A, [HL+C]
A, ES:!addr16
A, ES:[HL]
A, ES:[HL+byte]
A, ES:[HL+B]
A, ES:[HL+C]

CMP

A, !addr16
A, [HL]
A, [HL+byte]
A, [HL+B]
A, [HL+C]
!addr16, #byte
A, ES:!addr16
A, ES:[HL]
A, ES:[HL+byte]
A, ES:[HL+B]
A, ES:[HL+C]
ES:!addr16,
#byte

CMP0
!addr16
ES:!addr16

CMPS
X, [HL+byte]
X, ES:[HL+byte]

Instruction Operand

ADDW

AX, !addr16

AX, [HL+byte]
AX, ES:!addr16
AX, ES:
[HL+byte]

SUBW

AX, !addr16
AX, [HL+byte]
AX, ES:!addr16
AX, ES:
[HL+byte]

CMPW

AX, !addr16
AX, [HL+byte]
AX, ES:!addr16
AX, ES:
[HL+byte]

MOV1
CY, [HL].bit
CY, ES:[HL].bit

AND1
CY, [HL].bit
CY, ES:[HL].bit

OR1
CY, [HL].bit
CY, ES:[HL].bit

XOR1
CY, [HL].bit
CY, ES:[HL].bit

BT ES:[HL].bit,
$addr20

BF ES:[HL].bit,
$addr20

RENESAS TECHNICAL UPDATE TN-RL*-A036A/E Date: October 14, 2014

(c) 2014. Renesas Electronics Corporation. All rights reserved. Page 6 of 6

Condition 3 : Instruction suspending interrupt requests.

Instruction listed in the table below that suspends interrupt requests, is subject to Group2.
Instruction Operand

MOV PSW, #byte
MOV PSW, A
MOV1 PSW.bit, CY
SET1 PSW.bit
CLR1 PSW.bit
RETB -
RETI -
POP PSW

BTCLR PSW.bit,$addr2
0

EI -

DI -

SKC -

SKNC -
SKZ -
SKNZ -
SKH -
SKNH -

Instruction writing to the registers below is subject to Group2 since it suspends interrupt requests.

Writing to the registers below by register addressing is also subject to the condition3.

 The table below shows the instruction writing to the registers listed above。

Instruction Operand

MOV sfr, #byte
MOV !addr16, #byte
MOV sfr, A
MOV !addr16, A
MOV [DE], A
MOV [DE+byte], #byte
MOV [DE+byte], A
MOV [HL], A
MOV [HL+byte], #byte
MOV [HL+byte], A
MOV [HL+B], A
MOV [HL+C], A
MOV word[B], #byte
MOV word[B], A
MOV word[C], #byte
MOV word[C], A
MOV word[BC], #byte
MOV word[BC], A

Instruction Operand

XCH A, sfr
XCH A, !addr16
XCH A, [DE]
XCH A, [DE+byte]
XCH A, [HL]
XCH A, [HL+byte]
XCH A, [HL+B]
XCH A, [HL+C]
ONEB !addr16
CLRB !addr16
MOVS [HL+byte], X
MOVW sfrp, #word
MOVW sfrp, AX
MOVW !addr16, AX
MOVW [DE], AX
MOVW [DE+byte], AX
MOVW [HL], AX
MOVW [HL+byte], AX
MOVW word[B], AX
MOVW word[C], AX
MOVW word[BC], AX

Instruction Operand

INC !addr16
INC [HL+byte]
DEC !addr16
DEC [HL+byte]
INCW !addr16
INCW [HL+byte]
DECW !addr16
DECW [HL+byte]
MOV1 sfr.bit, CY
MOV1 [HL].bit, CY
SET1 sfr.bit
SET1 !addr16.bit
SET1 [HL].bit
CLR1 sfr.bit
CLR1 !addr16.bit
CLR1 [HL].bit
BTCLR sfr.bit, $addr20
BTCLR [HL].bit, $addr20

・ Interrupt request flag register

 IF0L, IF0H, IF1L, IF1H, IF2L, IF2H

・ Interrupt mask flag register

 MK0L, MK0H, MK1L, MK1H, MK2L, MK2H

・ Priority specification flag register

 PR00L, PR00H, PR01L, PR01H, PR02L, PR02H

 PR10L, PR10H, PR11L, PR11H, PR12L, PR12H

