RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

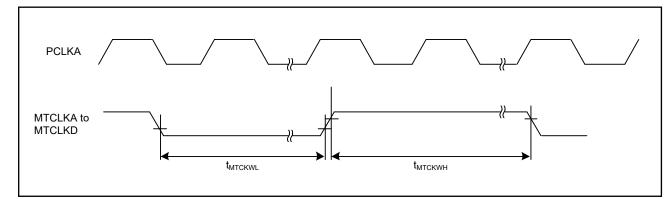
Product Category	MPU/MCU		Document No.	TN-RX*-A0244A/E	Rev.	1.00
Title	Errata to the Section on Electrical Characteristics in the RX66N Group User's Manual: Hardware		Information Category	Technical Notification		
Applicable Product	RX66N Group	Lot No. All	Reference Document	RX66N Group User's Manual: Hardware Rev.1.00 (R01UH0825EJ0100)		

This document describes corrections to the section on Electrical Characteristics in the RX66N Group User's Manual: Hardware, Rev.1.00.

• Page 2971 of 3050

The frequency of ICLK described in Conditions 2 of Table 61.26, Bus Timing is corrected as follows.

Before correction


Table 61.26 **Bus Timing** Conditions 1: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = 0 V, ICLK = PCLKA = 8 to 120 MHz, PCLKB = BCLK = SDCLK = 8 to 60 MHz, T_a = T_{opr}, Output load conditions: $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, C = 30 pF, High-drive output is selected by the driving ability control register. Conditions 2: VCC = AVCC0 = AVCC1 = VCC USB = V_{BATT} = 3.0 to 3.6 V, 3.0 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = 0 V, ICLK = PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, 60 MHz < BCLK = SDCLK \leq 80 MHz, T_a = T_{opr}, Output load conditions: $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, C = 15 pF for the SDCLK pin, C = 30 pF for other pins. To control the drive capacity when using the SDRAM: set the PFBCR3.SDCLKDRV bit in external bus control register 1 to 1 to select the drive capacity of the SDCLK pin, and set the SDRAM pins other than the SDCLK pin as highspeed-interface driving outputs. After correction Table 61.26 **Bus Timing** Conditions 1: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = 0 V, ICLK = PCLKA = 8 to 120 MHz, PCLKB = BCLK = SDCLK = 8 to 60 MHz, T_a = T_{opr}, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the drive capacity control register. Conditions 2: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 3.0 to 3.6 V, 3.0 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = 0 V, ICLK = 60 to 120 MHz, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, 60 MHz < BCLK = SDCLK ≤ 80 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 15 pF for the SDCLK pin, C = 30 pF for other pins. To control the drive capacity when using the SDRAM: set the PFBCR3.SDCLKDRV bit in external bus control register 1 to 1 to select the drive capacity of the SDCLK pin, and set the SDRAM pins other than the SDCLK pin as highspeed-interface driving outputs.

• Page 2988 of 3050

The MTIOC1A pin is added to Figure 61.41, MTU Clock Input Timing as follows.

Before correction

Figure 61.41 MTU Clock Input Timing

After correction

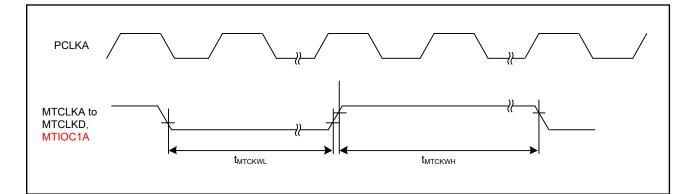
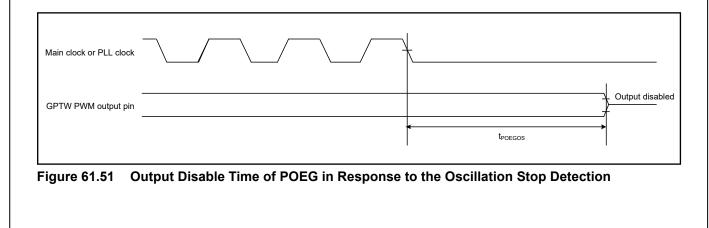



Figure 61.41 MTU Clock Input Timing

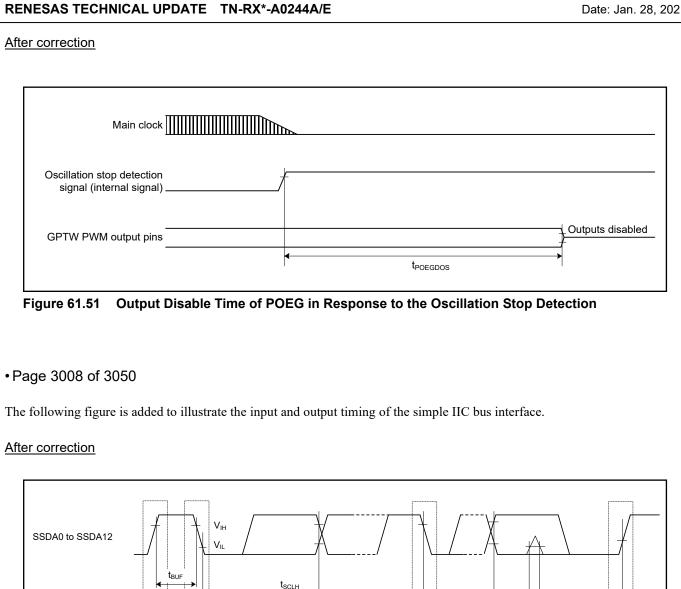
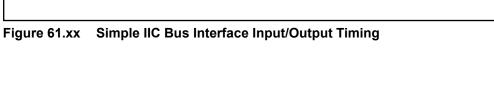

• Page 2992 of 3050

Figure 61.51, Output Disable Time of POEG in Response to the Oscillation Stop Detection is corrected as follows.

Before correction

t_{STAS}


tspas

 $V_{IH} = 0.7 \times VCC, V_{IL} = 0.3 \times VCC$

Test conditions

 $V_{OL} = 0.6 \text{ V}, I_{OL} = 6 \text{ mA}$

Sı

t_{STAH}

t_{SCLL}

Note 1. S, P, and Sr indicate the following conditions. S: Start condition

t_{SCL}

ts

I← t_{SDAH}

S*1

t_{Sf}

P: Stop condition

Sr: Restart condition

SSCL0 to SSCL12

|← t_{STOS}