

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 1 of 21
REJ10J1987 -0100

Subject

= = = Be sure to read this note = = =

M32R Family C/C++ compiler package (CC32R)

V.5.01 Release 01

Release Notes 1th Edition

Renesas Solutions Corp.

May 1, 2009

Welcome to M32R Family C/C++ compiler package (abbreviated as CC32R) V.5.01 Release
01. This document contains supplementary descriptions to the electronic User's Manual.
Please read this release note while you refer to a corresponding item in electronic User's
Manual.

Renesas Technology Corp. and Renesas Solutions Corp. reserve the right to change the contents of this
release note without notice for improvements on characteristics, etc.

Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks
of Microsoft Corporation in the United States and other countries.
HP-UX is a registered trademark of Hewlett-Packard Company.
Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries, and are used under license.
UNIX is a registered trademark of The Open Group in the United States and other countries.
IBM and AT are registered trademarks of International Business Machines Corporation.
HP9000 is a product name of Hewlett-Packard Company.
SPARC and SPARCstation are registered trademarks of SPARC International, Inc.
Intel and Pentium are registered trademarks of Intel Corporation.
i386, i486, and MMX are trademarks of Intel Corporation.
Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the U.S. and other
countries.
All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

===

COPYRIGHT(C) 2009 Renesas Technology Corp. and Renesas Solutions Corp.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 2 of 21
REJ10J1987 -0100

1. Changes from the previous version..3
2. Precautions to be observed when installing.. 4

6
6
7
7
7
9
9
9
9
9

10
10

4.2 Pragma Operator ...10
10
10
10
11
11
11
11
11
11
12
13
18
20

3. Installing CC32R..
3.1 How to install CC32R..
3.2 How to uninstall ..
3.3 Setting PC environment..
3.4 How to browse the electronic manual ..
4. Explanation of the added functions..

4.1 Designation...
4.1.1 Abstract ..
4.1.2 Syntax...
4.1.3 Details...
4.1.4 Other examples ...
4.1.5 Notes...

4.2.1 Abstract ..
4.2.2 Syntax...
4.2.3 Details...
4.2.4 Another example ..
4.2.5 Notes...

4.3 Variable argument macro...
4.3.1 Abstract ..
4.3.2 Syntax...
4.3.3 Details...
4.3.4 Notes...

5. Restrictions on Usage ...
6. Erratas of User's Manuals ..
7. Software table...

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 3 of 21
REJ10J1987 -0100

1. Changes from the previous version

The changes from V.5.01 Release 00 are as follows.

Upgrade of the High-performance Embedded Workshop
The High-performance Embedded Workshop included in the compiler package has been
upgraded to V.4.05.01.

Support for Additional SQMlint (MISRA C Rule Checker) Options
The SQMlint options listed below are newly supported. For other options, refer to the latest
user's manual for the SQMlint.

Option Description
-ignore_files_misra
<filename>[,<filename>...]

The specified file is not inspected.
- In the form of both a "file name" and "a file name with a
directory" can describe a file name.
(file, dir/file, drive:/dir/file)
- In directory separator '/' and '\' are available.

-check_language_extension It reports on the enhancing key word (__abs8 etc.) and extended
specifications (one byte enum) as violation of the rule-1.
By default, those keywords and specifications are not treated as
violations of rule-1.

-check_no_prototype_extension It reports as a violation to rule-71 when there is no prototype
declaration of the function modified by __entry or __interrupt.
By default, such cases are not treated as violations of rule-71.

The following seven problems have been fixed:
• On calculating some stack usage of run-time operation routines of type float, the stk32R

may answer that the stack sizes of these functions are unknown. (C Compiler):
Published to RENESAS TOOL NEWS on October 16, 2008: 081016/tn7

• On using float-type multiplication and subtraction, the compiler may generate an
incorrect FMSUB instruction. (C Compiler):
Published to RENESAS TOOL NEWS on October 16, 2008: 081016/tn6

• On using a function-like macro that takes the same function-like macro as an argument,
the compiler may not expand the same function-like macro. (C Compiler):
Published to RENESAS TOOL NEWS on September 1, 2008: 080901/tn3

• On making a function-like macro statement that extends over more than one line and uses
comments beginning with // or enclosed with /* and */ the compiler may display an
error. (C Compiler):
Published to RENESAS TOOL NEWS on July 1, 2008: 080701/tn1

• On using ten thousand or more initializing expressions, the compiler may not compile
normally. (C Compiler):
Published to RENESAS TOOL NEWS on August 1, 2007: 070801/tn1

• During compilation of source files, the preprocessor (cpre.exe) encounters a Windows
error.

• When an inline function and the -CS option are used, the C-source merge processor
(cmerge.exe) encounters an error.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 4 of 21
REJ10J1987 -0100

2. Precautions to be observed when installing

Please pay attention to the following point, in starting installation.

About the TM
The TM, former integrated environment, cannot be used in CC32R V.5.00 Release 00 or later.
The integrated environment for CC32R had been changed to the High-performance
Embedded Workshop (it is already included in this product). Therefore, please use it.

[About the TM]
http://www.renesas.com/fmwk.jsp?cnt=ide_tm_tools_product_landing.jsp&fp=/products/tools/ide/ide_tm/

[About the High-performance Embedded Workshop]
http://www.renesas.com/fmwk.jsp?cnt=ide_hew_tools_product_landing.jsp&fp=/products/tools/ide/ide_hew/

For reference, about how to move to the High-performance Embedded Workshop, please
refer the URL as follows.
[A guide to Porting Projects Created with TM to High-performance Embedded Workship V.4.
(PDF,352 KB)]
http://www.renesas.com/media/support/faqimage/products/mpumcu/tool/hew_106629_en_GL_pdf.pdf

About the license ID
You need to input a license ID in the intermediate step of installation. Before you start
installing CC32R, check your license ID.
Yet, a fee is necessary to the changing from previous version to V.5.00 Release 00. Therefore,
this version of CC32R cannot be installed by license ID of V.4.30 Release 00 or earlier.

Necessary memory and HDD capacity
In order that CC32R operates comfortably, it requires at least 64 Mbytes of memory and a
hard disk drive having 500M bytes or more bytes of space.

Operating environment
The CC32R does not run under Windows 3.1 and Windows NT3.5x or earlier.
For Windows Vista®, refer to "Installation Directory" in chapter 5, Restrictions on Usage.

Precautions about the file name and directory name
The file name and directory name of the source program must follow the precautions
described below:
• Directory and file names that contain multi-byte character (ex. Japanese-Kanji) cannot be used.
• Only one period (.) can be used in a file name.
• Network path names cannot be used. Assign the path to a drive name.
• Shortcuts cannot be used.
• Directory and file names that contain a space character cannot be used.
• The "..." symbol cannot be used as a means of specifying two or more directories.
• A file name in length of 128 characters or more including path specification cannot be used.

When the SQMlint (MISRA C rule checker) should be installed
Please be sure to install the SQMlint after the CC32R.
If the CC32R is installed after the SQMlint, that cannot use the function of the SQMlint.
For details, refer to the manual or release note that are attached to the SQMlint.

About the Install Manager (V.5.01 or later)
The CC32R that is the V.5.01 Release 00 or later is installed by through the Install Manager.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 5 of 21
REJ10J1987 -0100

Therefore, please confirm the paragraph 3.1 "How to install CC32R" in this document,
because the installation procedure differs from the V.5.00 Release 00 and older.
The Install Manager can install plural integrated environment High-performance
Embedded Workshop on one PC. You can construct plural tool-environments (means
combinations of compilers and debuggers) by this function of the Install Manager.
For more details, look the help topics that will be displayed when first Install Manager
execution.

About technical support
For technical support, input user information. Then, the support information will be
displayed in the support information tool on end of installations.

Please tell us question item with this support information when you take a technical
support.

Settings of environment variables
The environment variables listed below must always be set. If one of these variables
remains unset or an invalid path is specified, an error may occur when running the software.
(These variables do not need to be set when running the CC32R from TM.)

M32RLIB
M32RBIN
M32RINC
M32RTMP

Precautions about virus check programs
If this software is started while a virus check program is resident in memory, it may not
operate properly. In such a case, remove the virus check program from memory before you
start the software.

Restrictions and Precautions
The Restrictions and Precautions sometimes are being published to this document. Before
using CC32R please read attentively these contents.
These contents include several precautions that were found after the manual was made.

How to get the latest information of CC32R
Renesas has an internet home page in the URL shown below. The latest information on
Renesas Development Environment are published here.
http://www.renesas.com/en/tools

For information on our policy concerning the protection of personal information, please
refer to the Renesas Technology Homepage.
URL: http://www.renesas.com/fmwk.jsp?cnt=privacy.htm&fp=/privacy/&site=i
The information we receive via the User Registration Form aids us greatly in our
customer support activities. We provide Renesas Technology and related companies,
distributors, etc., with essential user information (electronically or on paper) that will
further help them provide customer support.
If you do not wish to have your user information provided to other related companies,
please contact us to let us know. Note, however, this will limit our ability to provide
complete product support.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 6 of 21
REJ10J1987 -0100

3. Installing CC32R

3.1 How to install CC32R

1. Execute the installer by the method of items as follows (A or B).
A. In the case of installing from the included CD:

Set the CD to CD-ROM drive of your PC. The installer (install manager) will run automatically.
If it will not run automatically, please run the hewinstman.exe on the CD root directory.

B. In the case of utilizing online version up]:
Download installer files and install by the method that is written to the tool homepage.

2. Control the install manager by the method of items as follows (A or B).
A. In the case of the first time of High-performance Embedded Workshop installing:

 If the High-performance Embedded Workshop is already installed Jump to "B. The case
of High-performance Embedded Workshop already installed"

1) Push "Installation" button.
[About entering user information]

The data you input in the intermediate of installation is used to create a file for technical
supporting sheet.

 Please confirm "Entering user registration" of chapter 2, for information on our policy
concerning the protection of personal information.

2) Check "Install a High-performance embedded workshop for the first time." and push
"Next" button.

3) The install directory of High-performance Embedded Workshop will be displayed on the
"Choice of an installation". Ordinariness does not exist the problem as it is, please push
"Next" button.

[About installation directory]
This directory only for High-performance Embedded Workshop. The directory of CC32R
(C/C++ Compiler) will be inputted by the installer that run after the operations.

4) Please check the softwares you want, and push "Install" button.
In the default, the main compiler "M32R Toolchains V.X.XX Release xx" and "Autoupdate"
are checked.

[What is the AutoUpdate Utility?]
The AutoUpdater will start and station into PC automatically.
The AutoUpdater is an utility that watch the Renesas HomePage periodically and detects the
renewal of the installed development tools.

5) "Do you wish to install a new High-performance embedded workshop ?" will be displayed.
Please push "Yes" button.

The installers were selected would run in order. jump to the step 3.

B. In the case of High-performance Embedded Workshop already installed:
1) Push "Installation" button.
2) Select "Update the active High-performance embedded workshop (Recommend)", and

push "Next" button.
3) The installed list in present were displayed. Push "Next" button.
4) Please check the software you want, and push "Install" button. In the default, the main

compiler "M32R Toolchains V.X.XX Release xx" and "Autoupdate Utility" are checked.

[What is the AutoUpdate Utility?]
The AutoUpdater will start and station into PC automatically.
The AutoUpdater is an utility that watch the Renesas HomePage periodically and detects the
renewal of the installed development tools.

5) "Do you wish to update the active High-performance embedded workshop ?" will be

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 7 of 21
REJ10J1987 -0100

displayed. Please push "Yes" button.
The installers were selected would run in order. jump to the step 3.

3. Please follow the each installer's messages.

[About target directory of installation]
The install directory of the CC32R (C/C++ Compiler) could be inputted in the installer that was
launched in the step. Its default is "C:\Renesas\CC32R\v501r01".

[Constitution of start menu]
After installation, the folders and shortcuts that showed them below will be registered to the
[start]->[Programs]->[Renesas].

High-performance Embedded Workshop
M3T-CC32R V.x.xx Release xx (Numbers or versions are displayed to "x".)
Renesas Tools HomePage

4. It is return to the install manager.
Push [Exit] button to end the install manager.

3.2 How to uninstall
The program that became unnecessary can be eliminated from PC by the following method.

1. Confirm whether or not the AutoUpdate icon is on the Windows task tray.
If its icon is exist, choose by the right click, and select "(E)nd" to finish the AutoUpdate .

2. Open the "Add and remove programs" (or "Add and remove applications" [**]) from
the Windows "Control panel".

3. Select “High-performance embedded workshop” in the "Add and remove
programs" list and click the "Modify and remove". (This button may be not the "Modify
and remove" but the "Remove" or "Add and remove"[**].)

[**] These differ by Windows.

4. Uninstallation will start. Then wait until "Completed" is displayed and push "OK".

3.3 Setting PC environment
If you use on DOS prompt, please set environment variables like Table 1.

Table 1 Example of setting PC environment variables
(The directory name of the installation is supposed with "C:\Renesas\cc32r\v501r01" .)

Environment names Example of settings
M32RBIN SET M32RBIN=C:\Renesas\cc32r\v501r01\bin32R
M32RLIB SET M32RLIB=C:\Renesas\cc32r\v501r01\lib32R
M32RINC SET M32RINC=C:\Renesas\cc32r\v501r01\inc32R
M32RTMP SET M32RTMP=C:\Renesas\cc32r\v501r01\TMP
M32RKIN SET M32RKIN=euc
M32RKOUT SET M32RKOUT=euc
Command path PATH %M32RBIN%;%PATH%

[NOTES]
• In this setup example, products are installed by "C:\Renesas\cc32r\v501r01" of the installer.

If you wish to install products in a different directory, change the setup contents to the one you
want.

• If you use from High-performance Embedded Workshop you do not need to be set these
environment variables.

3.4 How to browse the electronic manual
To see these electronic manuals, use a PDF file displaying program, like a "Adobe Acrobat
Reader". So install it in your computer as necessary.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 8 of 21
REJ10J1987 -0100

• About the Acrobat Reader
Download "Adobe Acrobat Reader" from following URL of Adobe Systems Incorporated.
The latest Acrobat Reader can be downloaded from this home page. Please refer to the
following URL about the environment can be use and the latest information for Acrobat
Reader.

 http://www.adobe.com/
When using CC32R, there are following two methods for displaying an electronic manual:

1. The electronic manuals are registered in the start menu when installing by default.
Choose the necessary electronic manual file from menu
[Start] [(All) Programs] [Renesas] [M32R Family C,C++ Compiler V.x.xx
Release x]
(x expresses version number etc.)

2. Open by double-clicking an electronic manual file
The electronic manuals are installed in the below
C:\Renesas\cc32r\v501r01\manual by installation directory of default
(C:\Renesas\cc32r\v501r01). Double-click these files to open an electronic manual
by Acrobat Reader.It is possible to read manuals, that you open by double-clicking these
files (extension .pdf).

The following Table 2 lists the electronic manual files.
Table 2 Electronic manual file names

Languages Manual names PDF file names

M32R Family C/C++ Compiler Package
C/C++ Compiler User's Manual

cc32rue.pdf

M32R Family C/C++ Compiler Package
Assembler User's Manual as32rue.pdf English

MAP Viewer User's Manual mapue.pdf

M32R Family C/C++ Compiler Package
C/C++ Compiler User's Manual cc32ruj.pdf

M32R Family C/C++ Compiler Package
Assembler User's Manual as32ruj.pdf Japanese

MAP Viewer User's Manual mapuj.pdf

[NOTE] (About User's Manual of MAP Viewer)
MAP Viewer can be used even if it combines with CC32R. (In this manual, MAP
Viewer is used with NC30WA.)

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 9 of 21
REJ10J1987 -0100

4. Explanation of the added functions
This chapter gives information on the functions added to the previous version, V.5.00
Release 00. These functions are not included in the user's manual.

4.1 Designation
4.2 Pragma Operator
4.3 Variable Argument Macro

4.1 Designation

4.1.1 Abstract
The designation can be included in the initializer of structure, union or array. The
designation is described before an initializer constant expression in an initializer-list, and
indicates that this initializer is for which element (means a member of structure, union, or a
cell of array).
The designation is formed by an equal-symbol (=) and a combination of a member name
with a dot (.) and '[' constant ']' (array reference).
The following descriptions are some examples of designation:
 .member =
 [3] =
 [3][5].member =
 .member[4] =
Because an initializer was indicated which element of the object clearly, even if it is
complicatedly nested structure or array should be initialized more clearly.

4.1.2 Syntax

designation:
 designator... =

designator:
 . member-name
 [constant-expression]

The designation is composed by one or more designators list and one equal-symbol(=).
The designator is one of .(dot) and member-name or [constant-expression].
The .(dot) member name means a member of a structure or union. And [constant-
expression] means which number element of an array.

4.1.3 Details
If it is an initializer-list with braces { ... }, the elements of it can have a designation.
For example, there is an { 1, 2, 3 } initializer, you can add designators for one of 1, 2
and 3, or all. To add only 2 and 3, you can describe
 { 1, designation 2, designation 3 }.

Example-1:
For an array:
 int d[] = { 1, [1] = 2, [2] = 3 };
For a structure:
 struct { int a, b, c; } e = { 1, .b = 2, .c = 3 };

If an initializer-list has layer structure, for example, because the { 2, 3 } is an element of
the { 1, { 2, 3 }, 4 }, you can describe
 { 1, designation { 2, 3 }, 4 }
Yet, the desigation for { 2, 3 } needs to be a structure or array that has two or more
elements.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 10 of 21
REJ10J1987 -0100

Example-2:
 struct { int a, b[2], c; } f = { 1, .b = { 2, 3 }, 4 };

To select 2 and 3 directory, both
 { 1, { designation 2, designation 3 }, 4 }
and
 { 1, designation 2, designation 3, 4 }
description are OK.

Example-3:
 struct { int a, b[2], c; } g = { 1, { [0] = 2, [1] = 3 }, 4 };

Example-4:
 struct { int a, b[2], c; } h = { 1, .b[0] = 2, .b[1] = 3, 4 };

4.1.4 Other examples

Example-5 (Combination of array and structure):
struct { int a, b[2], c; } m[] = { [1].a = -1, [2].b = {1,2}, [2].c = 3 };

Example-6 (Initialization does not rely on the order):
struct { int num1, num2, num3; } n = { .num3 = 1, .num1 = -1 };

Example-7 (Designation indicates start of initialization):
float p[9] = {0.001, 0.01, 0.1, [6] = 10, 100, 1000};

Example-8 (Member initialization of an union)
struct w { int a, b, c; };
union { struct w s, t, u; } q = { .t = { 1, 2, 3 } };

4.1.5 Notes
If a designator is not fit to real member or array element, that causes error.

Example-9 (Designation Failure):
struct { int a, b[2], c; } r = { 1, { .b[0] = 2, .b[1] = 3 }, 4 };
Because the designator .b[0] = is inside braces of the part of r.b, this designator .b[0] =
means indicates the non-existence element r.b.b[0] .
So, the intialization will causes an error in a compilation.

Example-10 (Duplicated initialization):
float s[5] = {0.001, 0.01, 0.1, [2] = 10, 100, 1000};
For the same s[2] element, there are two initializers that are 0.1 and 10 . In this case, the
latest initializer 10 must be valid.

4.2 Pragma Operator

4.2.1 Abstract
The pragma operator has same function from the #pragma directive, but it was described
as same condition as a macro calling.
It is convenient for operating any of the #pragma directive functions by using macro.

4.2.2 Syntax
The pragma operator accepts only one string literal as an argument like as follows.

 _Pragma(string-literal)

4.2.3 Details
The pragma operator is processed as same as functional-macro, and replaced to same
meaning some #pragma directives.
For example, _Pragma("INTERRUPT func") has same effect of #pragma INTERRUPT
func.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 11 of 21
REJ10J1987 -0100

Example-1:
_Pragma("INTERRUPT func") /* Process as #pragma INTERRUPT func */
void func(void) { }

Furthermore, if pragma operator was written on the middle of a line, the replaced #pragma
directives was appended new-line characters on up and down.

Example-2:
_Pragma("SECTION B B1") int v2;

 It was replaced as follows:
#pragma SECTION B B1
int v2;

4.2.4 Another example
Example-3 (Functional pragma macro):
Definition variable v with t type and a address.
#define MAKE_IOPORT(v,t,a) PRAGMA_OPR(ADDRESS v a) t v
#define PRAGMA_OPR(x) _Pragma(#x)
MAKE_IOPORT(p4, unsigned short, 0x123400);

 It was replaced as follows:
#pragma ADDRESS p4 0x123400
unsigned short p4;

4.2.5 Notes
The argument of a pragma operator can not be omitted. Furthermore, it can not be written
two or more strings.
 _Pragma()
 _Pragma("INTERRUPT" "func")
 _Pragma("ADDRESS", "a", 0x12340000)

No appending a semi-colon to the end of the operator.
 _Pragma("INTERRUPT func");

4.3 Variable argument macro

4.3.1 Abstract
The macro that has uncertain number of argument can be declarated.

4.3.2 Syntax
#define macro-name(...) replacement-list

or
#define macro-name(parameters, ...) replacement-list

4.3.3 Details
You can use the special form ... in the macro definition. The other macro or comma must
not be described at the right side of the
The arguments will take in order of the from left to right into the paramters.
So remained arguments will take in to the ... , and next, these argumen texpand to the
__VA_ARGS__.

Example-1:
#define err_printf(fmt, ...) fprintf(stderr, fmt, __VA_ARGS__)
err_printf("Error: %s in line %d\n", file, line);

 It was replaced as follows:
fprintf(stderr, "Error: %s in line %d\n", file, line);

If the paramter is only ... , the all arguments will take in to the

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 12 of 21
REJ10J1987 -0100

Example-2:
#define mac2(...) int __VA_ARGS__
mac2(v21, v22, v23, v24);

 It was replaced as follows:
int v21, v22, v23, v24;

4.3.4 Notes
• The parameter other than the right side of a function type macro, can not be the three-dot

(...) type.
• The __VA_ARGS__ is only in the replacement-list of the macro that has three-dot type

parameter.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 13 of 21
REJ10J1987 -0100

5. Restrictions on Usage

There are restrictions of the CC32R.

 Installation Directory
The CC32R does not work correctly if it has been installed in a directory whose name
contains a white space (e.g. Program Files). So, the CC32R will be installed under
“C:\Renesas\cc32r” by default rather than the directory recommended by Windows Vista®.
Please also note that you must be logged on as an administrator to install the CC32R in
those directories.

 Help File for the Map Viewer
The help file attached to the Map Viewer is in the conventional format and not compatible
with Windows Vista®. For how to use the Map Viewer under the Windows Vista®
environment, refer to the Map Viewer User’s Manual (pdf file).

 On using a control or iteration statement containing a substatement of 128
KB or more in code size. (C/C++ Compiler)
Published to RENESAS TOOL NEWS on August 1, 2007: 070801/tn2

If a control statement (an if statement, for example) or an iteration statement (a while
statement, for example) contains a substatement to be executed that consumes a large
amount of memory, compiling C source code including those statements may cause the
following error to arise, and compilation be unsuccessfully terminated:

a132R: "xxx": error: 16-bit displacement overflow in operand 2
NOTICE:

"xxx" is the file name given automatically at compilation by the compiler. It is not the name of the
C/C++ source file to be compiled.

Conditions:
This problem may occur if the following conditions are all satisfied:
(1) In a control or iteration statement exists a substatement of 128 KB or more in code size.
(2) The substatement in (1) is contained to be executed within any of the following

statements:
(a) an if statement; valid only when it executes the substatement in (1) if the result of

evaluation of the controlling expression is TRUE
(b) a switch statement; valid only when the total size of the substatements exceeds 128

KB
(c) a while statement
(d) a do statement
(e) a for statement

Examples:
[sample1.c]
 --
 int ans1;
 void
 func1(int a)
 {
 if (a) { /* Condition (2)-(a) */
 .
 /* This part reaches 128 KB */ /* Condition (1) */
 .
 } else {

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 14 of 21
REJ10J1987 -0100

 ans1 = 1;
 }
 }
 --

[sample2.c]
 --
 int ans2;
 void
 func2(int a)
 {
 switch (a) { /* Condition (2)-(b) */
 case 0:
 .
 /* This part reaches 128 KB */ /* Condition (1) */
 .
 break;
 case 1:
 ans2 = 2;
 break;
 }
 }
 --

[sample3.c]
 --
 void
 func3(int a)
 {
 while (--a) { /* Condition (2)-(c) */
 .
 /* This part reaches 128 KB */ /* Condition (1) */
 .
 }
 }
 --

Solutions:
Avoid this problem in either of the following ways:

(1) In the case of an if statement
Because this problem does not occur if the substatement concerned is placed after else,
invert the meaning of the controlling expression and change the places between the
substatement concerned and the one after else. When the substatement executed if
TRUE is empty after the change, this workaround has no effect.
So be sure to fill it with any statement.

Modification of Example 1 (source file sample1.c)
 [sample1.c (After modified)]
 --
 int ans1;
 void
 func1(int a)
 {
 if (!a) { /* Meaning of controlling expression inverted */
 ans1 = 1; /* Substatement changed */
 } else {
 .
 /* This part reaches 128 KB */ /* Substatement changed */
 .
 }
 }
 --

(2) In the case of any control or iteration statement
Convert the whole substatement or a part of the substatement into a newly created

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 15 of 21
REJ10J1987 -0100

function and call it. Be sure not to declare the function to be inline.

Modification of Example 1 (source file sample3.c)
 [sample3.c (After modified)]
 --
 void
 sub_func3(void) /* Newly created function */
 {
 .
 /* This part reaches 128 KB */
 .
 }
 void
 func3(int a)
 {
 while (--a) {
 sub_func3(); /* Newly created function is called */
 }
 }
 --

 About describing over 20,000 arguments into the cc32R command line
(cc32R compile driver)
The over 20,000 arguments can not be described into the command line of cc32R compile
driver.
If the number of described arguments exceed 20,000, cc32R will cause following error.

<command line>: error: too many arguments

The linking an extremely big application that has nearly 20,000 objects may correspond to
such restriction. (It includes a build in the High-performance Embedded Workshop
workspace.)
However, the linking by the lnk32R linker has not such limitation.
For avoiding it, the number of the designated object at same time needs to be decreased.
For an example, a certain solution is available:
Divide objects to several groups, make libraries of each object groups (by the lib32R
librarian), and describe these libraries into input of the linking.

 Restriction of making a library that have over 16M bytes. (Librarian)
In CC32R, the size of a library is limited to 16M bytes.
If an operation that is for making a library file more than 16M byte is executed, the librarian
lib32R or compiler cc32r will display the following error message.

lib32R: error: overflow total module size (>16Mbytes)

For solution, divide some library files, and describe all of the divided library files into the
linker cc32R.
Furthermore, because of the same reason, the library can't have a object that is over 16M
byte. So, in this case, describe this object into the command line of linker directly.

 About the CPU Selection and the start-up file in the High-performance
Embedded Workshop (Integrated Environment)
In the case of making a new workspace of the integrated environment High-performance
Embedded Workshop, the "CPU Series" item has no effect to the start-up file. Add the
control register setting program needed for the generated start-up file. These settings are
written to the user's manuals of each CPU.
Furthermore, the "CPU Series" and "CPU Types" items at making a new workspace will be
used to the initial setting of the compiling options.

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 16 of 21
REJ10J1987 -0100

 About changing CTOR, VTBL and COMMON sections (C/C++ Compiler)
The CTOR, VTBL and COMMON sections that was made on a C++ compiling
cannot be changed even if one of #pragma SECTION and even -R option was used.
That is because these sections need distinction especially by the standard library and the
linker, also if these section names were changed an obstruction on their processing will
appear. Therefore, those names can not be changed.

 Restriction of #pragma INTERRUPT (INTF) on the C++ language (C/C++
Compiler)
The #pragma INTERRUPT (and the #pragma INTF) designates to an interrupt handling
function can be written on a C++ language. But, the functions that were designated shall be
of the C language.
Therefore, on the C++ language, the function that is designated with the #pragma
INTERRUPT shall be declared by extern "C" description.

 On the case of the very long identifier definition on the C++ language
In the C++ language the result of the 241 or more characters length identifier definition
differs from the C language.

Table 3 The compilation results of identifier that has 241 characters or more

Identifiers In the C language In the C++ language

global objects
Using only the first 240 characters,
and discarding from 241st the
characters of the back.

Using only the first 240 characters,
and discarding from 241st the
characters of the back.

Other identifiers
(function, class,
structure, union,
member,
argument)

Using only the first 240 characters,
and discarding from 241st the
characters of the back.

The compiler recognizes and
distinguishes from 241st the
characters of the back, but these
names are symbolized for the
recognizing.
Therefore, for example, a function
name is not displayed by the
original name in the linking error,
etc.

 On the case of describing outside range value to the #line directive in the
C++ language
In the C++ language the result of describing outside range value to the #line directive
differs from the C language.

Caution:
Even if the language which is C or C++ in CC32R, the 32,768 or more value cannot be
described to the #line directive. Actually, even without defending this regulation, the
generated M32R machine codes will work. However, be careful as for that an compiling
error may occur, and the source file may not be displayed normally when the generated
object is used for debugging.

1 ~ 32,767:
It is processed normally.

32,768 ~ 4,294,967,295:
An internal error may happen as follows.
internal error: BAD Location
internal error: unreachable logic

4,294,967,296 or more:

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 17 of 21
REJ10J1987 -0100

It is processed as an error as follows
error: invalid line number

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 18 of 21
REJ10J1987 -0100

6. Erratas of User's Manuals
User's manuals have some mistypes. So, please read these manuals while correcting to the
contents as following table.

<< C/C++ Compiler >>

Page Place Before Correction After Correction
CC32R MA
NUAL-vi
(6/465)

Chapter 7 Embe
dded Application
s Programming

7.4 About start-up file start.ms in
HEW

7.4 About start-up file start.ms in
High-performance Embedded Wor
kshop

CC32R MA
NUAL-13
(27/465)

2.2 Compatibility
 with an old ver
sion

(N/A) Map output during link error sup
ported (-MAP option):
Even when an error occurs during
 a link operation where a map ge
neration (cc32R: -MAP option, lnk3
2R: -M option) operation is specifi
ed, a temporary link map file will
 now be generated. Although this
 is essentially temporary informati
on because the addresses in it diff
er from those generated during n
ormal link, it will prove effective
when analyzing the cause of a lin
k error that occurred for reasons
of section allocation, etc.

CC32R MA
NUAL-15
(29/465)

3.1.3 Command
Line Syntax and
Rules
Figure 3.1 cc32R
Command Line S
yntax

-warn_suppressed_nested_comment -warn_suppress_nested_comment

CC32R MA
NUAL-140
(154/465)

7.4 (The title of t
his section)

7.4 About start-up file start.ms in
HEW

7.4 About start-up file start.ms in
High-performance Embedded Wor
kshop

CC32R MA
NUAL-140
(154/465)

7.4 About start-u
p file start.ms in
 HEW
Main text

The HEW generates a file "start.m
s" when creating new project. This
 file was modified from one that
was using with the TM and the
User's Manual.

The High-performance Embedded
Workshop generates a file "start.m
s" when creating new project. This
 file was modified from one that
was using with the TM and the
User's Manual.

CC32R MA
NUAL-140
(154/465)

7.4 About start-u
p file start.ms in
 HEW
Main text

Fundamentally, the contents of the
se start.ms are nearly equal. How
ever, the start.ms HEW generated
can be controled by the assembler
 as32R with setting following para
mter into -D option. If you will
modify this start.ms, be careful in
 this point.

Fundamentally, the contents of the
se start.ms are nearly equal. How
ever, the start.ms High-performanc
e Embedded Workshop generated
can be controled by the assembler
 as32R with setting following para
mter into -D option. If you will
modify this start.ms, be careful in
 this point.

CC32R MA
NUAL-140
(154/465)

7.4 About start-u
p file start.ms in
 HEW
Table 7.3. (The ti
tle of this table)

Table 7.3. Meaning of control sym
bols of start.ms the HEW generate
d

Table 7.3. Meaning of control sym
bols of start.ms the High-performa
nce Embedded Workshop generate
d

CC32R MA
NUAL-140
(154/465)

7.4 About start-u
p file start.ms in
 HEW
Table 7.3. Meani
ng of control sy
mbols of start.ms
 the HEW gener
ated

Item name of HEW project Name
 creating dialog

Item name of High-performance E
mbedded Workshop project Name
 creating dialog

(To be continued to the next page)

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 19 of 21
REJ10J1987 -0100

 (Continued from the previous page)

Page Place Before Correction After Correction
CC32R MA
NUAL-328
(342/465)

10.2.8 Registers
ANSI-C 6.5.1 Sto
rage-class specifie
rs
<The extent to w
hich objects can
actually be place
d in registers by
 use of the regis
ter storage-class
specifier.>

The register storage-class specifier
is ignored.

The register storage-class specifier
will be accepted, but the all regist
er specified objects may not be all
ocated for registers. A compiler ju
dges which object should be alloc
ated a register.
There is no limit to the number o
f register declarations.

CC32R MA
NUAL-vi
(6/465)

Chapter 7 Embe
dded Application
s Programming

7.4 About start-up file start.ms in
HEW

7.4 About start-up file start.ms in
High-performance Embedded Wor
kshop

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 20 of 21
REJ10J1987 -0100

7. Software table

Table 4 shows the look of the directory and file that are made after installation.

Table 4 Table of the directory and file after installation
Directory names File names Notes

cc32R.exe Compile driver (V.3.01.00.000)
as32R.exe Assemble driver (V.2.05.00.000)
lnk32R.exe Linker (V.1.15.01.000)
lib32R.exe Librarian (V.1.06.00.000)
lmc32R.exe Load module converter (V.1.14.00.000)
map32R.exe Map generator (V.1.23.02.000)
libg32R.exe Library generator (V.1.00.00.000)

bin32R

strip32R.exe Debug information discarding utility (V.1.02.00.000)
cpre.exe Preprocessor (V.2.09.02.000)
cpfrt32R.exe C++ Parser (V.1.03.01.000)
cfrt.exe Parser (V.2.29.01.000)
postpar.exe Post parser (V.1.04.03.000)
opt.exe Optimizer (V.1.29.01.000)
cg32R.exe Code generator (V.4.05.02.000)
genstk.exe Stack file generator (V.1.00.00.000)
a032R.exe Macro processor (V.1.02.00.000)
a132R.exe Assembler (V.4.06.02.000)
alis32R.exe List processor (V.1.02.00.000)
parafilt.exe Parallel processor (V.1.01.00.000)
plink32R.exe Pre-linker (V.1.00.00.000)
conv32R.exe SYSROF to ELF converter (V.1.02.01.001)
cmerge.exe C source merge processor (V.1.03.01.000)
m32RcR.lib C Library (Small model)
m32RcRM.lib C Library (Medium model)
m32RcRL.lib C Library (Large model)
m32RcR.stk Stack utilize display file for C library (for m32RcR.lib)
m32RcRM.stk Stack utilize display file for C library (for m32RcRM.lib)

lib32R

m32RcRL.stk Stack utilize display file for C library (for m32RcRL.lib)
inc32R

assert.h, ctype.h, errno.h,
float.h, limits.h, locale.h,
long64.h, math.h, mathf.h,
setjmp.h, signal.h, stdarg.h,
stddef.h, stdio.h, stdlib.h,
string.h, time.h,
cstddef, cstdio, cstdlib,
exception, new, new_ecpp.h,
new_std.h, stdexcept,
typeinfo

C Library headers

inc32R\sys

assert.h, ctype.h, errno.h,
float.h, limits.h, locale.h,
math.h, mathf.h, setjmp.h,
signal.h, stdarg.h, stddef.h,
stdio.h, stdlib.h, string.h,
time.h

inc32R\com ANSI_errno.h, def.h, SBPP

System definition headers
(*1)

abslist.exe Absolute listing utility (V.1.02.00.000)
stk32R.exe Stack size calculation utility (V.1.02.01.000)
license.txt Development support utility guide (English)
license.sj Development support utility guide (Japanese)
abslist.txt Utility manual of abslist (English)
stk.txt Utility manual of stk32R (English)
abslist.sj Utility manual of abslist (Japanese)

UnSpt32R

(*2)

stk.sj Utility manual of stk32R (Japanese)
lib32R lbg_cc32r.dep

~.cpp
~.c

lib32R\src

~.ms
lib32R\pack ~.pack

 Files for C library generating

M32R Family C/C++ Compiler package V.5.01 Release 01
Release Notes 1th Edition

Rev.1.00 2009.05.01 page 21 of 21
REJ10J1987 -0100

support mtoolspt.htm Link-page for "Renesas Technology Software and Tools"
support\cc32r support.txt

regist.txt Customer and Product information record files

smp32R start.ms Startup, Low-level functions example
mapviewer.exe Map Viewer (V.3.01.02)
map_inspect.dll DLL file for Map Viewer
mapviewer.hlp Help file for Map Viewer

bin

mapviewer.cnt Help setting file for Map Viewer
CC32Rue.pdf User's manual < C Compiler > [English]
AS32Rue.pdf User's manual < C Compiler > [English]
CC32Ruj.pdf User's manual < C Compiler > [Japanese]
AS32Ruj.pdf User's manual < C Compiler > [Japanese]

mapuj.pdf
Map Viewer Manual
 [English or Japanese (will be selected by the installer)]

manual

~.msf Manual attribute files
~.det
~.dll hew
~.tbp

High-performance Embedded Workshop setting files

tmp << Empty >> Temporary directory for CC32R

NOTES

*1. The System definition headers are unable to be deleted and modified, because CC32R
refers to them in compiling.
If these files are deleted or changed CC32R does not run normally.

*2. The program in the UnSpt32R directory differ from the constitution things of other
CC32R regarding the handling of the license and support. Please confirm the document
file "license.txt" in this directory.

	Subject
	1. Changes from the previous version
	2. Precautions to be observed when installing
	3. Installing CC32R
	3.1 How to install CC32R
	3.2 How to uninstall
	3.3 Setting PC environment
	3.4 How to browse the electronic manual

	4. Explanation of the added functions
	4.1 Designation
	4.1.1 Abstract
	4.1.2 Syntax
	4.1.3 Details
	4.1.4 Other examples
	4.1.5 Notes

	4.2 Pragma Operator
	4.2.1 Abstract
	4.2.2 Syntax
	4.2.3 Details
	4.2.4 Another example
	4.2.5 Notes

	4.3 Variable argument macro
	4.3.1 Abstract
	4.3.2 Syntax
	4.3.3 Details
	4.3.4 Notes

	5. Restrictions on Usage
	6. Erratas of User's Manuals
	7. Software table

