
U
ser’s M

anual

MR8C/4 V.1.01
User’s Manual
Real-time OS for R8C Family

Rev.1.01 September 2011

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by Re-
nesas Electronics Corporation without notice. Please review the latest information published by
Renesas Electronics Corporation through various means, including the Renesas Electronics
Corporation website (http://www.renesas.com).

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

i

Preface
The MR8C/4 is a real-time operating system1 for R8C Family microcomputers. The MR8C/4 conforms to the μITRON
Specification.2

This manual describes the procedures and precautions to observe when you use the MR8C/4 for programming purposes.
For the detailed information on individual service call procedures, refer to the MR8C/4 Reference Manual.

Requirements for MR8C/4 Use
When creating programs based on the MR8C/4, it is necessary to purchase the following product of Renesas.

• C-compiler package M3T-NC30WA(abbreviated as NC30) for the M16CSeries and R8C Family micro-
computers.

Document List
The following sets of documents are supplied with the MR8C/4.

• Release Note
Presents a software overview and describes the corrections to the Users Manual and Reference Manual.

• Users Manual (PDF file)
Describes the procedures and precautions to observe when using the MR8C/4 for programming purposes.

Right of Software Use
The right of software use conforms to the software license agreement. You can use the MR8C/4 for your product develop-
ment purposes only, and are not allowed to use it for the other purposes. You should also note that this manual does not
guarantee or permit the exercise of the right of software use.

1 Hereinafter abbreviated "real-time OS"
2 μITRON4.0 Specification is the open real-time kernel specification upon which the TRON association decided
 The specification document of μITRON4.0 specification can come to hand from a TRON association homepage
(http://www.assoc.tron.org/).

 The copyright of μITRON4.0 specification belongs to the TRON association.

ii

Contents

Requirements for MR8C/4 Use...i
Document List...i
Right of Software Use...i

Contents.. ii

List of Figures ... vi

List of Tables .. vii

1. User’s Manual Organization... 1

2. General Information ... 2
2.1 Objective of MR8C/4 Development ...2
2.2 Relationship between TRON Specification and MR8C/4 ..4
2.3 Features..5

3. Introduction to Kernel .. 6
3.1 Concept of Real-time OS ...6

3.1.1 Why Real-time OS is Necessary ..6
3.1.2 Operating Principles of Kernel..9

3.2 Service Call ..12
3.2.1 Service Call Processing ..13
3.2.2 Processing Procedures for Service Calls from Handlers..14

Service Calls from a Handler That Caused an Interrupt during Task Execution..15
Service Calls from a Handler That Caused an Interrupt during Service Call Processing.....................................16
Service Calls from a Handler That Caused an Interrupt during Handler Execution ..17

3.3 Object..18
3.3.1 The specification method of the object in a service call ...18

3.4 Task ..19
3.4.1 Task Status ...19
3.4.2 Task Priority and Ready Queue ..23
3.4.3 Task Priority and Waiting Queue..24
3.4.4 Task Control Block(TCB) ...25

3.5 System States...27
3.5.1 Task Context and Non-task Context ...27
3.5.2 Dispatch Enabled/Disabled States ..29
3.5.3 CPU Locked/Unlocked States ..29
3.5.4 Dispatch Disabled and CPU Locked States..29

3.6 Regarding Interrupts...30
3.6.1 Types of Interrupt Handlers ..30
3.6.2 The Use of Non-maskable Interrupt ...30
3.6.3 Controlling Interrupts..31
3.6.4 Permission and prohibition of interrupt ...33

When prohibiting interrupt in the task..33
When permitting interrupt in the interrupt handler (When accepting multiple interrupt)..................................33

3.7 About the power control of R8C and the operation of the kernel ...34
3.8 Stacks ...35

3.8.1 System Stack and User Stack..35
4. Kernel .. 36

4.1 Module Structure...36
4.2 Module Overview ...37

4.2.1 Task Management Function ..38

iii

4.2.2 Task Dependent Synchronization Function..40
4.2.3 Synchronization and Communication Function (Semaphore)...43
4.2.4 Synchronization and Communication Function (Eventflag) ...45
4.2.5 Synchronization and Communication Function (Data Queue) ...47
4.2.6 Time Management Function..48
4.2.7 Cyclic Handler Function ..49
4.2.8 Alarm Handler Function..50
4.2.9 System Status Management Function..51
4.2.10 Interrupt Management Function ..52
4.2.11 System Configuration Management Function ...53

5. Service call reference .. 54
5.1 Task Management Function ...54

sta_tsk Activate task with a start code ..55
ista_tsk Activate task with a start code (handler only)..55
ext_tsk Terminate invoking task ..57
ter_tsk Terminate task ..59
chg_pri Change task priority...61

5.2 Task Dependent Synchronization Function...63
slp_tsk Put task to sleep..64
wup_tsk Wakeup task..66
iwup_tsk Wakeup task (handler only)..66
can_wup Cancel wakeup request ...68
rel_wai Release task from waiting..70
irel_wai Release task from waiting (handler only) ...70
sus_tsk Suspend task ...72
rsm_tsk Resume suspended task ...74
dly_tsk Delay task..76

5.3 Synchronization & Communication Function (Semaphore) ...78
sig_sem Release semaphore resource ..79
isig_sem Release semaphore resource (handler only) ..79
wai_sem Acquire semaphore resource...81
pol_sem Acquire semaphore resource (polling) ...81

5.4 Synchronization & Communication Function (Eventflag)..83
set_flg Set eventflag..84
iset_flg Set eventflag (handler only) ...84
clr_flg Clear eventflag..86
wai_flg Wait for eventflag..88
pol_flg Wait for eventflag(polling)..88

5.5 Synchronization & Communication Function (Data Queue) ..91
snd_dtq Send to data queue ...92
psnd_dtq Send to data queue (polling)...92
ipsnd_dtq Send to data queue (polling, handler only)..92
rcv_dtq Receive from data queue ..95
prcv_dtq Receive from data queue (polling)..95

5.6 Time Management Function...98
isig_tim Supply a time tick...99

5.7 Time Management Function (Cyclic Handler)...100
sta_cyc Start cyclic handler operation..101
stp_cyc Stops cyclic handler operation ...102

5.8 Time Management Function (Alarm Handler) ..103
sta_alm Start alarm handler operation...104
stp_alm Stop alarm handler operation ..106

5.9 System Status Management Function...107
get_tid Reference task ID in the RUNNING state..108
loc_cpu Lock the CPU ..109
unl_cpu Unlock the CPU ..111
dis_dsp Disable dispatching ..112
ena_dsp Enables dispatching..114
sns_ctx Reference context..115

iv

sns_loc Reference CPU state...116
sns_dsp Reference dispatching state ...117

5.10 Interrupt Management Function..118
ret_int Returns from an interrupt handler (when written in assembly language).......................119

5.11 System Configuration Management Function...120
ref_ver Reference version information ...121

6. Applications Development Procedure Overview.. 123
6.1 Overview...123

7. Detailed Applications .. 125
7.1 Program Coding Procedure in C Language..125

7.1.1 Task Description Procedure...125
7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler ...127
7.1.3 Writing Non-kernel (OS-independent) Interrupt Handler ...127
7.1.4 Writing Cyclic Handler/Alarm Handler ..128

7.2 Program Coding Procedure in Assembly Language ..129
7.2.1 Writing Task ...129
7.2.2 Writing Kernel(OS-dependent) Interrupt Handler ..130
7.2.3 Writing Non-kernel(OS-independent) Interrupt Handler ...130
7.2.4 Writing Cyclic Handler/Alarm Handler ..131

7.3 Modifying MR8C/4 Startup Program ...132
7.3.1 C Language Startup Program (crt0mr.a30)..133

7.4 Memory Allocation...137
7.4.1 Sections that kernel uses ...138

8. Using Configurator ... 139
8.1 Configuration File Creation Procedure ..139

8.1.1 Configuration File Data Entry Format...139
Operator ...140
Direction of computation ...140

8.1.2 Configuration File Definition Items..141
[(System Definition Procedure)]..141
[(System Clock Definition Procedure)]..143
[(Task definition)]...144
[(Eventflag definition)] ..146
[(Semaphore definition)]..147
[(Data queue definition)] ..148
[(Cyclic handler definition)]...150
[(Alarm handler definition)] ..152
[(Interrupt vector definition)]..153

8.1.3 Configuration File Example...155
8.2 Configurator Execution Procedures ...156

8.2.1 Configurator Overview...156
8.2.2 Setting Configurator Environment ...157
8.2.3 Configurator Start Procedure..157

Error messages ..158
Warning messages ...161

9. Table Generation Utility ... 162
9.1 Summary..162
9.2 Environment Setup ...162
9.3 Table Generation Utility Start Procedure..162
9.4 Notes...162

10. Sample Program Description .. 163
10.1 Overview of Sample Program ...163
10.2 Program Source Listing...164
10.3 Configuration File..165

11. Stack Size Calculation Method ... 166

v

11.1 Stack Size Calculation Method...166
11.1.1 User Stack Calculation Method...168
11.1.2 System Stack Calculation Method ..170

11.2 Necessary Stack Size...174
12. Note .. 175

12.1 The Use of INT Instruction...175
12.2 The Use of registers of bank ...175
12.3 Regarding Delay Dispatching ...176
12.4 Regarding Initially Activated Task...176

13. Appendix .. 177
13.1 Assembly Language Interface...177

vi

List of Figures

Figure 3.1 Relationship between Program Size and Development Period..6
Figure 3.2 Microcomputer-based System Example(Audio Equipment) ..7
Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment) ...8
Figure 3.4 Time-division Task Operation ...9
Figure 3.5 Task Execution Interruption and Resumption...10
Figure 3.6 Task Switching...10
Figure 3.7 Task Register Area...11
Figure 3.8 Actual Register and Stack Area Management..12
Figure 3.9 Service call ...12
Figure 3.10 Service Call Processing Flowchart..13
Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task Execution........15
Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during Service Call

Processing 16
Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler ...17
Figure 3.14 Task Identification...18
Figure 3.15 Task Status ..19
Figure 3.16 MR8C/4 Task Status Transition..20
Figure 3.17 Ready Queue (Execution Queue) ..23
Figure 3.18 Waiting queue of the TA_TFIFO attribute ...24
Figure 3.19 Task control block ..26
Figure 3.20 Cyclic Handler/Alarm Handler Activation ...28
Figure 3.21 Interrupt handler IPLs..30
Figure 3.22 Interrupt control in a Service Call that can be Issued from only a Task ..31
Figure 3.23 Interrupt control in a Service Call that can be Issued from a Task-independent ..32
Figure 3.24 System Stack and User Stack ...35
Figure 4.1 MR8C/4 Structure..36
Figure 4.2 Task Resetting ...38
Figure 4.3 Alteration of task priority..39
Figure 4.4 Wakeup Request Storage...40
Figure 4.5 Wakeup Request Cancellation...40
Figure 4.6 Forcible wait of a task and resume ...41
Figure 4.7 dly_tsk service call...42
Figure 4.8 Exclusive Control by Semaphore ..43
Figure 4.9 Semaphore Counter ...43
Figure 4.10 Task Execution Control by Semaphore...44
Figure 4.11 Task Execution Control by the Eventflag ...45
Figure 4.12 Data queue ...47
Figure 4.13 Cyclic handler operation in cases where the activation phase is saved..49
Figure 4.14 Cyclic handler operation in cases where the activation phase is not saved..49
Figure 4.15 Typical operation of the alarm handler ..50
Figure 4.16 Interrupt process flow..52
Figure 6.1 MR8C/4 System Generation Detail Flowchart...124
Figure 7.1 Example Infinite Loop Task Described in C Language..125
Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language...126
Figure 7.3 Example of Kernel(OS-dependent) Interrupt Handler ..127
Figure 7.4 Example of Non-kernel(OS-independent) Interrupt Handler ...127
Figure 7.5 Example Cyclic Handler Written in C Language...128
Figure 7.6 Example Infinite Loop Task Described in Assembly Language ..129
Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language..129
Figure 7.8 Example of kernel(OS-depend) interrupt handler ...130
Figure 7.9 Example of Non-kernel(OS-independent) Interrupt Handler of Specific Level..131
Figure 7.10 Example Handler Written in Assembly Language...131
Figure 7.11 C Language Startup Program (crt0mr.a30)..136
Figure 8.1 The operation of the Configurator ..157
Figure 11.1 System Stack and User Stack ...166
Figure 11.2 Layout of Stacks...167
Figure 11.3 Example of Use Stack Size Calculation ..169
Figure 11.4 System Stack Calculation Method ..171
Figure 11.5 Stack size to be used by Kernel Interrupt Handler..172

vii

List of Tables

Table 3.1 Task Context and Non-task Context...27
Table 3.2 Invocable Service Calls in a CPU Locked State ...29
Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu29
Table 5.1 Specifications of the Task Management Function ...54
Table 5.2 List of Task Management Function Service Call ...54
Table 5.3 Specifications of the Task Dependent Synchronization Function ...63
Table 5.4 List of Task Dependent Synchronization Service Call...63
Table 5.5 Specifications of the Semaphore Function..78
Table 5.6 List of Semaphore Function Service Call ...78
Table 5.7 Specifications of the Eventflag Function ..83
Table 5.8 List of Eventflag Function Service Call ...83
Table 5.9 Specifications of the Data Queue Function ..91
Table 5.10 List of Dataqueue Function Service Call..91
Table 5.11 List of Time Management Function Service Call ...98
Table 5.12 Specifications of the Cyclic Handler Function ...100
Table 5.13 List of Cyclic Handler Function Service Call ...100
Table 5.14 Specifications of the Alarm Handler Function ...103
Table 5.15 List of Alarm Handler Function Service Call ...103
Table 5.16 List of System Status Management Function Service Call ...107
Table 5.17 List of Interrupt Management Function Service Call..118
Table 5.18 List of System Configuration Management Function Service Call ...120
Table 7.1 C Language Variable Treatment...126
Table 8.1 Numerical Value Entry Examples ..139
Table 8.2 Operators ...140
Table 8.3 Correspondence of fixed vector interrupt factor and vector number...154
Table 10.1 Functions in the Sample Program ..163
Table 11.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) ...174
Table 11.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) ...174
Table 11.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes)..174
Table 12.1 Interrupt Number Assignment ...175

R20UT0657EJ0101 Rev.1.01 Page 1 of 178
Sep 16, 2011

1. User’s Manual Organization

The MR8C/4 User’s Manual consists of nine chapters and thee appendix.

• 2 General Information
Outlines the objective of MR8C/4 development and the function and position of the MR8C/4.

• 3 Introduction to Kernel
Explains about the ideas involved in MR8C/4 operations and defines some relevant terms.

• 4 Kernel
Outlines the applications program development procedure for the MR8C/4.

• 5 Service call reference
Details MR8C/4 service call API.

• 6 Applications Development Procedure Overview
Details the applications program development procedure for the MR8C/4.

• 7 Detailed Applications
Presents useful information and precautions concerning applications program development with MR8C/4.

• 8 Using Configurator
Describes the method for writing a configuration file and the method for using the configurator in detail.

• 10 Sample Program Description
Describes the MR8C/4 sample applications program which is included in the product in the form of a source file.

• 11 Stack Size Calculation Method
Describes the calculation method of the task stack size and the system stack size.

• 12 Note
Presents useful information and precautions concerning applications program development with MR8C/4.

• 13 Appendix
Data type and assembly language interface.

R20UT0657EJ0101 Rev.1.01 Page 2 of 178
Sep 16, 2011

2. General Information

2.1 Objective of MR8C/4 Development
In line with recent rapid technological advances in microcomputers, the functions of microcomputer-based products have
become complicated. In addition, the microcomputer program size has increased. Further, as product development competi-
tion has been intensified, manufacturers are compelled to develop their microcomputer-based products within a short period
of time.

In other words, engineers engaged in microcomputer software development are now required to develop larger-size pro-
grams within a shorter period of time. To meet such stringent requirements, it is necessary to take the following considera-
tions into account.

1. To enhance software recyclability to decrease the volume of software to be developed.

One way to provide for software recyclability is to divide software into a number of functional modules wherever
possible. This may be accomplished by accumulating a number of general-purpose subroutines and other program
segments and using them for program development. In this method, however, it is difficult to reuse programs that
are dependent on time or timing. In reality, the greater part of application programs are dependent on time or tim-
ing. Therefore, the above recycling method is applicable to only a limited number of programs.

2. To promote team programming so that a number of engineers are engaged in the development
of one software package
There are various problems with team programming. One major problem is that debugging can be initiated only
when all the software program segments created individually by team members are ready for debugging. It is es-
sential that communication be properly maintained among the team members.

3. To enhance software production efficiency so as to increase the volume of possible software
development per engineer.
One way to achieve this target would be to educate engineers to raise their level of skill. Another way would be to
make use of a structured descriptive assembler, C-compiler, or the like with a view toward facilitating program-
ming. It is also possible to enhance debugging efficiency by promoting modular software development.

However, the conventional methods are not adequate for the purpose of solving the problems. Under these circumstances, it
is necessary to introduce a new system named real-time OS 3

To answer the above-mentioned demand, Renesas has developed a real-time operating system, tradenamed MR8C/4, for
use with the R8C Family of 16-bit microcomputers .

When the MR8C/4 is introduced, the following advantages are offered.

1. Software recycling is facilitated.
When the real-time OS is introduced, timing signals are furnished via the real-time OS so that programs depend-
ent on timing can be reused. Further, as programs are divided into modules called tasks, structured programming
will be spontaneously provided.
That is, recyclable programs are automatically prepared.

2. Ease of team programming is provided.

When the real-time OS is put to use, programs are divided into functional modules called tasks. Therefore, engi-
neers can be allocated to individual tasks so that all steps from development to debugging can be conducted inde-
pendently for each task.
Further, the introduction of the real-time OS makes it easy to start debugging some already finished tasks even if
the entire program is not completed yet. Since engineers can be allocated to individual tasks, work assignment is
easy.

3 OS:Operating System

MR8C/4 2 General Information

R20UT0657EJ0101 Rev.1.01 Page 3 of 178
Sep 16, 2011

3. Software independence is enhanced to provide ease of program debugging.

As the use of the real-time OS makes it possible to divide programs into small independent modules called tasks,
the greater part of program debugging can be initiated simply by observing the small modules.

4. Timer control is made easier.
To perform processing at 10 ms intervals, the microcomputer timer function was formerly used to periodically in-
itiate an interrupt. However, as the number of usable microcomputer timers was limited, timer insufficiency was
compensated for by, for instance, using one timer for a number of different processing operations.
When the real-time OS is introduced, however, it is possible to create programs for performing processing at fixed
time intervals making use of the real-time OS time management function without paying special attention to the
microcomputer timer function. At the same time, programming can also be done in such a manner as to let the
programmer take that numerous timers are provided for the microcomputer.

5. Software maintainability is enhanced
When the real-time OS is put to use, the developed software consists of small program modules called tasks.
Therefore, increased software maintainability is provided because developed software maintenance can be carried
out simply by maintaining small tasks.

6. Increased software reliability is assured.

The introduction of the real-time OS makes it possible to carry out program evaluation and testing in the unit of a
small module called task. This feature facilitates evaluation and testing and increases software reliability.

7. The microcomputer performance can be optimized to improve the performance of microcom-
puter-based products.

With the real-time OS, it is possible to decrease the number of unnecessary microcomputer operations such as I/O
waiting. It means that the optimum capabilities can be obtained from microcomputers, and this will lead to mi-
crocomputer-based product performance improvement.

MR8C/4 2 General Information

R20UT0657EJ0101 Rev.1.01 Page 4 of 178
Sep 16, 2011

2.2 Relationship between TRON Specification and MR8C/4
MR8C/4 is the real-time operating system developed for use with the R8C Family of 16-bit microcomputers compliant with
µITRON 4.0 Specification. µITRON 4.0 Specification stipulates standard profiles as an attempt to ensure software port-
ability. Of these standard profiles, MR8C/4 has implemented in it many useful service calls.

MR8C/4 2 General Information

R20UT0657EJ0101 Rev.1.01 Page 5 of 178
Sep 16, 2011

2.3 Features
The MR8C/4 offers the following features.

1. Real-time operating system conforming to the μITORN Specification.

The MR8C/4 is designed in compliance with the μITRON Specification which incorporates a minimum of the
ITRON Specification functions so that such functions can be incorporated into a one-chip microcomputer. As the
μITRON Specification is a subset of the ITRON Specification, most of the knowledge obtained from published
ITRON textbooks and ITRON seminars can be used as is.
Further, the application programs developed using the real-time operating systems conforming to the ITRON
Specification can be transferred to the MR8C/4 with comparative ease.

2. High-speed processing is achieved.

MR8C/4 enables high-speed processing by taking full advantage of the microcomputer architecture.

3. Only necessary modules are automatically selected to constantly build up a system of the
minimum size.

MR8C/4 is supplied in the object library format of the R8C Family.
Therefore, the Linkage Editor LN30 functions are activated so that only necessary modules are automatically se-
lected from numerous MR8C/4 functional modules to generate a system.
Thanks to this feature, a system of the minimum size is automatically generated at all times.

4. An upstream process tool named "Configurator" is provided to simplify development proce-
dures

A configurator is furnished so that various items including a ROM write form file can be created by giving simple
definitions.
Therefore, there is no particular need to care what libraries must be linked.
In addition, a GUI version of the configurator is available. It helps the user to create a configuration file without
the need to learn how to write it.

R20UT0657EJ0101 Rev.1.01 Page 6 of 178
Sep 16, 2011

3. Introduction to Kernel

3.1 Concept of Real-time OS
This section explains the basic concept of real-time OS.

3.1.1 Why Real-time OS is Necessary
In line with the recent advances in semiconductor technologies, the single-chip microcomputer ROM capacity has in-
creased. ROM capacity of 32K bytes.

As such large ROM capacity microcomputers are introduced, their program development is not easily carried out by con-
ventional methods. Figure 3.1 shows the relationship between the program size and required development time (program
development difficulty).

This figure is nothing more than a schematic diagram. However, it indicates that the development period increases expo-
nentially with an increase in program size.

For example, the development of four 8K byte programs is easier than the development of one 32K byte program.4

Program Size

Kbyte4 8 16 32

Development Period

Figure 3.1 Relationship between Program Size and Development Period

Under these circumstances, it is necessary to adopt a method by which large-size programs can be developed within a short
period of time. One way to achieve this purpose is to use a large number of microcomputers having a small ROM capacity.
Figure 3.2 presents an example in which a number of microcomputers are used to build up an audio equipment system.

On condition that the ROM program burning step need not be performed.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 7 of 178
Sep 16, 2011

Key input
microcomputer

Remote control
microcomputer

LED illumination
microcomputer

Arbiter
microcomputer

Volume control
microcomputer

Monitor
microcomputer

Mechanical
control

microcomputer

Figure 3.2 Microcomputer-based System Example(Audio Equipment)

Using independent microcomputers for various functions as indicated in the above example offers the following advan-
tages.

1. Individual programs are small so that program development is easy.

2. It is very easy to use previously developed software.

3. Completely independent programs are provided for various functions so that program devel-
opment can easily be conducted by a number of engineers.

On the other hand, there are the following disadvantages.

1. The number of parts used increases, thereby raising the product cost.

2. Hardware design is complicated.

3. Product physical size is enlarged.

Therefore, if you employ the real-time OS in which a number of programs to be operated by a number of microcomputers
are placed under software control of one microcomputer, making it appear that the programs run on separate microcomput-
ers, you can obviate all the above disadvantages while retaining the above-mentioned advantages.

Figure 3.3 shows an example system that will be obtained if the real-time OS is incorporated in the system indicated in
Figure 3.2.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 8 of 178
Sep 16, 2011

Key input
Task

Remote control
Task

LED illumination
Task

real-time
OS

Volume control
Task

Monitor
Task

Mechanical
control
Task

Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment)

In other words, the real-time OS is the software that makes a one-microcomputer system look like operating a number of
microcomputers.

In the real-time OS, the individual programs, which correspond to a number of microcomputers used in a conventional sys-
tem, are called tasks.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 9 of 178
Sep 16, 2011

3.1.2 Operating Principles of Kernel
A kernel is the core program of real-time OS. The kernel is the software that makes a one-microcomputer system look like
operating a number of microcomputers. You should be wondering how the kernel makes a one-microcomputer system
function like a number of microcomputers.

As shown in Figure 3.4 the kernel runs a number of tasks according to the time-division system. That is, it changes the task
to execute at fixed time intervals so that a number of tasks appear to be executed simultaneously.

Time

Key input
Task

Monitor
Task

Mechanical
control
Task

Volume control
Task

LED
illumination

Task

Remote control
Task

Figure 3.4 Time-division Task Operation

As indicated above, the kernel changes the task to execute at fixed time intervals. This task switching may also be referred
to as dispatching. The factors causing task switching (dispatching) are as follows.

• Task switching occurs upon request from a task.

• Task switching occurs due to an external factor such as interrupt.

When a certain task is to be executed again upon task switching, the system resumes its execution at the point of last inter-
ruption (See Figure 3.5).

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 10 of 178
Sep 16, 2011

During this interval, it
appears that the key input
microcomputer is haled.

Key input
Task

Remote control
Task

Program execution
interrupt

Program execution
resumed

Figure 3.5 Task Execution Interruption and Resumption

In the state shown in Figure 3.5, it appears to the programmer that the key input task or its microcomputer is halted while
another task assumes execution control.

Task execution restarts at the point of last interruption as the register contents prevailing at the time of the last interruption
are recovered. In other words, task switching refers to the action performed to save the currently executed task register
contents into the associated task management memory area and recover the register contents for the task to switch to.

To establish the kernel, therefore, it is only necessary to manage the register for each task and change the register contents
upon each task switching so that it looks as if a number of microcomputers exist (See Figure 3.6).

Remote control
Task

Actual
Register

R0

R1

PC

Kernel

Register Register

Key input
Task

R0

R1

PC

R0

R1

PC

Figure 3.6 Task Switching

The example presented in Figure 3.7 5 indicates how the individual task registers are managed. In reality, it is necessary
to provide not only a register but also a stack area for each task.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 11 of 178
Sep 16, 2011

R0

PC

SP

Register

Key input
Task

Remote control
Task

Memory map

Stack
section

SFR

R0

PC

SP

R0

PC

SP

SP

LED illumination
Task

Real-time
OS

Figure 3.7 Task Register Area

Figure 3.8 shows the register and stack area of one task in detail. In the MR8C/4, the register of each task is stored in a
stack area as shown in Figure 3.8. This figure shows the state prevailing after register storage.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 12 of 178
Sep 16, 2011

Key input
Task SP

FLG

R3

R2

A0

A1

PC

SB

FB

R1

R0

SFR

Key input task
stack

Register stored

Register not stored

SP

Figure 3.8 Actual Register and Stack Area Management

3.2 Service Call
How does the programmer use the kernel functions in a program?

First, it is necessary to call up kernel function from the program in some way or other. Calling a kernel function is referred
to as a service call. Task activation and other processing operations can be initiated by such a service call (See Figure 3.9).

Key input

Task
Kernel Remote control

task

Service call Task switching

Figure 3.9 Service call

This service call is realized by a function call when the application program is written in C language, as shown below.

sta_tsk(ID_main,3);

Furthermore, if the application program is written in assembly language, it is realized by an assembler macro call, as shown
below.

sta_tsk #ID_main,3

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 13 of 178
Sep 16, 2011

3.2.1 Service Call Processing
When a service call is issued, processing takes place in the following sequence.6

1. The current register contents are saved.

2. The stack pointer is changed from the task type to the real-time OS (system) type.

3. Processing is performed in compliance with the request made by the service call.

4. The task to be executed next is selected.

5. The stack pointer is changed to the task type.

6. The register contents are recovered to resume task execution.

The flowchart in Figure 3.10 shows the process between service call generation and task switching.

Key input Task

Service call issuance

Register Save

SP <= OS

Processing

Task Selection

Task => SP

Register Restore

LED illumination Task

Figure 3.10 Service Call Processing Flowchart

6 A different sequence is followed if the issued service call does not evoke task switching.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 14 of 178
Sep 16, 2011

3.2.2 Processing Procedures for Service Calls from Handlers
When a service call is issued from a handler, task switching does not occur unlike in the case of a service call from a task.
However, task switching occurs when a return from a handler 7 is made.

The processing procedures for service calls from handlers are roughly classified into the following three types.

1. A service call from a handler that caused an interrupt during task execution

2. A service call from a handler that caused an interrupt during service call processing

3. A service call from a handler that caused an interrupt (multiplex interrupt) during handler exe-
cution

7 The service call can't be issued from OS-independent handler. Therefore, The handler described here does not include the
OS-independent handler.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 15 of 178
Sep 16, 2011

Service Calls from a Handler That Caused an Interrupt during Task Execution
Scheduling (task switching) is initiated by the ret_int service call 8(See Figure 3.11).

Scheduler

Interrupt

ret_int

iset_flg

TaskA Interrupt handler

Save Registers

Service call processing

OS

Restore Registers

SP <= User

Restore Registers

Task selection

TaskB

Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution

8 The ret_int service call is issued automatically when OS-dependent handler is written in C language (when #pragma INTHANDLER speci-
fied)

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 16 of 178
Sep 16, 2011

Service Calls from a Handler That Caused an Interrupt during Service Call Processing
Scheduling (task switching) is initiated after the system returns to the interrupted service call processing (See Figure 3.12).

wup_tsk

ret_int

iset_flg
Interrupt

TaskA

Interrupt handler

Save

Service call processing

OS

Restore Registers

SP <= User

Restore Registers

Task selection

TaskB

Save Registers

SP <= System

Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during
Service Call Processing

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 17 of 178
Sep 16, 2011

Service Calls from a Handler That Caused an Interrupt during Handler Execution
Let us think of a situation in which an interrupt occurs during handler execution (this handler is hereinafter referred to as
handler A for explanation purposes). When task switching is called for as a handler (hereinafter referred to as handler B)
that caused an interrupt during handler A execution issued a service call, task switching does not take place during the exe-
cution of the service call (ret_int service call) returned from handler B, but is effected by the ret_int service call from han-
dler A (See Figure 3.13).

ret_int

ret_int

iset_flg

Interrupt

Interrupt

TaskA

Interrupt handler A

Save Registers

Service call processing

OS

Restore Register

SP <= User

Restore Registers

Task selection

TaskB

Save Registers

SP <= System

Interrupt handler A

Restore Register

Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 18 of 178
Sep 16, 2011

3.3 Object
The object operated by the service call of a semaphore, a task, etc. is called an "object." An object is identified by the ID
number

3.3.1 The specification method of the object in a service call
Each task is identified by the ID number internally in MR8C/4.

For example, the system says, "Start the task having the task ID number 1."

However, if a task number is directly written in a program, the resultant program would be very low in readability. If, for
instance, the following is entered in a program, the programmer is constantly required to know what the No. 2 task is.

sta_tsk(1, stacd);

Further, if this program is viewed by another person, he/she does not understand at a glance what the No. 1 task is. To avoid
such inconvenience, the MR8C/4 provides means of specifying the task by name (function or symbol name).

The program named "configurator cfg8c ,"which is supplied with the MR8C/4, then automatically converts the task name
to the task ID number. This task identification system is schematized in Figure 3.14.

ID numberName

Real-time OSProgram

Configurator

sta_tsk(Task name) Starting the task
having the designated
ID number

Figure 3.14 Task Identification

sta_tsk(ID_task, stacd);

This example specifies that a task corresponding to "ID_task" be invoked.

It should also be noted that task name-to-ID number conversion is effected at the time of program generation. Therefore,
the processing speed does not decrease due to this conversion feature.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 19 of 178
Sep 16, 2011

3.4 Task
This section describes how tasks are managed by MR8C/4.

3.4.1 Task Status
The real-time OS monitors the task status to determine whether or not to execute the tasks.

Figure 3.15 shows the relationship between key input task execution control and task status. When there is a key input, the
key input task must be executed. That is, the key input task is placed in the execution (RUNNING) state. While the system
waits for key input, task execution is not needed. In that situation, the key input task in the WAITING state.

Key input
Task

RUNNIG state WAITING state RUNNING state

Waiting for
key input

Key input
processing

Key input
processing

Figure 3.15 Task Status

The MR8C/4 controls the following six different states including the RUNNING and WAITING states.

1. RUNNING state

2. READY state

3. WAITING state

4. SUSPENDED state

5. WAITING-SUSPENDED state

6. DORMANT state
Every task is in one of the above six different states. Figure 3.16 shows task status transition.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 20 of 178
Sep 16, 2011

Forced
termination
request
from other
task

SUSPENDED state clear
request from other task

SUSPEND request
from other task

READY state RUNNING state

WAITING state

WAITING-SUSPENDED
state

DORMANT
state

SUSPENDED
state

WAITING state
clear

tSUSPEND request
from other task

SUSPENDED state
clear request

MPU execlusive right relinquishment

MPU execlusive right acquisition

Entering the
WAITING state

Task activation

Forced termination
request from other task

WAITING state
l

Terminate
task self

Figure 3.16 MR8C/4 Task Status Transition

1. RUNNING state

In this state, the task is being executed. Since only one microcomputer is used, it is natural that only one task is
being executed.
The currently executed task changes into a different state when any of the following conditions occurs.

♦ The task has normally terminated itself by ext_tsk service call.
♦ The task has placed itself in the WAITING. 9
♦ Since the service call was issued from the RUNNING state task, the WAITING state of another

task with a priority higher than the RUNNING state task is cleared.
♦ Due to interruption or other event occurrence, the interrupt handler has placed a different task

having a higher priority in the READY state.
♦ The priority assigned to the task has been changed by chg_pri service call so that the priority of

another READY task is rendered higher.

When any of the above conditions occurs, rescheduling takes place so that the task having the highest priority
among those in the RUNNING or READY state is placed in the RUNNING state, and the execution of that task
starts.

2. READY state
The READY state refers to the situation in which the task that meets the task execution conditions is still waiting
for execution because a different task having a higher priority is currently being executed.
When any of the following conditions occurs, the READY task that can be executed second according to the
ready queue is placed in the RUNNING state.

♦ A currently executed task has normally terminated itself by ext_tsk service call.

9 By issuing dly_tsk, slp_tsk, wai_flg, wai_sem, snd_dtq and rcv_dtq service call.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 21 of 178
Sep 16, 2011

♦ A currently executed task has placed itself in the WAITING state.10
♦ A currently executed task has changed its own priority by chg_pri service call so that the priority of

a different READY task is rendered higher.
♦ Due to interruption or other event occurrence, the priority of a currently executed task has been

changed so that the priority of a different READY task is rendered higher.

3. WAITING state
When a task in the RUNNING state requests to be placed in the WAITING state, it exits the RUNNING state and
enters the WAITING state. The WAITING state is usually used as the condition in which the completion of I/O
device I/O operation or the processing of some other task is awaited.
The task goes into the WAITING state in one of the following ways.

♦ The task enters the WAITING state simply when the slp_tsk service call is issued. In this case, the

task does not go into the READY state until its WAITING state is cleared explicitly by some other
task.

♦ The task enters and remains in the WAITING state for a specified time period when the dly_tsk
service call is issued. In this case, the task goes into the READY state when the specified time has
elapsed or its WAITING state is cleared explicitly by some other task.

♦ The task is placed into WAITING state for a wait request by the wai_flg, wai_sem,snd_dtq or
rcv_dtq service call. In this case, the task goes from WAITING state to READY state when the re-
quest is met or WAITING state is explicitly canceled by another task.

♦ If the task is placed into WAITING state for a wait request by the wai_flg, wai_sem, snd_dtq, or
rcv_dtq service call, the task is queued to one of the following waiting queues depending on the
request.

 Event flag waiting queue
 Semaphore waiting queue
 Data queue data transmission waiting queue
 Data queue data reception waiting queue

4. SUSPENDED state

When the sus_tsk service call is issued from a task in the RUNNING state , the READY task designated by the
service call or the currently executed task enters the SUSPENDED state. If a task in the WAITING state is placed
in this situation, it goes into the WAITING-SUSPENDED state.

The SUSPENDED state is the condition in which a READY task or currently executed task is excluded from
scheduling to halt processing due to I/O or other error occurrence. That is, when the suspend request is made to a
READY task, that task is excluded from the execution queue.

Note that no queue is formed for the suspend request. Therefore, the suspend request can only be made to the
tasks in the RUNNING, READY, or WAITING state.11 If the suspend request is made to a task in the SUS-
PENDED state, an error code is returned.

5. WAITING-SUSPENDED
If a suspend request is issued to a task currently in a WAITING state, the task goes to a WAITING-SUSPENDED
state. If a suspend request is issued to a task that has been placed into a WAITING state for a wait request by the
slp_tsk, wai_flg, wai_sem, snd_dtq or rcv_dtq service call, the task goes to a WAITING-SUSPENDED state.

When the wait condition for a task in the WAITING-SUSPENDED state is cleared, that task goes into the SUS-
PENDED state. It is conceivable that the wait condition may be cleared, when any of the following conditions
occurs.

♦ The task wakes up upon wup_tsk, or iwup_tsk service call issuance.

10 Depends on dly_tsk, slp_tsk, wai_flg, wai_sem, snd_dtq and rcv_dtq service call.
11 If a forcible wait request is issued to a task currently in a wait state, the task goes to a WAITING-SUSPENDED state.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 22 of 178
Sep 16, 2011

♦ The task placed in the WAITING state by the dly_tsk service call wakes up after the specified time
elapse.

♦ The request of the task placed in the WAITING state by the wai_flg , wai_sem, snd_dtq or rcv_dtq
service call is fulfilled.

♦ The WAITING state is forcibly cleared by the rel_wai or irel_wai service call

When the SUSPENDED state clear request by rsm_tsk or irsm_tsk is made to a task in the WAIT-
ING-SUSPENDED state, that task goes into the WAITING state. Since a task in the SUSPENDED state cannot
request to be placed in the WAITING state, status change from SUSPENDED to WAITING-SUSPENDED does
not possibly occur.

6. DORMANT

This state refers to the condition in which a task is registered in the MR8C/4 system but not activated. This task
state prevails when either of the following two conditions occurs.

♦ The task is waiting to be activated.
♦ The task is normally terminated by ext_tsk service call or forcibly terminated by ter_tsk service

call.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 23 of 178
Sep 16, 2011

3.4.2 Task Priority and Ready Queue
In the kernel, several tasks may simultaneously request to be executed. In such a case, it is necessary to determine which
task the system should execute first. To properly handle this kind of situation, the system organizes the tasks into proper
execution priority and starts execution with a task having the highest priority. To complete task execution quickly, tasks
related to processing operations that need to be performed immediately should be given higher priorities.

The MR8C/4 permits giving the same priority to several tasks. To provide proper control over the READY task execution
order, the kernel generates a task execution queue called "ready queue." The ready queue structure is shown in Figure
3.1712 The ready queue is provided and controlled for each priority level. The first task in the ready queue having the
highest priority is placed in the RUNNING state.13

1 TCB

Priority

2

TCBTCB

TCBTCB

TCB3

n

Figure 3.17 Ready Queue (Execution Queue)

12 The TCB(task control block is described in the next chapter.)
13 The task in the RUNNING state remains in the ready queue.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 24 of 178
Sep 16, 2011

3.4.3 Task Priority and Waiting Queue
In The standard profiles in µITRON 4.0 Specification support two waiting methods for each object. In one method, tasks
are placed in a waiting queue in order of priority (TA_TPRI attribute); in another, tasks are placed in a waiting queue in
order of FIFO (TA_TFIFO).

MR8C/4 supports only TA_TFIFO attribute.

Figure 3.19 depict the manner in which tasks are placed in a waiting queue in order of "taskD," "taskC," "taskA," and
"taskB."

n
Priority 9 Priority 6 Priority 1

taskC

1

ID No.

2 taskD taskA taskB

Priority 5

Figure 3.18 Waiting queue of the TA_TFIFO attribute

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 25 of 178
Sep 16, 2011

3.4.4 Task Control Block(TCB)
The task control block (TCB) refers to the data block that the real-time OS uses for individual task status, priority, and oth-
er control purposes.

The MR8C/4 manages the following task information as the task control block

• Task connection pointer
Task connection pointer used for ready queue formation or other purposes.

• Task status

• Task priority

• Task register information and other data14 storage stack area pointer(current SP register value)

• Wake-up counter
Task wake-up request storage area.

• Flag wait pattern
This area is used when using the timeout function.
This area stores the flag wait pattern when using the eventflag wait service call with the timeout function. No flag
wait pattern area is allocated when the eventflag is not used.

• Flag wait mode
This is a wait mode during eventflag wait.

• Delay time counter
Delay time counter when dly_tsk is called..

• Extended task information
Extended task information that was set during task generation is stored in this area.

14 Called the task context

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 26 of 178
Sep 16, 2011

The task control block is schematized in Figure 3.19.

TCB TCB TCB

Task Connection pointer

Status

Priority

Wake-up counter

Flag wait mode

Flag wait pattern

Time-out counter

SP

Figure 3.19 Task control block

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 27 of 178
Sep 16, 2011

3.5 System States

3.5.1 Task Context and Non-task Context
The system runs in either context state, "task context" or "non-task context." The differences between the task content and
non-task context are shown in Table 3-1. Task Context and Non-task Context.

Table 3.1 Task Context and Non-task Context

 Task context Non-task context

Invocable service call Those that can be invoked from
task context

Those that can be invoked from
non-task context

Task scheduling Occurs when the queue state has
changed to other than dispatch dis-
abled and CPU locked states.

It does not occur.

Stack User stack System stack

The processes executed in non-task context include the following.

1. Interrupt Handler
A program that starts upon hardware interruption is called the interrupt handler. The MR8C/4 is not concerned in interrupt
handler activation. Therefore, the interrupt handler entry address is to be directly written into the interrupt vector table.

There are two interrupt handlers: Non-kernel interrupts (OS independent interrupts) and kernel interrupts (OS dependent
interrupts). For details about each type of interrupt, refer to Section 3.6.

The system clock interrupt handler (isig_tim) is one of these interrupt handlers.

2. Cyclic Handler
The cyclic handler is a program that is started cyclically every preset time. The set cyclic handler may be started or stopped
by the sta_cyc or stp_cyc service call.

3. Alarm Handler
The alarm handler is a handler that is started after the lapse of a specified relative time of day. The alarm handler startup
time of day is determined by a time of day relative to the time of day set by sta_alm.

The cyclic and alarm handlers are invoked by a subroutine call from the system clock interrupt (timer interrupt) handler.
Therefore, cyclic and alarm handlers operate as part of the system clock interrupt handler. Note that when the cyclic or
alarm handler is invoked, it is executed in the interrupt priority level of the system clock interrupt.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 28 of 178
Sep 16, 2011

Subroutine call

Timer interrupt
RTS

Cyclic handler
Alarm handler

System clock
interrupt handler

Task

Figure 3.20 Cyclic Handler/Alarm Handler Activation

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 29 of 178
Sep 16, 2011

3.5.2 Dispatch Enabled/Disabled States
The system assumes either a dispatch enabled state or a dispatch disabled state. In a dispatch disabled state, no task sched-
uling is performed. Nor can service calls be invoked that may cause the service call issuing task to enter a wait state.15

The system can be placed into a dispatch disabled state or a dispatch enabled state by the dis_dsp or ena_dsp service call,
respectively. Whether the system is in a dispatch disabled state can be known by the sns_dsp service call.

3.5.3 CPU Locked/Unlocked States
The system assumes either a CPU locked state or a CPU unlocked state. In a CPU locked state, all external interrupts are
disabled against acceptance, and task scheduling is not performed either.

The system can be placed into a CPU locked state or a CPU unlocked state by the loc_cpu(iloc_cpu) or unl_cpu(iunl_cpu)
service call, respectively. Whether the system is in a CPU locked state can be known by the sns_loc service call.

The service calls that can be issued from a CPU locked state are limited to those that are listed in Table 3-2.16

Table 3.2 Invocable Service Calls in a CPU Locked State

loc_cpu unl_cpu ext_tsk sns_dsp
sns_loc sns_ctx

3.5.4 Dispatch Disabled and CPU Locked States
In µITRON 4.0 Specification, the dispatch disabled and the CPU locked states are clearly discriminated. Therefore, if the
unl_cpu service call is issued in a dispatch disabled state, the dispatch disabled state remains intact and no task scheduling
is performed. State transitions are summarized in Table 3.3.

Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu

Content of state State
number CPU locked

state
Dispatch disabled

state

dis_dsp
executed

ena_dsp
executed

loc_cpu
executed

unl_cpu
executed

1 O X X X => 1 => 3
2 O O X X => 2 => 4
3 X X => 4 => 3 => 1 => 3
4 X O => 4 => 3 => 2 => 4

15 If a service call not issuable is issued when dispatch disabled, MR8C/4 doesn't return the error and doesn't guarantee the operation.
16 MR8C/4 does not return an error even when an uninvocable service call is issued from a CPU locked state, in which case, however, its
operation cannot be guaranteed.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 30 of 178
Sep 16, 2011

3.6 Regarding Interrupts

3.6.1 Types of Interrupt Handlers
MR8C/4's interrupt handlers consist of kernel(OS-dependent) interrupt handlers and non-kernel (OS-independent) interrupt
handlers.

The following shows the definition of each type of interrupt handler.

• Kernel(OS-dependent) interrupt handler
An interrupt handler whose interrupt priority level is lower than a kernel interruption mask level (OS interrupt
prohibition level) is called kernel (OS dependent) interrupt handler. That is, interruption priority level is from 0 to
system_IPL.
A service call can be issued within a kernel (OS dependent) interrupt handler. However, interrupt is delayed until
it becomes receivable [the kernel management (OS dependence) interrupt handler generated during service call
processing / kernel management (OS dependence) interruption].

• Non-kernel(OS-independent) interrupt handler
An interrupt handler whose interrupt priority level is higher than a kernel interrupt mask level (OS interrupt pro-
hibition level)is called non-kernel interrupt handler (OS independent handler) That is, interruption priority level is
from system_IPL+1 to 7.
A service call cannot be published within an interruption (OS independence)-kernel management outside hair
drier. However, the kernel management generated during service call processing outside, even if it is the section
where interruption cannot receive a kernel management (OS dependence) interrupt handler (OS independence), it
is possible to receive interruption kernel management outside (OS independence).:

Figure 3.21 shows the relationship between the non-kernel(OS-independent) interrupt handlers and kernel(OS-dependent)
interrupt handlers where the kernel mask level(OS interrupt disable level) is set to 3.

High Low

0 1 2 3 4 5 6 7

Kernel
(OS-dependent)

Interrupt handler

Non-kernel
(OS-independent)
Interrupt handler

Kernel mask level

(OS Interrupt disable level)

Figure 3.21 Interrupt handler IPLs

3.6.2 The Use of Non-maskable Interrupt
An NMI interrupt and Watchdog Timer interrupt have to use be a non-kernel(OS independent) interrupt handler. If they are
a kernel(OS dependent) interrupt handler, the program will not work normally.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 31 of 178
Sep 16, 2011

3.6.3 Controlling Interrupts
Interrupt enable/disable control in a service call is accomplished by IPL manipulation. The IPL value in a service call is set
to the kernel mask level(OS interrupt disable level = system.IPL) in order to disable interrupts for the kernel
(OS-dependent) interrupt handler. In sections where all interrupts can be enabled, it is returned to the initial IPL value when
the service call was invoked.

• For service calls that can be issued from only task context.

Task Service call issued Service call processing

I flag

IPL

1

0 system.IPL system.IPL

1 0

0

1

0

Task Service call issued Service call processing

I flag

IPL

0

0 system.IPL system.IPL

1 0

0

0

0

When the I flag before issuing a service call is 1.

When the I flag before issuing a service call is 0.

Figure 3.22 Interrupt control in a Service Call that can be Issued from only a Task

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 32 of 178
Sep 16, 2011

• For service calls that can be issued from only non-task context or from both task context and non-task
context.

When the I flag before issuing a service call is 1

When the I flag before issuing a service call is 0

Service call issued service call processing

I flag

IPL

1

4 system.IPL system.IPL

1 0

4

1

4

Service call issued service call processing

I flag

IPL

0

4 system.IPL system.IPL

0 0

4

Task or
Handler

Task or
Handler

Task or
Handler

Task or
Handler

4

Figure 3.23 Interrupt control in a Service Call that can be Issued from a Task-independent

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 33 of 178
Sep 16, 2011

3.6.4 Permission and prohibition of interrupt
The I flag and IPL are changed in the service call as shown in Figure 3.22 and Figure 3.23. Therefore, please correspond

as follows when you control the permission prohibition of interrupt in the task and the interrupt handler.

When prohibiting interrupt in the task

1. Interrupt control register (SFR) of the interrupt to be prohibited is changed.

2. loc_cpu - unl_cpu is used.
The interrupt that can be controlled is only kernel (OS dependent) interrupt according to the loc_cpu ser-
vice call. Please go by the method by 1 or 3 when you control the non-kernel (OS independent) interrupt.

3. I flag is operated.
The service call call cannot be called from clearing I flag to the set of I flag when this method is
used.

When permitting interrupt in the interrupt handler (When accepting multiple interrupt)

1. "E" switch is added to the interrupt handler definition.
Multiple interrupt can be permitted by setting "pragma_switch = E. " in the interrupt handler definition.

2. I flag is operated.
There is no limitation in the operation of I flag in the interrupt handler.

3. Interrupt control register (SFR) of the interrupt to be prohibited is changed.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 34 of 178
Sep 16, 2011

3.7 About the power control of R8C and the operation of the kernel
The kernel doesn't take part in the function of the power control supported by R8C. Therefore, it is necessary to process the
transition processing of the operational mode by the user program. Please process it according to the document of the mi-
crocomputer when the operational mode changes in the user program.

Moreover, the kernel doesn't take part in the power control function, and note the following points especially.

1. About the stop and the start of the system clock
The kernel doesn’t stop and start the timer interrupt used as a system clock to transit the operational
mode. Please program the stop and the start processing in the user program if necessary.

2. About the time-out processing and the start processing of the time event handler
The change of clock supply for the timer used as a system clock or the stopping it are needed for the
transition of the operational mode. Please note the following kernel operation.

 The cyclic handler and the alarm handler don’t start nor those start are delayed.
 The late waiting release by dly_tsk are processed nor the waiting release is delayed behind speci-

fied time.

MR8C/4 3 Introduction to Kernel

R20UT0657EJ0101 Rev.1.01 Page 35 of 178
Sep 16, 2011

3.8 Stacks

3.8.1 System Stack and User Stack
The MR8C/4 provides two types of stacks: system stack and user stack.

• User Stack
One user stack is provided for each task. Therefore, when writing applications with the MR8C/4, it is necessary to
furnish the stack area for each task.

• System Stack
This stack is used within the MR8C/4 (during service call processing). When a service call is issued from a task,
the MR8C/4 switches the stack from the user stack to the system stack (See Figure 3.24).
The system stack use the interrupt stack(ISP).

Task MR8C/4 service call

User Stack

User Stack

System Stack

Save Registers
Stack switching

Service call
processing

Task selection

Stack switching
Restore Registers

XXX_XXX()

Figure 3.24 System Stack and User Stack

Switchover from user stack to system stack occurs when an interrupt of vector numbers 0 to 31 or 247 to 255 is generated.
Consequently, all stacks used by the interrupt handler are the system stack.

R20UT0657EJ0101 Rev.1.01 Page 36 of 178
Sep 16, 2011

4. Kernel

4.1 Module Structure
The MR8C/4 kernel consists of the modules shown in Figure 4.1. Each of these modules is composed of functions that ex-
ercise individual module features.

The MR8C/4 kernel is supplied in the form of a library, and only necessary features are linked at the time of system genera-
tion. More specifically, only the functions used are chosen from those which comprise these modules and linked by means
of the Linkage Editor LN30. However, the scheduler module, part of the task management module, and part of the time
management module are linked at all times because they are essential feature functions.

The applications program is a program created by the user. It consists of tasks, interrupt handler, alarm handler, and cyclic
handler.

Task-dependent
synchronization

Eventflag

R8C Microcomputer

Scheduler

Semaphore

Task
Management

Application Program

Hardware

MR8C/4 kernel

User Module

Time
Management

System stae
Management

Interrupt
Management

Data queue

System configuration
Management

Figure 4.1 MR8C/4 Structure

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 37 of 178
Sep 16, 2011

4.2 Module Overview
The MR8C/4 kernel modules are outlined below.

• Scheduler
Forms a task processing queue based on task priority and controls operation so that the high-priority task at the
beginning in that queue (task with small priority value) is executed.

• Task Management Module
Exercises the management of various task states such as the RUNNING, READY, WAIT, and SUSPENDED state.

• Task Dependent Synchronization Module
Accomplishes inter-task synchronization by changing the task status from a different task.

• Interrupt Management Module
Makes a return from the interrupt handler.

• Time Management Module
Sets up the system timer used by the MR8C/4 kernel and starts the user-created alarm handler17 and cyclic han-
dler.18.

• System Status Management Module
Gets the system status of MR8C/4.

• System Configuration Management Module
Reports the MR8C/4 kernel version number or other information.

• Sync/Communication Module
This is the function for synchronization and communication among the tasks. The following three functional
modules are offered.

♦ Eventflag

Checks whether the flag controlled within the MR8C/4 is set up and then determines whether or not to initi-
ate task execution. This results in accomplishing synchronization between tasks.

♦ Semaphore
Reads the semaphore counter value controlled within the MR8C/4 and then determines whether or not to
initiate task execution. This also results in accomplishing synchronization between tasks.

♦ Data queue
Performs 16-bit data communication between tasks.

17 This handler actuates once only at preselected times.
18 This handler periodically actuates.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 38 of 178
Sep 16, 2011

4.2.1 Task Management Function
The task management function is used to perform task operations such as task start/stop and task priority updating. The
MR8C/4 kernel offers the following task management function service calls.

• Activate Task (sta_tsk, ista_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call,
unlike in act_tsk(iact_tsk), startup requests are not accumulated, but startup code can be specified.

• Terminate Invoking Task (ext_tsk)
When the issuing task is terminated, its state changes to DORMANT state. The task is therefore not executed until
it is restarted. If startup requests are accumulated, task startup processing is performed again. In that case, the is-
suing task behaves as if it were reset.
If written in C language, this service call is automatically invoked at return from the task regardless of whether it
is explicitly written when terminated.

• Terminate Task (ter_tsk)
Other tasks in other than DORMANT state are forcibly terminated and placed into DORMANT state. If startup
requests are accumulated, task startup processing is performed again. In that case, the task behaves as if it was re-
set. (See Figure 4.2).

TaskA
TaskB

ter_tsk(B)

Task B reset

Terminated

Startup request count > 0

Figure 4.2 Task Resetting

• Change Task Priority (chg_pri)
If the priority of a task is changed while the task is in READY or RUNNING state, the ready queue also is up-
dated. (See Figure 4.3).

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 39 of 178
Sep 16, 2011

1 Task A

Priority

2

Task C

Task FTask E

Task D 3

n

Task B

Task B

When the priority of task B has been changed from 3 to 1

Figure 4.3 Alteration of task priority

• Reference task status (simple version) (ref_tst, iref_tst)
Refers to the state of the target task.

• Reference task status (ref_tsk, iref_tsk)
Refers to the state of the target task and its priority, etc.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 40 of 178
Sep 16, 2011

4.2.2 Task Dependent Synchronization Function
The task-dependent synchronization functions attached to task is used to accomplish synchronization between tasks by
placing a task in the WAIT, SUSPENDED, or WAIT-SUSPENDED state or waking up a WAIT state task.

The MR8C/4 offers the following task incorporated synchronization service calls.

• Put Task to sleep (slp_tsk)

• Wakeup task (wup_tsk, iwup_tsk)
Wakeups a task that has been placed in a WAITING state by the slp_tsk service call.
No task can be waked up unless they have been placed in a WAITING state by.
If a wakeup request is issued to a task that has been kept waiting for conditions other than the slp_tsk service call
or a task in other than DORMANT state by the wup_tsk or iwup_tsk service call, that wakeup request only will
be accumulated.
Therefore, if a wakeup request is issued to a task RUNNING state, for example, this wakeup request is temporar-
ily stored in memory. Then, when the task in RUNNING state is going to be placed into WAIT state by the slp_tsk
service call, the accumulated wakeup request becomes effective, so that the task continues executing again with-
out going to WAIT state. (See Figure 4.4).

• Cancel Task Wakeup Requests (can_wup)
Clears the stored wakeup request.(See Figure 4.5).

slp_tsk slp_tsk

wup_tsk wup_tsk wup_tsk

0 0 1 2 1 Wakeup request count

Task

Figure 4.4 Wakeup Request Storage

slp_tsk slp_tsk

wup_tsk wup_tsk can_wup

0 0 1 0 0 Wakeup request count

Task

Figure 4.5 Wakeup Request Cancellation

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 41 of 178
Sep 16, 2011

• Suspend task (sus_tsk)

• Resume suspended task (rsm_tsk)
These service calls forcibly keep a task suspended for execution or resume execution of a task. If a suspend re-
quest is issued to a task in READY state, the task is placed into SUSPENDED state; if issued to a task in WAIT
state, the task is placed into WAIT-SUSPENDED state. Since MR8C/4 allows only one forcible wait request to be
nested, if sus_tsk is issued to a task in a forcible wait state, the error E_QOVR is returned. (See Figure 4.6).

READY state

rsm_tsk sus_tsk

0 1 1 0
Number of
suspension

request

Task

sus_tsk

RUNNING
state

SUSPENDED
state

WAITING stateWAITING state
WAITING-

SUSPENDED
state

E_QOVR

Figure 4.6 Forcible wait of a task and resume

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 42 of 178
Sep 16, 2011

• Release task from waiting (rel_wai, irel_wai)
Forcibly frees a task from WAITING state. A task is freed from WAITING state by this service call when it is in
one of the following wait states.

♦ Delay wait state
♦ Wait state entered by slp_tsk service call
♦ Event flag wait state
♦ Semaphore wait state
♦ Data transmission wait state
♦ Data reception wait state

• Delay task (dly_tsk)
Keeps a task waiting for a finite length of time. Figure 4.7 shows an example in which execution of a task is kept
waiting for 10 ms by the dly_tsk service call. The delay time value should be specified in ms units, and not in
time tick units.

10msec

dly_tsk(10)
Task

Figure 4.7 dly_tsk service call

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 43 of 178
Sep 16, 2011

4.2.3 Synchronization and Communication Function (Semaphore)
The semaphore is a function executed to coordinate the use of devices and other resources to be shared by several tasks in
cases where the tasks simultaneously require the use of them. When, for instance, four tasks simultaneously try to acquire a
total of only three communication lines as shown in Figure 4.8, communication line-to-task connections can be made
without incurring contention.

Semaphore

Communication
Line

Task

Task

Task

Task

Communication
Line

Communication
Line

Figure 4.8 Exclusive Control by Semaphore

The semaphore has an internal semaphore counter. In accordance with this counter, the semaphore is acquired or released to
prevent competition for use of the same resource.(See Figure 4.9).

Task
Acquired

Returned after use

Figure 4.9 Semaphore Counter

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 44 of 178
Sep 16, 2011

Figure 4.10 shows example task execution control provided by the wai_sem and sig_sem service calls.

Task

Task

Task

Task

Semaphore
Counter

wai_sem sig_sem

3 2 1 0 0x

wai_sem

wai_sem

wai_sem

WAIT state

Figure 4.10 Task Execution Control by Semaphore

The MR8C/4 kernel offers the following semaphore synchronization service calls.

• Release Semaphore Resource(sig_sem, isig_sem)
Releases one resource to the semaphore. This service call wakes up a task that is waiting for the semaphores ser-
vice, or increments the semaphore counter by 1 if no task is waiting for the semaphores service.

• Acquire Semaphore Resource(wai_sem)
Waits for the semaphores service. If the semaphore counter value is 0 (zero), the semaphore cannot be acquired.
Therefore, the WAITING state prevails.

• Acquire Semaphore Resource(pol_sem)
Acquires the semaphore resource. If there is no semaphore resource to acquire, an error code is returned and the
WAITING state does not prevail.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 45 of 178
Sep 16, 2011

4.2.4 Synchronization and Communication Function (Eventflag)
The eventflag is an internal facility of MR8C/4 that is used to synchronize the execution of multiple tasks. The eventflag
uses a flag wait pattern and a 16-bit pattern to control task execution. A task is kept waiting until the flag wait conditions
set are met.

It is possible to determine whether multiple waiting tasks can be enqueued in one eventflag waiting queue by specifying the
eventflag attribute TA_WSGL or TA_WMUL.

Furthermore, it is possible to clear the eventflag bit pattern to 0 when the eventflag meets wait conditions by specifying
TA_CLR for the eventflag attribute.

Figure 4.11 shows an example of task execution control by the eventflag using the wai_flg and set_flg service calls.

The eventflag has a feature that it can wake up multiple tasks collectively at a time.

In Figure 4.11, there are six tasks linked one to another, task A to task F. When the flag pattern is set to 0xF by the set_flg
service call, the tasks that meet the wait conditions are removed sequentially from the top of the queue. In this diagram, the
tasks that meet the wait conditions are task A, task C, and task E. Out of these tasks, task A, task C, and task E are removed
from the queue.

If this event flag has a TA_CLR attribute, when the waiting of Task A is canceled, the bit pattern of the event flag will be
set to 0, and Task C and Task E will not be removed from queue.

TaskF TaskD TaskB

Flag pattern
0x0F

Flag pattern
0

Flag queue TaskA TaskB TaskC TaskD TaskE TaskF

0xFF
AND

0x0F
AND

0xFF
AND

0xFF
OR

0x10
OR

0x0F
OR

Wait pattern
Wait mode

set_flg

Figure 4.11 Task Execution Control by the Eventflag

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 46 of 178
Sep 16, 2011

There are following eventflag service calls that are provided by the MR8C/4 kernel.

• Set Eventflag (set_flg, iset_flg)
Sets the eventflag so that a task waiting the eventflag is released from the WAITING state.

• Clear Eventflag (clr_flg)
Clears the Eventflag.

• Wait for Eventflag (wai_flg)
Waits until the eventflag is set to a certain pattern. There are two modes as listed below in which the eventflag is
waited for.

♦ AND wait

Waits until all specified bits are set.

♦ OR wait
Waits until any one of the specified bits is set

• Wait for Eventflag (polling)(pol_flg)
Examines whether the eventflag is in a certain pattern. In this service call, tasks are not placed in WAITING state.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 47 of 178
Sep 16, 2011

4.2.5 Synchronization and Communication Function (Data Queue)
The data queue is a mechanism to perform data communication between tasks. In Figure 4.12, for example, task A can
transmit data to the data queue and task B can receive the transmitted data from the data queue.

D
ata

D
ata

D
ata

Data Data

Task B Task A

Figure 4.12 Data queue

Data in width of 16 bits can be transmitted to this data queue.

The data queue has the function to accumulate data. The accumulated data is retrieved in order of FIFO19. However, the
number of data that can be accumulated in the data queue is limited. If data is transmitted to the data queue that is full of
data, the service call issuing task goes to a data transmission wait state.

There are following data queue service calls that are provided by the MR8C/4 kernel.

• Send to Data Queue(snd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task goes to a data transmission wait
state.

• Send to Data Queue (psnd_dtq, ipsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task returns error code without going
to a data transmission wait state.

• Receive from Data Queue (rcv_dtq)
The data is retrieved from the data queue. If the data queue has no data in it, the task is kept waiting until data is
transmitted to the data queue.

• Receive from Data Queue (prcv_dtq)
The data is received from the data queue. If the data queue has no data in it, the task returns error code without
going to a data reception wait state.

19 First In First Out

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 48 of 178
Sep 16, 2011

4.2.6 Time Management Function
The time management function provides system time management, and the functions of the alarm handler, which actuates
at preselected times, and the cyclic handler, which actuates at preselected time intervals.

The MR8C/4 kernel requires one timer for use as the system clock. There are following time management service calls that
are provided by the MR8C/4 kernel. Note, however, that the system clock is not an essential function of MR8C/4. There-
fore, if the service calls described below and the time management function of the MR8C/4 are unused, a timer does not
need to be occupied for use by MR8C/4.

• Place a task in a finite time wait state by specifying a timeout value
MR8C/4 guarantees that as stipulated in µITRON specification, timeout processing is not performed until a time
equal to or greater than the specified timeout value elapses. More specifically, timeout processing is performed
with the following timing.

1. If the delay time value is 0 (for only dly_tsk)
The task times out at the first time tick after the service call is issued.

2. If the delay time value is a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + first time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 40 ms, then the timer times out at the fifth oc-
currence of the time tick. Similarly, if the time tick interval is 5 ms and the specified timeout value is 15
ms, then the timer times out at the fourth occurrence of the time tick.

3. If the delay time value is not a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + second time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 35 ms, then the timer times out at the fifth oc-
currence of the time tick.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 49 of 178
Sep 16, 2011

4.2.7 Cyclic Handler Function
The cyclic handler is a time event handler that is started every startup cycle after a specified startup phase has elapsed.

The cyclic handler may be started with or without saving the startup phase. In the former case, the cyclic handler is started
relative to the point in time at which it was generated. In the latter case, the cyclic handler is started relative to the point in
time at which it started operating. Figure 4.13 and Figure 4.14 show typical operations of the cyclic handler.

If the startup cycle is shorter than the time tick interval, the cyclic handler is started only once every time tick supplied
(processing equivalent to isig_tim). For example, if the time tick interval is 10 ms and the startup cycle is 3 ms and the cy-
clic handler has started operating when a time tick is supplied, then the cyclic handler is started every time tick.

Cyclic handler
created

Activation
phase

Activation
cycle

Activation
cycle

Activation
cycle

Activation
cycle

Handler does
not start

Handler does
not start

Start operating Stop operating

Handler does
not start

Handler starts Handler starts

Figure 4.13 Cyclic handler operation in cases where the activation phase is saved

Cyclic handler
created

Activation
phase

Activation
cycle

Activation
cycle

Activation
cycle

Activation
cycle

Handler does
not start

Handler does
not start

Start operating Stop operating

Handler does
not start

Handler starts Handler starts

Figure 4.14 Cyclic handler operation in cases where the activation phase is not saved

• Start Cyclic Handler Operation (sta_cyc)
Causes the cyclic handler with the specified ID to operational state.

• Stop Cyclic Handler Operation (stp_cyc)
Causes the cyclic handler with the specified ID to non-operational state.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 50 of 178
Sep 16, 2011

4.2.8 Alarm Handler Function
The alarm handler is a time event handler that is started only once at a specified time.

Use of the alarm handler makes it possible to perform time-dependent processing. The time of day is specified by a relative
time. Figure 4.15 shows a typical operation of the alarm handler.

Alarm handler
created

Activation
time

Start
operating

Stop
operating

Handler does
not start

Handler starts

Start
operating

Activation
time

Figure 4.15 Typical operation of the alarm handler

• Start Alarm Handler Operation (sta_alm)
Causes the alarm handler with the specified ID to operational state.

• Stop alarm Handler Operation (stp_alm)
Causes the alarm handler with the specified ID to non-operational state.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 51 of 178
Sep 16, 2011

4.2.9 System Status Management Function

• Reference task ID in the RUNNING state(get_tid)
References the ID number of the task in the RUNNING state.

• Lock the CPU (loc_cpu)
Places the system into a CPU locked state.

• Unlock the CPU (unl_cpu)
Frees the system from a CPU locked state.

• Disable dispatching (dis_dsp)
Places the system into a dispatching disabled state.

• Enable dispatching (ena_dsp)
Frees the system from a dispatching disabled state.

• Reference context (sns_ctx)
Gets the context status of the system.

• Reference CPU state (sns_loc)
Gets the CPU lock status of the system.

• Reference dispatch disabling state (sns_dsp)
Gets the dispatch disabling status of the system.

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 52 of 178
Sep 16, 2011

4.2.10 Interrupt Management Function
The interrupt management function provides a function to process requested external interrupts in real time.

The interrupt management service calls provided by the MR8C/4 kernel include the following:

• Returns from interrupt handler (ret_int)
The ret_int service call activates the scheduler to switch over tasks as necessary when returning from the interrupt
handler.
When using the C language,20, this function is automatically called at completion of the handler function. In this
case, therefore, there is no need to invoke this service call.

Figure 4.16 shows an interrupt processing flow. Processing a series of operations from task selection to register restoration
is called a "scheduler.".

Interrupt

TaskA

Save Registers

Handler Processing

iwup_tsk

ret_int

Task Selection

Restore Registers

TaskB

#pragma INTHANDLER Declare
(C language)

Figure 4.16 Interrupt process flow

20 In the case that the interruput handler is specified by "#pragma INTHANDLER".

MR8C/4 4 Kernel

R20UT0657EJ0101 Rev.1.01 Page 53 of 178
Sep 16, 2011

4.2.11 System Configuration Management Function
This function inspects the version information of MR8C/4.

• References Version Information(ref_ver)
The ref_ver service call permits the user to get the version information of MR8C/4. This version information can
be obtained in the standardized format of µITRON specification.

R20UT0657EJ0101 Rev.1.01 Page 54 of 178
Sep 16, 2011

5. Service call reference

5.1 Task Management Function
Specifications of the task management function of MR8C/4 are listed in Table 5.1 below. The task description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR8C/4
kernel concerned with them.

The task stack permits a section name to be specified for each task individually.

Table 5.1 Specifications of the Task Management Function

No. Item Content
1 Task ID 1-255
2 Task priority 1-255
3 Maximum number of activation request count 15

TA_HLNG : Tasks written in
high-level language

TA_ASM : Tasks written in as-
sem-bly language

4 Task attribute

TA_ACT： Startup attribute
5 Task stack Section specifiable

Table 5.2 List of Task Management Function Service Call

System State No. Service Call Function
T N E D U L

1 sta_tsk [B] O O O O
2 ista_tsk

Starts task and specifies start code
O O O O

3 ext_tsk [S][B] Exits current task O O O O O
4 ter_tsk [S][B] Forcibly terminates a task O O O O
5 chg_pri [S][B] Changes task priority O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 55 of 178
Sep 16, 2011

sta_tsk Activate task with a start code
ista_tsk Activate task with a start code (handler only)
[[[[CC LLaanngguuaaggee AAPPII]]]]

ER ercd = sta_tsk(ID tskid,VP_INT stacd);
ER ercd = ista_tsk (ID tskid,VP_INT stacd);

 PPaarraammeetteerrss
ID tskid ID number of the target task

VP_INT stacd Task start code

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sta_tsk TSKID,STACD
ista_tsk TSKID,STACD

 PPaarraammeetteerrss
TSKID ID number of the target task

STATCD Task start code

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R1 Task start code

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid (task indicated by tskid is not DOMANT state)

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 56 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call starts the task indicated by tskid. In other words, it places the specified task from DORMANT state into
READY state or RUNNING state. This service call does not enqueue task activation requests. Therefore, if a task activa-
tion request is issued while the target task is not DORMANT state, the error code E_OBJ is returned to the service call is-
suing task. This service call is effective only when the specified task is in DORMANT state. The task start code stacd is 16
bits long. This task start code is passed as parameter to the activated task.

If a task is restarted that was once terminated by ter_tsk or ext_tsk, the task performs the following as it starts up.

1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of nested forcible wait requests.

If this service call is to be issued from task context, use sta_tsk; if issued from non-task context, use ista_tsk.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 ER ercd;
 VP_INT stacd = 0;
 ercd = sta_tsk(ID_task2, stacd);
 :
}
void task2(VP_INT msg)
{
 if(msg == 0)
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:
 :
 PUSHM A0,R1,R3
 sta_tsk #ID_TASK4,#012345678H
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 57 of 178
Sep 16, 2011

ext_tsk Terminate invoking task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ext_tsk();

 PPaarraammeetteerrss
None

 RReettuurrnn PPaarraammeetteerrss
Not return from this service call

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
ext_tsk

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Not return from this service call

[[[[EErrrroorr ccooddee]]]]

Not return from this service call

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call terminates the invoking task. In other words, it places the issuing task from RUNNING state into DOR-
MANT state. However,

This service call is designed to be issued automatically at return from a task.

In the invocation of this service call, the resources the issuing task had acquired previously (e.g., semaphore) are not re-
leased.

This service call can only be used in task context. This service call can be used even in a CPU locked state, but cannot be
used in non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 58 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task(void)
{
 :
 ext_tsk();
}

<<Example statement in assembly language>>
 .INCLUDE mr8c.inc
 .GLB task
task:
 :
 ext_tsk

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 59 of 178
Sep 16, 2011

ter_tsk Terminate task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ter_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the forcibly terminated task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
ter_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the forcibly terminated task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_ILUSE Service call improperly used task indicated by tskid is the issuing task itself)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call terminates the task indicated by tskid.

If a task specifies its own task ID or TSK_SELF, an E_ILUSE error is returned.

If the specified task was placed into WAITING state and has been enqueued in some waiting queue, the task is dequeued
from it by execution of this service call. However, the semaphore and other resources the specified task had acquired pre-
viously are not released.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

This service call can only be used in task context, and cannot be used in non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 60 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

 :
ter_tsk(ID_main);
 :

}
<<Example statement in assembly language>>
 .INCLUDE mr8c.inc
 .GLB task
task:
 :
 PUSHM A0
 ter_tsk #ID_TASK3
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 61 of 178
Sep 16, 2011

chg_pri Change task priority

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = chg_pri(ID tskid, PRI tskpri);

 PPaarraammeetteerrss
ID tskid ID number of the target task

PRI tskpri Priority of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
chg_pri TSKID,TSKPRI

 PPaarraammeetteerrss
TSKID ID number of the target task

TSKPRI Priority of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3 Priority of the target task

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 62 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call changes the priority of the task indicated by tskid to the value indicated by tskpri, and performs resched-
uling based on the result of that priority change. Therefore, if this service call is executed on a task enqueued in a ready
queue (including one that is in an executing state) or a task in a waiting queue in which tasks are enqueued in order of pri-
ority, the target task is moved to behind the tail of a relevant priority part of the queue. Even when the same priority as the
previous one is specified, the task is moved to behind the tail of the queue.

The smaller the number, the higher the task priority, with 1 assigned the highest priority. The minimum value specifiable as
priority is 1. The specifiable maximum value of priority is the maximum value of priority specified in a configuration file,
providing that it is within the range 1 to 255. For example, if system specification in a configuration file is as follows,

system{
stack_size = 0x100;

 priority = 13;
};

then priority can be specified in the range 1 to 13.

If TSK_SELF is specified, the priority of the issuing task is changed. If TSK_SELF is specified for tskid in non-task con-
text, operation of the service call cannot be guaranteed. If TPRI_INI is specified, the task has its priority changed to the
initial priority that was specified when the task was created. The changed task priority remains effective until the task is
terminated or this service call is executed again.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.
Since the MR8C/4 does not support the mutex function, in no case will the error code E_ILUSE be returned.

If this service call is to be issued from task context, use chg_pri.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

 :
chg_pri(ID_task2, 2);
 :

}
<<Example statement in assembly language>>
 .Include mr8c.inc
 .GLB task
task:
 :
 pushm A0,R3
 chg_pri #ID_TASK3,#1
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 63 of 178
Sep 16, 2011

5.2 Task Dependent Synchronization Function
Specifications of the task-dependent synchronization function are listed in below.

Table 5.3 Specifications of the Task Dependent Synchronization Function

No. Item Content
1 Maximum value of task wakeup request count 15
2 Maximum number of nested forcible task wait requests count 1

Table 5.4 List of Task Dependent Synchronization Service Call

System State No. Service Call Function
T N E D U L

1 slp_tsk [S][B] Puts task to sleep O O O
2 wup_tsk [S][B] O O O O
3 iwup_tsk [S][B]

Wakes up task
 O O O O

4 can_wup Cancels wakeup request O O O O
5 rel_wai [S][B] O O O O
6 irel_wai [S][B]

Releases task from waiting
 O O O O

7 sus_tsk [S][B] Suspends task O O O O
8 rsm_tsk [S][B] Resumes suspended task O O O O
9 dly_tsk [S][B] Delays task O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 64 of 178
Sep 16, 2011

slp_tsk Put task to sleep

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = slp_tsk();

 PPaarraammeetteerrss
None

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
slp_tsk

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 65 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the issuing task itself from RUNNING state into sleeping wait state. The task placed into WAIT-
ING state by execution of this service call is released from the wait state in the following cases:

 When a task wakeup service call is issued from another task or an interrupt
The error code returned in this case is E_OK.
 When a forcible awaking service call is issued from another task or an interrupt
The error code returned in this case is E_RLWAI.

If the task receives sus_tsk issued from another task while it has been placed into WAITING state by this service call, it
goes to WAITING-SUSPENDED state. In this case, even when the task is released from WAITING state by a task wakeup
service call, it still remains in SUSPENDED state, and its execution cannot be resumed until rsm_tsk is issued.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(slp_tsk() != E_OK)
error(“Forced wakeup\n”);

 :
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 slp_tsk
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 66 of 178
Sep 16, 2011

wup_tsk Wakeup task
iwup_tsk Wakeup task (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = wup_tsk(ID tskid);
ER ercd = iwup_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
wup_tsk TSKID
iwup_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_QOVR Queuing overflow

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
If the task specified by tskid has been placed into WAITING state by slp_tsk this service call wakes up the task from
WAITING state to place it into READY or RUNNING state. Or if the task specified by tskid is in WAIT-
ING-SUSPENDED state, this service call awakes the task from only the sleeping state so that the task goes to SUS-
PENDED state.

If a wakeup request is issued while the target task remains in DORMANT state, the error code E_OBJ is returned to the
service call issuing task. If TSK_SELF is specified for tskid, it means specifying the issuing task itself. If TSK_SELF is
specified for tskid in non-task context, operation of the service call cannot be guaranteed.

If this service call is issued to a task that has not been placed in WAITING state or in WAITING-SUSPENDED state by
execution of slp_tsk, the wakeup request is accumulated. More specifically, the wakeup request count for the target task to
be awakened is incremented by 1, in which way wakeup requests are accumulated.

The maximum value of the wakeup request count is 15. If while the wakeup request count = 15 a new wakeup request is
generated exceeding this limit, the error code E_QOVR is returned to the task that issued the service call, with the wakeup
request count left intact.

If this service call is to be issued from task context, use wup_tsk; if issued from non-task context, use iwup_tsk.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 67 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 if(wup_tsk(ID_main) != E_OK)
 printf(“Can’t wakeup main()\n”);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 wup_tsk #ID_TASK1
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 68 of 178
Sep 16, 2011

can_wup Cancel wakeup request

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER_UINT wupcnt = can_wup(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER_UINT wupcnt > 0 Canceled wakeup request count
 wupcnt <0 Error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
can_wup TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code,Canceled wakeup request count

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call clears the wakeup request count of the target task indicated by tskid to 0. This means that because the tar-
get task was in either WAITING state nor WAITING-SUSPENDED state when an attempt was made to wake it up by
wup_tsk or iwup_tsk before this service call was issued, the attempt resulted in only accumulating wakeup requests and this
service call clears all of those accumulated wakeup requests.

Furthermore, the wakeup request count before being cleared to 0 by this service call, i.e., the number of wakeup requests
that were issued in vain (wupcnt) is returned to the issuing task. If a wakeup request is issued while the target task is in
DORMANT state, the error code E_OBJ is returned. If TSK_SELF is specified for tskid, it means specifying the issuing
task itself.

This service call can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 69 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 ER_UINT wupcnt;
 :

wupcnt = can_wup(ID_main);
if(wup_cnt > 0)

printf(“wupcnt = %d\n”,wupcnt);
 :

}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 can_wup #ID_TASK3
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 70 of 178
Sep 16, 2011

rel_wai Release task from waiting
irel_wai Release task from waiting (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rel_wai(ID tskid);
ER ercd = irel_wai(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
rel_wai TSKID
irel_wai TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is not an wait state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call forcibly release the task indicated by tskid from waiting (except SUSPENDED state) to place it into
READY or RUNNING state. The forcibly released task returns the error code E_RLWAI. If the target task has been en-
queued in some waiting queue, the task is dequeued from it by execution of this service call.

If this service call is issued to a task in WAITING-SUSPENDED state, the target task is released from WAITING state and
goes to SUSPENDED state.21

If the target task is not in WAITING state, the error code E_OBJ is returned. This service call forbids specifying the issuing
task itself for tskid.

If this service call is to be issued from task context, use rel_wai; if issued from non-task context, use irel_wai.

21 This means that tasks cannot be resumed from SUSPENDED state by this service call. Only the rsm_tsk, irsm_tsk, frsm_tsk, and
ifrsm_tsk service calls can release them from SUSPENDED state.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 71 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(rel_wai(ID_main) != E_OK)
error(“Can’t rel_wai main()\n”);

 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 rel_wai #ID_TASK2
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 72 of 178
Sep 16, 2011

sus_tsk Suspend task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sus_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sus_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_QOVR Queuing overflow

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call aborts execution of the task indicated by tskid and places it into SUSPENDED state. Tasks are resumed
from this SUSPENDED state by the rsm_tsk service call. If the task indicated by tskid is in DORMANT state, it returns the
error code E_OBJ as a return value for the service call.

The maximum number of suspension requests by this service call that can be nested is 1. If this service call is issued to a
task which is already in SUSPENDED state, the error code E_QOVR is returned.

This service call forbids specifying the issuing task itself for tskid.

This service call can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 73 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

 :
if(sus_tsk(ID_main) != E_OK)

printf(“Can’t suspend task main()\n”);
 :

}
<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 sus_tsk #ID_TASK2
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 74 of 178
Sep 16, 2011

rsm_tsk Resume suspended task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rsm_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
rsm_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is not a forcible wait state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
If the task indicated by tskid has been aborted by sus_tsk, this service call resumes the target task from SUSPENDED state.
In this case, the target task is linked to behind the tail of the ready queue.

If a request is issued while the target task is not in SUSPENDED state (including DORMANT state), the error code E_OBJ
is returned to the service call issuing task.

The rsm_tsk service call each operate the same way, because the maximum number of forcible wait requests that can be
nested is 1.

This service call can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 75 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1()
{

 :
if(rsm_tsk(ID_main) != E_OK)

printf(“Can’t resume main()\n”);
 :

}
<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 rsm_tsk #ID_TASK2
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 76 of 178
Sep 16, 2011

dly_tsk Delay task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = dly_tsk(RELTIM dlytim);

 PPaarraammeetteerrss
RELTIM dlytim Delay time

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
dly_tsk RELTIM

 PPaarraammeetteerrss
RELTIM Delay time

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R1 Delay time (16 low-order bits)

R3 Delay time (16 high-order bits)

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call temporarily stops execution of the issuing task itself for a duration of time specified by dlytim to place the
task from RUNNING state into WAITING state. In this case, the task is released from the WAITING state at the first time
tick after the time specified by dlytim has elapsed. Therefore, if specified dlytim = 0, the task is placed into WAITING state
briefly and then released from the WAITING state at the first time tick.

The task placed into WAITING state by invocation of this service call is released from the WAITING state in the following
cases. Note that when released from WAITING state, the task that issued the service call is removed from the timeout
waiting queue and linked to a ready queue.

 When the first time tick occurred after dlytim elapsed
The error code returned in this case is E_OK.
 When the rel_wai or irel_wai service call is issued before dlytim elapses
The error code returned in this case is E_RLWAI.

Note that even when the wup_tsk or iwup_tsk service call is issued during the delay time, the task is not released from
WAITNG state.

The delay time dlytim is expressed in ms units. Therefore, if specified as dly_tsk(50);, the issuing task is placed from
RUNNING state into a delayed wait state for a period of 50 ms.

The values specified for dlytim must be within 0x7fffffff - time tick. If any value exceeding this limit is specified, the ser-
vice call may not operate correctly.

This service call can be issued only from task context. It cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 77 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(dly_tsk() != E_OK)
error(“Forced wakeup\n”);

 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM R1,R3
 MOV.W #500,R1
 MOV.W #0,R1
 dly_tsk

 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 78 of 178
Sep 16, 2011

5.3 Synchronization & Communication Function (Semaphore)
Specifications of the semaphore function of MR8C/4 are listed in Table 5.5.

Table 5.5 Specifications of the Semaphore Function

No. Item Content
1 Semaphore ID 1-255
2 Maximum number of resources 1-65535
3 Semaphore attribute TA_FIFO: Tasks enqueued in order of FIFO

Table 5.6 List of Semaphore Function Service Call

System State No. Service Call Function
T N E D U L

1 sig_sem [S][B] O O O O
2 isig_sem [S][B]

Releases semaphore
resource O O O O

3 wai_sem [S][B] Acquires semaphore
resource

O O O

4 pol_sem [S][B] Acquires semaphore
resource(polling)

O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 79 of 178
Sep 16, 2011

sig_sem Release semaphore resource
isig_sem Release semaphore resource (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sig_sem(ID semid);
ER ercd = isig_sem(ID semid);

 PPaarraammeetteerrss
ID semid Semaphore ID number to which returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sig_sem SEMID
isig_sem SEMID

 PPaarraammeetteerrss
SEMID Semaphore ID number to which returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 Semaphore ID number to which returned

[[[[EErrrroorr ccooddee]]]]

E_QOVR Queuing overflow

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call releases one resource to the semaphore indicated by semid.

If tasks are enqueued in a waiting queue for the target semaphore, the task at the top of the queue is placed into READY
state. Conversely, if no tasks are enqueued in that waiting queue, the semaphore resource count is incremented by 1. If an
attempt is made to return resources (sig_sem or isig_sem service call) causing the semaphore resource count value to ex-
ceed the maximum value specified in a configuration file (maxsem), the error code E_QOVR is returned to the service call
issuing task, with the semaphore count value left intact.

If this service call is to be issued from task context, use sig_sem; if issued from non-task context, use isig_sem.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 80 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(sig_sem(ID_sem) == E_QOVR)
 error(“Overflow\n”);

 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 sig_sem #ID_SEM2

 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 81 of 178
Sep 16, 2011

wai_sem Acquire semaphore resource
pol_sem Acquire semaphore resource (polling)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = wai_sem(ID semid);
ER ercd = pol_sem(ID semid);

 PPaarraammeetteerrss
ID semid Semaphore ID number to be acquired

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
wai_sem SEMID
pol_sem SEMID

 PPaarraammeetteerrss
SEMID Semaphore ID number to be acquired

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 Semaphore ID number to be acquired

 [[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 82 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call acquires one semaphore resource from the semaphore indicated by semid.

If the semaphore resource count is equal to or greater than 1, the semaphore resource count is decremented by 1, and the
service call issuing task continues execution. On the other hand, if the semaphore count value is 0, the wai_sem service call
invoking task is enqueued in a waiting queue for that semaphore in order of FIFO. For the pol_sem service call, the task
returns immediately and responds to the call with the error code E_TMOUT.

The task placed into WAITING state by execution of the wai_sem service call is released from the WAITING state in the
following cases:

 When the sig_sem or isig_sem service call is issued with task-awaking conditions thereby sat-
isfied
The error code returned in this case is E_OK.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

These service calls can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 if(wai_sem(ID_sem) != E_OK)
 printf(“Forced wakeup\n”);
 :
 if(pol_sem(ID_sem) != E_OK)
 printf(“Timeout\n”);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 pol_sem #ID_SEM1

 :
 PUSHM A0
 wai_sem #ID_SEM2

 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 83 of 178
Sep 16, 2011

5.4 Synchronization & Communication Function (Eventflag)
Specifications of the eventflag function of MR8C/4 are listed in Table 5.7.

Table 5.7 Specifications of the Eventflag Function

No. Item Content
1 Event0flag ID 1-255
2 Number of bits comprising

eventflag
16 bits

TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_WSGL: Multiple tasks cannot be kept waiting
TA_WMUL: Multiple tasks can be kept waiting

3 Eventflag attribute

TA_CLR: Bit pattern cleared when waiting task is released

Table 5.8 List of Eventflag Function Service Call

System State No. Service Call Function
T N E D U L

1 set_flg [S][B] O O O O
2 iset_flg [S][B]

Sets eventflag
 O O O O

3 clr_flg [S][B] Clears eventflag O O O O
4 wai_flg [S][B] Waits for eventflag O O O
5 pol_flg [S][B] Waits for eventflag

(polling)
O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 84 of 178
Sep 16, 2011

set_flg Set eventflag
iset_flg Set eventflag (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = set_flg(ID flgid, FLGPTN setptn);
ER ercd = iset_flg(ID flgid, FLGPTN setptn);

 PPaarraammeetteerrss
ID flgid ID number of the eventflag to be set

FLGPTN setptn Bit pattern to be set

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
set_flg FLGID,SETPTN
iset_flg FLGID,SETPTN

 PPaarraammeetteerrss
FLGID ID number of the eventflag to be set

SETPTN Bit pattern to be set

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3 Bit pattern to be set

A0 Eventflag ID number

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
Of the 16-bit eventflag indicated by flgid, this service call sets the bits indicated by setptn. In other words, the value of the
eventflag indicated by flgid is OR’d with setptn. If the alteration of the eventflag value results in task-awaking conditions
for a task that has been kept waiting for the eventflag by the wai_flg or twai_flg service call becoming satisfied, the task is
released from WAITING state and placed into READY or RUNNING state.

Task-awaking conditions are evaluated sequentially beginning with the top of the waiting queue. If TA_WMUL is specified
as an eventflag attribute, multiple tasks kept waiting for the eventflag can be released from WAITING state at the same
time by one set_flg or iset_flg service call issued. Furthermore, if TA_CLR is specified for the attribute of the target event-
flag, all bit patterns of the eventflag are cleared, with which processing of the service call is terminated.

If all bits specified in setptn are 0, no operation will be performed for the target eventflag, in which case no errors are as-
sumed, however.

If this service call is to be issued from task context, use set_flg; if issued from non-task context, use iset_flg.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 85 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task(void)
{
 :
 set_flg(ID_flg,(FLGPTN)0xff00);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0, R3
 set_flg #ID_FLG3,#0ff00H

 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 86 of 178
Sep 16, 2011

clr_flg Clear eventflag

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = clr_flg(ID flgid, FLGPTN clrptn);

 PPaarraammeetteerrss
ID flgid ID number of the eventflag to be cleared

FLGPTN clrptn Bit pattern to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
clr_flg FLGID,CLRPTN

 PPaarraammeetteerrss
FLGID ID number of the eventflag to be cleared

CLRPTN Bit pattern to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the eventflag to be cleared

R3 Bit pattern to be cleared

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
Of the 16-bit eventflag indicated by flgid, this service call clears the bits whose corresponding values in clrptn are 0. In
other words, the eventflag bit pattern indicated by flgid is updated by AND’ing it with clrptn. If all bits specified in clrptn
are 1, no operation will be performed for the target eventflag, in which case no errors are assumed, however.

This service call can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 87 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task(void)
{
 :
 clr_flg(ID_flg,(FLGPTN) 0xf0f0);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0, R3
 clr_flg #ID_FLG1,#0f0f0H

 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 88 of 178
Sep 16, 2011

wai_flg Wait for eventflag
pol_flg Wait for eventflag(polling)

 [[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 PPaarraammeetteerrss
ID flgid ID number of the eventflag waited for

FLGPTN waiptn Wait bit pattern

MODE wfmode Wait mode

FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]
.include mr8c.inc
wai_flg FLGID, WAIPTN, WFMODE
pol_flg FLGID, WAIPTN, WFMODE

 PPaarraammeetteerrss
FLGID ID number of the eventflag waited for

WAIPTN Wait bit pattern

WFMODE Wait mode

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R1 Wait mode

R2 bit pattern is returned when released from wait

R3 Wait bit pattern

A0 ID number of the eventflag waited for

[[[[EErrrroorr ccooddee]]]]
E_RLWAI Forced release from waiting
E_TMOUT Polling failure
E_ILUSE Service call improperly used (Tasks present waiting for TA_WSGL attribute eventflag)

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 89 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call waits until the eventflag indicated by flgid has its bits specified by waiptn set according to task-awaking
conditions indicated by wfmode. Returned to the area pointed to by p_flgptn is the eventflag bit pattern at the time the task
is released from WAITING state.

If the target eventflag has the TA_WSGL attribute and there are already other tasks waiting for the eventflag, the error code
E_ILUSE is returned.

If task-awaking conditions have already been met when this service call is invoked, the task returns immediately and re-
sponds to the call with E_OK. If task-awaking conditions are not met and the invoked service call is wai_flg, the task is
enqueued in an eventflag waiting queue in order of FIFO. For the pol_flg service call, the task returns immediately and
responds to the call with the error code E_TMOUT.

The task placed into a wait state by execution of the wai_flg service call is released from WAITING state in the following
cases:

 When task-awaking conditions are met before the tmout time elapses
The error code returned in this case is E_OK.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call

issued from another task or a handler
The error code returned in this case is E_RLWAI.

The following shows how wfmode is specified and the meaning of each mode.
wfmdoe (wait mode) Meaning
TWF_ANDW Wait until all bits specified by waiptn are set (wait for the

bits AND’ed)
TWF_ORW Wait until one of the bits specified by waiptn is set (wait

for the bits OR’ed)

These service calls can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 90 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 UINT flgptn;

 :
if(wai_flg(ID_flg2, (FLGPTN)0x0ff0, TWF_ANDW, &flgptn)!=E_OK)

 error(“Wait Released\n”);
 :
 :
if(pol_flg(ID_flg2, (FLGPTN)0x0ff0, TWF_ORW, &flgptn)!=E_OK)
 printf(“Not set EventFlag\n”);
 :

}
<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0,R1,R3
 wai_flg #ID_FLG1,#0003H,#TWF_ANDW

 :
 PUSHM A0,R1,R3
 pol_flg #ID_FLG2,#0008H,#TWF_ORW

 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 91 of 178
Sep 16, 2011

5.5 Synchronization & Communication Function (Data Queue)
Specifications of the data queue function of MR8C/4 are listed in Table 5.9.

Table 5.9 Specifications of the Data Queue Function

No. Item Content
1 Data queue ID 1-255
2 Capacity (data bytes) in data queue area 0-65535
3 Data size 16 bits
4 Data queue attribute TA_TFIFO: Waiting tasks enqueued in order of FIFO

Table 5.10 List of Dataqueue Function Service Call

System State No. Service Call Function
T N E D U L

1 snd_dtq [S] Sends to data queue O O O
2 psnd_dtq [S] O O O O
3 ipsnd_dtq [S]

Sends to data queue
(polling) O O O O

4 rcv_dtq [S] Receives from data queue O O O
5 prcv_dtq [S] Receives from data queue

(polling)
O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 92 of 178
Sep 16, 2011

snd_dtq Send to data queue
psnd_dtq Send to data queue (polling)
ipsnd_dtq Send to data queue (polling, handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = snd_dtq(ID dtqid, VP_INT data);
ER ercd = psnd_dtq(ID dtqid, VP_INT data);
ER ercd = ipsnd_dtq(ID dtqid, VP_INT data);

 PPaarraammeetteerrss
ID dtqid ID number of the data queue to which transmitted

VP_INT data Data to be transmitted

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
snd_dtq DTQID, DTQDATA
psnd_dtq DTQID, DTQDATA
ipsnd_dtq DTQID, DTQDATA

 PPaarraammeetteerrss
DTQID ID number of the data queue to which transmitted

DTQDATA Data to be transmitted

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R1 Data to be transmitted

A0 ID number of the data queue to which transmitted

[[[[EErrrroorr ccooddee]]]]
E_RLWAI Forced release from waiting

E_TMOUT Polling failure

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call sends the 2-byte data indicated by data to the data queue indicated by dtqid. If any task is kept waiting for
reception in the target data queue, the data is not stored in the data queue and instead sent to the task at the top of the recep-
tion waiting queue, with which the task is released from the reception wait state.

On the other hand, if snd_dtq is issued for a data queue that is full of data, the task that issued the service call goes from
RUNNING state to a data transmission wait state, and is enqueued in transmission waiting queue, kept waiting for the data
queue to become available. In that case, if the attribute of the specified data queue is TA_TFIFO, the task is enqueued in
order of FIFO. For psnd_dtq and ipsnd_dtq, the task returns immediately and responds to the call with the error code
E_TMOUT.

If there are no tasks waiting for reception, nor is the data queue area filled, the transmitted data is stored in the data queue.

The task placed into WAITING state by execution of the snd_dtq service call is released from WAITING state in the fol-
lowing cases:

 When the rcv_dtq or prcv_dtq service call is issued with task-awaking conditions thereby satis-
fied
The error code returned in this case is E_OK.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 93 of 178
Sep 16, 2011

The error code returned in this case is E_RLWAI.
These service calls can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 94 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
VP_INT data[10];
void task(void)
{
 :

if(snd_dtq(ID_dtq, data[0]) == E_RLWAI){
 error(“Forced released\n”);
 }
 :

if(psnd_dtq(ID_dtq, data[1])== E_TMOUT){
 error(“Timeout\n”);
 }
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
_g_dtq: .LWORD 12345678H
task:

 :
 PUSHM R1,R3,A0
 psnd_dtq #ID_DTQ2,#0FFFFH
 :
 PUSHM R1,R3,A0
 snd_dtq #ID_DTQ3,#0ABCDH
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 95 of 178
Sep 16, 2011

rcv_dtq Receive from data queue
prcv_dtq Receive from data queue (polling)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);

 PPaarraammeetteerrss
ID dtqid ID number of the data queue from which to receive

VP_INT *p_data Pointer to the start of the area in which received data is stored

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
VP_INT *p_data Pointer to the start of the area in which received data is stored

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
rcv_dtq DTQID
prcv_dtq DTQID

 PPaarraammeetteerrss
DTQID ID number of the data queue from which to receive

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R1 Received data

A0 Data queue ID number

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 96 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call receives data from the data queue indicated by dtqid and stores the received data in the area pointed to by
p_data. If data is present in the target data queue, the data at the top of the queue or the oldest data is received. This results
in creating a free space in the data queue area, so that a task enqueued in a transmission waiting queue is released from
WAITING state, and starts sending data to the data queue area.

If no data exist in the data queue and there is any task waiting to send data (i.e., data bytes in the data queue area = 0), data
for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to send that data
is released from WAITING state.

On the other hand, if rcv_dtq is issued for the data queue which has no data stored in it, the task that issued the service call
goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting queue. At this time,
the task is enqueued in order of FIFO. For the prcv_dtq service calls, the task returns immediately and responds to the call
with the error code E_TMOUT.

The task placed into a wait state by execution of the rcv_dtq service call is released from the wait state in the following
cases:

 When the rcv_dtq or prcv_dtq service call is issued with task-awaking conditions thereby satis-
fied
The error code returned in this case is E_OK.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

These service calls can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 97 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”

void task()
{
 VP_INT data;

 :
if(rcv_dtq(ID_dtq, &data) != E_RLWAI)

error(“forced wakeup\n”);
 :
if(prcv_dtq(ID_dtq, &data) != E_TMOUT)

error(“Timeout\n”);
 :

}
<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 prcv_dtq #ID_DTQ2
 :
 PUSHM A0
 rcv_dtq #ID_DTQ2
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 98 of 178
Sep 16, 2011

5.6 Time Management Function
Table 5.11 List of Time Management Function Service Call

System State No. Service Call Function
T N E D U L

1 isig_tim [S] Supply a time tick ○ ○ ○ ○

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 99 of 178
Sep 16, 2011

isig_tim Supply a time tick

 [[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call updates the system time.

The isig_tim is automatically started every tick_time interval(ms) if the system clock is defined by the configuration file.
The application cannot call this function because it is not implementing as service call.

When a time tick is supplied, the kernel is processed as follows:

(1) Updates the system time
(2) Starts an alarm handler
(3) Starts a cyclic handler
(4) Processes the timeout processing of the task put on WAITING state by dly_tsk service call with time-

out.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 100 of 178
Sep 16, 2011

5.7 Time Management Function (Cyclic Handler)
Specifications of the cyclic handler function of MR8C/4 are listed in Table 5.12. The cyclic handler description languages
in item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR8C/4
kernel concerned with them.

Table 5.12 Specifications of the Cyclic Handler Function

No. Item Content
1 Cyclic handler ID 1-255
2 Activation cycle 0-7fffffff[ms]
3 Activation phase 0-7fffffff[ms]
4 Extended information 16 bits

TA_HLNG: Handlers written in high-level language
TA_ASM: Handlers written in assembly language
TA_STA: Starts operation of cyclic handler

5 Cyclic handler attribute

TA_PHS: Saves activation phase

Table 5.13 List of Cyclic Handler Function Service Call

System State No. Service Call Function
T N E D U L

1 sta_cyc [S][B] Starts cyclic handler
operation

O O O O

2 stp_cyc [S][B] Stops cyclic handler
operation

O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 101 of 178
Sep 16, 2011

sta_cyc Start cyclic handler operation

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sta_cyc(ID cycid);

 PPaarraammeetteerrss
ID cycid ID number of the cyclic handler to be operated

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sta_cyc CYCNO

 PPaarraammeetteerrss
CYCNO ID number of the cyclic handler to be operated

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the cyclic handler to be operated

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the cyclic handler indicated by cycid into an operational state. If the cyclic handler attribute of
TA_PHS is not specified, the cyclic handler is started every time the activate cycle elapses, start with the time at which this
service call was invoked.

If while TA_PHS is not specified this service call is issued to a cyclic handler already in an operational state, it sets the time
at which the cyclic handler is to start next.

If while TA_PHS is specified this service call is issued to a cyclic handler already in an operational state, it does not set the
startup time.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 sta_cyc (ID_cyc1);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 sta_cyc #ID_CYC1
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 102 of 178
Sep 16, 2011

stp_cyc Stops cyclic handler operation

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = stp_cyc(ID cycid);

 PPaarraammeetteerrss
ID cycid ID number of the cyclic handler to be stopped

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
stp_cyc CYCNO

 PPaarraammeetteerrss
CYCNO ID number of the cyclic handler to be stopped

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the cyclic handler to be stopped

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the cyclic handler indicated by cycid into a non-operational state.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 stp_cyc (ID_cyc1);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 stp_cyc #ID_CYC1
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 103 of 178
Sep 16, 2011

5.8 Time Management Function (Alarm Handler)
Specifications of the alarm handler function of MR8C/4 are listed in Table 5.14. The alarm handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR8C/4
kernel concerned with them.

Table 5.14 Specifications of the Alarm Handler Function

No. Item Content
1 Alarm handler ID 1-255
2 Activation time 0-7fffffff [ms]
3 Extended information 16 bits

TA_HLNG: Handlers written in high-level language 4

Alarm handler attribute
TA_ASM: Handlers written in assembly language

Table 5.15 List of Alarm Handler Function Service Call

System State No. Service Call Function
T N E D U L

1 sta_alm Starts alarm handler operation ○ ○ ○ ○
2 stp_alm Stops alarm handler operation ○ ○ ○ ○

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 104 of 178
Sep 16, 2011

sta_alm Start alarm handler operation

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sta_alm(ID almid, RELTIM almtim);

 PPaarraammeetteerrss
ID almid ID number of the alarm handler to be operated

RELTIM almtim Alarm handler startup time (relative time)

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sta_alm ALMID,ALMTIM

 PPaarraammeetteerrss
ALMID ID number of the alarm handler to be operated

ALMTIM Alarm handler startup time (relative time)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R1 Alarm handler startup time (relative time)

A0 ID number of the alarm handler to be operated

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call sets the activation time of the alarm handler indicated by almid as a relative time of day after the lapse of
the time specified by almtim from the time at which it is invoked, and places the alarm handler into an operational state.

If an already operating alarm handler is specified, the previously set activation time is cleared and updated to a new activa-
tion time. If almtim = 0 is specified, the alarm handler starts at the next time tick. The values specified for almtim must be
within (0x7fffffff – time tick). If any value exceeding this limit is specified, the service call may not operate correctly. If 0
is specified for almtim , the alarm handler is started at the next time tick.

This service call can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 105 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 sta_alm (ID_alm1,100);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 sta_alm #ID_ALM1,#100
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 106 of 178
Sep 16, 2011

stp_alm Stop alarm handler operation

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = stp_alm(ID almid);

 PPaarraammeetteerrss
ID almid ID number of the alarm handler to be stopped

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
stp_alm ALMID

 PPaarraammeetteerrss
ALMID ID number of the alarm handler to be stopped

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the alarm handler to be stopped

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the alarm handler indicated by almid into a non-operational state.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 stp_alm (ID_alm1);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 stp_alm #ID_ALM1
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 107 of 178
Sep 16, 2011

5.9 System Status Management Function
Table 5.16 List of System Status Management Function Service Call

System State No. Service Call Function
T N E D U L

3 get_tid [S][B] References task ID in the
RUNNING state

O O O O

5 loc_cpu [S][B] Locks the CPU O O O O O
7 unl_cpu [S][B] Unlocks the CPU O O O O O
9 dis_dsp [S][B] Disables dispatching O O O O

10 ena_dsp [S][B] Enables dispatching O O O O
11 sns_ctx [S] References context O O O O O O
12 sns_loc [S] References CPU state O O O O O O
13 sns_dsp [S] References dispatching state O O O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 108 of 178
Sep 16, 2011

get_tid Reference task ID in the RUNNING state

 [[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = get_tid(ID *p_tskid);

 PPaarraammeetteerrss
ID *p_tskid Pointer to task ID

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
ID *p_tskid Pointer to task ID

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
get_tid

 PPaarraammeetteerrss
 None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 Acquired task ID

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns the task ID currently in RUNNING state to the area pointed to by p_tskid. If this service call is
issued from a task, the ID number of the issuing task is returned.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 ID tskid;
 :

get_tid(&tskid);
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 PUSHM A0
 get_tid
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 109 of 178
Sep 16, 2011

loc_cpu Lock the CPU

 [[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = loc_cpu();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
loc_cpu

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the system into a CPU locked state, thereby disabling interrupts and task dispatches. The features of
a CPU locked state are outlined below.

(1) No task scheduling is performed during a CPU locked state.
(2) No external interrupts are accepted unless their priority levels are higher than the kernel interrupt

mask level defined in the configurator.
(3) Only the following service calls can be invoked from a CPU locked state. If any other service calls

are invoked, operation of the service call cannot be guaranteed.
* ext_tsk
* loc_cpu
* unl_cpu
* sns_ctx
* sns_loc
* sns_dsp

The system is freed from a CPU locked state by one of the following operations.

(a) Invocation of the unl_cpu service call
(b) Invocation of the ext_tsk service call

Transitions between CPU locked and CPU unlocked states occur only when the loc_cpu, unl_cpu, or ext_tsk service call is
invoked. The system must always be in a CPU unlocked state when the interrupt handler or the time event handler is ter-
minated. If either handler terminates while the system is in a CPU locked state, handler operation cannot be guaranteed.
Note that the system is always in a CPU unlocked state when these handlers start.

Invoking this service call again while the system is already in a CPU locked state does not cause an error, in which case
task queuing is not performed, however.

This service call can only be issued from task context, and cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 110 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

loc_cpu();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 loc_cpu
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 111 of 178
Sep 16, 2011

unl_cpu Unlock the CPU

 [[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = unl_cpu();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
unl_cpu

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call frees the system from a CPU locked state that was set by the loc_cpu service call. If the unl_cpu service
call is issued from a dispatching enabled state, task scheduling is performed.

The CPU locked state and the dispatching disabled state are managed independently of each other. Therefore, the system
cannot be freed from a dispatching disabled state by the unl_cpu service call unless the ena_dsp service call is used.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

unl_cpu();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 unl_cpu
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 112 of 178
Sep 16, 2011

dis_dsp Disable dispatching

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = dis_dsp();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
dis_dsp

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the system into a dispatching disabled state. The features of a dispatching disabled state are outlined
below.

(1) Since task scheduling is not performed anymore, no tasks other than the issuing task itself will be

placed into RUNNING state.
(2) Interrupts are accepted.
(3) No service calls can be invoked that will place tasks into WAITING state.

If one of the following operations is performed during a dispatching disabled state, the system status returns to a task exe-
cution state.

(a) Invocation of the ena_dsp service call
(b) Invocation of the ext_tsk service call

Transitions between dispatching disabled and dispatching enabled states occur only when the dis_dsp, ena_dsp, or ext_tsk
service call is invoked.

Invoking this service call again while the system is already in a dispatching disabled state does not cause an error, in which
case task queuing is not performed, however.

This service call can be issued only from task context. It cannot be issued from non-task context.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 113 of 178
Sep 16, 2011

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

dis_dsp();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 dis_dsp
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 114 of 178
Sep 16, 2011

ena_dsp Enables dispatching

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ena_dsp();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
ena_dsp

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call frees the system from a dispatching disabled state that was set by the dis_dsp service call. As a result, task
scheduling is resumed when the system has entered a task execution state.

Invoking this service call from a task execution state does not cause an error, in which case task queuing is not performed,
however.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

ena_dsp();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 ena_dsp
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 115 of 178
Sep 16, 2011

sns_ctx Reference context

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_ctx();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: Non-task context
FALSE: Task context

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sns_ctx

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE:Non-Task context
FALSE: Task context

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when it is invoked from non-task context, or returns FALSE when invoked from task con-
text. This service call can also be invoked from a CPU locked state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_ctx();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 sns_ctx
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 116 of 178
Sep 16, 2011

sns_loc Reference CPU state

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_loc();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: CPU locked state
FALSE: CPU unlocked state

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sns_loc

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE: CPU locked state
FALSE:CPUCPU unlocked state

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when the system is in a CPU locked state, or returns FALSE when the system is in a CPU
unlocked state. This service call can also be invoked from a CPU locked state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_loc();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 sns_loc
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 117 of 178
Sep 16, 2011

sns_dsp Reference dispatching state

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_dsp();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
sns_dsp

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when the system is in a dispatching disabled state, or returns FALSE when the system is in
a dispatching enabled state. This service call can also be invoked from a CPU locked state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_dsp();
 :
}

<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
task:

 :
 sns_dsp
 :

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 118 of 178
Sep 16, 2011

5.10 Interrupt Management Function

Table 5.17 List of Interrupt Management Function Service Call

System State No. Service Call Function
T N E D U L

1 ret_int Returns from an interrupt
handler

 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 119 of 178
Sep 16, 2011

ret_int Returns from an interrupt handler
 (when written in assembly language)

[[[[CC LLaanngguuaaggee AAPPII]]]]
This service call cannot be written in C language.22

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
ret_int

 PPaarraammeetteerrss
None

[[[[EErrrroorr ccooddee]]]]

Not return to the interrupt handler that issued this service call.

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call performs the processing necessary to return from an interrupt handler. Depending on return processing, it
activates the scheduler to switch tasks from one to another.

If this service call is executed in an interrupt handler, task switching does not occur, and task switching is postponed until
the interrupt handler terminates.

However, if the ret_int service call is issued from an interrupt handler that was invoked from an interrupt that occurred
within another interrupt, the scheduler is not activated. The scheduler is activated for interrupts from a task only.

When writing this service call in assembly language, be aware that the service call cannot be issued from a subroutine that
is invoked from an interrupt handler entry routine. Always make sure this service call is executed in the entry routine or
entry function of an interrupt handler. For example, a program like the one shown below may not operate normally.

.include mr8c.inc
/* NG */
.GLB intr
intr:

jsr.b func
:
func:

ret_int

Therefore, write the program as shown below.
.include mr8c.inc
/* OK */
.GLB intr
intr:

jsr.b func
ret_int

func:
:

rts

Make sure this service call is issued from only an interrupt handler. If issued from a cyclic handler, alarm handler, or a task,
this service call may not operate normally.

22 If the starting function of an interrupt handler is declared by #pragma INTHANDLER, the ret_int service call is automatically issued at the
exit of the function.

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 120 of 178
Sep 16, 2011

5.11 System Configuration Management Function
Table 5.18 List of System Configuration Management Function Service Call

System State No. Service Call Function
T N E D U L

1 ref_ver [S] References version in-
formation

O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 121 of 178
Sep 16, 2011

ref_ver Reference version information

 [[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_ver(T_RVER *pk_rver);

 PPaarraammeetteerrss
T_RVER *pk_rver Pointer to the packet to which version information is returned

Contents of pk_rver
typedef struct t_rver {

UH maker 0 2 Kernel manufacturer code
UH prid +2 2 Kernel identification number
UH spver +4 2 ITRON specification version number
UH prver +6 2 Kernel version number
UH prno[4] +8 2 Kernel product management information

} T_RVER;
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr8c.inc
ref_ver PK_VER

 PPaarraammeetteerrss
PK_VER Pointer to the packet to which version information is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 Pointer to the packet to which version information is returned

[[[[EErrrroorr ccooddee]]]]
None

MR8C/4 5 Service call reference

R20UT0657EJ0101 Rev.1.01 Page 122 of 178
Sep 16, 2011

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call reads out information about the version of the currently executing kernel and returns the result to the area
pointed to by pk_rver.

The following information is returned to the packet pointed to by pk_rver.

 maker
The code H’115 denoting Renesas Electrinics Corporation is returned.
 prid
The internal identification code IDH’0016 of the MR8C/4 is returned.
 spver
The code H’5402 denoting that the kernel is compliant with µITRON Specification Ver 4.02.00 is returned.
 prver
The code H’0100 denoting the version of the MR8C/4 is returned.
 prno

prno[0]
Reserved for future extension.

prno[1]
Reserved for future extension.

prno[2]
Reserved for future extension.

prno[3]
Reserved for future extension.

This service call can only be issued from task context, and cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RVER pk_rver;
ref_ver(&pk_rver);

}
<<Example statement in assembly language>>
 .include mr8c.inc
 .GLB task
_ refver: .blkb 6
task:

 :
 PUSHM A0
 ref_ver #_refver
 :

R20UT0657EJ0101 Rev.1.01 Page 123 of 178
Sep 16, 2011

6. Applications Development Procedure
Overview

6.1 Overview
Application programs for MR8C/4 should generally be developed following the procedure described below.

1. Generating a project
When using High-performance Embedded Workshop, create a new project using MR8C/4 on High-performance
Embedded Workshop.

2. Coding the application program
Write the application program in code form using C or assembly language. If necessary, correct the sample star-
tup program (crt0mr.a30) and section definition file (c_sec.inc or asm_sec.inc).

3. Creating a configuration file
Create a configuration file which has defined in it the task entry address, stack size, etc. by using an editor.

The GUI configurator available for MR8C/4 may be used to create a configuration file.

4. Executing the configurator
From the configuration file, create system data definition files (sys_rom.inc, sys_ram.inc) and include files
(mr8c.inc, kernel_id.h, kernel_sysint.h).

5. System generation
Execute the make command or execute build on High-performance Embedded Workshop to generate a system.

6. Writing to ROM
Using the ROM programming format file created, write the finished program file into the ROM. Or load it into
the debugger to debug.

Figure 6.1 shows a detailed flow of system generation.

MR8C/4 6 Applications Development Procedure Overview

R20UT0657EJ0101 Rev.1.01 Page 124 of 178
Sep 16, 2011

MR8C/4 include file
kernel.h

Configurator
cfg8c

Application
object

ROM write format

Application
C source

Application
Assembler source

Jamp table file
mrtable.a30

Systemcall
file (.mrc)

Configuration file

Application
include file

C compiler
nc30

Relocatable Assembler
as30

Linkage Editor
ln30

Load module converter
lmc30

Create Jamp table utility
mr8ctbl

Include file
kernel_id.h

kernel sysint.h

Absolute
module

Startup program
start.a30, crt0mr.a30

MR8C/4
Library

C standard
Library

C standard
header file

Include file
mr8c.inc

System data definition file
sys_ram.inc, sys_rom.inc

HEW

Figure 6.1 MR8C/4 System Generation Detail Flowchart

R20UT0657EJ0101 Rev.1.01 Page 125 of 178
Sep 16, 2011

7. Detailed Applications

7.1 Program Coding Procedure in C Language

7.1.1 Task Description Procedure

1. Describe the task as a function.
To register the task for the MR8C/4, enter its function name in the configuration file. When, for instance, the
function name "task()" is to be registered as the task ID number 3, proceed as follows.

 task[3]{
 name = ID_task;

 entry_address = task();

 stack_size = 100;

 priority = 3;

 };

2. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in system directory
as well as "kernel_id.h" which is in the current directory. That is, be sure to enter the fol-
lowing two lines at the beginning of file.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

3. No return value is provided for the task start function. Therefore, declare the task start
function as a void function.

4. A function that is declared to be static cannot be registered as a task.
5. It isn't necessary to describe ext_tsk() at the exit of task start function.23If you exit the task

from the subroutine in task start function, please describe ext_tsk() in the subroutine.
6. It is also possible to describe the task startup function, using the infinite loop.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void task(void)
 {

 /* process */

 }

Figure 7.1 Example Infinite Loop Task Described in C Language

23 The task is ended by ext_tsk() automatically if #pramga TASK is declared in the MR8C/4. Similarly, it is ended by ext_tsk when returned
halfway of the function by return sentence.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 126 of 178
Sep 16, 2011

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void task(void)
 {
 for(;;){
 /* process */

 }
 }

Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language

7. To specify a task, use the string written in the task definition item “name” of the configura-
tion file.24

 wup_tsk(ID_main);

8. To specify an event flag,semaphore, or data queue, use the respective strings defined in
the configuration file.

For example, if an event flag is defined in the configuration file as shown below,

 flag[1]{
 name = ID_abc;
 };

To designate this eventflag, proceed as follows.

 set_flg(ID_abc,&setptn);

9. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler
definition item “name” of the configuration file.

 sta_cyc(ID_cyc);

10. When a task is reactivated by the sta_tsk() service call after it has been terminated by the
ter_tsk() service call, the task itself starts from its initial state.25 However, the external va-
riable and static variable are not automatically initialized when the task is started. The ex-
ternal and static variables are initialized only by the startup program (crt0mr.a30), which
actuates before MR8C/4 startup.

11. The task executed when the MR8C/4 system starts up is setup.
12. The variable storage classification is described below.

The MR8C/4 treats the C language variables as indicated in Table 7.1 C Language Variable Treatment.

Table 7.1 C Language Variable Treatment

Variable storage class Treatment
Global Variable Variable shared by all tasks
Non-function static variable Variable shared by the tasks in the same file
Auto Variable
Register Variable
Static variable in function

Variable for specific task

24 The configurator generates the file “kernel_id.h” that is used to convert the ID number of a task into the string to be specified. This means
that the #define declaration necessary to convert the string specified in the task definition item “name” into the ID number of the task is
made in “kernel_id.h.” The same applies to the cyclic and alarm handlers.
25 The task starts from its start function with the initial priority in a wakeup counter cleared state.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 127 of 178
Sep 16, 2011

7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler
When describing the kernel (OS-dependent) interrupt handler in C language, observe the following precautions.

1. Describe the kernel(OS-dependent) interrupt handler as a function 26
2. Be sure to use the void type to declare the interrupt handler start function return value and

argument.
3. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in the system di-

rectory as well as "kernel_id.h" which is in the current directory.
4. Do not use the ret_int service call in the interrupt handler.27
5. The static declared functions can not be registered as an interrupt handler.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void inthand(void)

 {
 /* process */

 iwup_tsk(ID_main);
 }

Figure 7.3 Example of Kernel(OS-dependent) Interrupt Handler

7.1.3 Writing Non-kernel (OS-independent) Interrupt Handler
When describing the non-kernel(OS-independent) interrupt handler in C language, observe the following precautions.

1. Be sure to declare the return value and argument of the interrupt handler start function as
a void type.

2. No service call can be issued from a non-kernel(an OS-independent) interrupt handler.
NOTE: If this restriction is not observed, the software may malfunction.

3. A function that is declared to be static cannot be registered as an interrupt handler.
4. If you want multiple interrupts to be enabled in a non-kernel(an OS-independent) interrupt

handler, always make sure that the non-kernel(OS-independent) interrupt handler is as-
signed a priority level higher than other kernel(OS-dependent) interrupt handlers.28

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void inthand(void)
 {
 /* process */
 }

Figure 7.4 Example of Non-kernel(OS-independent) Interrupt Handler

26 A configuration file is used to define the relationship between handlers and functions.
27 When an kernel(OS-dependent) interrupt handler is declared with #pragma INTHANDLER ,code for the ret_int service call is automati-
cally generated.
28 If you want the non-kernel(OS-independent) interrupt handler to be assigned a priority level lower than kernel(OS-dependent) interrupt
handlers, change the description of the non-kernel(OS-independent) interrupt handler to that of the kernel (OS-dependent) interrupt handler.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 128 of 178
Sep 16, 2011

7.1.4 Writing Cyclic Handler/Alarm Handler
When describing the cyclic or alarm handler in C language, observe the following precautions.

1. Describe the cyclic or alarm handler as a function.29
2. Be sure to declare the return value and argument of the interrupt handler start function as

a void type.
3. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in the system di-

rectory as well as "kernel_id.h" which is in the current directory.
4. The static declared functions cannot be registered as a cyclic handler or alarm handler.
5. The cyclic handler and alarm handler are invoked by a subroutine call from a system clock

interrupt handler.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void cychand(void)
 {
 /*process */
 }

Figure 7.5 Example Cyclic Handler Written in C Language

29 The handler-to-function name correlation is determined by the configuration file.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 129 of 178
Sep 16, 2011

7.2 Program Coding Procedure in Assembly Language
This section describes how to write an application using the assembly language.

7.2.1 Writing Task
This section describes how to write an application using the assembly language.

1. Be sure to include "mr8c.inc" at the beginning of file.
2. For the symbol indicating the task start address, make the external declaration.30
3. Be sure that an infinite loop is formed for the task or the task is terminated by the ext_tsk

service call.

 .INCLUDE mr8c.inc ----- (1)
 .GLB task ----- (2)

 task:
 ; process
 jmp task ----- (3)

Figure 7.6 Example Infinite Loop Task Described in Assembly Language

 .INCLUDE mr8c.inc
 .GLB task

 task:
 ; process
 ext_tsk

Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language

4. The initial register values at task startup are indeterminate except the PC, SB, R0 and FLG
registers.

5. To specify a task, use the string written in the task definition item “name” of the configura-
tion file.

 wup_tsk #ID_task

6. To specify an event flag, semaphore, or data queue, use the respective strings defined in
the configuration file.

For example, if a semaphore is defined in the configuration file as shown below,:

 semaphore[1]{
 name = abc;
 };

To specify this semaphore, write your specification as follows:

 sig_sem #ID_abc

7. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler
definition item “name” of the configuration file

 For example, if you want to specify a cyclic handler "cyc," write your specification as follows:

30 Use the .GLB pseudo-directive

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 130 of 178
Sep 16, 2011

 sta_cyc #ID_cyc

8. Set a task that is activated at MR8C/4 system startup in the configuration file 31

7.2.2 Writing Kernel(OS-dependent) Interrupt Handler
When describing the kernel(OS-dependent) interrupt handler in assembly language, observe the following precautions

1. At the beginning of file, be sure to include "mr8c.inc" which is in the system directory.
2. For the symbol indicating the interrupt handler start address, make the external declara-

tion(Global declaration).32
3. Make sure that the registers used in a handler are saved at the entry and are restored after

use.
4. Return to the task by ret_int service call.

.INCLUDE mr8c.inc ------(1)
.GLB inth ------(2)

 inth:

; Registers used are saved to a stack ------(3)
iwup_tsk #ID_task1

:
process
:

; Registers used are restored ------(3)

ret_int ------(4)

Figure 7.8 Example of kernel(OS-depend) interrupt handler

7.2.3 Writing Non-kernel(OS-independent) Interrupt Handler

1. For the symbol indicating the interrupt handler start address, make the external declaration
(public declaration).

2. Make sure that the registers used in a handler are saved at the entry and are restored after
use.

3. Be sure to end the handler by REIT instruction.
4. No service calls can be issued from a non-kernel(an OS-independent) interrupt handler.

NOTE: If this restriction is not observed, the software may malfunction.

31 The relationship between task ID numbers and tasks(program) is defined in the configuration file.
32 Use the .GLB peudo-directive.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 131 of 178
Sep 16, 2011

5. If you want multiple interrupts to be enabled in a non-kernel(an OS-independent) interrupt
handler, always make sure that the non-kernel(OS-independent) interrupt handler is as-
signed a priority level higher than other non-kernel(OS-dependent) interrupt handlers.33

.GLB inthand ----- (1)

inthand:
; Registers used are saved to a stack ----- (2)
; interrupt process
; Registers used are restored ----- (2)
REIT ----- (3)

Figure 7.9 Example of Non-kernel(OS-independent) Interrupt Handler of Specific Level

7.2.4 Writing Cyclic Handler/Alarm Handler
When describing the cyclic or alarm handler in Assembly Language, observe the following precautions.

1. At the beginning of file, be sure to include "mr8c.inc" which is in the system directory.
2. For the symbol indicating the handler start address, make the external declaration.34
3. Always use the RTS instruction (subroutine return instruction) to return from cyclic han-

dlers and alarm handlers.
For examples:

.INCLUDE mr8c.inc ----- (1)
.GLB cychand ----- (2)

cychand:

:
; handler process

:

rts ----- (3)

Figure 7.10 Example Handler Written in Assembly Language

33 If you want the non-kernel(OS-independent) interrupt handler to be assigned a priority level lower than kernel(OS-dependent) interrupt
handlers, change the description of the non-kernel(OS-independent) interrupt handler to that of the kernel (OS-dependent) interrupt handler.
34 Use the .GLB pseudo-directive.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 132 of 178
Sep 16, 2011

7.3 Modifying MR8C/4 Startup Program
MR8C/4 comes with two types of startup programs as described below.

• start.a30
This startup program is used when you created a program using the assembly language.

• crt0mr.a30
This startup program is used when you created a program using the C language.

This program is derived from "start.a30" by adding an initialization routine in C language.

The startup programs perform the following:

• Initialize the processor after a reset.

• Initialize C language variables (crt0mr.a30 only).

• Set the system timer.

• Initialize MR8C/4's data area.

Copy these startup programs from the directory indicated by environment variable "LIB8C" to the current directory.

If necessary, correct or add the sections below:

• Setting processor mode register
Set a processor mode matched to your system to the processor mode register. (53th line in crt0mr.a30)

• Adding user-required initialization program
When there is an initialization program that is required for your application, add it to the 140th line in the C lan-
guage startup program (crt0mr.a30).

• Initialization of the standard I/O function
Comment out the 96th – 97th line in the C language startup program (crt0mr.a30) if no standard I/O function is
used.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 133 of 178
Sep 16, 2011

7.3.1 C Language Startup Program (crt0mr.a30)
Figure 7.11 shows the C language startup program(crt0mr.a30).
1 ; ***
2 ;
3 ; MR8C start up program for C language
4 ; MR8C/4 : Realtime Operating System based on Micro-ITRON Spec.
5 ; Copyright(C) 2009(2011) Renesas Electronics Corporation
6 ; and Renesas Solutions Corp. All Rights Reserved.
7 ;
8 ; ***
9 ; $Id: crt0mr.a30 519 2006-04-24 13:36:30Z inui $

10 ;
11 .list OFF
12 .include c_sec.inc
13 .include mr8c.inc
14 .include sys_rom.inc
15 .include sys_ram.inc
16 .list ON
17
18 ;---
19 ; SBDATA area definition
20 ;---
21 .glb __SB__
22 .SB __SB__
23
24 ;==
25 ; Initialize Macro declaration
26 ;---
27 N_BZERO .macro TOP_,SECT_
28 mov.b #00H, R0L
29 mov.w #(TOP_ & 0FFFFH), A1
30 mov.w #sizeof SECT_, R3
31 sstr.b
32 .endm
33
34 N_BCOPY .macro FROM_,TO_,SECT_
35 mov.w #(FROM_ & 0FFFFH),A0
36 mov.b #(FROM_>>16),R1H
37 mov.w #TO_,A1
38 mov.w #sizeof SECT_, R3
39 smovf.b
40 .endm
41 ;==
42 ; Interrupt section start
43 ;---
44 .glb __SYS_INITIAL
45 .section MR_KERNEL,CODE,ALIGN
46 __SYS_INITIAL:
47 ;---
48 ; after reset,this program will start
49 ;---
50 ldc #(__Sys_Sp&0FFFFH),ISP ; set initial ISP
51
52 mov.b #2H,0AH
53 mov.b #00,PMOD ; Set Processor Mode Regsiter
54 mov.b #0H,0AH
55 ldc #00H,FLG
56 ldc #(__Sys_Sp&0FFFFH),fb
57 ldc #__SB__,sb
58
59
60 ; +---+
61 ; | ISSUE SYSTEM CALL DATA INITIALIZE |
62 ; +---+
63 ; For PD30
64 __INIT_ISSUE_SYSCALL
65
66 ; +---+
67 ; | MR RAM DATA 0(zero) clear |
68 ; +---+
69 N_BZERO MR_RAM_top,MR_RAM
70
71 ;==
72 ; NEAR area initialize.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 134 of 178
Sep 16, 2011

73 ;--
74 ; bss zero clear
75 ;--
76 N_BZERO (TOPOF bss_SE),bss_SE
77 N_BZERO (TOPOF bss_SO),bss_SO
78 N_BZERO (TOPOF bss_NE),bss_NE
79 N_BZERO (TOPOF bss_NO),bss_NO
80
81 ;---
82 ; initialize data section
83 ;---
84 N_BCOPY (TOPOF data_SEI),(TOPOF data_SE),data_SE
85 N_BCOPY (TOPOF data_SOI),(TOPOF data_SO),data_SO
86 N_BCOPY (TOPOF data_NEI),(TOPOF data_NE),data_NE
87 N_BCOPY (TOPOF data_NOI),(TOPOF data_NO),data_NO
88
89 ldc #(__Sys_Sp&0FFFFH), sp
90 ldc #(__Sys_Sp&0FFFFH), fb
91
92
93 ;==
94 ; Initialize standard I/O
95 ;---
96 ; .glb __init
97 ; jsr.a __init
98
99 ;---

100 ; Set System IPL
101 ; and
102 ; Set Interrupt Vector
103 ;---
104 mov.b #0,R0L
105 mov.b #__SYS_IPL,R0H
106 ldc R0,FLG ; set system IPL
107 ldc #((__INT_VECTOR>>16)&0FFFFH),INTBH
108 ldc #(__INT_VECTOR&0FFFFH),INTBL
109
110 .IF USE_TIMER
111 ; +---+
112 ; | System timer interrupt setting |
113 ; +---+
114 mov.b #stmr_mod_val,stmr_mod_reg ;set timer mode
115 mov.b #stmr_int_IPL,stmr_int_reg ;set timer IPL
116 mov.b #stmr_cnt_lower,stmr_ctr_reg ;set interval count
117 mov.b #stmr_cnt_upper,stmr_pre_reg ;set interval count
118 mov.b #0, stmr_ioc_reg
119 .IF USE_TIMER_RB
120 mov.b #0, stmr_ct2_reg
121 mov.b #0, stmr_one_reg
122 .ENDIF
123 or.b #stmr_bit+1,stmr_start ;system timer start
124 .ENDIF
125
126 ; +---+
127 ; | System timer initialize |
128 ; +---+
129 .IF USE_SYSTEM_TIME
130 MOV.W #__D_Sys_TIME_L, __Sys_time+4
131 MOV.W #__D_Sys_TIME_M, __Sys_time+2
132 MOV.W #__D_Sys_TIME_H, __Sys_time
133 .ENDIF
134
135 ; +---+
136 ; | User Initial Routine (if there are) |
137 ; +---+
138 ;
139
140 ; jmp __MR_INIT ; for Separate ROM
141
142 ; +---+
143 ; | Initalization of System Data Area |
144 ; +---+
145 .GLB __init_sys,__init_tsk,__END_INIT
146 JSR.W __init_sys
147 JSR.W __init_tsk
148
149 .IF __NUM_FLG

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 135 of 178
Sep 16, 2011

150 .GLB __init_flg
151 JSR.W __init_flg
152 .ENDIF
153
154 .IF __NUM_SEM
155 .GLB __init_sem
156 JSR.W __init_sem
157 .ENDIF
158
159 .IF __NUM_DTQ
160 .GLB __init_dtq
161 JSR.W __init_dtq
162 .ENDIF
163
164 .IF ALARM_HANDLER
165 .GLB __init_alh
166 JSR.W __init_alh
167 .ENDIF
168
169
170 .IF CYCLIC_HANDLER
171 .GLB __init_cyh
172 JSR.W __init_cyh
173 .ENDIF
174
175 ; For PD30
176 __LAST_INITIAL
177
178 __END_INIT:
179 ; +---+
180 ; | Start initial active task |
181 ; +---+
182 __START_TASK
183
184 .glb __rdyq_search
185 jmp.W __rdyq_search
186
187 ; +---+
188 ; | Define Dummy |
189 ; +---+
190 .glb __SYS_DMY_INH
191 __SYS_DMY_INH:
192 reit
193
194 .IF CUSTOM_SYS_END
195 ; +---+
196 ; | Syscall exit rouitne to customize
197 ; +---+
198 .GLB __sys_end
199 __sys_end:
200 ; Customize here.
201 REIT
202 .ENDIF
203
204 ; +---+
205 ; | exit() function |
206 ; +---+
207 .glb _exit,$exit
208 _exit:
209 $exit:
210 jmp _exit
211
212 ; +---+
213 ; | System down routine |
214 ; +---+
215 .GLB __vsys_dwn
216 __vsys_dwn:
217 JMP.B __vsys_dwn
218
219
220 .if USE_TIMER
221 ; +---+
222 ; | System clock interrupt handler |
223 ; +---+
224 .SECTION MR_KERNEL,CODE,ALIGN
225 .glb __SYS_STMR_INH, __SYS_TIMEOUT
226 .glb __DBG_MODE,__SYS_ISS

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 136 of 178
Sep 16, 2011

227 __SYS_STMR_INH:
228 ; process issue system call
229 ; For PD30
230 __ISSUE_SYSCALL
231
232
233 ; System timer interrupt handler
234 _STMR_hdr
235 ret_int
236 .endif
237
238 .end

Figure 7.11 C Language Startup Program (crt0mr.a30)

The following explains the content of the C language startup program (crt0mr.a30).

1. Incorporate a section definition file [11 in Figure 7.11]
2. Incorporate an include file for MR8C/4 [12 in Figure 7.11]
3. Incorporate a system ROM area definition file [13 in Figure 7.11]
4. Incorporate a system RAM area definition file [14 in Figure 7.11]
5. This is the initialization program __SYS_INITIAL that is activated immediately after a reset.

[46 - 185 in Figure 7.11]
♦ Setting the System Stack pointer [50 in Figure 7.11]
♦ Setting the processor mode register [52- 54 in Figure 7.11]
♦ Setting the SB,FB register [55 - 57 in Figure 7.11]
♦ Initial set the C language. [76 - 92 in Figure 7.11]
♦ Setting OS interrupt disable level [104 - 106 in Figure 7.11]
♦ Setting the address of interrupt vector table [107 and 108 in Figure 7.11]
♦ Set MR8C/4's system clock interrupt [114 -124 in Figure 7.11]
♦ Initialization of standard I/O function[96-97 in Figure 7.11]

When using no standard input/output functions, remove the lines 96 and 97 in Figure 7.11.
♦ Initial set MR8C/4's system timer [129-133 in Figure 7.11]

6. Initial set parameters inherent in the application [140 in Figure 7.11]
7. Initialize the RAM data used by MR8C/4 [146 - 173 in Figure 7.11]
8. Sets the bit which shows the end of start-up processing[176 in Figure 7.11]
9. Activate the initial startup task. [182 in Figure 7.11]
10. This is a system clock interrupt handler [221-236 in Figure 7.11]

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 137 of 178
Sep 16, 2011

7.4 Memory Allocation
This section describes how memory is allocated for the application program data.

The sections which are used by MR8C/4 is describe in c_sec.inc or asm_sec.inc.

To set the memory arrangement, it changes on High-performance Embedded Workshop..

MR8C/4 comes with the following two types of section files:

• asm_sec.inc
This file is used when you developed your applications with the assembly language.

• c_sec.inc
This file is used when you developed your applications with the C language.

c_sec.inc is derived from "asm_sec.inc" by adding sections generated by C compiler NC30.

Modify the section allocation and start address settings in this file to suit your system.

MR8C/4 7 Detailed Applications

R20UT0657EJ0101 Rev.1.01 Page 138 of 178
Sep 16, 2011

7.4.1 Sections that kernel uses
The section allocation of the sample startup program for the assembly language "start.a30" is defined in "asm_sec.inc".

The section allocation of the sample startup program for the C language "crt0mr.a30" is defined in "c_sec.inc".

It explains each section that MR8C/4 uses as follows.

• MR_RAM_DBG section
This section is stored MR30's debug function RAM data.

This section must be mapped in the Internal RAM area.

• MR_RAM section
This section is where the RAM data, MR8C/4's system management data, is stored that is referenced in absolute
addressing.

This section must be mapped between 0 and FFFFH(near area).

• stack section
This section is provided for each task's user stack and system stack.

This section must be mapped between 0 and FFFFH(near area).

• MR_HEAP section
This section stores the variable-size memorypool.

• MR_KERNEL section
This section is where the MR8C/4 kernel program is stored.

• MR_CIF section
This section stores the MR8C/4 C language interface library.

• MR_ROM section
This section stores data such as task start addresses that area referenced by the MR8C/4 kernel.

• INTERRUPT_VECTOR section

• FIX_INTERRUPT_VECTOR section
This section stores interrupt vectors.

R20UT0657EJ0101 Rev.1.01 Page 139 of 178
Sep 16, 2011

8. Using Configurator

8.1 Configuration File Creation Procedure
When applications program coding and startup program modification are completed, it is then necessary to register the
applications program in the MR8C/4 system.

This registration is accomplished by the configuration file.

8.1.1 Configuration File Data Entry Format
This chapter describes how the definition data are entered in the configuration file.

 Comment Statement
A statement from '//' to the end of a line is assumed to be a comment and not operated on.

 End of statement
Statements are terminated by ';'.

 Numerical Value
Numerical values can be entered in the following format.

1. Hexadecimal Number

Add "0x" or "0X" to the beginning of a numerical value, or "h" or "H" to the end. If the value begins with an
alphabetical letter between A and F with "h" or "H" attached to the end, be sure to add "0" to the beginning.
Note that the system does not distinguish between the upper- and lower-case alphabetical characters (A-F)
used as numerical values.35

2. Decimal Number
Use an integer only as in '23'. However, it must not begin with '0'.

3. Octal Numbers
Add '0' to the beginning of a numerical value of 'O' or 'o' to end.

4. Binary Numbers

Add 'B' or 'b' to the end of a numerical value. It must not begin with '0'.

Table 8.1 Numerical Value Entry Examples

35 The system distinguishes between the upper- and lower-case letters except for the numbers A-F and a-f.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 140 of 178
Sep 16, 2011

0xf12
0Xf12
0a12h
0a12H
12h

Hexadecimal

12H
Decimal 32

017
17o

Octal

17O
101110b Binary
101010B

It is also possible to enter operators in numerical values. Table 8.2 Operators lists the operators available.

Table 8.2 Operators

Operator Priority Direction of computation
() High From left to right
- (Unary_minus) From right to left
 ∗ / % From left to right
+ - (Binary_minus) Low From loft to right

Numerical value examples are presented below.

• 123

• 123 + 0x23

• (23/4 + 3) ∗ 2

• 100B + 0aH

 Symbol
The symbols are indicated by a character string that consists of numerals, upper- and lower-case alphabetical
letters, _(underscore), and ?, and begins with a non-numeric character.

Example symbols are presented below.

• _TASK1

• IDLE3

 Function Name
The function names are indicated by a character string that consists of numerals, upper and lower-case alpha-
betical letters,'$'(dollar) and '_'(underscore), begins with a non-numeric character, and ends with '()'.

The following shows an example of a function name written in the C language.

• main()

• func()
When written in the assembly language, the start label of a module is assumed to be a function name.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 141 of 178
Sep 16, 2011

 Frequency
The frequency is indicated by a character string that consist of numerals and . (period), and ends with MHz.
The numerical values are significant up to six decimal places. Also note that the frequency can be entered us-
ing decimal numbers only.

Frequency entry examples are presented below.

• 16MHz

• 8.1234MHz
It is also well to remember that the frequency must not begin with . (period).

8.1.2 Configuration File Definition Items
The following definitions 36 are to be formulated in the configuration file

• System definition

• System clock definition

• Task definition

• Eventflag definition

• Semaphore definition

• Data queue definition

• Cyclic handler definition

• Alarm handler definition

• Interrupt vector definition

[(System Definition Procedure)]

<< Format >>

 // System Definition
 system{
 stack_size = System stack size ;
 priority = Maximum value of priority ;
 system_IPL = Kernel mask level(OS interrupt disable level) ;
 tic_deno = Time tick denominator ;
 tic_nume = Time tick numerator ;
};

36 All items except task definition can omitted. If omitted, definitions in the default configuration file are referenced.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 142 of 178
Sep 16, 2011

<< Content >>

1. System stack size

[(Definition format)] Numeric value

[(Definition range)] 4 to 0xFFFF

[(Default value)] 400H

Define the total stack size used in service call and interrupt processing.

2. Maximum value of priority (value of lowest priority)

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] 63

Define the maximum value of priority used in MR8C/4's application programs. This must be the value of the
highest priority used.

3. Kernel mask level (OS interrupt disable level)

[(Definition format)] Numeric value

[(Definition range)] 1 to 7

[(Default value)] 7

Set the IPL value in service calls, that is, the OS interrupt disable level.

4. Time tick denominator

[(Definition format)] Numeric value

[(Definition range)] Fixed to 1

[(Default value)] 1

Set the denominator of the time tick.

5. Time tick numerator

[(Definition format)] Numeric value

[(Definition range)] 1 to 65,535

[(Default value)] 1

Set the numerator of the time tick. The system clock interrupt interval is determined by the time tick denomi-
nator and numerator that are set here. The interval is the time tick numerator divided by time tick denominator
[ms]. That is, the time tick numerator [ms].

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 143 of 178
Sep 16, 2011

[(System Clock Definition Procedure)]

<< Format >>

 // System Clock Definition
 clock{
 mpu_clock = MPU clock ;
 timer = Timers used for system clock ;
 IPL = System clock interrupt priority level ;
 };

<< Content >>

1. MPU clock

[(Definition format)] Frequency(in MHz)

[(Definition range)] None

[(Default value)] 20MHz

Define the MPU operating clock frequency of the microcomputer in MHz units.

2. Timers used for system clock

[(Definition format)] Symbol

[(Definition range)] RA, RB, OTHER, NOTIMER

[(Default value)] NOTIMER

Define the hardware timers used for the system clock.

If you do not use a system clock, define "NOTIMER."

1. Initialize the timer in start-up routine
The cfg8c outputs following macros to the "kernel_id.h". Please initialize the timer based on this infor-
mation.

__MR_MPUCLOCK MPU operating frequency described in the cfg file.
__MR_UNITTIME The interrupt interval of the system clock was expressed with us.
__MR_TIMER_IPL The IPL value of the system clock interrupt

2. Define the relocatable interrupt vector as follows.

interrupt_vector[<Vector number>] {
 entry_address = __RI_SYS_STMR_INH;
 os_int = YES;
};

3. System clock interrupt priority level

[(Definition format)] Numeric value

[(Definition range)] 1 to Kernel mask(OS interrupt disable) level in system definition

[(Default value)] 4

Define the priority level of the system clock timer interrupt. The value set here must be smaller than the kernel
mask(OS interrupt disable level.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 144 of 178
Sep 16, 2011

Interrupts whose priority levels are below the interrupt level defined here are not accepted during system clock
interrupt handler processing.

[(Task definition)]

<< Format >>

 // Tasks Definition
task[ID No.]{
 name = ID name ;
 entry_address = Start task of address ;
 stack_size = User stack size of task ;
 priority = Initial priority of task ;
 context = Registers used ;
 stack_section = Section name in which the stack is located ;
 initial_start = TA_ACT attribute (initial startup state) ;
 exinf = Extended information ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each task ID number.

1. Task ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the ID name of a task. Note that the function name defined here is output to the kernel_id.h file, as
shown below.

#define Task ID Name task ID

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 145 of 178
Sep 16, 2011

2. Start address of task

[(Definition format)] Symbol or function name

[(Definition range)] None

[(Default value)] None

Define the entry address of a task. When written in the C language, add () at the end or _at the beginning of the
function name you have defined.

The function name defined here causes the following declaration statement to be output in the kernel_id.h file:

 #pragma TASK Function Name

3. User stack size of task

[(Definition format)] Numeric value

[(Definition range)] 8 or more

[(Default value)] 256

Define the user stack size for each task. The user stack means a stack area used by each individual task.
MR8C/4 requires that a user stack area be allocated for each task, which amount to at least 8 bytes.

4. Initial priority of task

[(Definition format)] Numeric value

[(Definition range)] 1 to (maximum value of priority in system definition)

[(Default value)] 1

Define the priority of a task at startup time.

As for MR8C/4's priority, the lower the value, the higher the priority.

5. Regisers Used

[(Definition format)] Symbol[,Symbol,....]

[(Definition range)] Selected from R0,R1,R2,R3,A0,A1,SB,FB

[(Default value)] All registers

Define the registers used in a task. MR8C/4 handles the register defined here as a context. Specify the R0 and
R1 register because task startup code is set in R1 when the task starts and return parameter is returned in R0.

However, the registers used can only be selected when the task is written in the assembly language. Select all
registers when the task is written in the C language. When selecting a register here, be sure to select all regis-
ters that store service call parameters used in each task.

MR8C/4 kernel does not change the registers of bank.

If this definition is omitted, it is assumed that all registers are selected.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 146 of 178
Sep 16, 2011

6. Section name in which the stack is located

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] stack

Define the section name in which the stack is located. The section defined here must always have an area allo-
cated for it in the section file (asm_sec.inc or c_sec.inc).

If no section names are defined, the stack is located in the stack section.

7. TA_ACT attribute (initial startup state)

[(Definition format)] Symbol

[(Definition range)] ON or OFF

[(Default value)] OFF

Define the initial startup state of a task.

If this attribute is specified ON, the task goes to a READY state at the initial system startup time.

The task startup code of the initial startup task is 0. One or more tasks must have TA_ACT attribute.

8. Extended information

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFF

[(Default value)] 0

Define the extended information of a task. This information is passed to the task as argument when it is re-
started by a queued startup request, for example.

[(Eventflag definition)]
This definition is necessary to use Eventflag function.

<< Format >>

 // Eventflag Definition
 flag[ID No.]{
 name = Name ;
 initial_pattern = Initial value of the event flag ;
 wait_multi = Multi-wait attribute ;
 clear_attribute = Clear attribute ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 147 of 178
Sep 16, 2011

<< Content >>

Define the following for each eventflag ID number.

1. ID Name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name with which an eventflag is specified in a program.

2. Initial value of the event flag

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFF

[(Default value)] 0

Specify the initial bit pattern of the event flag.

3. Multi-wait attribute

[(Definition format)] Symbol

[(Definition range)] TA_WMUL or TA_WSGL

[(Default value)] TA_WSGL

Specify whether multiple tasks can be enqueued in the eventflag waiting queue. If TA_WMUL is selected, the
TA_WMUL attribute is added, permitting multiple tasks to be enqueued. If TA_WSGL is selected, the
TA_WSGL attribute is added, prohibiting multiple tasks from being enqueued.

4. Clear attribute

[(Definition format)] Symbol

[(Definition range)] YES or NO

[(Default value)] NO

Specify whether the TA_CLR attribute should be added as an eventflag attribute. If YES is selected, the
TA_CLR attribute is added. If NO is selected, the TA_CLR attribute is not added.

[(Semaphore definition)]
This definition is necessary to use Semaphore function.

<< Format >>

 // Semaphore Definition
 semaphore[ID No.]{
 name = ID name ;
 initial_count = Initial value of semaphore counter ;
 max_count = Maximum value of the semaphore counter ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 148 of 178
Sep 16, 2011

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each semaphore ID number.

1. ID Name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name with which a semaphore is specified in a program.

2. Initial value of semaphore counter

[(Definition format)] Numeric value

[(Definition range)] 0 to 65535

[(Default value)] 1

Define the initial value of the semaphore counter.

3. Maximum value of the semaphore counter

[(Definition format)] Numeric value

[(Definition range)] 1 to 65535

[(Default value)] 1

Define the maximum value of the semaphore counter.

[(Data queue definition)]
This definition must always be set when the data queue function is to be used.

<< Format >>

 // Dataqueue Definition
 dataqueue[ID No.]{
 name = ID name ;
 buffer_size = Number of data queues ;
};
 :
 :

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each data queue ID number, define the items described below.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 149 of 178
Sep 16, 2011

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the data queue is specified in a program.

2. Number of data

[(Definition format)] Numeric Value

[(Definition range)] 0 to 0x3FFF

[(Default value)] 0

Specify the number of data that can be transmitted. What should be specified here is the number of data, and
not a data size.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 150 of 178
Sep 16, 2011

[(Cyclic handler definition)]
This definition is necessary to use Cyclic handler function.

<< Format >>

// Cyclic Handlar Definition
 cyclic_hand[ID No.]{
 name = ID name ;
 interval_counter = Activation cycle ;
 start = TA_STA attribute ;
 phsatr = TA_PHS attribute ;
 phs_counter = Activation phase ;
 entry_address = Start address ;
 exitf = Extended information ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each cyclic handler ID number.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the cyclic handler is specified in a program.

2. Activation cycle

[(Definition format)] Numeric value

[(Definition range)] 1 to 0x7FFFFFFF

[(Default value)] None

Define the activation cycle at which time the cyclic handler is activated periodically. The activation cycle here
must be defined in the same unit of time as the system clock's unit time that is defined in system clock defini-
tion item. If you want the cyclic handler to be activated at 1-second intervals, for example, the activation cycle
here must be set to 1000.

3. TA_STA attribute

[(Definition format)] Symbol

[(Definition range)] ON or OFF

[(Default value)] OFF

Specify the TA_STA attribute of the cyclic handler. If ON is selected, the TA_STA attribute is added; if OFF is
selected, the TA_STA attribute is not added.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 151 of 178
Sep 16, 2011

4. TA_PHS attribute

[(Definition format)] Symbol

[(Definition range)] ON or OFF

[(Default value)] OFF

Specify the TA_PHS attribute of the cyclic handler. If ON is selected, the TA_PHS attribute is added; if OFF is
selected, the TA_PHS attribute is not added.

5. Activation phase

[(Definition format)] Numeric value

[(Definition range)] 0 to 0x7FFFFFFF

[(Default value)] None

Define the activation phase of the cyclic handler. The time representing this startup phase must be defined in
ms units.

6. Start Address

[(Definition format)] Symbol or Function Name

[(Definition range)] None

[(Default value)] None

Define the start address of the cyclic handler.

Note that the function name defined here will have the declaration statement shown below output to the ker-
nel_id.h file.

 #pragma CYCHANDLER function name

7. Extended information

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFF

[(Default value)] 0

Define the extended information of the cyclic handler. This information is passed as argument to the cyclic
handler when it starts.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 152 of 178
Sep 16, 2011

[(Alarm handler definition)]
This definition is necessary to use Alarm handler function.

<< Format >>

 // Alarm Handlar Definition
 alarm_hand[ID No.]{
 name = ID name ;
 entry_address = Start address ;
 exitf = Extended information ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each alarm handler ID number.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the alarm handler is specified in a program.

2. Start address

[(Definition format)] Symbol or Function Name

[(Definition range)] None

Define the start address of the alarm handler. The function name defined here causes the following declaration
statement to be output in the kernel_id.h file.

3. Extended information

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFF

[(Default value)] 0

Define the extended information of the alarm handler. This information is passed as argument to the alarm
handler when it starts.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 153 of 178
Sep 16, 2011

[(Interrupt vector definition)]
This definition is necessary to use Interrupt function.

<< Format >>

 // Interrupt Vector Definition
 interrupt_vector[Vector No.]{
 os_int = Kernel-managed (OS dependent) interrupt handler ;
 entry_address = Start address ;
 pragma_switch = Switch passed to PRAGMA extended function ;
 };
 :
 :

The vector number can be written in the range of 0 to 63 and 247 to 255. However, whether or not the defined vector
number is valid depends on the microcomputer used

Configurator can’t create an Initialize routine (interrupt control register, interrupt causes etc.) for this defined interrupt.
You need to create that.

<< Content >>

1. Kernel (OS dependent) interrupt handler

[(Definition format)] Symbol

[(Definition range)] YES or NO

Define whether the handler is a kernel(OS dependent) interrupt handler. If it is a kernel(OS dependent) inter-
rupt handler, specify YES; if it is a non-kernel(OS independent) interrupt handler, specify No.

If this item is defined as YES, the declaration statement shown below is output to the kernel_id.h file.
 #pragma INTHANDLER /V4 function name

If this item is defined as NO, the declaration statement shown below is output to the kernel_id.h file.
 #pragma INTERRUPT /V4 function name

2. Start address

[(Definition format)] Symbol or function name

[(Definition range)] None

[(Default value)] __SYS_DMY_INH

Define the entry address of the interrupt handler. When written in the C language, add () at the end or at the
beginning of the function name you have defined.

3. Switch passed to PRAGMA extended function

[(Definition format)] Symbol

[(Definition range)] E, or B

[(Default value)] None

Specify the switch to be passed to #pragma INTHANDLER or #pragma INTERRUPT. If "E" is specified, the
"/E" switch is assumed, in which case multiple interrupts (another interrupt within an interrupt) are enabled. If
"B" is specified, the "/B" switch is assumed, in which case register bank 1 is specified.

Two or more switches can be specified at the same time. For kernel (OS dependent) interrupt handlers, how-
ever, only the "E" switch can be specified. For non-kernel (OS independent) interrupt handlers, the "E," "F,"
and "B" switches can be specified, subject to a limitation that "E" and "B" cannot be specified at the same

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 154 of 178
Sep 16, 2011

time.

[Precautions]

1. Regarding the method for specifying a register bank

A kernel (OS dependent) interrupt handler that uses register bank 1 cannot be written in C language. Such an interrupt
handler can only be written in assembly language. When writing in assembly language, make sure the statements at the
entry and exit of the interrupt handler are written as shown below.

(Always be sure to clear the B flag before issuing the ret_int service call.)

Example: interrupt;
 fset B
 fclr B
 ret_int

Internally in the MR8C/4 kernel, register banks are not switched over.

2. Do not use watchdog timer interrupts in the kernel (OS dependent) interrupt.

The interrupt factors and the vector number of a fixed vector are shown as follows below. Please refer to the
hardware manual of the microcomputer that is use for a changeable vector.

Table 8.3 Correspondence of fixed vector interrupt factor and vector number

Interrupt Factor Vector number Section Name

Undefined instruction 247 FIX_INTERRUPT_VECTOR
Overflow 248 FIX_INTERRUPT_VECTOR
BRK instruction 249 FIX_INTERRUPT_VECTOR
Addres-match 250 FIX_INTERRUPT_VECTOR
Single-step 251 FIX_INTERRUPT_VECTOR
Watchdog 252 FIX_INTERRUPT_VECTOR
Adress break 253 FIX_INTERRUPT_VECTOR
Reserved 254 FIX_INTERRUPT_VECTOR
Reset 255 FIX_INTERRUPT_VECTOR

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 155 of 178
Sep 16, 2011

8.1.3 Configuration File Example
The following is the configuration file example.
1 //***
2 //
3 // COPYRIGHT(C) 2009 RENESAS TECHNOLOGY CORPORATION
4 // AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
5 // MR8C/4 V.1.00
6 //
7 // MR8C/4 System Configuration File.
8 //
9 //***

10 system{
11 stack_size = 0x400;
12 priority = 16;
13 system_IPL = 7;
14 tic_deno = 1;
15 tic_nume = 1;
16 };
17 //System Clock Definition
18 clock{
19 mpu_clock = 20MHz;
20 timer = RB;
21 IPL = 5;
22 };
23 //Task Definition
24 task[1]{
25 name = TASK_ID1;
26 initial_start = ON;
27 entry_address = task1();
28 stack_size = 0x80;
29 priority = 9;
30 exinf = 0x1234;
31 };
32 task[2]{
33 name = TASK_ID2;
34 initial_start = OFF;
35 entry_address = task2();
36 stack_size = 0x80;
37 priority = 2;
38 exinf = 0x8000;
39 };
40 task[3]{
41 name = TASK_ID3;
42 initial_start = OFF;
43 entry_address = task3();
44 stack_size = 0x80;
45 priority = 3;
46 exinf = 0x1234;
47 };
48 //event flag default added
49 flag[1] {
50 name = FLG_ID1;
51 initial_pattern = 0x0000;
52 wait_multi = TA_WMUL;
53 clear_attribute = YES;
54 };
55 semaphore[1]{
56 name = SEM_ID1;
57 initial_count = 0;
58
59 };
60 interrupt_vector[22] {
61 os_int = YES;
62 entry_address = inth ();
63 };
64
65 //
66 // End of Configuration
67 //

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 156 of 178
Sep 16, 2011

8.2 Configurator Execution Procedures

8.2.1 Configurator Overview
The configurator is a tool that converts the contents defined in the configuration file into the assembly language include
file, etc.Figure 8.1 outlines the operation of the configurator.

When used on High-performance Embedded Workshop, the configurator is automatically started, and an application pro-
gram is built.

1. Executing the configurator requires the following input files:

• Configuration file (XXXX.cfg)
This file contains description of the system's initial setup items. It is created in the current directory.

• Default configuration file (default.cfg)
This file contains default values that are referenced when settings in the configuration file are omitted. This
file is placed in the directory indicated by environment variable "LIB8C" or the current directory. If this file
exists in both directories, the file in the current directory is prioritized over the other.

• include template file(mr8c.inc, sys_ram.inc, kernel_sysint.h)
This file serves as the template file of include file "mr8c.inc", “kernel_sysint.h” and “sys_ram.inc”. It resides
in the directory indicated by environment variable "LIB8C."

• MR8C/4 version file (version)
This file contains description of MR8C/4's version. It resides in the directory indicated by environment vari-
able "LIB8C." The configurator reads in this file and outputs MR8C/4's version information to the startup
message.

2. When the configurator is executed, the files listed below are output.
Do not define user data in the files output by the configurator. Starting up the configurator after entering data definitions
may result in the user defined data being lost.

• System data definition file (sys_rom.inc, sys_ram.inc)
This file contains definition of system settings.

• Include file (mr8c.inc)
This is an include file for the assembly language.

• ID number definition file(kernel_id.h)
The ID numbers of kernel objects are defined

• Service call information file(kernel_sysint.h)
This is the include file of the service call usage information.

.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 157 of 178
Sep 16, 2011

Configuration File

xxx.cfg

Default
Configuration File

default.cfg

kernel_sysint.h Template File
kernel_sysint.h

 Template File
sys_ram.inc, mr8c.inc

MR8C/4 Version File
version

System Data Difinition File
sys_ram.inc, sys_rom.inc

Include File
mr8c.inc,kernel_id.h

kernel_sysint.h

cfg8c

Figure 8.1 The operation of the Configurator

8.2.2 Setting Configurator Environment
Before executing the configurator, check to see if the environment variable "LIB8C" is set correctly.

The configurator cannot be executed normally unless the following files are present in the directory indicated by the en-
vironment variable "LIB8C":

• Default configuration file (default.cfg)
This file can be copied to the current directory for use. In this case, the file in the current directory is given priority.

• System RAM area definition database file (sys_ram.inc)

• mr8c.inc template file (mr8c.inc)

• Section definition file(c_sec.inc or asm_sec.inc)

• Startup file(crt0mr.a30 or start.a30)

• MR8C/4 version file(version)

• Service call information file(kernel_sysint.h)

8.2.3 Configurator Start Procedure
Start the configurator as indicated below.

 C> cfg8c [-vV] Configuration file name

Normally, use the extension .cfg for the configuration file name.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 158 of 178
Sep 16, 2011

 Command Options

-v Option
Displays the command option descriptions and detailed information on the version.

-V Option
Displays the information on the files generated by the command.

Error messages

cfg8c Error : syntax error near line xxx (xxxx.cfg)
There is an syntax error in the configuration file.

cfg8c Error : not enough memory
Memory is insufficient.

cfg8c Error : illegal option --> <x>
The configurator's command option is erroneous.

cfg8c Error : illegal argument --> <xx>
The configurator's startup format is erroneous.

cfg8c Error : can't write open <XXXX>
The XXXX file cannot be created. Check the directory attribute and the remaining disk capacity available.

cfg8c Error : can't open <XXXX>
The XXXX file cannot be accessed. Check the attributes of the XXXX file and whether it actually exists.

cfg8c Error : can't open version file
The MR8C/4 version file "version" cannot be found in the directory indicated by the environment variable
"LIB8C".

cfg8c Error : can't open default configuration file
The default configuration file cannot be accessed. "default.cfg" is needed in the current directory or directory
"LIB8C" specifying.

cfg8c Error : can't open configuration file <xxxx.cfg>
The configuration file cannot be accessed. Check that the file name has been properly designated.

cfg8c Error : illegal XXXX --> <xx> near line xxx (xxxx.cfg)
The value or ID number in definition item XXXX is incorrect. Check the valid range of definition.

cfg8c Error : Unknown XXXX --> <xx> near line xx (xxxx.cfg)
The symbol definition in definition item XXXX is incorrect. Check the valid range of definition.

cfg8c Error : too big XXXX's ID number --> <xx> (xxxx.cfg)
A value is set to the ID number in XXXX definition that exceeds the total number of objects defined.The ID

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 159 of 178
Sep 16, 2011

number must be smaller than the total number of objects.

cfg8c Error : too big task[x]'s priority --> <xx> near line xxx (xxxx.cfg)
The initial priority in task definition of ID number x exceeds the priority in system definition.

cfg8c Error : too big IPL --> <xx> near line xxx (xxxx.cfg)
The system clock interrupt priority level for system clock definition item exceeds the value of IPL within ser-
vice call of system definition item.

cfg8c Error : system timer's vector <x>conflict near line xxx
A different vector is defined for the system clock timer interrupt vector. Confirm the vector No.x for interrupt
vector definition.

cfg8c Error : XXXX is not defined (xxxx.cfg)
"XXXX" item must be set in your configuration file.

cfg8c Error : system's default is not defined
These items must be set int the default configuration file.

cfg8c Error : double definition <XXXX> near line xxx (xxx.cfg)
XXXX is already defined. Check and delete the extra definition.

cfg8c Error : double definition XXXX[x] near line xxx (default.cfg)
cfg8c Error : double definition XXXX[x] near line xxx (xxxx.cfg)

The ID number in item XXXX is already registered. Modify the ID number or delete the extra definition.

cfg8c Error : you must define XXXX near line xxx (xxxx.cfg)
XXXX cannot be omitted.

cfg8c Error : you must define SYMBOL near line xxx (xxxx.cfg)
This symbol cannot be omitted.

cfg8c Error : start-up-file (XXXX) not found
The start-up-file XXXX cannot be found in the current directory. The startup file "start.a30" or "crt0mr.a30" is
required in the current directory.

cfg8c Error : bad start-up-file(XXXX)
There is unnecessary start-up-file in the current directory.

cfg8c Error : no source file
No source file is found in the current directory.

cfg8c Error : zero divide error near line xxx (xxxx.cfg)
A zero divide operation occurred in some arithmetic expression.

cfg8c Error : task[X].stack_size must set XX or more near line xxx (xxxx.cfg)
You must set more than XX bytes.in task[x].stack_size.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 160 of 178
Sep 16, 2011

cfg8c Error : “R0” and “R1” must exist in task[x].context near line xxx (xxxx.cfg)
 You must select R0 and R1 register in task[x].context.

cfg8c Error : can’t define address match interrupt definition for Task Pause Functio
n near line xxx (xxxx.cfg)

 Another interrupt is defined in interrupt vector definition needed by Task Pause Function.

cfg8c Error : Set system timer [system.timeout = YES] near line xxx (xxxx.cfg)
 Set clock.timer symbol except “NOTIMER”.

cfg8c Error : Initial Start Task not defined
No initial startup task is defined in the configuration file.

MR8C/4 8 Using Configurator

R20UT0657EJ0101 Rev.1.01 Page 161 of 178
Sep 16, 2011

Warning messages
The following message are a warning. A warning can be ignored providing that its content is understood.

cfg8c Warning : system is not defined (xxxx.cfg)

cfg8c Warning : system.XXXX is not defined (xxxx.cfg)
System definition or system definition item XXXX is omitted in the configuration file.

cfg8c Warning : task[x].XXXX is not defined near line xxx (xxxx.cfg)
The task definition item XXXX in ID number is omitted.

cfg8c Warning : Already definition XXXX near line xxx (xxxx.cfg)
XXXX has already been defined.The defined content is ignored, check to delete the extra definition.

cfg8c Warning : interrupt_vector[x]'s default is not defined (default.cfg)
The interrupt vector definition of vector number x in the default configuration file is missing.

cfg8c Warning : interrupt_vector[x]'s default is not defined near line xxx (xxxx.cfg)
The interrupt vector of vector number x in the configuration file is not defined in the default configuration file.

cfg8c Warning : system.stack_size is an uneven number near line xxx
cfg8c Warning : task[x].stack_size is an uneven number near line xxx

 Please set even size in system.stack_size or task[x].stack_size.

R20UT0657EJ0101 Rev.1.01 Page 162 of 178
Sep 16, 2011

9. Table Generation Utility

9.1 Summary
The utility mr8ctbl is a command line tool that after collecting service call information used in the application, generates
service call tables and interrupt vector tables.

In kernel_sysint.h that is included by kernel.h, it is so defined that when service call functions are used, the service call
information will be output to the .mrc file by the .assert control instruction. Using these service call information files as
its input, mr8ctbl generates a service call table in such a way that only the service calls used in the system will be linked.

Furthermore, mkritbl generates an interrupt vector table based on the vector table template files output by cfg8c and
the .mrc file.

9.2 Environment Setup
Following environment variables need to be set.

• LIB8C
"<Installation directory>\lib8c"

9.3 Table Generation Utility Start Procedure
The table generation utility is started in the form shown below.

 C:\> mr8ctbl <directory name or file name>

For the parameter, normally specify the directory that contains the mrc file that is generated when compiled. Multiple
directories or files can be specified.

Note that the mrc file present in the current directory is unconditionally selected for input.

Also, it is necessary that vector.tpl generated by cfg8c be present in the current directory.

9.4 Notes
Please specify mrc files generated by compilation of application without omission. When there is an omission in the
specification of mrc files, some service call modules might not be build into the load module.

R20UT0657EJ0101 Rev.1.01 Page 163 of 178
Sep 16, 2011

10. Sample Program Description

10.1 Overview of Sample Program
As an example application of MR8C/4, the following shows a program that outputs a string to the standard output device
from one task and another alternately.

Table 10.1 Functions in the Sample Program

Function
Name

Type ID No. Priority Description

main() Task 1 1 Starts task1 and task2.

task1() Task 2 2 Outputs "task1 running."

task2() Task 3 3 Outputs "task2 running."

cyh1() Handler 1 Wakes up task1().

The content of processing is described below.

• The main task starts task1, task2, and cyh1, and then terminates itself.

• task1 operates in order of the following.
1. Gets a semaphore.

2. Goes to a wakeup wait state.

3. Outputs "task1 running."

4. Frees the semaphore.

• task2 operates in order of the following.
1. Gets a semaphore.

2. Outputs "task2 running."

3. Frees the semaphore.

cyh1 starts every 100 ms to wake up task1.

MR8C/4 10 Sample Program Description

R20UT0657EJ0101 Rev.1.01 Page 164 of 178
Sep 16, 2011

10.2 Program Source Listing

1 /**
2 * MR8C/4 smaple program
3 *
4 * Copyright (C) 2009(2011) Renesas Electronics Corporation
5 * and Renesas Solutions Corp. All rights reserved.
6 *
7 *
8 * $Id: demo.c 496 2006-04-05 06:28:56Z inui $
9 ***/

10
11 #include <itron.h>
12 #include <kernel.h>
13 #include "kernel_id.h"
14
15
16 void main(VP_INT stacd)
17 {
18 sta_tsk(ID_task1,0);
19 sta_tsk(ID_task2,0);
20 sta_cyc(ID_cyh1);
21 }
22 void task1(VP_INT stacd)
23 {
24 while(1){
25 wai_sem(ID_sem1);
26 slp_tsk();
27 sig_sem(ID_sem1);
28 }
29 }
30
31 void task2(VP_INT stacd)
32 {
33 while(1){
34 wai_sem(ID_sem1);
35 sig_sem(ID_sem1);
36 }
37 }
38
39 void cyh1(VP_INT exinf)
40 {
41 iwup_tsk(ID_task1);
42 }

MR8C/4 10 Sample Program Description

R20UT0657EJ0101 Rev.1.01 Page 165 of 178
Sep 16, 2011

10.3 Configuration File
1 //***
2 //
3 // Copyright (C) 2009(2011) Renesas Electronics Corporation
4 // and Renesas Solutions Corp. All rights reserved.
5 //
6 // MR8C/4 System Configuration File.
7 // "$Id: smp.cfg 496 2006-04-05 06:28:56Z inui $"
8 //
9 //***

10 // System Definition
11 system{
12 stack_size = 200;
13 priority = 10;
14 system_IPL = 4;
15 tic_nume = 1;
16 tic_deno = 1;
17 };
18 //System Clock Definition
19 clock{
20 mpu_clock = 20MHz;
21 timer = RA;
22 IPL = 4;
23 };
24 //Task Definition
25 //
26 task[]{
27 entry_address = main();
28 name = ID_main;
29 stack_size = 100;
30 priority = 1;
31 initial_start = ON;
32 exinf = 0;
33 };
34 task[]{
35 entry_address = task1();
36 name = ID_task1;
37 stack_size = 100;
38 priority = 2;
39 exinf = 0;
40
41 };
42 task[]{
43 entry_address = task2();
44 name = ID_task2;
45 stack_size = 100;
46 priority = 3;
47 exinf = 0;
48
49 };
50
51 semaphore[]{
52 name = ID_sem1;
53 max_count = 1;
54 initial_count = 1;
55 wait_queue = TA_TFIFO;
56 };
57 cyclic_hand [1] {
58 name = ID_cyh1;
59 interval_counter = 100;
60 start = OFF;
61 phsatr = OFF;
62 phs_counter = 0;
63 entry_address = cyh1();
64 exinf = 1;
65 };

R20UT0657EJ0101 Rev.1.01 Page 166 of 178
Sep 16, 2011

11. Stack Size Calculation Method

11.1 Stack Size Calculation Method
The MR8C/4 provides two kinds of stacks: the system stack and the user stack. The stack size calculation method differ
between the stacks.

 User stack

This stack is provided for each task. Therefore, writing an application by using the MR8C/4 requires to allocate
the stack area for each stack.

 System stack

This stack is used inside the MR8C/4 or during the execution of the handler.

When a task issues a service call, the MR8C/4 switches the user stack to the system stack. (See
Figure 11.1 System Stack and User Stack

)

The system stack uses interrupt stack(ISP).

Register save
Stack switching

Service call
rocessing

Task Selection

Stack switching
Register return

XXX_XXX()

MR8C/4 Service Call Processing Position

User Stack

User Stack

System Stack
(interruput stack)

Task

Figure 11.1 System Stack and User Stack

The sections of the system stack and user stack each are located in the manner shown below. However, the diagram shown

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 167 of 178
Sep 16, 2011

below applies to the case where the stack areas for all tasks are located in the stack section during configuration.

SFR

System Stack

User satck of

TaskID No.1

User satck of

TaskID No.2

User satck of

TaskID No.n

Stack Section

Figure 11.2 Layout of Stacks

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 168 of 178
Sep 16, 2011

11.1.1 User Stack Calculation Method
User stacks must be calculated for each task. The following shows an example for calculating user stacks in cases when an
application is written in the C language and when an application is written in the assembly language.

 When an application is written in the C language

Using the stack caliculation utility, calculate the stack size of each task. The necessary stack size of a task is the
sum of the stack size output by STK Viewer plus a context storage area of 20 bytes37 The following shows how
to calculate a stack size using

 When an application is written in the assembly language

User stack size =
 Sections used in user program + size of registers used (size of registers which are written as

task.context in .cfg file + 6 bytes(PC+FLG register size) + Sections used in MR8C/4

♦ Sections used in user program
The necessary stack size of a task is the sum of the stack size used by the task in subroutine call plus the size
used to save registers to a stack in that task.

♦ Sections used in MR8C/4
The sections used in MR8C/4 refer to a stack size that is used for the service calls issued.

When issuing multiple service calls, include the maximum value of the stack sizes used by those service calls as
the sections used by MR8C/4 as you calculate the necessary stack size.

Figure 3.1 shows an example for calculating a user stack. In the example below, the registers used by the task are R0, R1,
R2 and A0.

37 If written in the C language, this size is fixed.

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 169 of 178
Sep 16, 2011

Stack growing direction

jsr sub1

2bytes

12bytes(PC+FLG+size of registers used)

16bytes(PC+FLG+size of registers used
stack size used by prcv_msg)

sta_tsk

prcv_dtq

18bytes

When use register R0,R1,R2,A0(8bytes)

Figure 11.3 Example of Use Stack Size Calculation

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 170 of 178
Sep 16, 2011

11.1.2 System Stack Calculation Method
The system stack is most often consumed when an interrupt occurs during service call processing followed by the occur-
rence of multiple interrupts.38 The necessary size (the maximum size) of the system stack can be obtained from the fol-
lowing relation:

Necessary size of the system stack = α + Σβi(+ γ)

 α

The maximum system stack size among the service calls to be used.39.

When sta_tsk, ext_tsk, slp_tsk and dly_tsk are used for example, according to the Table 11.1 Stack Sizes Used
by Service Calls Issued from Tasks (in bytes),each of system stack size is the following.

Service Call name System Stack Size
sta_tsk 2bytes
ext_tsk 0bytes
slp_tsk 2bytes
dly_tsk 4bytes

Therefore,the maximum system stack size among the service calls to be used is the 8 bytes of dly_tsk.

 βi

The stack size to be used by the interrupt handler.40 The details will be described later.

 γ

Stack size used by the system clock interrupt handler. This is detailed later.

38 After switchover from user stack to system stack
39 Refer from Table 11.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) to Table 11.3 Stack Sizes Used by Service Calls
Issued from Tasks and Handlers (in bytes) for the system stack size used for each individual service call.
40 OS-dependent interrupt handler (not including the system clock interrupt handler here) and OS-independent interrupt handler.

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 171 of 178
Sep 16, 2011

α

β1

β2

βn

α:The maximum system stack size among the service calls to be used.

βι:The system stack size to be used by the interrupt handler.

The necessary system stack

Interrupt

Interrupt

Figure 11.4 System Stack Calculation Method

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 172 of 178
Sep 16, 2011

[(Stack size βi used by interrupt handlers)]
The stack size used by an interrupt handler that is invoked during a service call can be calculated by the equation below.

The stack size βi used by an interrupt handler is shown below.

♦ C language

Using the stack caliculation utility, calculate the stack size of each interrupt handler.

Refer to the manual of STK Viewer for detailed use of STK Viewer.

♦ Assembly language

The stack size to be used by OS-dependent interrupt handler
 = register to be used + user size + stack size to be used by service call

The stack size to be used by OS-independent interrupt handler
 = register to be used + user size

User size is the stack size of the area written by user.

Context(20bytes)

2bytes

20bytes

ret_int

iset_flg

jsr func

Interrupt

42bytes

Context: 20 bytes when written in C language.
 When written in assembly language,

Context = size of registers written as task.context in .cfg file
 + 4(PC+FLG)bytes

Figure 11.5 Stack size to be used by Kernel Interrupt Handler

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 173 of 178
Sep 16, 2011

[(System stack size γ used by system clock interrupt handler)]
When you do not use a system timer, there is no need to add a system stack used by the system clock interrupt handler.

The system stack size γ used by the system clock interrupt handler is whichever larger of the two cases below:

♦ 24 + maximum size used by cyclic handler
♦ 24 + maximum size used by alarm handler
♦
♦ C language

Using the stack caliculation utility, calculate the stack size of each Alarm or Cyclic handler.

♦ Assembly language
The stack size to be used by Alarm or Cyclic handler

= register to be used + user size + stack size to be used by service call

If neither cyclic handler nor alarm handler is used, then

γ = 14bytes

When using the interrupt handler and system clock interrupt handler in combination, add the stack sizes used by both.

MR8C/4 11 Stack Size Calculation Method

R20UT0657EJ0101 Rev.1.01 Page 174 of 178
Sep 16, 2011

11.2 Necessary Stack Size

Table 11.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) lists the stack sizes (system stack) used by
service calls that can be issued from tasks.

Table 11.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes)

Stack size Stack size Service call
User stack System

stack

Service call
User stack System

stack
sta_tsk 0 2 sta_cyc 10 0
ext_tsk 0 0 stp_cyc 10 0
ter_tsk 0 4 sta_alm 10 0
chg_pri 0 4 stp_alm 10 0
slp_tsk 0 2 get_tid 10(5) 0
wup_tsk 0 2 loc_cpu 4 0
can_wup 10 0 unl_cpu 0 0
rel_wai 0 4 ref_ver 12 0
sus_tsk 0 2 dis_dsp 4 0
rsm_tsk 0 2 ena_dsp 0 0
dly_tsk 0 4 snd_dtq 0 4
sig_sem 0 2 psnd_dtq 0 2
wai_sem 0 2 rcv_dtq (5) 2
pol_sem 10 0 prcv_dtq (5) 2
set_flg 0 6
clr_flg 10 0
wai_flg (5) 2
pol_flg 10(5) 0

(): Stack sizes used by service call in C programs.

Table 11.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) lists the stack sizes (system
stack) used by service calls that can be issued from handlers.

Table 11.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes)

Service call Stack size Service call Stack size
iwup_tsk 14 iset_flg 22
irel_wai 14 ipsnd_dtq 6
isig_sem 4 ret_int 10
ista_tsk 14

(): Stack sizes used by service call in C programs.

Table 11.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) lists the stack
sizes (system stack) used by service calls that can be issued from both tasks and handlers. If the service call
issued from task, system uses user stack. If the service call issued from handler, system uses system stack.

Table 11.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes)

Service call Stack size Service call Stack size
sns_ctx 10 sns_loc 10
sns_dsp 10

R20UT0657EJ0101 Rev.1.01 Page 175 of 178
Sep 16, 2011

12. Note

12.1 The Use of INT Instruction
MR8C/4 has INT instruction interrupt numbers reserved for issuing service calls as listed in Table 12.1 Interrupt Number
Assignment. For this reason, when using software interrupts in a user application, do not use interrupt numbers 63 through
48 and be sure to use some other numbers.

Table 12.1 Interrupt Number Assignment

Interrupt No. Service calls Used
32 Service calls that can be issued from only task context
33 Service calls that can be issued from only non-task context.

Service calls that can be issued from both task context and non-task context.
34 ret_int service call
35 dis_dsp service call
36 loc_cpu, iloc_cpu service call
37 ext_tsk service call
38 Reserved for future extension
39 Reserved for future extension
40 Reserved for future extension

12.2 The Use of registers of bank
The registers of bank is 0, when a task starts on MR8C/4.

MR8C/4 does not change the registers of bank in processing kernel.

You must pay attention to the followings.

• Don’t change the regisers of bank in processing a task.

• If an interrupt handler with regisers of bank 1 have multiple interrupts of an interrupt handler with regis-
ers of bank 1 , the program can not execute normally.

MR8C/4 12 Note

R20UT0657EJ0101 Rev.1.01 Page 176 of 178
Sep 16, 2011

12.3 Regarding Delay Dispatching
MR8C/4 has four service calls related to delay dispatching.

• dis_dsp

• ena_dsp

• loc_cpu

• unl_cpu

The following describes task handling when dispatch is temporarily delayed by using these service calls.

1. When the execution task in delay dispatching should be preempted
While dispatch is disabled, even under conditions where the task under execution should be preempted, no time
is dispatched to new tasks that are in an executable state. Dispatching to the tasks to be executed is delayed until
the dispatch disabled state is cleared. When dispatch is being delayed.

• Task under execution is in a RUNNING state and is linked to the ready queue

• Task to be executed after the dispatch disabled state is cleared is in a READY state and is linked to the
highest priority ready queue (among the queued tasks).

2. Precautions

• No service call (e.g., slp_tsk, wai_sem) can be issued that may place the own task in a wait state while
in a state where dispatch is disabled by dis_dsp, loc_cpu or iloc_cpu.

• ena_dsp and dis_dsp cannot be issued while in a state where interrupts and dispatch are disabled by
loc_cpu, iloc_cpu.

• Disabled dispatch is re-enabled by issuing ena_dsp once after issuing dis_dsp several times.
The above status transition can be summarized in Table 3.3.

12.4 Regarding Initially Activated Task
MR8C/4 allows you to specify a task that starts from a READY state at system startup. This specification is made by set-
ting the configuration file.

Refer to 8.1.2 for details on how to set.

R20UT0657EJ0101 Rev.1.01 Page 177 of 178
Sep 16, 2011

13. Appendix

13.1 Assembly Language Interface
When issuing a service call in the assembly language, you need to use macros prepared for invoking service
calls.
 Processing in a service call invocation macro involves setting each parameter to registers and starting ex-
ecution of a service call routine by a software interrupt. If you issue service calls directly without using a ser-
vice call invocation macro, your program may not be guaranteed of compatibility with future versions of
MR8C/4.
The table below lists the assembly language interface parameters. The values set forth in μITRON specifica-
tions are not used for the function code.

Task Management Function

Parameter ReturnParameter

FuncCode A1 ServiceCall INTNo.

R0
R1 R3 A0

FuncCode
R0 A0

ista_tsk 33 8 stacd - tskid - ercd -

sta_tsk 32 6 stacd - tskid - ercd -

ter_tsk 32 10 - - tskid - ercd -

chg_pri 32 12 - tskpri tskid - ercd -

ext_tsk 37 - - - - - - -

Task Dependent Synchronization Function

Parameter ReturnParameter

FuncCode A1
ServiceCall INTNo.

R0
R1 R3 A0

FuncCode
R0

slp_tsk 32 22 - - - - ercd

wup_tsk 32 26 - - tskid - ercd

iwup_tsk 33 28 - - tskid - ercd

can_wup 33 30 - - tskid - wupcnt

sus_tsk 32 36 - - tskid - ercd

rsm_tsk 32 40 - - tskid - ercd

dly_tsk 32 44 tmout tmout - - ercd

rel_wai 32 32 - - tskid - ercd

irel_wai 33 34 - - tskid - ercd

MR8C/4 13 Appendix

R20UT0657EJ0101 Rev.1.01 Page 178 of 178
Sep 16, 2011

Synchronization & Communication Function

Parameter ReturnParameter

FuncCode A1 ServiceCall INTNo.

R0
R1 R2 R3 A0

FuncCode
R0 R1 R2 R3

wai_sem 32 50 - - - semid - ercd - - -

pol_sem 33 52 - - - semid - ercd - - -

sig_sem 32 46 - - - semid - ercd - - -

isig_sem 33 48 - - - semid - ercd - - -

wai_flg 32 64 wfmode - waiptn flgid - ercd - flgptn -

pol_flg 33 66 wfmode - waiptn flgid - ercd - flgptn -

set_flg 32 58 - - setptn flgid - ercd - - -

iset_flg 33 60 - - setptn flgid - ercd - - -

clr_flg 33 62 - - clrptn flgid - ercd - - -

snd_dtq 32 72 data - - dtqid - ercd - - -

psnd_dtq 32 74 data - - dtqid - ercd - - -

ipsnd_dtq 33 76 data - - dtqid - ercd - - -

rcv_dtq 32 84 - - - dtqid - ercd data - -

prcv_dtq 32 86 - - - dtqid - ercd data - -

System Status Management Function

Parameter ReturnParameter

FuncCode
ServiceCall INTNo.

R0
R3 R0 A0

loc_cpu 36 - - ercd -

dis_dsp 35 - - ercd -

ena_dsp 32 150 - ercd -

unl_cpu 32 146 - ercd -

sns_ctx 33 152 - ercd -

sns_loc 33 154 - ercd -

sns_dsp 33 156 - ercd -

get_tid 33 144 - ercd tskid

Time Management Function

Parameter ReturnParameter

FuncCode A1
ServiceCall INTNo.

R0
R1 R3 A0

FuncCode
R0

sta_cyc 33 128 - - cycid - ercd

stp_cyc 33 130 - - cycid - ercd

sta_alm 33 134 almtim almtim almid - ercd

stp_alm 33 136 - - almid - ercd

System Configuration Management Function

ServiceCall INTNo. Parameter ReturnParameter

Real-time OS for R8C Family
MR8C/4 V.1.01
User’s Manual

Publication Date: September 16, 2011 Rev.1.01

Published by: Renesas Electronics Corporation

Edited by: Renesas Solutions Corp.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation and Renesas Solutions Corp. All rights reserved.
Colophon 1.0

R20UT0657EJ0101

Real-time OS for R8C Family
MR8C/4 V.1.01
User’s Manual

	Contents
	List of Figures
	List of Tables
	1. User’s Manual Organization
	2. General Information
	2.1 Objective of MR8C/4 Development
	2.2 Relationship between TRON Specification and MR8C/4
	2.3 Features

	3. Introduction to Kernel
	3.1 Concept of Real-time OS
	3.1.1 Why Real-time OS is Necessary
	3.1.2 Operating Principles of Kernel

	3.2 Service Call
	3.2.1 Service Call Processing
	3.2.2 Processing Procedures for Service Calls from Handlers
	Service Calls from a Handler That Caused an Interrupt during Task Execution
	Service Calls from a Handler That Caused an Interrupt during Service Call Processing
	Service Calls from a Handler That Caused an Interrupt during Handler Execution

	3.3 Object
	3.3.1 The specification method of the object in a service call

	3.4 Task
	3.4.1 Task Status
	3.4.2 Task Priority and Ready Queue
	3.4.3 Task Priority and Waiting Queue
	3.4.4 Task Control Block(TCB)

	3.5 System States
	3.5.1 Task Context and Non-task Context
	3.5.2 Dispatch Enabled/Disabled States
	3.5.3 CPU Locked/Unlocked States
	3.5.4 Dispatch Disabled and CPU Locked States

	3.6 Regarding Interrupts
	3.6.1 Types of Interrupt Handlers
	3.6.2 The Use of Non-maskable Interrupt
	3.6.3 Controlling Interrupts
	3.6.4 Permission and prohibition of interrupt
	When prohibiting interrupt in the task
	When permitting interrupt in the interrupt handler (When accepting multiple interrupt)

	3.7 About the power control of R8C and the operation of the kernel
	3.8 Stacks
	3.8.1 System Stack and User Stack

	4. Kernel
	4.1 Module Structure
	4.2 Module Overview
	4.2.1 Task Management Function
	4.2.2 Task Dependent Synchronization Function
	4.2.3 Synchronization and Communication Function (Semaphore)
	4.2.4 Synchronization and Communication Function (Eventflag)
	4.2.5 Synchronization and Communication Function (Data Queue)
	4.2.6 Time Management Function
	4.2.7 Cyclic Handler Function
	4.2.8 Alarm Handler Function
	4.2.9 System Status Management Function
	4.2.10 Interrupt Management Function
	4.2.11 System Configuration Management Function

	5. Service call reference
	5.1 Task Management Function
	sta_tsk Activate task with a start code
	ista_tsk Activate task with a start code (handler only)
	ext_tsk Terminate invoking task
	ter_tsk Terminate task
	chg_pri Change task priority

	5.2 Task Dependent Synchronization Function
	slp_tsk Put task to sleep
	wup_tsk Wakeup task
	iwup_tsk Wakeup task (handler only)
	can_wup Cancel wakeup request
	rel_wai Release task from waiting
	irel_wai Release task from waiting (handler only)
	sus_tsk Suspend task
	rsm_tsk Resume suspended task
	dly_tsk Delay task

	5.3 Synchronization & Communication Function (Semaphore)
	sig_sem Release semaphore resource
	isig_sem Release semaphore resource (handler only)
	wai_sem Acquire semaphore resource
	pol_sem Acquire semaphore resource (polling)

	5.4 Synchronization & Communication Function (Eventflag)
	set_flg Set eventflag
	iset_flg Set eventflag (handler only)
	clr_flg Clear eventflag
	wai_flg Wait for eventflag
	pol_flg Wait for eventflag(polling)

	5.5 Synchronization & Communication Function (Data Queue)
	snd_dtq Send to data queue
	psnd_dtq Send to data queue (polling)
	ipsnd_dtq Send to data queue (polling, handler only)
	rcv_dtq Receive from data queue
	prcv_dtq Receive from data queue (polling)

	5.6 Time Management Function
	isig_tim Supply a time tick

	5.7 Time Management Function (Cyclic Handler)
	sta_cyc Start cyclic handler operation
	stp_cyc Stops cyclic handler operation

	5.8 Time Management Function (Alarm Handler)
	sta_alm Start alarm handler operation
	stp_alm Stop alarm handler operation

	5.9 System Status Management Function
	get_tid Reference task ID in the RUNNING state
	loc_cpu Lock the CPU
	unl_cpu Unlock the CPU
	dis_dsp Disable dispatching
	ena_dsp Enables dispatching
	sns_ctx Reference context
	sns_loc Reference CPU state
	sns_dsp Reference dispatching state

	5.10 Interrupt Management Function
	ret_int Returns from an interrupt handler (when written in assembly language)

	5.11 System Configuration Management Function
	ref_ver Reference version information

	6. Applications Development Procedure Overview
	6.1 Overview

	7. Detailed Applications
	7.1 Program Coding Procedure in C Language
	7.1.1 Task Description Procedure
	7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler
	7.1.3 Writing Non-kernel (OS-independent) Interrupt Handler
	7.1.4 Writing Cyclic Handler/Alarm Handler

	7.2 Program Coding Procedure in Assembly Language
	7.2.1 Writing Task
	7.2.2 Writing Kernel(OS-dependent) Interrupt Handler
	7.2.3 Writing Non-kernel(OS-independent) Interrupt Handler
	7.2.4 Writing Cyclic Handler/Alarm Handler

	7.3 Modifying MR8C/4 Startup Program
	7.3.1 C Language Startup Program (crt0mr.a30)

	7.4 Memory Allocation
	7.4.1 Sections that kernel uses

	8. Using Configurator
	8.1 Configuration File Creation Procedure
	8.1.1 Configuration File Data Entry Format
	Operator
	Direction of computation

	8.1.2 Configuration File Definition Items
	[(System Definition Procedure)]
	[(System Clock Definition Procedure)]
	[(Task definition)]
	[(Eventflag definition)]
	[(Semaphore definition)]
	[(Data queue definition)]
	[(Cyclic handler definition)]
	[(Alarm handler definition)]
	[(Interrupt vector definition)]

	8.1.3 Configuration File Example

	8.2 Configurator Execution Procedures
	8.2.1 Configurator Overview
	8.2.2 Setting Configurator Environment
	8.2.3 Configurator Start Procedure
	Error messages
	Warning messages

	9. Table Generation Utility
	9.1 Summary
	9.2 Environment Setup
	9.3 Table Generation Utility Start Procedure
	9.4 Notes

	10. Sample Program Description
	10.1 Overview of Sample Program
	10.2 Program Source Listing
	10.3 Configuration File

	11. Stack Size Calculation Method
	11.1 Stack Size Calculation Method
	11.1.1 User Stack Calculation Method
	11.1.2 System Stack Calculation Method

	11.2 Necessary Stack Size

	12. Note
	12.1 The Use of INT Instruction
	12.2 The Use of registers of bank
	12.3 Regarding Delay Dispatching
	12.4 Regarding Initially Activated Task

	13. Appendix
	13.1 Assembly Language Interface

