

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

www.renesa s.com

RZ/N1D-DB Board
U-Boot and Linux

System-on-Chip

Target Device RZ/N1D

R01QS0007EG0104
October 16, 2018

Q
u

ic
k
 S

ta
rt G

u
id

e

1 INTRODUCTION

This guide aims to quickly get U-Boot and Linux running on your Renesas RZ/N1D-DB board. This
guide is written for software engineers who may be new to Linux. Experienced Linux engineers will
likely just need the information on how to program U-Boot onto a bare board.

There are several pieces of software that are used to load and run Linux on the RZ/N1, these are
discussed below. Pre-built binaries are provided to get you up and running quicker.

1.1 Renesas BootROM

The BootROM is internal to the device and is always run on reset. The BootROM loads the first
valid SPKG image from one of three sources, QSPI, NAND or USB DFU, the choice of which is
done via boot mode pins, and starts executing it. DFU is a protocol used with USB to update
software on embedded products; the RZ/N1 device will act as USB Device and is attached to a
USB Host, e.g. a PC.

An SPKG is a Renesas proprietary format that includes information on the size of the binary
payload, the destination for the payload, and optional signature information. For the purposes of
this document, we assume that the device allows SPKGs without a signature.

Note: The BootROM will only allow an SPKG payload to be written to internal SRAM as writing to
QSPI and setting up DDR is board specific.

Normally, on the RZ/N1D-DB board, when the board is reset the BootROM will load an SPKG from
QSPI. Typically, this SPKG contains U-Boot or U-Boot/SPL.

However, by changing the boot mode pins state by holding down a switch when resetting the
board, the BootROM will start in USB DFU mode and will wait for the host PC to upload an SPKG.

1.2 U-Boot

U-Boot is a boot loader that allows you to run commands that can read and write to/from QSPI or
SD cards, load files from a TFTP server, program QSPI using USB DFU, start Linux or other OS
and start the Cortex-M3 processor. It also initialises the DDR controller.

Typically, U-Boot will load the Device Tree Blob (dtb) and Linux kernel image from QSPI, and pass
arguments to the kernel.

1.3 Linux Kernel

The Linux kernel will load drivers for all of the peripherals and provide you with a console to
operate it.

Linux needs a root file system (rootfs) that contains user-space applications and other files. The
rootfs provided as a SquashFS file system and is written to QSPI.

2 SETUP

2.1 RZ/N1D-DB Board

The main connectors and switches of the board are shown below.

CN10

• FTDI serial-over-USB

• FTDI JTAG-over-USB

• Power Connector

J2
Debug Connector

CN9
USB Function

SW5
Boot Mode

SW4
Soft Reset

CN6
Power via USB

SW1
SW Dip Switch

CN4
ETH5

CN1
ETH4

SW2
Multiplexer Setup

W2 W4

W6 W5

W1

W3

The following switches must be set.

Switch bank SW2

Number SW ON (low) SW OFF (high)
Default
Setting

1 RMII/MII LCD OFF

2 CAT/S3 PMOD ON

3 MSEBI Mixed OFF

4 RMII2 SPI5 OFF

5 USB 1x Host 1x Device USB 2 x Host ON

6 ARM Debug FTDI Debug ON

7 Segger Debugger No connection OFF

8 I-Jet Debugger No connection ON

Other switches

Switch SW ON (white bar) SW OFF
Default
Setting

W1 JTAG Mode ARM Coresight Mode OFF

W2 RXCLK4 from PHY RXCLK4 from GPIO61 ON

W3 Boot Mode NAND Boot Mode QSPI OFF

W4 RXCLK5 from PHY RXCLK5 from GPIO61 ON

W5 LCD pull up LCD pull down ON

W6 LCD pull up LCD pull down ON

Extension Board

The relevant switches and connectors of the Extension Board are shown below.

CN10
CAN Rx

CN11
CAN Tx

CN15, CN16
PHY2/3 MDIO

CN17, CN18
PHY1 MDIO

W6
CAN Iso

W7
CAN Power

J18
I2C

J24
PHY3
(RGMII3)

J23
PHY2
(RGMII2)

J22
PHY1
(RGMII1)

CN14
5V or 12..24V

If using the Extension Board, please ensure the following jumper and switch settings are made:

Jumper Description Default Setting
CN10 CAN Rx source Connect pins 1 and 2 (CAN2 Rx)

CN11 CAN Tx source Connect pins 1 and 2 (CAN2 Tx)

CN15 PHY2/PHY3 MDC source Connect pins 2 and 3 (MDC2)

CN16 PHY2/PHY3 MDIO source Connect pins 2 and 3 (MDIO2)

CN17 PHY1 MDC source Connect pins 1 and 2 (MDC1)

CN18 PHY1 MDIO source Connect pins 1 and 2 (MDIO1)

J18 I2C SDA
Connect pins 1 and 2
(enable I2C SDA on Ext Board)

J18 I2C SCL
Connect pins 3 and 4
(enable I2C SCL on Ext Board)

W6 CAN Signals
NO_ISO
(do not use isolated CAN signals)

W7 CAN Power
NO_ISO
(do not use isolated CAN power)

Board Connections

Connect the following to your PC:

• Connect CN9 on the board to a USB Host connector on your PC. This provides USB DFU.

• Connect CN10 on the board to a USB Host connector on your PC. This provides
Serial-over-USB and JTAG-over-USB services. After the FTDI driver has been installed on
your PC, four additional virtual serial ports will exist. The board uses the 3rd port for UART
output at 115200,8,n,1. On Linux PCs, if you have no other serial-over-USB devices
attached, this is accessed using /dev/ttyUSB2.

• If the board is powered by USB, press switch SW4 to perform a soft reset.

• If you wish to use Ethernet, but do not have an Extension Board, you have to use a special
Device Tree file that allows Linux to use GMAC2 via the 5-Port Switch on the RZ/N1
device. Where this document tells you to use uImage-rzn1d400-db.dtb, instead use
uImage-rzn1d400-db-no-cm3.dtb. Note that the Linux driver for the 5-Port Switch simply
configures it as an unmanaged switch. When using this DTB, connect CN1 on the board to
a dedicated Network Interface Card (NIC) on your PC. This setup does not correspond to
the default use case of RZ/N1 in industrial switch applications.

• If you wish to use Ethernet, and are using the Extension Board, you can connect J22 of the
Extension Board to a dedicated Network Interface Card (NIC) on your PC. This is used to
access GMAC1 on the RZ/N1 device.

• By default, the board uses static IP addresses, so please ensure your host’s NIC is set up
with a static IP address of 192.168.1.30. This address is set by default in the U-Boot
serverip environment variable.

2.2 Write U-Boot to QSPI

This section provides instructions to program QSPI flash on a new board. You will need a
Windows or Linux host PC for this. The steps performed are:

• Use the BootROM DFU mode to load U-Boot (in SPKG format) into SRAM.

• Use the U-Boot dfu command to write U-Boot (in SPKG format) into QSPI.

1. On your Linux PC, install the ‘dfu-util’ package, e.g.:

sudo apt-get install dfu-util

If using a Windows PC, follow the instructions in the U-Boot User Manual for installing dfu-util.
For all of the subsequent Linux commands below that start ‘sudo dfu-util’, please replace with
Windows commands starting with ‘dfu-util-static.exe’.

2. On the board, hold down switch SW5 (to select DFU boot mode instead of QSPI) and press
switch SW4 (soft reset). The RZ/N1 serial port should output:

** BOOTLOADER STAGE0 for RZN1 **

Boot source: USB

3. Download U-Boot to SRAM. On your host PC run:

sudo dfu-util -D u-boot-rzn1d400-db.bin.spkg

4. U-Boot should run and the RZ/N1 serial port presents you with a console, similar to this:

U-Boot 2017.01

Model: RZ/N1D Demo Board

DRAM: 256 MiB

MMC: sdhci@0x40100000: 0

SF: Detected mx25l25635f with page size 256 Bytes, erase size 64 KiB,

total 32 MiB, mapped at 10000000

In: serial@0x40060000

Out: serial@0x40060000

Err: serial@0x40060000

Net: dwmac.44000000, dwmac.44002000

Hit any key to stop autoboot: 0

=>

Note: If your board has previously been used and already has U-Boot environment variables
programmed into QSPI, U-Boot may attempt to start running the commands specified by the
bootcmd env variable. Interrupt this by pressing any key.

5. If your board has been programmed with an older version of U-Boot, the dfu_ext_info
environment variable may be incompatible. If so, please run:

env default -f dfu_ext_info

saveenv

6. Ensure the U-Boot/SPL region of QSPI Flash is erased, run:

sf probe

sf erase 0 10000

7. On the U-Boot console, run:

dfu

8. Write U-Boot to QSPI. On your host PC run:

sudo dfu-util -a "sf_uboot" -D u-boot-rzn1d400-db.bin.spkg

Wait until it completes, the U-Boot console will prompt you to press Ctrl-C when done.

Note: The "sf_uboot" DFU target corresponds to the second region of the QSPI Flash. If there
is a valid SPKG written into the first region ("sf_spl"), the BootROM will load this instead of
U-Boot. Otherwise the BootROM will output messages whilst it looks for the first valid SPKG,
similar to:

STATUS: Valid SPKG header not found (100 QSPI Flash 256-byte blocks read)

9. Press switch SW4 to reset the board, the BootROM will load and run U-Boot showing the
following output on the terminal:

** BOOTLOADER STAGE0 for RZN1 **

Boot source: QSPI

00 BOOTLOADER STAGE0 Success

*** Bootloader stage0 END ***

*** Execute 2nd Stage Bootloader which has been loaded and verified ***

U-Boot 2017.01

Model: RZ/N1D Demo Board

DRAM: 256 MiB

MMC: sdhci@0x40100000: 0

SF: Detected mx25l25635f with page size 256 Bytes, erase size 64 KiB,

total 32 MiB, mapped at 10000000

In: serial@0x40060000

Out: serial@0x40060000

Err: serial@0x40060000

Net: dwmac.44000000, dwmac.44002000

Hit any key to stop autoboot: 0

=>

2.3 Write Cortex M3 image to QSPI

The following instructions use the U-Boot dfu command to write the Cortex M3 code image into
QSPI. Please see the GOAL Management Software Quick Start Guide for details of the Cortex M3
code image.

1. On the board, press switch SW4 (soft reset). U-Boot should run and the RZ/N1 serial interface
presents you with a console.

2. From U-Boot, run:

dfu

3. Write the dtb to QSPI. On your host PC run:

sudo dfu-util -a "sf_cm3" -D rzn1d_demo_board_eb.bin

4. Wait until it completes, the U-Boot console will prompt you to press Ctrl-C when done.

2.4 Write Linux to QSPI

The following instructions use the U-Boot dfu command to write the kernel dtb, kernel image, and
JFFS2 rootfs into QSPI.

1. On the board, press switch SW4 (soft reset). U-Boot should run and the RZ/N1 serial presents
you with a console.

2. From U-Boot, run dfu:

dfu

3. Write the dtb to QSPI. On your host PC run:

sudo dfu-util -a "sf_dtb" -D uImage-rzn1d400-db.dtb

4. Write the kernel to QSPI. On your host PC run:

sudo dfu-util -a "sf_kernel" -D uImage

5. Write the rootfs to QSPI. On your host PC run:

sudo dfu-util -a "sf_data" -D core-image-minimal-rzn1.squashfs

6. Wait until it completes, the U-Boot console will prompt you to press Ctrl-C when done.

2.5 Setup U-Boot environment variables

This section sets up the U-Boot environment variables so that it automatically reads the Linux
kernel and DTB from QSPI, then starts Linux.

From U-Boot, set the MAC addresses corresponding to the MAC address sticker on the board, for
example:

setenv -f ethaddr 74:90:50:02:00:FD

setenv -f eth1addr 74:90:50:02:00:FE

The following Linux bootargs setting specifies a read-only rootfs in the QSPI, a read-write JFFS2
file system in QSPI, and a static IP address for GMAC1 in Linux. The clk_ignore_unused

option ensures Linux does not turn off any clocks to IP blocks that are used by the software
running on the Cortex M3.

setenv bootargs "console=ttyS0,115200 root=/dev/mtdblock7 init=/init

rootwait ip=192.168.1.50:::::eth0 earlyprintk clk_ignore_unused"

The following bootcmd setting makes U-Boot load and start the Cortex M3 image from QSPI, then
load a 128KB DTB and a 6MB kernel from QSPI, and start Linux automatically on start up. The
offsets into the SPI flash correspond to the DFU sf_cm3, sf_dtb and sf_kernel targets.

setenv bootcmd "sf probe && sf read 0x4000000 d0000 80000 &&

rzn1_start_cm3 && sleep 4 && sf read 0x8ffe0000 b0000 20000 &&

sf read 0x80008000 1d0000 600000 && bootm 0x80008000 - 0x8ffe0000"

Save the environment variables:

saveenv

2.6 Using Linux

Reset the board, you will see the boot messages followed by a log on prompt. This can take quite
a while.

rzn1d400-db login:

Log on with username root.

Now you have Linux running, you can ping your PC’s NIC.

ping 192.168.1.30

2.7 OpenOCD Debugger

This section provides basic information on how to connect a debugger to the ARM Cortex A7
CPUs on the board. The board uses an FTDI device to provide JTAG over USB which is
supported via the OpenOCD software. Note that openocd v0.10.0 adds support for MMU address
translation and cache flushing which is required to debug the Linux kernel or other OS that uses
the MMU to remap memory ranges. However, if you connect to the target after it has executed
code to enable the MMU and cache, download performance will be significantly slower due to the
MMU table look ups. OpenOCD v0.10.0 has issues debugging ARM Thumb2 code, so please
build the latest version.

git clone http://repo.or.cz/openocd.git

cd openocd

./bootstrap

./configure --disable-jlink

make clean

make

sudo make install

OpenOCD provides a “gdbserver” so you can connect to Eclipse or other debuggers that supports
this protocol. The following instructions detail how to connect to the gdbserver using the gdb
command line debugger.

Ensure switch SW2-6 is OFF and switch W1 is OFF, i.e. away from the white bar.

Below we show basic commands to get you started with GDB. Further details on using OpenOCD
with GDB can be found at http://openocd.org/doc/html/GDB-and-OpenOCD.html.

Connect to the board using the configuration file provided by Renesas. This starts a GDBServer
which you can connect to from gdb or any other debugger that supports connecting to a
GDBServer.

openocd -f renesas-rzn1d-openocd.cfg

In a separate terminal, you can now connect using gdb. Specify the U-Boot elf file on the
command line. You can use the -tui option to show source code in a simplified GUI:

arm-linux-gnueabihf-gdb -tui u-boot

...

(gdb) target remote localhost:3333

Read symbols from the ELF file specified on the gdb command line, u-boot in this example, and
download the code to the RZ/N1 SRAM:

(gdb) load

Loading section .text, size 0x1ffc0 lma 0x200a0000

...

Start address 0x200a0000, load size 217553

Note: The U-Boot elf file is actually different to the binary image, so download the binary

(gdb) mon load_image u-boot.bin 0x200a0000 bin

Step into the code:

(gdb) s

Set a breakpoint at the start of a function:

(gdb) b board_init

Run the code until you hit a breakpoint:

(gdb) c

http://openocd.org/
http://openocd.org/doc/html/GDB-and-OpenOCD.html

RZ/N1D-DB Board U-Boot and Linux

	1 Introduction
	1.1 Renesas BootROM
	1.2 U-Boot
	1.3 Linux Kernel

	2 Setup
	2.1 RZ/N1D-DB Board
	2.2 Write U-Boot to QSPI
	2.3 Write Cortex M3 image to QSPI
	2.4 Write Linux to QSPI
	2.5 Setup U-Boot environment variables
	2.6 Using Linux
	2.7 OpenOCD Debugger

