

Demo of Everything

 for the

 Renesas YLCDRX63N

User’s Manual

V3.0

2

Table of Contents

Document Version ... 6

Micrium Software Component Versions Used in the Demo of Everything 6

Website/support ... 6

About ... 7

About Micriµm .. 7

About µC/OS-III .. 7

About µC/GUI .. 8

About µC/FS ... 8

About µC/USB-Device .. 9

About µC/USB-Host ... 9

About µC/TCP-IP .. 10

About µC/DHCPc ... 10

About µC/HTTPs .. 10

About µC/CAN ... 10

About µC/Probe ... 11

Introduction ... 12

Target .. 12

Hardware Requirements ... 12

Development Tools ... 12

Debugger Connection .. 13

Application ... 14

Installation ... 14

Renesas e2 studio .. 14

IAR Embedded Workbench for RX ... 15

Compilation ... 16

Unlicensed Compilation .. 16

Using the .x .. 16

Using the .mot ... 16

Preparation .. 17

Driver installation .. 17

Change COM Port Number (if required) ... 19

Configuring DHCP Connection for Ethernet .. 21

3

Running the Demo of Everything .. 22

USB-Host Mass Storage Class (MSC) Demo ... 23

USB-Device Human Interface Device (HID) Demo ... 24

USB-Device Communication Device Class – Abstract Control Model subclass (CDC-ACM)

Demo ... 25

Graphical User Interface (GUI) Demo .. 27

Extended Demo Features .. 28

TCP/IP Ethernet Demo... 29

Controller Area Network (CAN) Demo .. 31

Using µC/Probe .. 35

Code ... 36

Modules ... 36

µC/OS-III .. 37

Description .. 37

os_cfg.h ... 37

os_cfg_app.h ... 37

µC/CPU .. 38

Description .. 38

cpu_cfg.h ... 38

µC/FS ... 39

Description .. 39

fs_cfg.h .. 39

app_cfg.h ... 39

µC/GUI ... 40

Description .. 40

GUIConf.h .. 40

GUITouchConf.h .. 40

LCDConf.h .. 40

µC/LIB .. 41

Description .. 41

lib_cfg.h ... 41

µC/USB-Device .. 42

Description .. 42

usbd_cfg.h ... 42

usbd_dev_cfg.h ... 42

µC/USB-Host .. 43

Description .. 43

usbh_cfg.h ... 43

usbh_hc_cfg.h ... 43

µC/TCP-IP ... 44

Description .. 44

4

net_cfg.h .. 44

net_dev_cfg.h .. 44

µC/DHCPc .. 44

Description .. 44

dhcp-c_cfg.h .. 44

µC/HTTPs ... 45

Description .. 45

http-s_cfg.h ... 45

http-s_instance_cfg.c .. 46

µC/CAN .. 47

Description .. 47

can_cfg.h ... 47

Application Files .. 48

Header files .. 48

app_can.h .. 48

app_cfg.h ... 48

app_fs.h ... 48

app_GUI_can_demo.h ... 48

app_GUI_cdc_demo.h ... 48

app_GUI_hex_kbd.h .. 48

app_GUI_hid_demo.h ... 48

app_GUI_kbd.h .. 48

app_GUI_main.h .. 48

app_GUI_msc_demo.h .. 48

app_GUI_net_demo.h ... 48

app_net.h .. 49

app_usb.h .. 49

Source files .. 50

app.c .. 50

app_can.c .. 50

app_fs.c ... 50

app_GUI_can_demo.c ... 50

app_GUI_cdc_demo.c ... 50

app_GUI_hid_demo.c .. 50

app_GUI_main.c .. 50

app_GUI_msc_demo.c .. 51

app_GUI_net_demo.c ... 51

app_net.c ... 51

app_usb.c .. 51

app_usbd_cdc_demo.c .. 51

app_usbd_hid_demo.c .. 51

5

app_usbh_msc_demo.c ... 51

GUI_X_uCOS-III.c ... 51

GUIConf.c ... 52

LCDConf.c .. 52

usbd_dev_cfg.c .. 52

usbh_hc_cfg.c .. 52

Tasks .. 53

Description .. 53

External Memory Manager Task ... 53

µC/GUI Touch Task .. 53

µC/USB-Device CDC Demo Task .. 53

µC/USB-Device HID Demo Task ... 53

µC/USB-Host MSC Demo Task ... 54

GUI Demo Task .. 54

GUI Main Task .. 54

DHCPc Task .. 54

HTTPs Task ... 54

CAN0 Rx Task ... 55

CAN Tx Task ... 55

Priorities .. 55

Interrupts ... 57

General Interrupts ... 57

Direct Drive LCD Interrupts ... 57

Known Issues .. 58

Contacts ... 58

Footprint .. 59

6

Document Version
Version Date By Description

1.0 2013/03/14 OD Initial Version

1.1 2013/04/16 OD Added information that was missing in some sections
Added precisions about the behavior of the application

2.0 2013/08/09 MD Initial addition of Phase 2 documentation.

2.1 2013/08/29 MD Completed document review and updates.

3.0 2013/10/17 MD Included IAR,e2studio setup, Code and RAM sizes

Micrium Software Component Versions Used in the Demo of

Everything
Module Version Comment

µC/OS-III V3.03.01

µC/Clk V3.09.03

µC/CPU V1.29.01

µC/FS V4.05.02

µC/GUI V5.18.00

µC/LIB V1.37.00

µC/USBD V4.01.01

µC/USBH V3.40.02

µC/TCPIP V2.13.02

µC/DHCPc V2.09.01

µC/HTTPs V2.00.00

µC/CAN V2.40.00

µC/Probe V2.30.00

Website/support
For further information about any of our products, please refer to Micriµm’s website

(www.micrium.com) or contact us via our sales department at +1 954 217 2036 or email us at

sales@micrium.com.

http://www.micrium.com/
mailto:sales@micrium.com

7

About

About Micriµm
Micriµm is the recognized leading provider of embedded software components for the

embedded systems market. The company’s flagship µC/OS product family is renowned for a

variety of valuable features and benefits including unparalleled reliability, field proven

performance, dependability, impeccable source code, and extensive documentation. In addition,

some Micriµm components have been certified to meet rigorous safety-critical standards

demanded by industries that include medical electronics, avionics, and industrial products.

Micriµm products are created for engineers by engineers. If you are new to Micriµm, contact us

to discuss your project requirements and goals. Let us show you how our commercial RTOS

family provides time-to-market advantages at a price you can afford. If you are familiar with the

Micriµm family of products, call us to discuss your next design. We’ll show you how our

software components’ advantages translate into substantial time and resource savings today

and in the future.

About µC/OS-III
μC/OS-III (pronounced “Micro-C-O-S-Three”) is a scalable, ROMable, pre-emptive real-time

kernel that manages an unlimited number of tasks. μC/OS-III is a third-generation kernel and

offers all of the services expected from a modern real-time kernel, such as resource

management, synchronization, and inter-task communications. Importantly, μC/OS-III offers

many unique features not found in other real-time kernels, such as the ability to execute

performance measurements at run-time, to directly signal or send messages to tasks, pend on

multiple kernel objects, and more.

8

About µC/GUI
With µC/GUI, you can create rich graphical user interfaces for your embedded applications.

µC/GUI allows you to create different User Interfaces with an LCD display. It can be a simple 2D

graphic screen using monochrome color up to smart-phone like display with 32 bits per pixel

color and Alpha blending. With touch screen support activated, µC/GUI can help you design

fantastic user interfaces for your product.

µC/GUI is both processor-independent and LCD controller-independent. It is compatible with

single-task and multitask environments, and works with any commercial RTOS or your

proprietary operating system. When purchased, µC/GUI is provided to you as “C” source code.

 Optimized for small size and high performance.
 Supports any 8/16/32-bit CPU
 Supports any type of LCD, with any controller (with appropriate driver)
 Configurable display size.
 Virtual display support; the virtual display can be larger than the actual display.
 Characters and bitmaps may be written at any point on the LCD, not just on even-

numbered byte addresses.
 Supports caching the display in memory, for even more performance.
 Compile time switches allow for different optimizations.
 Includes µC/GUI-View for detailed view of all layers in the PC simulation.
 Configuration macros for any interface supported.

About µC/FS
μC/FS is a compact, reliable, high-performance and thread-safe embedded file system for

microprocessors, microcontrollers and DSPs.

µC/FS can access multiple storage media through a clean, simple API. It supports the FAT file

system for interoperability with all major operating systems. An optional journaling component

provides fail-safe operation, while maintaining FAT compatibility.

μC/FS is based on clean, consistent ANSI C source code, with extensive comments describing

most global variables and all functions.

The memory footprint of μC/FS can be adjusted at compile time based on required features and

the desired level of run-time argument checking. For applications with limited RAM, features

such as cache and read/write buffering can be disabled; for applications with sufficient RAM,

enabling these features improves performance.

Device drivers are available for all common media types. Each of these is written with a layered

structure so that it can easily be ported to your hardware. The device driver structure is simple,

so that a new driver can be developed easily for a new medium.

9

About µC/USB-Device
µC/USB-Device supports several standard USB device classes (CDC, HID, MSC, PHDC and Audio

V1). A Vendor class is also provided for developing vendor-specific USB devices. Thanks to a

hardware abstraction layer, you can easily port μC/USB-Device to any new USB device

controllers by simply modifying existing hardware access routines.

μC/USB-Device uses a modular architecture with three software layers between the application

and the hardware.

 The device controller driver layer interfaces with the device controller to process
interrupts, notify the device core of bus events, and receive/transmit packets.

 The device core layer responds to standard host requests during enumeration (the
process by which a host learns the features of a device) and controls packet reception
and transmission.

 The class layer provides functionality to the host using one or more class drivers. Each
class driver responds to class-specific requests and may provide an API for controlling
some features and receiving/transmitting information.

About µC/USB-Host
μC/USB Host is a real-time USB Host software stack designed for embedded systems equipped

with a USB Host or OTG controller. It includes many USB class drivers (MSC, HID and CDC ACM).

The stack requires a Kernel.

μC/USB Host uses a modular architecture with three software layers between the application

and the hardware.

 The Class Driver layer provides class-specific services to the application. For example,
the Mass Storage Class (MSC) Driver includes interface functions for reading and writing
sectors from a storage device.

o Note that a protocol may be required for certain classes. The Protocol Driver
layer handles this aspect (e.g., the SCSI command set for the MSC).

 The Host core layer enumerates the device, loads a matching class driver, and provides
the mechanism for data transfers.

 The Host Controller Driver (HCD) interfaces with the host controller hardware to enable
data transfers and detect devices.

10

About µC/TCP-IP
μC/TCP-IP is a compact, reliable, high-performance TCP/IP protocol stack. Built from the ground
up with Micriµm’s unique combination of quality, scalability and reliability, μC/TCP-IP, the result
of many man-years of development, enables the rapid configuration of required network
options to minimize time to market.

The source code for μC/TCP-IP contains over 100,000 lines of the cleanest, most consistent ANSI
C source code available for a TCP/IP stack implementation. μC/TCP-IP is implemented in ANSI C
as it is the predominant language in the embedded industry. Over 50% of the code consists of
comments and most global variables and all functions are described. References to RFC (Request
For Comments) are included in the code where applicable.

About µC/DHCPc
DHCP is a protocol designed to enable clients to get IP configuration from a centralized
database. This protocol has slightly evolved over the years from the BOOTP protocol initially
designed to enable diskless clients to boot from the network. The μC/DHCPc module
implements the mandatory parts of the following RFCs:

RFC 2131 ftp://ftp.rfc-editor.org/in-notes/rfc2131.txt
RFC 2132 ftp://ftp.rfc-editor.org/in-notes/rfc2132.txt
RFC 3927 ftp://ftp.rfc-editor.org/in-notes/rfc3927.txt

The first two describe the DHCP mechanism, and the third explains the dynamic configuration of
link-local addresses (sometimes referred as Automatic Private IP Addressing, APIPA, or AutoNet
in other environments).

About µC/HTTPs
HTTP is a protocol developed for the World Wide Web, and is implemented using TCP

(Transmission Control Protocol).

µC/HTTPs is an HTTP server, and it implements the mandatory parts of the following RFCs:

RFC 1738: ftp://ftp.rfc-editor.org/in-notes/rfc1738.txt

RFC 1945: ftp://ftp.rfc-editor.org/in-notes/rfc1945.txt

RFC 2045: ftp://ftp.rfc-editor.org/in-notes/rfc2045.txt

RFC 2145: ftp://ftp.rfc-editor.org/in-notes/rfc2145.txt

RFC 2616: ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

µC/HTTPs is designed to be used in a µC/TCP-IP, µC-FS and µC/OS-II or µC/OS-III environment.

About µC/CAN
μC/CAN is a CAN communication library, which simplifies the development of high-level CAN
protocol layers like CANopen, DeviceNET or KWP2000. The library is designed to provide a high-
level interface to CAN communication elements which is configurable and easy to use.
Implemented using strict coding rules, the source code is highly efficient in resource utilization
(RAM and ROM) and certifiable with a minimum effort.

ftp://ftp.rfc-editor.org/in-notes/rfc2131.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2132.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3927.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1738.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1945.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2045.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2145.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

11

About µC/Probe
μC/Probe is a Windows application that allows a user to display the value (at run-time) of

virtually any variable or memory location on a connected embedded target. The user simply

populates μC/Probe’s graphical environment with gauges, tables, graphs, and other

components, and associates each of these with a variable or memory location. Once the

application is loaded onto the target, the user can begin μC/Probe’s data collection, which will

update the screen with variable values fetched continuously from the target.

12

Introduction
This section introduces and explains the requirements for using the Micrium multi-product

demo application called the “Demo of Everything”.

This application is built using several of Micriµm’s products, to illustrate some of their

capabilities. The application makes use of µC/OS-III, a real-time kernel; µC/GUI, a solution for

embedded graphical user interfaces (GUI) and touch screens; µC/USB-Device, a USB device

stack; µC/USB-Host, a USB host stack and µC/FS, an embedded file-system. It also makes use of

Micriµm’s building blocks, such as µC/CPU for CPU-dependant capabilities and µC/LIB, for

memory management and string operations. µC/TCP-IP is incorporated for data transfer over

an Ethernet network and µC/CAN for local network transfers as well. The application

demonstrates how these products can be used together to create a complete application.

This document is separated in several sections: setting up and executing the application, a

description of the modules and application files used and their respective roles as well as a

general description of the way the application works.

Target
The application has been developed for the Renesas YLCDRX63N development board and the

companion YDBENETPMOD extension board, based on the Renesas RX63N microcontroller

(R5F563NEDDBG). Renesas’s YLCDRX63N includes USB-Device, USB-Host, File System, and LCD

hardware support utilized by several of the demos. The extension board adds hardware support

for CAN and TCP/IP components.

Hardware Requirements
An external power source MUST be connected to the target in order for the application to work

correctly. Therefore, a battery (if only using the YLCDRX63N) or the extension board’s standard

12V power supply (included with YDBENETPMOD package) will be used. The battery must be

connected to the J8 connector before using this demo. Power provided via the debugger or the

USB function port is NOT enough to ensure correct functionality of the application, particularly

the µC/USB-Host MSC demo. When the extension board is present, connect the power supply to

J101 for the Ethernet and CAN demos to work properly.

YLCDRX63N comes with Segger J-Link Lite debugger. J-Link software installation of v4.76f or

higher is required .This installer is provided at http://www.segger.com/j-link-rx.html.

Development Tools
The application has been developed using the Renesas e2 studio IDE, version 2.1.0.21, and

using the RX Compiler (RXC), version 1.02 Release 01. It also runs with the IAR Embedded

Workshop for RX tools version 2.42.2 or later.

http://www.segger.com/j-link-rx.html

13

Debugger Connection
Connect one end of the debugger ribbon cable provided to the header J7. Make sure pin 1 of the

ribbon cable lines up with pin 1 of the header. The ribbon cable is marked with a different color

(e.g. blue or red) to identify the pin 1. The header J7 has a marking on board that identifies the

pin 1. Connect the other end of the ribbon cable to the J-Link Lite and connect the J-Link Lite to

the PC.

Figure 1 - Debugger Connections

14

Application
This section provides information about the installation, compilation and execution of this

application.

Installation

Renesas e2 studio

Extract the e2 studio project from the .zip file to C:/<root> folder. It is recommended that you

use a very short folder name (e.g. C:/DOE) if you cannot use the root folder. Open e2 studio and

choose the workspace for the project. The workspace is located at:

 (<Your_extraction_location>)\Micrium\EvalBoards\Renesas\YLCDRX63N\uCOS-III-

GUI\e2studio-RXC\

Now the project will need to be built and compiled to the board. Right click the project and

choose “Build Project” or (ctrl + B). Once it successfully builds click the debug button and

select the “uCOS-III_DemoOfEverything-LIB HardwareDebug” label in the dropdown. If this

selection is not present then select the “Debug Configurations” option. After selecting the

Hardware Debug it will download to the board, click “Yes” when asked to change displays for

the debugging display mode. Once it loads press F8 to run the project.

15

IAR Embedded Workbench for RX

Open the IAR workspace Project uCOS-III_DemoOfEverything.eww from the following directory:

(<Your extraction location>)\Micrium\EvalBoards\Renesas\YLCDRX63N\uCOS-III-GUI\IAR

Connect to the board using the Segger J-Link Lite RX debugger.

Compile the project with F7, and then download it to the board with the download and debug

button.

Before downloading the project to the board ensure that the following setup conditions are set:

Figure 2 - IAR Hardware Setup

Once the board is connected press F5 to run the project.

16

Compilation
The demo is intended to serve as a stand-alone application and not used as a basis for other

applications since there is limited remaining RAM on the target board.

The included pre-compiled library is used to build the demo application. This library is time-

limited to one hour of use, after which a reset is required. When using the library, it is possible

to modify the application files to experiment with the various Micrium products incorporated,

but some of the changes made to the configurations may not take effect since the products

have been compiled with a given configuration in the library. For example, any value changed in

app_GUI_main.h will be taken into account (because it only affects application code) but a

configuration changed in fs_cfg.h will not be taken into account by the µC/FS module contained

in the library, only by the application. Also, be aware that a difference in the configuration

values between the ones used by the application and the ones used to build the library can lead

to other problems. For example, the FS_CFG_MAX_DEV_NAME_LEN define is used when

building the library and within the application. If the value of this configuration is changed (from

15u to 30u, for example) and that a device’s name is 20 characters long, it will provoke errors,

since the µC/FS in the library will expect a name that is not more than 15 characters, but the

application will not have any trouble using a 20-characters long name, since it is using a

configuration value of 30. The library (in whole or in part) won’t be used in another context than

the current demo. It is not possible to use only a part of the library. For example, it is impossible

to use µC/OS-III or µC/USB-Device in source code with the rest of the modules (µC/FS, µC/GUI,

etc.) from the library.

Unlicensed Compilation
If the user does not have a license for the RXC compiler the .x or .mot file included in the

/Micrium folder will need to be used. There are two different methods of flashing the project

onto the YLCDRX63N board.

Using the .x

To use the uCOS-III_DemoOfEverything_LIB.x file it must be copied from the /Micrium folder

and placed in the /Micrium/Software/EvalBoards/Renesas/YLCDRX63N/uCOS-III-GUI/HEW-

RXC/uCOS-III_DemoOfEverything_LIB/HardwareDebug folder. e2 studio will recognize this file

once it is in the folder and allow it to be loaded it to the board.

Using the .mot

To use the uCOS-III_DemoOfEverything-LIB.mot file, Renesas Flash Programmer (RFP) must be

used. Please refer to RFP manual for more information.

17

Preparation

Driver installation

To perform the driver installation, use a USB cable to connect the PC to the J2 USB function port

on the YLCDRX63N. The first time the device is connected to a host PC, the following error

message will be displayed:

Figure 3 - Device Driver Installation

This is due to the fact that the driver for the CDC-ACM function of the USB device must be

installed manually. The steps required are described below:

- Open Windows’ Device Manager (Start Button > Control Panel > Hardware and Sound >

Device Manager) and locate ‘CDC Device’, under ‘Other devices’.

Figure 4 - Device Manager

- Right-click on ’CDC Device’ and select ‘Update Driver Software...’, then ‘Browse my

computer for driver software’.

18

Figure 5 - Update Driver Software

- Specify the path to the INF file, by clicking the ‘Browse‘ button. The file is located in the

location: ‘\Micrium\Software\EvalBoards\ Renesas\YLCDRX63N\uCOS-III-GUI\’.

- Click ‘Next’ and in the following window, click ‘Install this driver software anyway:

Figure 6 - Driver Installation Warning

- Windows will then install the INF file and the specified driver. This may take several

seconds.

- Once the operation is done, the following screen will appear, confirming everything has

been done correctly:

19

Figure 7 - Driver Successfully Installed

- When closing this window, the ‘ ‘CDC Device’ in the Device Manager is now listed in

Ports (COM & LPT) as ‘Micrium CDC Device (COM#)’. Take note of the COM port

number, as this is the port number required when opening a COM port.

Figure 8 - Device Manager COM & LPT Ports

The COM port assigned by Windows depends on an individual PC and its usage. See the next

section about how to change the COM port assignment.

Change COM Port Number (if required)

Some serial terminals may require that the COM port number allocated to the device by

Windows be within a certain range (for example, Teraterm requires that the COM port number

be between one and twelve). This section will describe the necessary steps to set a particular

COM port number to the USB device:

- In the Device Manager, right-click on the ‘Micrium CDC Device’ located under

‘Ports (COM & LPT)’ and select ‘Properties’.

20

Figure 9 – CDC Device Properties

- In the ‘Properties’ window, under ‘Port Settings’ click on ‘Advanced’.

- In the pop-up window, select the COM port number and click ‘OK’.

Figure 10 - Specify COM Port Number

- The COM port number of the device will now be changed.

21

Configuring DHCP Connection for Ethernet

To make sure the PC internet connection is compatible with DHCP and used by the Ethernet

demo, confirm that it is not statically configured. Under the Control Panel settings navigate to

Control Panel->Network and Internet->Network Connections and open the properties of the

connection being used to plug into the board.

Figure 11 - Location of Computers Internet Configurations

Under the properties page select the “Internet Protocol Version 4 (TCP/IPv4) and open the

properties for this type of connection.

Figure 12 - Connection Properties Window

Check the following settings so that the connection can be established automatically and does

not attempt to use a pre-configured IP address.

22

Figure 13 - IPv4 Properties

Save these connection settings for the Ethernet demo.

Running the Demo of Everything
The first screen displayed on the LCD is a black screen, displaying a title and a small description

of the application in white letters.

Figure 14 - Welcome Screen

After about five seconds, the main screen will appear. If the YDBENETPMOD extension board is

attached at start-up the extended demo will be displayed. Otherwise, it will only display the

demo options for USB-Host MSC, USB-Device HID, USB-Device CDC, and GUI. The demo buttons

will be displayed, each with text indicating what demo will be started when the button is

pressed.

23

Figure 15 - Home Screen

USB-Host Mass Storage Class (MSC) Demo

To run the USB-Host MSC Demo, connect a USB memory stick to connector J1 on the

YLCDRX63N. After pressing the USB-Host MSC Demo button, another screen will appear.

Figure 16 - MSC Demo Screen

This screen displays the files present in the flash memory of the YLCDRX63N board and on a USB

memory stick. The files on the YLCDRX63N (if any) are displayed using the left treeview widget

and the files on the USB memory stick (if any) are displayed using the right treeview widget.

Two buttons allow the user to copy a selected file from one device to the other. When copying a

file, the complete folder path of this file will be replicated on the destination device. A pop-up

window will appear, indicating that a copy is in progress. There are two other buttons which can

be used to delete files or empty folders on the specified device.

To ensure this demo works as expected, avoid removing the USB memory stick when an

operation is in progress. The USB memory stick must NOT be removed when the pop-up window

is visible.

Also, make sure that the USB Memory stick connected to the board does not contain more than

four levels of depth in its folder hierarchy. In the project, using source code, this limit can be

increased via the APP_CFG_FS_DIR_CNT configuration value in app_cfg.h , but be aware

that the stack usage will increase when more levels are explored. This is due to the fact that

recursive functions are used to explore the tree of files and folders present on both devices. The

24

level of recursions is limited to ensure that the amount of memory used stays within a

reasonable limit.

It is impossible to copy a folder, even if it is empty, or to delete non-empty folders on any of the

devices. A pop-up window will provide a warning to the user if these operations are attempted.

It is also impossible to connect more than one USB memory stick at any given time (even if a

HUB is used).

To return to the home screen, simply press the ‘Back to main’ button, in the upper right corner.

USB-Device Human Interface Device (HID) Demo

When pressing the USB-Device HID Demo button, another screen will appear.

Make sure a USB cable is connected both to the host PC and to the USB function port J2 on the

YLCDRX63N board.

The screen displayed is a white rectangular area, which acts as a track pad (similar to the ones

found on laptops). When the touch screen is pressed, the cursor displayed will ‘jump’ at the

location pressed but the cursor on the PC will not move. This is normal. After this, moving the

touched point on the touch screen will make the pointer on the host PC screen move

accordingly. If the mouse pointer seems to ‘jump’ from one point to another instead of gliding

smoothly, pressing a bit harder or on a smaller area (using the very tip of the finger or a stylus)

on the touch screen will solve the issue.

Three buttons are located at the bottom of the screen. The left one acts as a left-click and the

right one as a right-click. Pressing either one of them will act as if a mouse button was clicked. It

is also possible to execute a “double-click” by pressing two times on the left-click button. Make

sure to release the button before re-clicking on it. It is also possible to use the middle button to

automatically perform a “double-click”. All the button events are triggered when the button is

released.

Figure 17 - HID Demo Screen

Pressing the ‘Back to main’ button in the upper right corner will exit this demo and return the

application to the home screen.

25

USB-Device Communication Device Class – Abstract Control Model subclass (CDC-

ACM) Demo

When pressing the USB-Device HID Demo button, another screen will appear.

Figure 18 - CDC Demo Screen

Make sure a USB cable is connected both to the host PC and to the USB function port J2 on the

YLCDRX63N board.

The screen displayed has three distinct sections: an upper, middle and lower one. The upper

section is used to display characters received from the host PC terminal. Every character

received from the PC will be displayed in this area, one after the other, without line breaks, but

will wrap automatically to the next line when the current one is full. It is possible to send a

carriage return via the serial terminal to manually go to the next line. If using the Hercules

terminal emulator, this is done by sending the <lf> command. In Teraterm, this can be done by

configuring the terminal to send “CR+LF” when line breaking. The middle area is used to display

the characters that will be sent to the host PC terminal when the ‘OK button will be pressed. The

lower one is a keyboard that can be used to edit the character string that will be sent to the host

PC terminal when the ‘Send’ button is pressed.

In order to use this demo, a serial terminal must be launched on the host PC. The terminal must

be able to set the ‘Data Terminal Ready’ (DTR) property of the COM port. The terminal used in

this example is the Hercules SETUP utility, but Teraterm can also be used, as it supports the DTR

property automatically.

The default settings of the CDC-ACM function are the following:

- Baud rate: 9600;

- Data bits: 8;

- Parity bit: None;

- Stop bit: 1;

- No handshake.

26

The serial terminal must be configured with these settings. The COM port number can be known

by looking in the Windows Device Manager, under Ports (COM & LPT). Make sure to enable the

DTR signal of the serial terminal if the terminal does not handle it automatically. Local echo

must be enabled if it is required to display the characters sent to the device on the PC terminal

too.

Figure 19 - Hercules Setup Screenshot

Figure 20 - Device Manager COM & LPT Ports

Once correctly configured, a message indicating ‘Device connected’ will be displayed in the

reception area of the GUI screen. Characters can now be exchanged between the terminal on

the host PC and the target device.

If the terminal is closed or the USB cable disconnected, a message indicating ‘Device

disconnected’ will be displayed in the reception area.

It is possible to return to the home screen by pressing the ‘Back to main’ button in the upper

right corner.

27

Graphical User Interface (GUI) Demo

When pressing the GUI Demo button for the first time, the following screen will appear. This is

the intro window for the GUI demo, which contains four other examples, each showing a

different widget and potential applications.

Figure 21 - GUI Demo Introduction Screen

At any time, it is possible to halt the demo by pressing the ‘Halt’ button, skip to the next

example by pressing the ‘Next’ button and go back to the main menu by pressing the ‘Back’

button. All the buttons are located in the window in the lower right area of the screen. If the

GUI demo is re-started after going back to the main menu, it will start from the next example

that was supposed to execute.

In order, the examples are: BarGraph, Treeview, Listview and Graph. The BarGraph example

shows the behavior of a bar graph, with the value of the bars varying and different colors used

for different bars.

The Treeview example shows various ways the Treeview widget can be used and customized.

For example, adding icons, hiding the lines, collapsing and expanding folders, etc.

The Listview example shows the built-in capabilities of the Listview widget. It demonstrates the

sort mechanism, color fills, methods of using a selection, etc.

The Graph example displays Y axis vs. Time data on a graph. It first displays heartbeat-like data

and then shows some sinusoid waveforms, both moving in the graph area.

28

Extended Demo Features

To connect the extension board, the “FFC” cable must be plugged into the slots on the

YLCDRX63N and YDBENETPMOD as shown below:

Figure 22 FFC Cable Connections Between the Boards

The cable must plug into each port with the coated blue section facing up away from the board

so the exposed ends are touching the board connectors. Please make sure that the FFC cable

slides into the connectors completely. For more detailed setup information refer to the

YDBENETPMOD Technical Reference Manual.

With the extension board connected the main page will display several additional Demo

buttons.

Figure 23 – Extended Home Screen

29

TCP/IP Ethernet Demo

The TCP/IP Ethernet Demo requires an Ethernet connection with DHCP compatibility. Ethernet

Demo becomes available only when an Ethernet cable is connected to the YDBENETPMOD and

to a user supplied router that is up and running. Several files will need to be transferred from a

USB drive to the YLCDRX63N’s Flash memory via the MSC Demo (explained above).

In the folder: Micrium\Software\EvalBoards\Renesas\YLCDRX63N\uCOS-III-GUI\Webpages there

are five files needed for the demo:

- index.html (works on local connection with no internet access)

- index2.html (only needed if connecting with internet access)

- jquery.form.js

- jquery.js

- logo.gif

Copy these files to the USB memory stick and connect it to the YLCDRX63N board’s USB port.

Following the steps explained above for the USB-Host MSC Demo, copy the five files to the flash

memory of the YLCDRX63N. These will be needed to load the webpage. Copy these five files to

the flash, and then return to the ‘Home Screen’ via the “Back to main” button.

Open the Ethernet Demo to see the following page:

Figure 24 - Ethernet Demo Window

The Statistics Window will display the type of connection currently active, the IP Address for the

connection, how many Tx packets have been sent and how many Rx Packets have been

received. When an IP Address is provided and the Rx packet number is increasing steadily, the

connection is active. After the connection is stable the demo webpage can be opened by

loading up the index.html file using µC/HTTPs.

30

To load the demo’s webpage on the PC, start the web browser and enter the IP Address from

the Statistics Window into the browser’s URL bar followed by ‘/index.html’ (e.g.

10.10.1.113/index.html). This will load the demo’s webpage.

NOTE: When using a local connection with no internet access ‘index.html’ must be used as the

webpage file. If an internet connection is available and used to connect with the board then

‘index2.html’ can be used as the web demo. ‘Index.html’ draws its resources from a local source

in memory whereas ‘index2.html’ gets its resources from the source online.

Figure 25 - HTTPs Webpage

Once the webpage has loaded, the Tx Packets counter in the Statistics Window and webpage

will steadily increase. This indicates that the connection with the webpage is working properly

and will interact with the YLCDRX63N. The webpage has three green “Toggle LED #” buttons

which, when selected, will light up a corresponding LED Circle on the YLCDRX63N LCD display.

Inversely, the three Gray buttons can be selected on the LCD display which will toggle the color

of the three corresponding buttons on the webpage.

NOTE: The webpage demo has been tested with Google Chrome V30.0, Firefox V24.0 and

Internet Explorer 9 running on Windows 7. Other web browsers, or other versions of Windows,

may not work with the demo due to the implementation of Java, JSON and JQuery. Chrome and

Firefox have proven to be more responsive running the demo than Internet Explorer.

31

Controller Area Network (CAN) Demo

Selecting the CAN Demo button will bring up the following display:

Figure 26 - CAN Demo Window

To run this CAN bus demo, an external CAN Analyzer/Sniffer device must be connected to the

YDBENETPMOD extension board. If the CAN Analyzer/Sniffer is used with a PC, proper CAN

software and the drivers must be installed The CAN demo is configured for Standard ID’s,

meaning they must be less than or equal to 0x7FF. The Data field can be a maximum of eight

bytes (16 characters).

32

Several jumpers on the Extension board (YBDENETPMOD) will need to be connected at jumper

J201. Make sure that pins 1-2, 3-4 and 11-12 are connected. Refer to the image below:

Figure 27 – Jumper J201 Settings for CAN Operation

33

The CAN High and Low signal lines need to be connected to allow for transferring and receiving

data. See the image below for reference:

Figure 28 - Shows Connection of Signal Line 7-8 CANHigh CANLow

When connecting to the CAN bus it must be terminated at each end of the bus by a parallel

120Ω resistor to work properly. The following diagram gives a sample setup for connecting the

CAN analyzer to the terminating resistor and CANH CANL connections on the board. The baud

rate for sending messages is preconfigured to 1000 KHz for this demo.

Figure 29 - Generic Setup for CAN Analyzer with Internal Resistance Ri and Terminating Resistor R1

34

To transmit a CAN bus data frame from the demo, enter a Tx Frame ID and the desired data into

the two left fields shown on the LCD display. Press “OK” to submit the values otherwise it will

not be stored. After submitting those values, press the “Send Frame” button which will transmit

the data frame to the CAN Analyzer/Sniffer. The ID must be within the allowed range (less than

0x800) otherwise nothing will be sent.

To receive a CAN bus data frame, the desired ID to be received MUST first be specified. After

entering the desired ID in the right-side field shown on the LCD display, the CAN demo will

search for a data frame with the ID specified. It will continue to search for that ID until a new ID

is specified. As messages come in, the data will be displayed in the Data field separated into

bytes 0-7 for ease of reading. Messages with ID’s that do not match the desired ID will not be

displayed.

35

Using µC/Probe

There is no demo for Probe included in the YLCDRX63N package. However, it is possible to use

Probe with the demo project. Probe can be configured to communicate to the target device via

TCP-IP, so while this connection is active in the demo, Probe is usable.

After the project has been compiled there will be a .x ELF file in the /HardwareDebug folder for

the demo. To start analyzing variables within the demo, open Probe and in the symbol browser

window select the “ELF File” button. There is also a pre-compiled .x file available in the

\Micrium folder.

Figure 30 - ELF File Option for Loading Symbols into Probe

After loading the ELF file, click on Run button. For detailed instructions on the operation and

usage of Probe consult the user’s manual at http://micrium.com/tools/ucprobe/trial/.

NOTE: Due to RAM limitations on the target board, Probe’s Kernel Awareness capabilities are

not available in this demo. For more information please refer to the Appendix section of this

document. Below Probe file shows the lower limit of the stack and how many octets are

consumed.

Figure 31 - Sample Probe Analysis of Task Stack Consumption

http://micrium.com/tools/ucprobe/trial/

36

Code

Modules
This section provides a description of every module used in this application. For every module,

there will be a general explanation about the role of the module and details about the major

configuration values, their default values and what they affect. Configuration values in bold

must not be changed to ensure proper execution of this application. Other configuration values

can be changed, but may still cause problems if the value specified is not within a certain range

of values (such as exceeding the remaining RAM space available). Changes done to certain

configuration values will not be taken into account in the demo project, since it uses the pre-

compiled library which was compiled with a given configuration.

Additional information about all the configuration values can be found either directly in the

configuration file’s comments or in the respective module’s User’s Manual.

37

µC/OS-III

Description

This module provides all the capabilities of a real-time kernel. It provides timing, scheduling and

interrupt handling mechanisms. It also manages the creation and execution of tasks and allows

the application to create and use several objects, such as semaphores, mutexes, queues and

flags to sequence task execution. It also includes debugging and statistics capabilities that can be

disabled and enabled at will.

os_cfg.h

Configuration of the capabilities of µC/OS-III.

Major configurations

Name Description Value
OS_CFG_PRIO_MAX Maximum number of task priorities level. 30u

OS_CFG_STK_SIZE_MIN Minimal stack size that can be set. 64u

OS_CFG_FLAG_EN Enable or disable the code for Event Flags. 0u

OS_CFG_MEM_EN Enable or disable the code for Memory Management. 0u

OS_CFG_MUTEX_EN Enable or disable the code for Mutex. 1u

OS_CFG_Q_EN Enable or disable the code for Queues. 1u

OS_CFG_SEM_EN Enable or disable the code for Semaphores. 1u

OS_CFG_STAT_TASK_EN Enable or disable the code for the statistics task. 0u

Table 1 – os_cfg.h

os_cfg_app.h

Configuration of the properties of µC/OS-III internal tasks.

Major configurations

Name Description Value
OS_CFG_STAT_TASK_PRIO Priority of the statistics task. 19u

OS_CFG_STAT_TASK_RATE_HZ Rate of execution of the statistics task. 10u

OS_CFG_STAT_TASK_STK_SIZE Stack size of the statistics task. 96u

OS_CFG_TICK_TASK_PRIO Priority of the tick task. High priority task. 2u

OS_CFG_TICK_RATE_HZ Rate of execution of the tick task. 1000u

OS_CFG_TICK_TASK_STK_SIZE Stack size of the tick task. 96u

Table 2 – os_cfg_app.h

38

µC/CPU

Description

This module provides CPU-related capabilities. It sets the data types of a specific CPU, the way

the interrupts are handled and the critical sections. It also provides functions to handle the

endianness of the CPU or its peripherals.

cpu_cfg.h

Configuration of µC/CPU.

Major configurations

Name Description Value
CPU_CFG_ENDIAN_TYPE Endianness of the CPU. CPU_ENDIAN_TYPE_LITTLE

Table 3 – cpu_cfg.h

39

µC/FS

Description

This module provides a file system that can be used when interacting with the NOR flash located

on the board or with the USB memory stick. It provides the user with an abstraction of the

physical media and offers a simple API to interact with files and directories. In the app_cfg.h file

are several FS configurations under the uC/FS: DRIVER CONFIGURATIONS header. These

control some of the limitations we have set for this project in terms of maximum opened

directories, max opened files etc.

fs_cfg.h

Configuration of the capabilities of µC/FS.

Major configurations

Name Description Value
FS_CFG_DIR_EN Enable or disable the directory module. DEF_ENABLED

FS_CFG_FILE_BUF_EN Enable or disable the file buffer support. DEF_ENABLED

FS_CFG_MAX_DEV_NAME_LEN Maximum length of the device name. 15u

FS_CFG_MAX_FILE_NAME_LEN Maximum length of a file. 255u

FS_CFG_MAX_PATH_NAME_LEN Maximum length of a path. 260u

FS_FAT_CFG_LFN_EN
Enable or disable the Long File Name
support.

DEF_ENABLED

Table 4 – fs_cfg.h

app_cfg.h

File system relevant configurations in the app_cfg.h file.

Major Configurations

Name Description Value
APP_CFG_FS_DEV_CNT Max number of open devices 2u
APP_CFG_FS_VOL_CNT Max number of opened volumes 2u
APP_CFG_FS_FILE_CNT Max number of open files 3u
APP_CFG_FS_DIR_CNT Max number of opened directories 4u
APP_CFG_FS_WORKING_DIR_CNT Max number active working directories 5u
APP_CFG_FS_MAX_SEC_SIZE Max sector size supported 2048u
Table 5 - app_cfg.h for Filesystem

40

µC/GUI

Description

This module provides a way to create and manage a Graphical User Interface (GUI) on an

embedded system. It presents an API to the developer to make abstraction of the type of LCD

and LCD controller, allowing the developer to focus on the functionalities of the GUI. It can

easily be integrated in a multi-task environment, allowing several tasks to interact with it,

without requiring additional protection mechanisms. It also provides several widgets, such as

buttons, checkboxes, dropdown menus, graphs, tables, image containers, progress bars,

scrollbars, spinboxes and text containers. Touch screen and mouse support can also be enabled.

GUIConf.h

Configuration of µC/GUI.

Major configurations

Name Description Value
GUI_OS Enable or disable multitasking support. 1u

GUI_SUPPORT_TOUCH Support a touch screen. 2u

GUI_WINSUPPORT Enable or disable window support. 1u

GUI_DEFAULT_FONT
Default font used by µC/GUI. If changed, other
fonts must be manually included in the project.

&GUI_Font6x8

GUI_MAXTASK Maximum number of tasks accessing µC/GUI. 5u

Table 6 – GUIConf.h

GUITouchConf.h

This file is required by µC/GUI but does not define or implement anything; it simply includes the

LCDConf.h file.

LCDConf.h

Configuration of the LCD used by µC/GUI.

Major configurations

Name Description Value
LCD_MIRROR_X Enable or disable the mirroring on the X-axis. 0

LCD_MIRROR_Y Enable or disable the mirroring on the Y-axis. 1

XSIZE_PHYS Physical size along the X-axis. 480

YSIZE_PHYS Physical size along the Y-axis. 272

GUI_TOUCH_AD_RIGHT Value of the touch screen ADC for the rightmost point. 0x3D08

GUI_TOUCH_AD_LEFT Value of the touch screen ADC for the leftmost point. 0x0397

GUI_TOUCH_AD_BOTTOM Value of the touch screen ADC for the lowest point. 0x38D9

GUI_TOUCH_AD_TOP Value of the touch screen ADC for the highest point. 0x0744

Table 7 – GUIConf.h

41

µC/LIB

Description

This module is used as a building block, on which several of Micriµm’s product rely to function

correctly. It provides utilities that can be used for memory management, character and string

operations and mathematical operations.

lib_cfg.h

Configuration of µC/LIB.

Major configurations

Name Description Value
LIB_MEM_CFG_ALLOC_EN Enable or disable memory allocation module. DEF_ENABLED

LIB_MEM_CFG_HEAP_SIZE Available heap memory for memory allocation. 56 * 1024L

Table 8 – lib_cfg.h

42

µC/USB-Device

Description

This module provides a USB device stack. It can interact with the host to process the requests

sent. It supports several USB classes, such as CDC-ACM and HID which are used in this demo. Its

footprint can be optimized, depending on which classes are used and the complexity of the

required configuration (number of endpoints, interfaces and configurations). In the app_cfg.h

file are several USB-Device configurations under the uC/USB-DEVICE DEMO CONFIGURATION

header. These control some of the limitations we have set for this project.

usbd_cfg.h

Configuration of µC/USB-Device.

Major configurations

Name Description Value
USBD_CFG_MAX_NBR_DEV Maximum number of USB devices 1u

USBD_CFG_HS_EN Enable or disable USB high-speed. DEF_DISABLED
1

USBD_CFG_MAX_NBR_CFG Maximum number of configurations. 2u

USBD_CFG_MAX_NBR_IF Maximum number of interfaces. 3u

USBD_CFG_MAX_NBR_EP_DESC
Maximum number of endpoint
descriptors.

6u

USBD_CFG_MAX_NBR_EP_OPEN Maximum number of opened endpoints. 6u

USBD_CFG_MAX_NBR_STR Maximum number of string descriptors. 10u

USBD_HID_CFG_MAX_NBR_DEV Maximum number of HID class instances. 1u

USBD_CDC_CFG_MAX_NBR_DEV
Maximum number of CDC class
instances.

1u

Table 9 – usbd_cfg.h

usbd_dev_cfg.h

This file has no configuration. It declares the device configuration structure and the device

controller driver that will be used.

1 The RX600 USB controller does not support high-speed.

43

µC/USB-Host

Description

This module provides a USB host stack. It supports several USB classes, such as MSC which is

used in this demo and can interact with multiple devices displaying different classes at any time.

Its footprint can be optimized, depending on which classes are supported and the number of

devices it can support and their complexity (number of endpoints, interfaces and

configurations). In the app_cfg.h file are several USB-Device configurations under the uC/USB-

HOST DEMO CONFIGURATION header. These control some of the limitations we have set for

this project.

usbh_cfg.h

Configuration of µC/USB-Host.

Major configurations

Name Description Value
USBH_CFG_MAX_NBR_DEVS Maximum number of devices. 1u

USBH_CFG_MAX_NBR_CFGS Maximum number of configurations per device. 2u

USBH_CFG_MAX_NBR_IFS Maximum number of interfaces per configuration. 2u

USBH_CFG_MAX_NBR_EPS Maximum number of endpoints per alternate interface. 3u

USBH_MSC_CFG_MAX_DEV Maximum number of MSC devices. 1u

Table 10 – usbh_cfg.h

usbh_hc_cfg.h

This file has no configuration. It only declares the host controller driver that will be used.

44

µC/TCP-IP

Description

This module provides a TCP/IP stack. It can be used to establish a communication network

through an Ethernet connection. In the app_cfg.h file are several USB-Device configurations

under the uC/TCP-IP v2.0 header. These control some of the limitations we have set for this

project such as the Rx and Tx queue size.

net_cfg.h

Network configuration file.

Major Configurations

Name Description Value
NET_IF_CFG_MAX_NBR_IF Sets max number of network interfaces. 2u

NET_IP_CFG_IF_MAX_NBR_ADDR Set max number addresses per interface. 1u

NET_TCP_CFG_NBR_CONN Configure total number TCP connections. 5

NET_SOCK_CFG_FAMILY Configure socket family type. IP_V4

NET_SOCK_CFG_SEL_NBR_EVENTS_MAX Set max number of socket selections 4 * 3

NET_SOCK_CFG_NBR_SOCK Configure total number of sockets. 5

NET_CONN_CFG_NBR_CONN Configure total number of connections. 10

Table 11 – net_cfg.h

net_dev_cfg.h

There are no user defined configurations in this file. It only declares the Ethernet configuration

devices for RX_Ether and PHY.

µC/DHCPc

Description

This module allows the user to use DHCP-client protocol within their project for obtaining an IP

configuration. In the app_cfg.h file are several HTTPs configurations under the uC/HTTPs v2.0

header. These control some of the limitations we have set for this project.

dhcp-c_cfg.h

DHCP Client configuration file.

Major Configurations

Name Description Value
DHCPc_CFG_IP_PORT_SERVER Configure DHCP server port. 67

DHCPc_CFG_IP_PORT_CLIENT Configure DHCP client port. 68

DHCPc_CFG_MAX_NBR_IF Configure maximum number of interfaces. 1

Table 12 - dhcp-c_cfg.h

45

µC/HTTPs

Description

This module provides an HTTP server stack. It allows the implementation of a web server. Web

servers are commonly used to host websites that can be accessed via web browsers (Firefox,

Chrome, Internet Explorer, etc.).

In this demo, the HTTP server is used to host a single webpage. This webpage can be accessed

via a browser to view information and to interact with the demo application.

The demo application uses three main features of the HTTP stack. Dynamic Token Replacement

replaces tokens in the html file with current version numbers for the µC/OS-III, µC/TCP-IP and

µC/HTTPs products. CGI Post features allow the server to process incoming client HTTP POST

requests to update the LEDs on the board. The last feature uses the server’s capacity to send

http response data from memory blocks and support GET requests to update specific sections of

the html file. This feature uses JavaScript code along with the html, to refresh the buttons state

on the webpage.

Please Note: The JavaScript code is not part of the Micriµm product line and has been

incorporated primarily for the purposes of this demo. Any questions regarding the development

of JavaScript code can be directed to the well-documented source available on the web. No

support can be given by Micriµm on this matter.

http-s_cfg.h

This file regroups the general HTTP server suite configurations.

Major Configurations

Name Description Value
HTTPs_CFG_TOKEN_PARSE_EN Dynamic token replacement config. DEF_ENABLED

HTTPs_CFG_CGI_EN CGI processing feature config. DEF_ENABLED

HTTPs_CFG_CGI_POLL_EN CGI post polling feature config. DEF_DISABLED

HTTPs_CFG_CGI_MULTIPART_EN Multipart CGI processing feature config. DEF_DISABLED

HTTPs_CFG_CGI_FILE_UPLOAD_EN CGI file upload feature config. DEF_DISABLED

HTTPs_CFG_HDR_EN Header fields processing feature config. DEF_DISABLED

HTTPs_CFG_ABSOLUTE_URI_EN Absolute URI support feature config. DEF_DISABLED

Table 13 - https-c_cfg.h (Note – Only first two configurations are needed for the Demo)

46

http-s_instance_cfg.c

This file defines several runtime configurations values needed for each HTTP server instance.

Those configurations are regrouped inside an HTTPs_CFG structure.

Major Configurations

Name Description Value

ConnNbrMax
Max number of simultaneous
connections.

4

BufLen Size of the HTTP buffers. 1000
WorkingFolderPtr Working folder of the HTTP server “\\” (root dir of FS)
FileStr_DfltFilePtr Name of the default webpage “index.html”
HdrFieldEn Header fields feature config. DEF_DISABLED
CGI_En CGI processing feature config. DEF_ENABLED
CGI_MultipartEn Multipart CGI feature config. DEF_DISABLED
CGI_MultipartFileUploadEn CGI file upload feature config. DEF_DISABLED
TokenParseEn Dynamic token replacement config. DEF_ENABLED
Table 14- http-s_instance_cfg.h variables

In addition, this file also defines callback functions used by the HTTP server instance. Those

callback functions allow personalizing the HTTP server instance behavior to the needs of the

demo application.

Name Description

HTTPs_InstanceConnReq
Process the incoming get requests for the refreshing of
the buttons’ states.

HTTPs_InstanceCGI_Post
Process the incoming post requests when a LED status
has been change.

HTTPs_InstanceTokenValGet Set the values of the dynamic tokens in the html file.
Table 15 - http-s_instance_cfg.h hook defines

47

µC/CAN

Description

This module allows the user to utilize inter module communication.

can_cfg.h

This file contains the CAN stack configurations for mailbox and message setup and operation.

Major Configurations

Name Description Value
CAN_MAILBOX_MODE Configure between Normal and FIFO. NORMAL

CAN_MODULE_CHANNEL_0 Enable CAN channel 0 for use. DEF_ENABLED

CAN_MODULE_CHANNEL_1 Enable CAN channel 1 for use. DEF_DISABLED

CAN_MODULE_CHANNEL_2 Enable CAN channel 2 for use. DEF_DISABLED

Table 16 - can_cfg.h defines

48

Application Files
This section provides a description of every application-specific file that is used in this

application. These are the files located in the App/ directory, except for the configuration files

already described in the Modules section. A description of the role of every application file will

be given.

Header files

app_can.h

This file declares several functions, configuration defines and warning messages for invalid

configuration settings with the CAN stack.

app_cfg.h

This file contains configuration for several parameters for the application. It defines the task

priorities and stack sizes, the µC/USB-Device and µC/USB-Host class support configuration, the

µC/FS media support, NOR driver and application-specific configurations, number of µC/TCP-IP

Tx Rx buffers socket connections and other customizable features.

app_fs.h

This file defines default configuration for µC/FS, conditionally includes file-system specific

header files and checks if the µC/FS configuration is valid.

app_GUI_can_demo.h

This file declares the CAN demo functions and several mode defines.

app_GUI_cdc_demo.h

This file declares the functions specific to the CDC demo.

app_GUI_hex_kbd.h

This file sets up the number of hex keyboard buttons, size and function declarations.

app_GUI_hid_demo.h

This file declares the functions specific to the HID demo.

app_GUI_kbd.h

This file sets up the basic keyboard buttons, size and function declarations.

app_GUI_main.h

This file defines configurations and structures used by several demos. It also declares the

functions specific to the main screen.

app_GUI_msc_demo.h

This file declares the functions specific to the MSC demo.

app_GUI_net_demo.h

This file declares the majority of TCP/IP demo function.

49

app_net.h

This file declares several functions, configuration defines and warning messages for invalid

configuration settings for the TCP/IP stack. This also includes a general demo structure for

detecting specific connections for the demo.

app_usb.h

This file defines the default configuration for µC/USB-Device and µC/USB-Host. It also makes

sure that the specified configuration is valid. It defines several configuration parameters and

structures that are used by the USB tasks and declares the functions specific to the USB tasks.

50

Source files

app.c

This file contains the main function, which initializes µC/OS-III and creates the start task. It also

contains the start task, which initializes all the other modules used by the application.

app_can.c

This file contains the initialization functions for µC/CAN. It also implements the required callback

functions for the Tx and Rx tasks as well as pending/posting semaphores.

app_fs.c

This file contains functions used to initialize µC/FS. It contains an initialization function which

starts µC/FS and calls the initialize functions for the application-specific drivers (NOR and MSC).

app_GUI_can_demo.c

This file contains everything that is required for the CAN demo GUI screen. It defines the sizes

and positions of the widgets displayed and implements everything required to capture and send

pertinent touch screen events to the CAN Rx/Tx tasks, including the callback function used to

process the events. It also implements the initialize, suspend, resume and notify functions for

the CAN demo.

app_GUI_cdc_demo.c

This file contains everything that is required for the CDC-ACM demo GUI screen. It defines the

sizes and the positions of the widgets in the CDC-ACM demo screen and implements everything

required for the keyboard to work correctly, including some drawing functions and the callback

function used to process the events. It also implements the initialize, suspend, resume and

notify functions for the CDC-ACM demo.

app_GUI_hid_demo.c

This file contains everything that is required for the HID demo GUI screen. It defines the sizes

and positions of the widgets displayed and implements everything required to capture and send

pertinent touch screen events to the HID USB task, including the callback function used to

process the events. It also implements the initialize, suspend, resume and notify functions for

the HID demo.

app_GUI_main.c

This file contains everything that is required for the home screen GUI. It defines the sizes and

positions of the widgets displayed and implements everything required to capture and manage

the touch events on a given button, including the callback function used to process the events. It

also implements the initialize, suspend, resume and notify functions for the home screen. It also

contains the main GUI task, which processes the GUI execution and checks if a task must be

notified of any external event.

51

app_GUI_msc_demo.c

This file contains everything that is required for the MSC demo GUI screen. It defines the sizes

and positions of the widgets displayed and implements everything required for the correct

handling of copy requests, including the callback function used to process the events. It sends a

request to the USB host MSC task when required. It also implements the initialize, suspend,

resume and notify functions for the MSC demo.

app_GUI_net_demo.c

This file contains everything that is required for the Ethernet demo GUI screen. It defines the

sizes and positions of the widgets displayed and implements everything required to capture and

send pertinent touch screen events to the TCP/IP Ethernet tasks, including the callback function

used to process the events. It also implements the initialize, suspend, resume and notify

functions for the Ethernet demo. The functions that control the pressing of the on-screen LEDs

and toggle buttons are also controlled here.

app_net.c

This file contains the initialization functions for µC/TCP-IP, µC/HTTPs and µC/DHCPc. It also

implements the required callback functions for the Ethernet demo. The monitoring function for

the DHCP connection and obtaining of the current IP address function is included here.

app_usb.c

This file contains the initialization functions for µC/USB-Device and µC/USB-Host. It also

implements the required callback functions for µC/USB-Device and defines the structure for the

two internal tasks of µC/USB-Host.

app_usbd_cdc_demo.c

This file contains the initialization function for the CDC-ACM class. It also implements the

CDC-ACM task, used to send and receive characters to or from the host PC. It also defines the

required CDC-ACM callback functions.

app_usbd_hid_demo.c

This file contains the initialization function for the HID class. It also implements the HID task,

used to send information to the host PC. It also defines the required HID callback functions.

app_usbh_msc_demo.c

This file contains the initialization function for the MSC class. It also implements the MSC task,

used to exchange data between the host PC and the device. It also defines and registers the

required MSC callback function.

GUI_X_uCOS-III.c

This file provides an abstraction layer between µC/OS-III and µC/GUI. It allows µC/GUI to use

several µC/OS services, such as semaphores and delay functions to implement a lock, a delay

and a timing mechanism.

52

GUIConf.c

This file initializes the GUI and declares and assigns the memory dedicated to µC/GUI.

LCDConf.c

This file checks the validity of the configuration of the LCD and implements several functions

related to the GUI and the LCD. These functions include a function to initialize the LCD and the

touch screen, the touch screen task and several functions used by the touch screen task.

usbd_dev_cfg.c

This file sets the content of the two configuration structures for µC/USB-Device, the device

configuration and the device driver configuration structure. The device configuration structure

contains the vendor and product ID and other configurable fields, such as the manufacturer and

product string. The device driver configuration structure must not be edited for this given

application; it contains information about the RX63 USB device controller.

usbh_hc_cfg.c

This file sets the content of the configuration structure for µC/USB-Host, the device driver

configuration structure. The device driver configuration structure must not be edited for this

given application; it contains information about the RX63 USB host controller.

53

Tasks

Description

This section will explain the role of every application-defined task. The internal tasks will not be

detailed here, please refer to the User Manual of the product for more details on these internal

tasks.

External Memory Manager Task

This task manages the access to the external memory. It suspends the registered task(s)

(registered by calling R_DDLCD_ExMemoryAcquire()) when the LCD is reading the external

memory and that nothing can be written in it. It then resumes the tasks when they are free to

interact with the external memory: when the LCD is not reading in it. The external memory is

used to store everything which is GUI-related. It contains the widgets, their properties and a

rendering of the screen(s). It does not contain any execution code.

This protection mechanism is due to the fact that the Direct Drive technique is used to interact

with the LCD. For more information about the Direct Drive LCD technique and more

explanations as to why this protection mechanism is required, please refer to Renesas’

Application Note Direct Drive LCD Demonstration, labelled R01AN0331EU0103.

In the current application, only the GUI Main task needs to be registered, since it is the only one

which accesses the external memory, via the GUI_Exec() function and the callback’s it calls.

The Demo window creation and the Suspend() , Resume() and SemNotify() functions

are all called by the GUI Main Task, to only have to register a single task as accessing the

external memory.

µC/GUI Touch Task

This task reads the values from the touch screen ADCs and stores it for the GUI to interpret the

values obtained. This is done every 10ms.

µC/USB-Device CDC Demo Task

This task checks if a CDC-ACM device is present and correctly configured. If a device is present, it

checks if a transfer (IN or OUT) has been requested. If the transfer is a transmission, it sends the

data prepared in the CDC GUI functions. If the transfer is a reception, it stores the data received

in a shared buffer and posts a semaphore allowing the CDC GUI to be notified via the registered

SemNotify() function. This task is never executed at the same time than the GUI demo, HID

or MSC task, since it is only active when the CDC Demo is selected.

µC/USB-Device HID Demo Task

This task checks if a HID device is present. If a device is present, it checks if an IN transfer has

been requested. If the transmission is requested, it sends the data prepared in the HID GUI

functions. This task is never executed at the same time than the GUI demo, CDC or MSC task,

since it is only active when the HID Demo is selected.

54

µC/USB-Host MSC Demo Task

This task checks if a copy operation (between the MSC and the NOR) has been requested. If it

has, it manages the string operations required to create the full path of the files and executes

the copy operation(s) requested. There may be more than one operation if directories must be

created. This task is never executed at the same time than the GUI demo, CDC or HID task, since

it is only active when the MSC Demo is selected.

GUI Demo Task

This task will execute a demo that shows various widgets, their uses and the customization

options available in µC/GUI. When started (or resumed), it registers itself as a task that accesses

the external memory and calls in turn every demo functions. It also verifies the states of the

three buttons (‘Halt’, ‘Next’ and ‘Back’) and manages the execution depending on their states.

When suspended, it un-registers itself from the external memory manager.

GUI Main Task

This task begins by registering itself as a task that accesses the external memory. It then creates

all the GUI windows, for every demo, including the ‘welcome’ and ‘home’ screens. It then

periodically call the GUI_Exec() function, allowing the GUI to process events, (such as touch

screen events), and call the corresponding callback function. Since in each demo everything

related to the GUI is done in callback functions (there are no other tasks related to the GUI for

the various demos), the GUI is exclusively updated when this task executes, thus making this

task the only one needing to be registered as accessing the external memory, except when the

GUI demo is running, it leaves the GUI demo task to call GUI_Exec() by itself. The task then

calls the GUI_Mgr() function, which checks if one of the registered notification semaphores,

for itself and the currently executing task, has been posted. If it has, it calls the corresponding

SemNotify() callback. It is in its own SemNotify() callback that this task executes the

switch from one task to another, by calling the respective Suspend() and Resume() callback

functions of the task to stop and start executing. It then toggles the LED, depending on which of

the demo is executing.

DHCPc Task

This task is used by the DHCPc module to configure an IP address for the user at start-up or

during the runtime of the demo when a disconnected connection is re-connected.

HTTPs Task

This creates the HTTP server task that manages the connection to the webpage and watches for

changes or updates. This is used in conjunction with the µC/TCP-IP stack to connect to the

specified server that will be allocated from the DHCPc task. The user can then load the demo

html file and view the webpage that will allow them to modify several lights on the board and

webpage.

55

CAN0 Rx Task

This task configures the specified (Mailbox 0 in this demo) mailbox to receive messages with a

particular ID. This filtering allows the CAN stack to locate specific messages from particular

components.

CAN Tx Task

This task sets up a form to be transmitted via the CAN stack. It will take the users specified ID

and Data string and transmit it along the communication lines when the user presses the “Send

Frame” button on the LCD.

Priorities

This section will explain the way the µC/OS-III task priorities used in this project have been set.

The external memory manager task needs to be of higher priority than the tasks it must

suspend. Also, since it executes very rapidly and is very critical, it was decided to put this task at

the highest possible priority.

The GUI Touch task has the next priority. This is a task that must be executed often, but does

not need much time to execute itself, since the processing of the events is done by the GUI task.

Therefore, it was decided that this task must have a higher priority than the demo task.

Three internal tasks are the following tasks with the higher priority. There are two that are

related to USB-Host, and then the USB-Device core task. These tasks must habitually be a

middle-high priority. In the current case, they have a higher priority than the GUI tasks, but not

more than critical tasks (GUI Touch and external memory handling tasks).

The clock task is the next highest priority, since it is more time-critical than the other ones, is

quite fast to execute and pends on a one second timer, leaving time for other tasks to execute.

Then, there are two demo tasks: CDC and HID. These must have a lower priority than the USB-

Host and USB-Device internal tasks, but a higher than the GUI task. There are delays in all of

these tasks to allow the main GUI task to execute itself.

The internal USB-Device HID timer task is next. It is a fast and low-priority task internally used by

the HID class of µC/USB-Device.

The task with the next priority is the main GUI task. It must be at a high enough priority to

execute often enough, in order to keep the GUI responsive. This is why it has a higher priority

than the MSC task, so the GUI still updates, even when a file transfer is in progress.

The GUI demo task is the next one. Since this task never executes at the same time as the CDC,

HID or MSC task, its priority is more flexible than the other task’s. It can be a bit higher or a bit

lower.

56

The MSC task is the application task with the lowest priority, since transfers between the NOR

memory and the USB memory stick can be long and must not prevent other tasks from

executing when they are in progress.

The Net Tx priority must not be higher than the tasks monitoring the GUI display or touch sensor

but need to be higher than the net timer task.

The HTTPs Config instance task was set as the next priority. This task needs to be called often

enough for the webpage to detect any changes that occur within the project and properly

transmit them. This can’t be higher priority than the Tx task but must not be lower than the Net

timer task.

The Net Timer Task priority needs to be higher than the Rx task priority in order for the timing of

each of these functions to stay in line with the rest of the project. It must be lower priority than

the HTTPs task.

The Net Rx priorities must not be higher than the tasks monitoring the GUI display or touch

sensor and needs to be lower than the Net timer task.

The CAN Tx and Rx task priorities are the lowest on the list since it is a basic monitoring of user

input requests and software semaphore signals. As such, it must not be higher than the Task

Start priority or GUI monitoring priorities.

57

Interrupts
Several interrupts are used throughout this application. A distinction can be made between two

types of interrupts: the ‘regular’ ones and the ‘Direct Drive LCD’ ones. This section will provide

more details about these two types of interrupts and the difference between them.

General Interrupts

The ‘regular’ interrupts are standard interrupts that µC/OS-III is aware of and that it will call at

the correct time, depending of the interrupt handling method selected. These interrupts include

the OS timer interrupts, USB interrupts, network interrupts and CAN Tx/Rx interrupts. The LCD

dot clock interrupt, which causes the external memory manager task to execute, is also in this

category of interrupts. µC/OS-III services can be used in these interrupts, if the usage allows it.

For example, it is possible to do a semaphore post in these interrupts, but it is impossible to

pend on a semaphore in an interrupt. These interrupts cannot happen during an OS critical

section.

Direct Drive LCD Interrupts

These two interrupts, R_DDLCD_DD_BLANK_isr() and R_DDLCD_DD_DATA_isr() are

used only by the Direct Drive LCD module for displaying the GUI on the LCD. These interrupts are

required to control the signals that are sent to the external memory to display the GUI. These

two interrupts are not kernel-aware and the kernel is not aware when they are executed. They

can completely pre-empt the kernel, even in a critical section. It is impossible to use services

from µC/OS-III from these interrupts. Instead, a flag is used to indicate whether or not the

external memory can be accessed. This flag is checked by the external memory manager task to

suspend or resume tasks accessing the external memory. User and/or applications won’t need

to modify these interrupts or the way they interact with µC/OS-III, µC/GUI or other tasks. Only

registering a task accessing the external memory is required.

For more details about the Direct Drive mechanisms and the timing constraints involved, please

see Renesas’ Application Note Direct Drive LCD Demonstration, labelled R01AN0331EU0103.

58

Known Issues
Issue with RXC linker optimization.

RXC compiler/linker does not support (very) long file names.

Contacts
Micriµm, Inc.
1290 Weston Road, Suite 306
Weston, FL 33326
USA
+1 954 217 2036
+1 954 217 2037 (FAX)
e-mail : info@micrium.com
Website : www.micrium.com

mailto:info@micrium.com
http://www.micrium.com/

59

Footprint

Figure 32 - Project RAM and ROM size usage with optimizations on MAX

The data shown here is obtained from the current settings of all Micrium modules in the Demo

of Everything. The configurations have been minimized as much as possible to allow them to

run within the constraints of the available memory so that each will operate within the demo. If

the settings are modified, i.e. reduced or expanded further it could result in the project crashing

or certain demos malfunctioning if there is not enough memory available.

Table 17 - Data on ROM and RAM usage with optimizations on MAX

60

The Demo of Everything is an excellent example of multiple Micrium software modules

integrated into an application; however some limitations were imposed due to the amount of

available RAM on the YLCDRX63N target board. Some of the feature and functional limitations

are as follows:

µC/USB-Device:

 Only HID and CDC classes are included in this project. Since buffer creation is minimal

for both classes the small footprint size accurately reflects this.

 The number of devices, interfaces and maximum endpoints is limited.

Major configurations

Name Description Value
USBD_CFG_MAX_NBR_DEV Maximum number of USB devices 1u

USBD_CFG_MAX_NBR_CFG Maximum number of configurations. 2u

USBD_CFG_MAX_NBR_IF Maximum number of interfaces. 3u

USBD_CFG_MAX_NBR_EP_DESC Max number of endpoint descriptors. 6u

USBD_CFG_MAX_NBR_EP_OPEN Maximum number of opened endpoints. 6u

USBD_CFG_MAX_NBR_STR Maximum number of string descriptors. 10u

USBD_HID_CFG_MAX_NBR_DEV Maximum number of HID class instances. 1u

USBD_CDC_CFG_MAX_NBR_DEV Max number of CDC class instances. 1u

Table 18 - Important settings for USB-Device overall Size

µC/USB-Host:

 Only the MSC class is included in this project. MSC class is the largest of the classes for

both USB Host and USB Device and is accurately reflected in the analysis above.

 Similar limitations for the number of devices, interfaces and endpoints as indicated for

the USB-Device stack.

Major configurations

Name Description Value
USBH_CFG_MAX_NBR_DEVS Maximum number of devices. 1u

USBH_CFG_MAX_NBR_CFGS Maximum number of configurations per device. 2u

USBH_CFG_MAX_NBR_IFS Maximum number of interfaces per configuration. 2u

USBH_CFG_MAX_NBR_EPS Maximum number of endpoints per alternate interface. 3u

USBH_MSC_CFG_MAX_DEV Maximum number of MSC devices. 1u

Table 19 - Important settings for USB-Host overall Size

61

µC/FS:

 The amount of memory consumed by the FS stack varies with user application. In this

project the limitations are the depth of folder path (4 levels), maximum number of open

devices at one time, and the maximum number of files and volumes that can be opened.

Major Configurations

Name Description Value
APP_CFG_FS_DEV_CNT Max number of open devices 2u
APP_CFG_FS_VOL_CNT Max number of opened volumes 2u
APP_CFG_FS_FILE_CNT Max number of open files 3u
APP_CFG_FS_DIR_CNT Max number of opened directories 4u
APP_CFG_FS_WORKING_DIR_CNT Max number active working directories 5u
APP_CFG_FS_MAX_SEC_SIZE Max sector size supported 2048u
Table 20 - Important settings for File System overall Size

µC/TCPIP:

 For HTTPs and DHCPc, the biggest limitations are how many connections, sockets and

buffers are allocated to the stack. The reliability of the TCP-IP connection is directly

correlated to how well communications can be handled. With more connections and

buffers available, there is less chance to miss packets and run out of sockets to connect

with the HTTP webpage.

 For this demo, four files need to be downloaded by the http client (web browser) when

the page is first loaded: one html file which is the main page, one gif file for the logo on

the page, and two JavaScript files as libraries for the scripts inside the html file.

 Since browsers usually open multiple connections in parallel, the http server must be

able to handle up to four simultaneous connections with the browser. This is why the

configuration “ConnNbrMax” was set to four. This situation will occurs when the page is

loaded the first time. Once the page is up and running one connection will be used

during each refresh timeout to update the buttons states while the other connection is

used to send POST requests to change the LED state.

 Since a network server application always needs one TCP connection and one socket to

listen for incoming queries by clients, the “NET_TCP_CFG_NBR_CONN” and

“NET_SOCK_CFG_NBR_SOCK” configurations have been set to five.

 The number of Transfer and Receive buffers has been configured to utilize the

remaining RAM. The minimum number required depends on the refresh timeout use by

the JavaScript code. With the actual timeout, it has been determine that five transmit

buffers and five receipt buffers are required for the demo to run smoothly.

62

Major Configurations

Name Description Value
NET_IF_CFG_MAX_NBR_IF Sets max number of network interfaces. 2u

NET_IP_CFG_IF_MAX_NBR_ADDR Set max number addresses per interface. 1u

NET_TCP_CFG_NBR_CONN Configure total number TCP connections. 5

NET_SOCK_CFG_SEL_NBR_EVENTS_MAX Set max number of socket selections 4 * 3

NET_SOCK_CFG_NBR_SOCK Configure total number of sockets. 5

NET_CONN_CFG_NBR_CONN Configure total number of connections. 10

NetDev_Cfg_RX_Ether Lg Rx Buffer Desired size of Large Rx Buffers 1520u

NetDev_Cfg_RX_Ether # Lg Rx Buff Desired number of Large Rx Buffers 7u

NetDev_Cfg_RX_Ether Lg Tx Buffer Desired size of Large Tx buffers 1600u

NetDev_Cfg_RX_Ether # Lg Tx Buff Desired number of Large Tx buffers 5u

Table 21 - Important settings for TCP/IP overall Size

Major Configurations

Name Description Value
HTTPs_CFG_INSTANCE_CONN_NUM_MAX Max number simultaneous connections 4

HTTPs_CFG_INSTANCE_CONN_BUFF_LEN Instance connection buffer length 1000

HTTPs_CfgInstance_0 Config Token # Configure total number of tokens 3

Table 22 - Important settings for HTTPs overall Size

µC/Probe:

 Due to RAM limitations on the target board, Probe’s Kernel Awareness capabilities are

not available in this demo. Attempting to launch Kernel Awareness within Probe, a

warning message will be displayed indicating uC/Probe was unable to run Kernel

Awareness.

Major Configurations

Name Description Value
PROBE_COM_CFG_RX_MAX_SIZE Config max receive packet size 256

PROBE_COM_CFG_TX_MAX_SIZE Config max transmit packet size 256

PROBE_COM_CFG_STR_IN_BUF_SIZE Configure total number TCP connections. 128

PROBE_COM_CFG_STR_OUT_BUF_SIZE Set max number of socket selections 2048

Table 23 - Important settings for Probe overall Size

