

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RZ/T2M Group, RZ/T2L Group,
RZ/N2L Group

CN032 AC Servo Solution Firmware Manual

U
ser's M

anual

www.renesas.com

Rev.5.02 Aug.8, 2024
 R11UM0169EJ0502

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application

examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas
Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other
intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but
not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales,

utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability

for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas

Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances;

machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial

terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document,
Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life
support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems;
aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or
any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas
Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or
software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized
access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR
GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE
INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY
INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR
RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS
DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING
SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using
Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to
maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any
malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics,
such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh
environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design.
You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in
the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software
alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.
You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics
disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under
any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the
governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the
product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by
this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to
stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a
humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded.
The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed
circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-
on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power
supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input
signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-
impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until
the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line
is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator
while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.)
due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the
transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct
operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory
capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise,
and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

How to Use This Manual
1. Purpose and Target Readers
This manual is designed to provide the user with an understanding of the hardware functions and electrical
characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic
knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.
The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral
functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within
the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the
text of the manual for details.

2. List of Abbreviations and Acronyms

Abbreviation Full Form

bps bits per second

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DMAC Direct Memory Access Controller

Hi-Z High Impedance

I/O Input / Output

LSB Least Significant Bit

MSB Most Significant Bit

NC Non-Connect

PWM Pulse Width Modulation

SFR Special Function Register

UART Universal Asynchronous Receiver/Transmitter

3. Related documents

 CN032 AC Servo Solution Controller Board Manual (for RZ/T2M, RZ/N2L)

 CN032 AC Servo Solution Controller Board Manual (for RZ/T2L)

 CN032 AC Servo Solution Inverter Board Manual

 CN032 AC Servo Solution Firmware Manual (this manual)

 CN032 AC Servo Solution Startup Guide (for EtherCAT)

 CN032 AC Servo Solution Startup Guide (for Motion Control Utility)

 RZ/T2M Group User’s Manual: Hardware

 RZ/T2L Group User’s Manual: Hardware

 RZ/N2L Group User’s Manual: Hardware

CONTENTS

1. Introduction .. 8
1.1 Summary ... 8
1.2 Function .. 8
1.3 Firmware Configuration .. 8

2. Operating Environment .. 10

3. File Structure .. 13
3.1 AC Servo Solution Kit (RZ/T2M) .. 13
3.2 AC Servo Solution Kit (RZ/T2L) ... 16
3.3 AC Servo Solution Kit (RZ/N2L) ... 18

4. Firmware Architecture ... 20
4.1 Overview ... 20

4.1.1 Startup Functions .. 22
4.1.2 Non-Real-Time Functions .. 22
4.1.3 Periodic, Real-Time Functions ... 23
4.1.4 Communication Functions ... 24

4.2 Data Types .. 25
4.3 Data Structures and Variables ... 26
4.4 Enumerations, Macros and Constants ... 26

5. Initialization and Startup Functions ... 27
5.1 Bootloader ... 27
5.2 Peripherals Initialization ... 27
5.3 Firmware Initialization .. 28

6. Servo Control Operation .. 29
6.1 Motor Position - Encoder Interface ... 30
6.2 Motor Control - Torque Generator .. 31
6.3 Position Control – PID Regulator ... 34
6.4 Motion Planning - Velocity Profile Generator .. 36
6.5 Motion Control Parameters ... 39

6.5.1 Target Position ... 39
6.5.2 Maximum Velocity .. 39
6.5.3 Maximum Acceleration and Deceleration .. 40
6.5.4 Maximum Acceleration and Deceleration Jerk .. 40
6.5.5 Motion Start Modes .. 40
6.5.6 Motion Stop Modes .. 40

7. System Control Functions .. 41
7.1 Interlocks .. 41
7.2 Data Recording ... 44
7.3 Motor Phasing ... 47
7.4 Motor Homing .. 49

8. Host Communication ... 51
8.1 ASCII Communication Protocol ... 51
8.2 Binary Packet Communication Protocol ... 51

9. Resources ... 52
9.1 Hardware ... 52
9.2 Operating System .. 52
9.3 Memory ... 52

Appendix A: ASCII Communication Protocol Commands ... 53

Appendix B: Stacks Configuration .. 59

Appendix C Linker configuration .. 62

Revision History .. 64

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter.1 Introduction

R11UM0169EJ0502 Rev.5.02 Page 8 of 67
Aug.8, 2024

1. Introduction

1.1 Summary

CN032 AC Servo Solution Firmware is an embedded application that implements the functions of a full featured
industrial servo controller. The reference code demonstrates the motion control capabilities of the Renesas RZ/T2M,
RZ/T2L or RZ/N2L device including its high-performance deterministic CPU core, flexible absolute encoder interface
and variety of connectivity options.

1.2 Function

The firmware implements the following main functions:

• Initialization of the RZ/T2M cores, RZ/T2L core or RZ/N2L core and its peripherals:

Executable code is transferred from the QSPI Flash memory to the device RAM. The configurable hardware is
initialized to support the preferred absolute encoder interface in the RZ/T2M. Whereas, the RZ/T2L and the
RZ/N2L realizes the absolute encoder interface using SCI UART. The ADCs and the Timers are configured to
interface with the Inverter. PWM Timer Interrupt handler is setup to invoke the Real-time control functions.
The SCI Interrupt handlers are setup to respond to host commands. The GPIO pins are initialized to interact
with the different digital inputs and outputs of the Controller board.

• Processing of the host commands

The firmware supports two communication protocols concurrently – ASCII Command Protocol and Binary
Packet Protocol. The command interpreter detects the type of the commands and invokes the appropriate
dispatcher. The firmware recognizes over 100 commands providing access to all control parameters and
algorithms. The host can obtain information periodically to track the status of each motor and control the
execution of motion requests. Alternatively, the host can configure the collection of samples from different
variables that can be buffered on the devices and analyzed later.

• Processing of the control loops algorithms in real-time

The control algorithms are invoked from the context of the timer that generates the PWM timing (62.5us). This
ensures deterministic – real-time performance of the control function. The real-time tasks include obtaining the
current position, executing the position control loop, executing the current control loop (Field Oriented Control),
generating the duty cycle for the next PWM period, and finally collecting data for future diagnostics.

1.3 Firmware Configuration

CN032 AC Servo Solution Firmware integrates the core motion control functionality with the features provided by two
additional libraries. The ECL library is utilized to initialize and interface with different encoder protocols. The Velocity
Profile Generation (VPG) library is used to generate a series of set points needed by facilitate point-to-point motion.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter.1 Introduction

R11UM0169EJ0502 Rev.5.02 Page 9 of 67
Aug.8, 2024

The figure below shows the CN032 AC Servo Solution Firmware place in relation to the rest of the firmware
components.

 Controller board

Motor Solution Firmware EC-LibVPG Library

S/W

H/W

Covered in this
document

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 2 Operating Environment

R11UM0169EJ0502 Rev.5.02 Page 10 of 67
Aug.8, 2024

2. Operating Environment

The library documented in this manual operates in the following environment:

Table 1 Operating Environment

Item Description

RZ/T2M version RZ/T2L version RZ/N2L version

MPU RZ/T2M
(Cortex®-R52 Dual)

RZ/T2L
(Cortex®-R52 Single)

RZ/N2L
(Cortex®-R52 Single)

Operating Frequency 800 MHz 800MHz 400MHz
Operating Voltage 3.3V
Development Environment IAR Embedded Workbench® for ARM 9.32.2
 Renesas Electronics e2studio 2023-07

Renesas Electronics FSPSC 2023-07 (*)

Flexible Support Package
(FSP)

RZT FSP v1.3.0

RZN FSP v1.3.0

(*) FSPSC (FSP Smart Configurator) is a code generation tool for IAR Embedded Workbench.

The configuration of HAL Driver, Event Link and Interrupt configured by FSP configurator shows in Table 2, Table 3,
and Table 4.

Table 2 HAL Driver Configuration

Function
Device Peripheral

Instance Name RZ/T2M RZ/T2L RZ/N2L Function Unit Channel

RS485 to USB
communication

YES YES YES

SCI

- 0 g_uart0

RS232 to USB
communication

YES YES YES - 3 g_uart3

Tamagawa
encoder detection

NO YES YES - 1 g_uart1
YES NO NO ENCIF(*) - 0 -

Count timer for
EtherCAT
communication

YES (**) YES YES
CMTW

- 0
g_timer3

Bus voltage
detection

YES NO YES

DSMIF

0 0

g_dsmif_0

g_dsmif_channel0

NO YES NO 0 1 g_dsmif_channel1

W phase current
detection

YES YES YES 0 2
g_dsmif_channel2

V phase current
detection

YES YES YES 1 0
g_dsmif_1 g_dsmif_channel3

Three-phase
PWM

YES YES YES
MTU3

- 3
g_three_phase0

g_timer3

YES YES YES - 4 g_timer4

Port output enable YES YES YES POE3 - - g_poe30

Event link YES YES YES ELC - - g_elc

Quad SPI flash
memory access

YES YES YES QSPI 0 CS0 g_qspi0

(*) ENCIF is supported by library, not HAL driver.
(**) This Stack is configured in RZ/T2M (CPU1) project for Ether CAT communication.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 2 Operating Environment

R11UM0169EJ0502 Rev.5.02 Page 11 of 67
Aug.8, 2024

Table 3 Event link configuration

Function ELC Destination Event Source

W phase current detection
DSMIF0_CAP_TRG0

MTU4.TCNT underflow
DSMIF0_CDCNT_INT_TRG0

V phase current detection
DSMIF1_CAP_TRG0

MTU4.TCNT underflow
DSMIF1_CDCNT_INT_TRG0

Table 4 Interrupt configuration

Module Event Name Event Source Event
Num Callback Function

Target Device

RZ/T2M RZ/T2L RZ/N2L

ICU INTCPU0 Software interrupt 0 0 R_IRQ0_isr YES NO NO

CMTW

CMTW0_CMWI CMTW0 Compare match 59 cmtw_cm_int_isr YES YES YES

CMTW0_IC0I CMTW0 Input capture of
register 0 60 cmtw_ic0_int_isr YES (*) YES YES

CMTW0_IC1I CMTW0 Input capture of
register 1 61 cmtw_ic1_int_isr YES (*) YES YES

CMTW0_OC0I CMTW0 Output compare
of register 0 62 cmtw_oc0_int_isr YES (*) YES YES

CMTW0_OC1I CMTW0 Output compare
of register 1 63 cmtw_oc1_int_isr YES (*) YES YES

MTU3
TGIA3 MTU3.TGRA input

capture/compare match 84 mtu3_capture_a_isr YES YES YES

TCIV3 MTU3.TCNT overflow 88 mtu3_counter_overflow_isr YES YES YES

ESC

ESC_SYNC0 EtherCAT Sync0
interrupt 277 esc_sync0_int_isr YES (*) YES YES

ESC_SYNC1 EtherCAT Sync1
interrupt 278 esc_sync1_int_isr YES (*) YES YES

ESC_CAT EtherCAT interrupt 279 esc_cat_int_isr YES (*) YES YES

SCI0

SCI0_ERI SCI0 Receive error 288 sci_uart_eri_isr YES YES YES

SCI0_RXI SCI0 Receive data full 289 sci_uart_rxi_isr YES YES YES

SCI0_TXI SCI0 Transmit data
empty 290 sci_uart_txi_isr YES YES YES

SCI0_TEI SCI0 Transmit end 291 sci_uart_tei_isr YES YES YES

SCI1

SCI1_ERI SCI1 Receive error 292 sci_uart_eri_isr NO YES YES

SCI1_RXI SCI1 Receive data full 293 sci_uart_rxi_isr NO YES YES

SCI1_TXI SCI1 Transmit data
empty 294 sci_uart_txi_isr NO YES YES

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 2 Operating Environment

R11UM0169EJ0502 Rev.5.02 Page 12 of 67
Aug.8, 2024

SCI1_TEI SCI1 Transmit end 295 sci_uart_tei_isr NO YES YES

SCI3

SCI3_ERI SCI3 Receive error 300 sci_uart_eri_isr YES YES YES

SCI3_RXI SCI3 Receive data full 301 sci_uart_rxi_isr YES YES YES

SCI3_TXI SCI3 Transmit data
empty 302 sci_uart_txi_isr YES YES YES

SCI3_TEI SCI3 Transmit end 303 sci_uart_tei_isr YES YES YES

ENCIF ENCIF_INT0 ENCIF CH0 Interrupt A 372 enc_ch0_int_isr YES NO NO

(*) This interrupt is implemented in RZ/T2M (CPU1) project for EtherCAT communication.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 13 of 67
Aug.8, 2024

3. File Structure

3.1 AC Servo Solution Kit (RZ/T2M)

The below table shows the file configuration of the CN032 AC Servo Solution Firmware for AC Servo Solution Kit
(RZ/T2M). Table 5 shows the file configuration of firmware for RZ/T2M.

Table 5 File configuration of firmware for RZ/T2M

File Description

Common\

 ethercat\ application/ecat The files in the directory are code specific for EtherCAT CiA402 communication

 ethercat\inc\r_ecat_confi
g.h

The file is header file for EtherCAT module device driver

 ethercat\src\r_ecat\r_ecat
_setting_rzt2.c

The file is code for EtherCAT module device driver

 ethercat\src\r_ecat\hal The files are header file and code for the hardware access layer of EtherCAT

 ethercat\src\r_ecat\phy The files are header file and code for EtherCAT PHY device driver

 ethercat\src\r_ecat\utiliti
es\batch_file\apply_patch
.bat

The batch file to apply a patch file on the Slave Stack Code

 ethercat\src\r_ecat\utiliti
es\batch_file\ CN032_AC
_Servo_Solution_CiA402
.patch

The patch file to be applied on the Slave Stack Code

 ethercat\src\r_ecat\utiliti
es\esi\Renesas_CN032_A
C_Servo_Solution_CiA40
2.xml

EtherCAT Slave Information file

 ethercat\src\r_ecat\utiliti
es\ssc_config\CN032 AC
Servo Solution
EtherCAT CiA402.esp

The project file to execute SSC Tool

 inc\platform.h Common type definitions header file

 inc\apl\m_common.h CN032 AC Servo Solution Firmware header file. Includes the motor data structure
and signatures of all global functions.

 inc\apl\m_biplane.h Macro definitions specific for the hardware of the Solution and the RZ/T2M device

 inc\shm The files in this directory are header files for shared memory access driver

 lib\ecl\r_ecl_rzt2_if.h Macros and function definitions of encoder interface library

 lib\ecl\Config_Fa_Coder
_V1.0.dat

Configuration file for the FA-Coder absolute encoder communication protocol

 lib\ecl\RZT2M_pinmux_ Pinmux file for the FA-Coder absolute encoder communication protocol

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 14 of 67
Aug.8, 2024

v1.0.bin

 lib\gcc\r_ecl_rzt2_gcc.a The Configurable hardware initialization library for GCC. It is used to facilitate the
loading of configuration that matches the specifics of the selected absolute encoder
interface protocol

 lib\gcc\libVPG.a The Velocity Profile Generation Library for GCC

 lib\r_ecl_rzt2_iar.a The Configurable hardware initialization library for IAR. It is used to facilitate the
loading of configuration that matches the specifics of the selected absolute encoder
interface protocol

 lib\r_vpg.a The Velocity Profile Generation Library for IAR

 src\apl\m_commands.c The code for all host commands that can be invoked

 src\apl\m_commutation.c The code for the motor commutation algorithms such as Space Vector Modulation,
Hall-based Trapezoidal Commutation

 src\apl\m_control.c The real-time algorithms control execution branches dependent on different state and
configuration options

 src\apl\m_homing.c The state machine implementing the homing algorithm

 src\apl\m_interlocks.c The functions checking various interlock conditions.

 src\apl\m_interpreter.c The command parser for the ASCII commands and the command decoder for the
binary packets.

 src\apl\m_phasing.c The functions implementing the different phasing algorithms.

 src\apl\m_pid_calc.c The Position control loop algorithm implementation

 src\apl\m_pos_read.c The encoder position reading control algorithm

 src\apl\m_recorder.c The data collection functions and the start / stop triggers evaluation

 src\drv\m_rzt.c Code specific for the hardware on the Solution and the RZ/T2M device

 src\apl\m_vpg_trap.c The Trapezoidal Velocity Profile Generator

 src\encoder\FACoder The files in this directory are dedicated to the implementation of the interface to the
FA-Coder absolute encoder interface protocol

 src\sharedmemory The files in this directory are code for shared memory access related to motor control

 src\sharedmemory\drv\s
hm

The file in this directory is code specific for shared memory access driver

Project\

 gcc\CN032_AC_Servo_S
olution_CPU0

RZ/T2M CPU0 project of CN032 AC Servo Solution firmware for RAM debugging
with GCC

 gcc\CN032_AC_Servo_S
olution_CPU0_serialboot

RZ/T2M CPU0 project of CN032 AC Servo Solution firmware project for serial boot
with GCC

 gcc\CN032_AC_Servo_S
olution_CPU0_serialboot

RZ/T2M CPU1 application binary file copied from CPU1 project when building the
project

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 15 of 67
Aug.8, 2024

\CPU1_boot_bin

 gcc\CN032_AC_Servo_S
olution_CPU1

RZ/T2M CPU1 project of CN032 AC Servo Solution firmware for RAM debugging
with GCC

 iccarm\CPU0 RZ/T2M CPU0 project of CN032 AC Servo Solution firmware for RAM debugging
with IAR

 iccarm\CPU0_serialboot RZ/T2M CPU0 project of CN032 AC Servo Solution firmware project for serial boot
with IAR

 iccarm\CPU0_serialboot\
CPU1_boot_bin

RZ/T2M CPU1 application binary file copied from CPU1 project when building the
project

 iccarm\CPU0_serialboot\
Flashloader_AT

The files in this folder provide bootstrapping and code transfer from the SPI Flash to
the device memory for IAR.

 iccarm\CPU1 RZ/T2M CPU1 project of CN032 AC Servo Solution firmware for RAM debugging
with IAR

- FA-Coder is a trademark of Tamagawa-seiki Corporation."

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 16 of 67
Aug.8, 2024

3.2 AC Servo Solution Kit (RZ/T2L)

The below table shows the file configuration of the CN032 AC Servo Solution Firmware for AC Servo Solution Kit
(RZ/T2L). Table 7 shows the file configuration of firmware for RZ/T2L.

Table 6 File configuration of firmware for RZ/N2L

File Description

Common\

 ethercat\ application/ec
at

The files in the directory are code specific for EtherCAT CiA402 communication

 ethercat\inc\r_ecat_con
fig.h

The file is header file for EtherCAT module device driver

 ethercat\src\r_ecat\r_ec
at_setting_rzt2.c

The file is code for EtherCAT module device driver

 ethercat\src\r_ecat\hal The files are header file and code for the hardware access layer of EtherCAT

 ethercat\src\r_ecat\phy The files are header file and code for EtherCAT PHY device driver

 ethercat\src\r_ecat\utili
ties\batch_file\apply_pa
tch.bat

The batch file to apply a patch file on the Slave Stack Code

 ethercat\src\r_ecat\utili
ties\batch_file\ CN032_
AC_Servo_Solution_Ci
A402.patch

The patch file to be applied on the Slave Stack Code

 ethercat\src\r_ecat\utili
ties\esi\Renesas_CN032
_AC_Servo_Solution_C
iA402.xml

EtherCAT Slave Information file

 ethercat\src\r_ecat\utili
ties\ssc_config\CN032
AC Servo Solution
EtherCAT CiA402.esp

The project file to execute SSC Tool

 inc\platform.h Common type definitions header file

 inc\apl\m_common.h CN032 AC Servo Solution Firmware header file. Includes the motor data structure and
signatures of all global functions.

 inc\apl\m_biplane.h Macro definitions specific for the hardware of the Solution and the RZ/T2L device

 inc\encoder The files in this directory are header files specific for SCI UART to communicate with
Tamagawa encoder

 inc\shm The files in this directory are header files for shared memory access driver

 lib\gcc\libVPG.a The Velocity Profile Generation Library for GCC

 lib\r_vpg.a The Velocity Profile Generation Library for IAR

 src\apl\m_commands.c The code for all host commands that can be invoked

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 17 of 67
Aug.8, 2024

 src\apl\m_commutation
.c

The code for the motor commutation algorithms such as Space Vector Modulation,
Hall-based Trapezoidal Commutation

 src\apl\m_control.c The real-time algorithms control execution branches dependent on different state and
configuration options

 src\apl\m_homing.c The state machine implementing the homing algorithm

 src\apl\m_interlocks.c The functions checking various interlock conditions.

 src\apl\m_interpreter.c The command parser for the ASCII commands and the command decoder for the
binary packets.

 src\apl\m_phasing.c The functions implementing the different phasing algorithms.

 src\apl\m_pid_calc.c The Position control loop algorithm implementation

 src\apl\m_pos_read.c The encoder position reading control algorithm

 src\apl\m_recorder.c The data collection functions and the start / stop triggers evaluation

 src\apl\m_rzt2l.c Code specific for the hardware on the Solution and the RZ/T2L device

 src\apl\m_vpg_trap.c The Trapezoidal Velocity Profile Generator

 src\encoder The files in this directory are code specific for SCI UART to communicate with
Tamagawa encoder

 src\sharedmemory The files in this directory are code for memory access shared between motor control
processing and EtherCAT communication processing

Project\

 gcc\CN032_AC_Servo_
Solution

RZ/T2L project of CN032 AC Servo Solution firmware for RAM debugging with GCC

 gcc\CN032_AC_Servo_
Solution_serialboot

RZ/T2L project of CN032 AC Servo Solution firmware project for serial boot with
GCC

 iccarm\ram_exe RZ/T2L project of CN032 AC Servo Solution firmware for RAM debugging with IAR

 iccarm\serial_boot RZ/T2L project of CN032 AC Servo Solution firmware project for serial boot with IAR

 iccarm\serial_boot\Flas
hloader_AT

The files in this folder provide bootstrapping and code transfer from the SPI Flash to
the device memory for IAR.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 18 of 67
Aug.8, 2024

3.3 AC Servo Solution Kit (RZ/N2L)

The below table shows the file configuration of the CN032 AC Servo Solution Firmware for AC Servo Solution Kit
(RZ/N2L). Table 7 shows the file configuration of firmware for RZ/N2L.

Table 7 File configuration of firmware for RZ/N2L

File Description

Common\

 ethercat\ application/ec
at

The files in the directory are code specific for EtherCAT CiA402 communication

 ethercat\inc\r_ecat_con
fig.h

The file is header file for EtherCAT module device driver

 ethercat\src\r_ecat\r_ec
at_setting_rzt2.c

The file is code for EtherCAT module device driver

 ethercat\src\r_ecat\hal The files are header file and code for the hardware access layer of EtherCAT

 ethercat\src\r_ecat\phy The files are header file and code for EtherCAT PHY device driver

 ethercat\src\r_ecat\utili
ties\batch_file\apply_pa
tch.bat

The batch file to apply a patch file on the Slave Stack Code

 ethercat\src\r_ecat\utili
ties\batch_file\ CN032_
AC_Servo_Solution_Ci
A402.patch

The patch file to be applied on the Slave Stack Code

 ethercat\src\r_ecat\utili
ties\esi\Renesas_CN032
_AC_Servo_Solution_C
iA402.xml

EtherCAT Slave Information file

 ethercat\src\r_ecat\utili
ties\ssc_config\CN032
AC Servo Solution
EtherCAT CiA402.esp

The project file to execute SSC Tool

 inc\platform.h Common type definitions header file

 inc\apl\m_common.h CN032 AC Servo Solution Firmware header file. Includes the motor data structure and
signatures of all global functions.

 inc\apl\m_biplane.h Macro definitions specific for the hardware of the Solution and the RZ/N2L device

 inc\encoder The files in this directory are header files specific for SCI UART to communicate with
Tamagawa encoder

 inc\shm The files in this directory are header files for shared memory access driver

 lib\gcc\libVPG.a The Velocity Profile Generation Library for GCC

 lib\r_vpg.a The Velocity Profile Generation Library for IAR

 src\apl\m_commands.c The code for all host commands that can be invoked

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 3 File Structure

R11UM0169EJ0502 Rev.5.02 Page 19 of 67
Aug.8, 2024

 src\apl\m_commutation
.c

The code for the motor commutation algorithms such as Space Vector Modulation,
Hall-based Trapezoidal Commutation

 src\apl\m_control.c The real-time algorithms control execution branches dependent on different state and
configuration options

 src\apl\m_homing.c The state machine implementing the homing algorithm

 src\apl\m_interlocks.c The functions checking various interlock conditions.

 src\apl\m_interpreter.c The command parser for the ASCII commands and the command decoder for the
binary packets.

 src\apl\m_phasing.c The functions implementing the different phasing algorithms.

 src\apl\m_pid_calc.c The Position control loop algorithm implementation

 src\apl\m_pos_read.c The encoder position reading control algorithm

 src\apl\m_recorder.c The data collection functions and the start / stop triggers evaluation

 src\apl\m_rzn.c Code specific for the hardware on the Solution and the RZ/N2L device

 src\apl\m_vpg_trap.c The Trapezoidal Velocity Profile Generator

 src\encoder The files in this directory are code specific for SCI UART to communicate with
Tamagawa encoder

 src\sharedmemory The files in this directory are code for memory access shared between motor control
processing and EtherCAT communication processing

Project\

 gcc\CN032_AC_Servo_
Solution

RZ/N2L project of CN032 AC Servo Solution firmware for RAM debugging with GCC

 gcc\CN032_AC_Servo_
Solution_serialboot

RZ/N2L project of CN032 AC Servo Solution firmware project for serial boot with
GCC

 iccarm\ram_exe RZ/N2L project of CN032 AC Servo Solution firmware for RAM debugging with IAR

 iccarm\serial_boot RZ/N2L project of CN032 AC Servo Solution firmware project for serial boot with
IAR

 iccarm\serial_boot\Flas
hloader_AT

The files in this folder provide bootstrapping and code transfer from the SPI Flash to
the device memory for IAR.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 20 of 67
Aug.8, 2024

4. Firmware Architecture

4.1 Overview

CN032 AC Servo Solution Firmware architecture is designed as a set of modules with specific purpose, operating on data
structures passed as arguments. The use of global variables is avoided whenever possible. The functions are invoked in a
strictly defined priority and context. This is intended to guarantee the deterministic and robust operation of the control
algorithms.

The firmware operations are partitioned in different domains based on their need for deterministic behavior. The figure
bellow illustrates these domains:

Startup
Functions

Main Loop:
Interpreter,
Command

Handler

Control Loops
Position
Velocity
Current

Timer IRQ
(PWM Period)

RESET

SCI IRQ
(Host Rx/Tx)

Host SCI
Rx/Tx

ECL or SCI IRQ
(Encoder Rx/Tx)

Absolute
Encoder I/O

Non Real-Time

Real-Time Real-Time Real-Time
Synchronous Asynchronous Synchronous

Figure 1 Firmware code execution domains.

The operation of the above functions at run-time can be presented in a time diagram that shows their execution flow. The
communication tasks overlap with the others because the RZ/T2M, RZ/T2L or RZ/N2L device employs a dedicated
hardware block or SCI communication to interface with the absolute encoders and a FIFO buffer to serve the SCI
communications with minimum CPU participation.

Startup Main Loop

Control Loops

Main Loop

Time

PWM Cycle

Figure 2 Scheduling of firmware tasks (not to scale)

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 21 of 67
Aug.8, 2024

The coordination between the different functional blocks is implemented with the use of shared data structures that
encapsulate the information specific for each motor and each communication interface. In the figure below, the arrows
represent the data flow between the functional blocks (in rectangles) and the data structures that they share (in ovals).

Position Reading
Current Control Loop
Velocity Control Loop
Position Control Loop

Data Recorder

PWM Duty x6

GPIO

Inc Encoder x2

ADC Readingx2

Main Loop

Command Interpreter
Command Executor

Interlocks Check
Velocity Profile Generator

SCI 3
or

SCI 0

Host Communication

Host Communication Protocols

Command Buffers Reply Buffers

VPG FIFO Motor
Status

Absolute Encoder
Communication Interface

RZ/T2M
or

RZ/T2L
or

RZ/N2L

Peripherals

Abs Encoder
or

SCI 1

Encoder
Position

Figure 3 Data flow

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 22 of 67
Aug.8, 2024

4.1.1 Startup Functions

The Startup functions are executed upon reset of the device. They are executed only once and are not dependent on any
timing constraints. The main phases of the RZ/T2M, RZ/T2L or RZ/N2L device initialization and the related functions
are described below:

Startup Operation Description

Peripheral
Initialization

The second phase of device initialization invokes the functions that configure
the peripherals needed by the motion control firmware. The generated files are
stored in the folder cg_src.

Data Structures
Initialization

m_startup()

The firmware initialization consists of setting up default values to the static
data structures, initializing the pointers to the hardware registers to be used by
the control algorithms, setting the default state of the GPIOs.

The initialization phase completes by loading the programmable encoder
protocol configuration based on the selected type.

This initialization phase is implemented in the function m_startup() in the
src\m_rzt.c file

4.1.2 Non-Real-Time Functions

The non-real time functions are executed from the context of an infinite loop that begins execution after the firmware
initialization is completed. The functions executed are described in the table below:

Non-Real-Time Function Description

Interptet and
Execute Host
Command

m_interpreter()

The interpreter function looks up the host ASCII command in the command
dictionary and finds the appropriate command function that needs to be
invoked. Alternatively, it directly sets or gets a value when the host command
is only requesting parameter change or report.

Run Velocity Profile
Generation

vpg_update()

The Velocity Profile Generator is invoked periodically to generate set-points
required for the execution of a point-to-point motion. Since the execution time
of the algorithm depends on the phase of the motion profile, the results are
buffered and the real-time task that invokes the position control loop function
gets the data through dedicated FIFO buffer.

Trigger Data
Recorder

m_rec_begin()

This function checks for a condition that will start or stop the data recording
functionality. The condition can be selected from a set of options available to
the user.

Check Interlocks

interlocks()

The interlocks are conditions reflecting errors that indicate faulty hardware or
underperforming actuators. They are evaluated periodically and if any
erroneous condition is detected the servo control operation is shutoff.

Run Homing State
Machine

fsm_homing()

The Homing State machine executes a series of steps that move a servo axis to
known position defined by the location where a designated input (home flag)
is triggered and / or the position where the encoder index is captured.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 23 of 67
Aug.8, 2024

All of the functions described above are invoked from the function m_foreground() defined in the file m_control.c.

4.1.3 Periodic, Real-Time Functions

The periodic, Real-Time functions are the one executing the motion control algorithms and their determinism is directly
dependent on the quality of the motion. For example: any jitter in the position reading timing translates to inaccurate
calculation of the derivative component of the position loop affecting the accuracy of the error compensation result.

The real-time operations are executed in the context of the IRQ Handler triggered by the Timer that generates the PWM
cycle (62.5 us).

Real-Time Function Description

Read Encoder
Position

pos_read()

The position reading function is supports different types of encoder interfaces. In case
an incremental encoder is configured this function reads the dedicated timer counter
registers. In case an absolute encoder type is selected, the function reads the position
from a memory location where the last polling request stored the result. Once the
absolute encoder position is obtained, the function initiates another polling transaction
so its results will be available for the next time slice.

The pos_read() function is implemented in the file m_pos_read.c

Position Control
Loop

pos_loop()

The position control loop implements a classic PID regulator with enhancements such
as Velocity and Acceleration Feed Forward, Output Bias and Output Limit control.

The pos_loop() function is implemented in the file m_control.c

Velocity Control
Loop

vel_loop()

The speed control loop performs PID control from the difference between the target
speed and the current speed based on the output result of the position control loop.

The vel_loop() function is implemented at the end of pos_loop()

Read ADC
Values

crnt_read()

The current feedback is intended for implementation of the current loop control
algorithm as well as the evaluation of the interlock that tracks the motor overload and
the amplifier overload.

The reading of the ADC values is hardwired to start at the end of each PWM cycle.
This is needed to eliminate the switching noise impact on the ADC operation.

The crnt_read() function is implemented in the file m_rzt.c

Current Control
Loop

crnt_loop()

The current loop control loop uses the information from the ADC feedback and the
encoder position to calculate the direct and quadrature currents creating torque
generating magnetic flux. The current PI regulators operation can be disabled, this
algorithm also invokes the Space Vector Modulation function that produces the duty
cycles for each of the motor phases.

The function operates in different modes depending on the selected mode of motor
phasing and the phasing status.

The crnt_loop() function is implemented in the file m_control.c

Recorder

m_recorder()

The recorder function is an important feature that enables the real-time data collection
for the purpose of tuning motion control parameters or troubleshooting dynamic
performance of the firmware. The recorder stores the current values of up to four
variables in circular buffers. The start and stop of the data recorder are configurable by
the host computer.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 24 of 67
Aug.8, 2024

The m_recorder() function is implemented in the file m_recorder.c

4.1.4 Communication Functions

The first type of communication functions is executed in response to received commands from the host computer. They
are invoked by interrupt handler signaling the reception of a new data from the host or signaling ability to send more data
to the host computer.

The second type of communication functions handles the interface with the absolute encoders. Typically, they originate
request to get the current position periodically.

Communication Function Description

Data Reception
from Host

m_rx_interrupt()

The data reception function is serving the interrupt requests from the SCI and
handles the specifics of the host communication protocol. This function
recognizes the type of the command and the decoding algorithm required. In
case of processing binary packet protocols, it also handles the checksum
calculation and error handling.

This function handles concurrent command requests by maintaining individual
buffers for each physical interface. The command interpreter is invoked along
with pointer to the command data structure that includes command request and
reply to buffers. This enables the concurrent support of different host
interfaces.

The data reception function is implemented in the file m_rzt.c

Data Transmission
to Host

m_tx_interrupt()

The Data Transmission function communicates the result of the command
request back to the host. It utilizes the SCI FIFO buffers to minimize the CPU
participation in the communication task.

The data transmission function is implemented in the file m_rzt.c

Polling Absolute
Encoder Data

The encoder polling is intended to provide up to date position feedback to the
control algorithms. This operation is facilitated by dedicated and configurable
hardware block in the RZ/T2M device and does not involve the main CPU.

The polling is initiated by the real-time control task, The result of the encoder
position polling is stored in a shared memory to be used on the next time slice.

The encoder interface functions for RZ/T2M are implemented in the files with
the names corresponding to the encoder communication protocol under the
folder src\encoder.
The encoder interface functions for RZ/T2L and RZ/N2Lare implemented in
the files with the names corresponding to the encoder communication using
SCI UART under the foloder src\drv\sci_encoder.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 25 of 67
Aug.8, 2024

4.2 Data Types

CN032 AC Servo Solution Firmware defines all data types in the file m_common.h. The table below describes the most
important data types and their purpose:

Data type Description

TReg32 This type represents 32-bit value as individually accessible two 16-bit values
and as four 8-bit values.

TMotionParams This type encapsulates all motion parameters required for the definition of a
point-to-point motion such as target position, velocity, acceleration, jerk, and
velocity profile mode

TMotionProfile This type keeps the motion profile state at specific time and includes snapshot
of the velocity profile generation state, position, velocity, acceleration and
stopping distance.

TPosVel This data structure keeps a pair of position and velocity used by the streaming
of velocity profile from the host computer (PVT streaming)

t_motor_pars This type combines all persistent motor parameters.

t_motor This is main data structure used by the firmware to access all persistent and
run-time parameters required for the control of one servo motor. It simplifies
the control of multiple motors by instantiating multiple data structure of this
type. All motion control functions operate on this data structure by receiving a
pointer to specific motor instance as a first parameter.

t_trace This data structure encapsulates all settings that control the operation of the
data recording algorithms.

t_console This data structure is intended to encapsulate the communication link between
the host computer and each communication interface on the Biplane board.
This data structure includes command buffer, reply buffer and the pointers that
the interrupt handlers use to access the buffers.

t_command This data type is defined in the m_interpreter.c file where the commands are
defined, and the interpreter code is implemented. The structure associate’s
pointer to variable or function with the name of the ASCII command used to
expose them to the host computer.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 4 Firmware Architecture

R11UM0169EJ0502 Rev.5.02 Page 26 of 67
Aug.8, 2024

4.3 Data Structures and Variables

The data structures used by the firmware are instances of the types described in the previous chapter. The table below
describes the specific variable instances and their purpose in the firmware:

Data structure instance Description

t_motor m1 The data structure represents the specific settings for the servo motor
supported by the CN032 AC Servo Solution Firmware.

t_console con2 The variable is dedicated for the communication interface providing serial
connection to a host computer.

short g_counter This variable retains the most recent value of the PWM Timer counter at the
end of the real-time control algorithms operation. The value useful to monitor
the CPU utilization for real-time tasks.

long g_tick This variable is incremented every time slice. It is used to coordinate the
operation between the real-time tasks and the main loop.

short g_suspend This flag is intended for temporary preventing the real-time functions from
executing. Its purpose is to enable time-sensitive operations such as writing
flash memory from being affected by the real-time functions.

t_command
Commands[]

This is an array of command data structures where all host commands are
defined. They consist of ASCII name, type and pointer to either function that
executes the command or variable that holds the referenced parameter.

4.4 Enumerations, Macros and Constants

The table below lists all enumerations defined in the CN032 AC Servo Solution Firmware and the description of the
individual values:

Enumeration Description

ETYPE Defines the different encoder types supported

VPG_STATE Defines the states of the Velocity Profile Generator (completed, acceleration,
deceleration, plateau, etc.)

VPGMode Defines the different VPG modes – trapezoidal, spline, Bezier

HOMING_STATES Defines the state machine of the Homing algorithm

CommutationModes Defines the different operation of the current loop algorithm

ParserStates Defines the states of the binary protocol parser

ProtocolTypeRequest Defines the type of host message (ASCII, Packet)

PacketCode Defines the type of the packet received

PacketError Defines the possible errors reported by the packet protocol interpreter

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 5. Initialization and Startup Functions

R11UM0169EJ0502 Rev.5.02 Page 27 of 67
Aug.8, 2024

5. Initialization and Startup Functions

5.1 Bootloader

The bootloader is intended to initialize the QSPI interface and load the executable code from the flash memory to the
RZ/T2M, RZ/T2L or RZ/N2L RAM. Once the data transfer is completed, the execution flow is directed to the main()
function defined in the file main.c.

The files implementing this function are stored in the project folder FlashLoader_AT.

5.2 Peripherals Initialization

All peripherals used in the CN032 AC Servo Solution Firmware are initialized the source files are stored in folder cg_src
and described in the table below:

File Name Peripheral Description

r_cg_mtu3.c Configure MTU timers as position decoders for the Incremental Encoder
phases

r_cg_s12ad.c Configure the ADC for the current feedback

r_cg_scifa.c Configure the SCI communication interfaces

r_cg_poe3.c Configure the POE3 unit for overcurrent detection

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 5. Initialization and Startup Functions

R11UM0169EJ0502 Rev.5.02 Page 28 of 67
Aug.8, 2024

5.3 Firmware Initialization

The firmware initialization is intended to start the operation of the peripherals, initialize the internal data structures,
restore the motor parameters from the persistent storage and configure the programmable encoder interface block. This
sequence is implemented by the function m_startup() defined in the file m_rzt.c.

The firmware defines a data structure that defines the motor specific parameters – m1. First, the startup function
initializes the members to point at the registers of the timers assigned to the channel.

Next, the startup algorithm invokes the function setup_motor() for motor. This function sets the default parameters of all
motor structure data members.

Once the data structures are initialized, the startup function starts the timers generating PWM output –
R_MTU3_C3_4_6_7_Start() and the timers processing the incremental encoder counting – R_MTU3_Cx_Start().

The startup routine continues with re-assigning the SCI3 or SCI0 interrupt vectors to new handlers. This is intended to
unify their implementation. The function setup_scif() is invoked to configure the data send/receive buffer pointer for SCI
interface as well as the data structure (con2) of type t_console, that enable its operation. Finally, the SCI interface is
enabled by invocation of the function R_SCI3_Start() or R_SCI0_Start().

The startup procedure outputs the character “R” to the SCI3 or SCI0 interface signaling any host connected to the serial
interface (UART or RS485), that the module is ready.

Next the startup initializes the data structures required for supporting the data recording operation. This is done by
invoking the function m_TraceSetup().

As a last step of the startup function, the algorithm initializes the configurable encoder interface hardware in case the
RZ/T2M or SCI1 interface in case the RZ/T2L or the RZ/N2L. This is operation is conditional on the encoder type set to
the motor data structures. If it is not incremental type, then the algorithm waits for 150ms and then invokes the function
setup_encoder().

With this the firmware initialization is completed and the execution flow is returned to the main loop that repeatedly
invokes the function m_foreground().

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 29 of 67
Aug.8, 2024

6. Servo Control Operation

The servo control loop is designed to maintain a desired motor position. This is accomplished by periodically evaluating
the difference between the desired and the current position and calculating a compensation to be executed by the motor.

When the servo control loop is first enabled, the desired position is set equal to the current position of the motor. In this
state, the algorithm maintains the current position in one place by compensating external disturbances such as gravity,
voltage sag or mechanical forces.

When a motion command is issued, a dedicated algorithm (Velocity Profile Generator) calculates the desired of position
for each time the servo control loop is executed. The ability of the servo control loop to follow the desired positions
creates a motion with programmed and velocity and acceleration.

The operation of the servo control loop and the main functions taking part of it is shown on the figure below:

Figure 4 Servo Control Loop

The servo control loop is executed continuously with programmable period. The accuracy of the time between each run is
critical for the accuracy of the position error compensation calculations and the ability of the controller to minimize the
settle time at the end of any motion.

Read Encoder
Position

Calculate
Compensation
(PID Control)

Generate
Torque

(FOC/SVM)

Generate New
Target

Position (VPG)

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 30 of 67
Aug.8, 2024

6.1 Motor Position - Encoder Interface

The purpose of the position feedback is to provide accurate information about the motor position. It is used as an input
parameter to the motor control commutation as well as to the position control described below.

CN032 AC Servo Solution Firmware includes variety of encoder feedback options. The possible encoder options are
described in the enumeration ETYPE. The currently configured encoder type is stored in the t_motor data member
encoder_type. The table below describes the valid settings for this variable:

ETYPE Enumeration Encoder Type

ETYPE_INCREMENTAL = 0 Incremental encoder – the position change is represented by two
phased pulse sequence where the phase between them indicates
the direction of motion. A dedicated mode of the timer operation
is decoding direction and counting the pulses representing
position change. The software reads the current position from
the timer counter. It has 16-bit resolution, so the software
expands the range to 32 bits.

ETYPE_APE_ENDAT = 1 Absolute encoder with EnDat 2.2 communication protocol.

ETYPE_APE_BISS = 2 Absolute encoder with BiSS communication protocol.

ETYPE_APE_FACODER = 3 Absolute encoder with FA-Coder communication protocol.

ETYPE_APE_AFORMAT = 4 Absolute encoder with A-format communication protocol.

ETYPE_APE_HIPERFACE_DSL = 5 Absolute encoder with Hiperface DSL communication protocol

The incremental encoder feedback position is lost after power cycle, and this requires the execution of algorithms such as
Phasing for rotor position identification and Homing – for machine position identification. Another incremental encoder
specific feature is the presence of Index pulse – once every revolution. The RZ/T2M timer can use the encoder index as a
trigger to capture the position where it has occurred. This operation is hardware defined and does not depend on the
speed of motor rotation or any software latency. The index capture mechanism is used for precise initialization of the
motor coordinate system as part of the homing procedure.

The absolute encoders eliminate the need for phasing and homing, but require additional configuration parameters (bit
rate, bus delay compensation). Depending on the absolute encoder technology they also may require battery backed
multi-turn counter and the software must monitor their status for possible battery fault condition. The RZ/T2M hardware
blocks perform all interaction with the absolute encoders without the need of CPU involvement.

The absolute encoders offer the ability to store application specific information in an internal EEPROM memory. But the
CN032 AC Servo Solution Firmware does not use the methods that access the EEPROM memory of the connected
absolute encoder.

Important Notice!

The initialization of the RZ/T2M encoder interface hardware can only be executed once per power cycle. For this
reason, the change from one absolute encoder type to another requires intermediate switch to incremental
encoder type. Example of switching from BiSS to EnDat encoder:

(Assuming the current encoder type is ETYPE_APE_BISS)
1. Set the encoder to ETYPE_INCREMENTAL
2. Save the motion parameters to Flash memory
3. Restart firmware
4. Set the encoder to ETYPE_APE_ENDAT
5. Save the motion parameters to Flash memory

The change between absolute and incremental encoder does not require power cycle.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 31 of 67
Aug.8, 2024

6.2 Motor Control - Torque Generator

CN032 AC Servo Solution Firmware includes functions supporting only main category of motors –Brushless DC Motors
or AC Servo Motors. The type of the motor being controlled is defined by the motor control structure data member
motor_type. The valid setting is described in the table below:

motor_type setting Motor Type

3 BLDC / PMSM 3-Phase Motor

The motor control algorithms are intended to generate motor torque proportional to the input parameter.

The Brushless DC (BLDC) motor category includes Permanent Magnet Synchronous Motors (PMSM) as well as Linear
Motors and AC Servo Motors. All of them share the same principle of torque generation created by three-phase stator
windings and permanent magnet rotor with different number of pole pairs.

The three-phase motors are controlled by creating a three-phase voltage that produces magnetic flux with desired
magnitude and orientation. This flux can be represented as Space Vector and the process of its calculation is called Space
Vector Modulation. It takes the two flux components – magnitude and angle and produces three phase PWM duty cycle
numbers stored in the Timer registers to generate the designed phase voltage.

The torque generating flux angle is always dependent on the current position of the rotor. When the controller is
restarted, the rotor position is not known (assuming an incremental encoder is used). For this reason, a Phasing algorithm
(described in the following chapter) needs to be executed. Until it completes, the motor control can only rely on the rotor
position feedback provided by the Hall Sensors (when they are available). In this mode, the motor control is implemented
by generating voltage vector in one of the six possible angles identified by the Hall sensors. The figure below represents
the structure of the motor control algorithm in this mode:

Scale Duty
Cycle % to

Timer Counts

Halls Sensor Position
Feedback

PWM
Output

Command
Voltage

Angle Lookup
Table and

Scaling

GPIO

Hall Phase A

Hall Phase B

Hall Phase C

Figure 5 Hall Sensors Based Voltage Control

The maximum torque is generated when the flux is oriented at 90 deg. with respect to the rotor N-S poles. For this
reason, the angle of the flux is taken from the current position of the rotor within one electrical cycle. The electrical cycle
is equal to the number of encoders counts per mechanical revolution divided by the number of the rotor pole pairs.

The input value for the torque generating algorithm can be interpreted as desired voltage or current. The use of input
voltage is simple because the only information required for its calculation is the motor position. This is approach can be
called open loop voltage control – it is shown on the picture below:

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 32 of 67
Aug.8, 2024

Space Vector
Modulation
(Sinusoidal

Commutation)

Encoder Position Feedback

PWM
Output

Command
Voltage Inverse Park

Transformation
0

Timer /
Quadrature

Decoder

Phase A

Phase B

Figure 6 Encoder Based Voltage Control

The voltage control does not reflect the actual torque created because every motor produces Back Electromotive Force
(BEMF). The BEMF voltage is proportional to the speed of the motor and the number of the windings of each phase. As
a result, the effective voltage applied to the motor windings is the difference between the controller PWM output voltage
and the BEMF generated voltage. Subsequently, the current flowing through the motor windings is dependent on the
speed of the motor.

The Field Oriented Control (FOC) algorithm is developed to eliminate the significance of the motor speed to the
generated torque. This is accomplished by implementing current feedback that provides measure for the actual current
(and torque) being produced. The FOC algorithm structure is described in the diagram below:

D Current
PI Controller

Q Current
PI Controller Space Vector

Modulation
(Sinusoidal

Commutation)

Encoder Position
Feedback

PWM
Output

Command
Current Inverse Park

Transformation

-

Clark
Transformation

Current Sensing
C=-A-B

Park
Transformation

A
B
C

Beta

Alpha

-“0”

Current A

Current B

Timer /
Quadrature

Decoder

Phase A

Phase B

Figure 7 Field Oriented Control Structure

The currents of two of the three phases are sampled continuously by the controller ADCs. The third phase current is
reconstructed (Ia + Ib + Ic = 0). The Clark and Park transformations are calculating the components of the torque vector
as two orthogonal vectors of representing two current currents:

• Quadrature current – it represents the torque generating flux, perpendicular to the N-S poles of the rotor.
• Direct current – it represents the heat generating force – it should be always 0.

Each of the two currents is compared with it set points and the error is compensated by Proportional – Integral (PI)
regulators. The described FOC algorithm is implemented by the function commutate_foc() in the file m_control.c. The
algorithm uses the following motor parameters as input values:

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 33 of 67
Aug.8, 2024

t_motor data member Description

counts2rad Coefficient representing the resolution of the encoder per one
electrical cycle.

phase_angle This parameter represents the orientation of the flux vector with
respect to the rotor North pole.

p_iu Pointer to the variable holding the U-phase sampled current

p_iv Pointer to the variable holding the V-phase sampled current

foc_id Calculated direct current

foc_iq Calculated quadrature current

foc_id_err Calculated direct current error

foc_iq_err Calculated quadrature current error

foc_vd Calculated direct voltage

foc_vq Calculated quadrature voltage

foc_alpha Alpha component of the voltage vector

foc_beta Beta component of the voltage vector

The final step of the motor control algorithm execution is the space vector modulation. It is implemented by the function
commutate_svm() in the file m_commutation.c. This function takes the Alpha and Beta voltages calculated by the FOC
algorithm and returns the corresponding duty cycle for each phase.

The algorithm for torque generation is configurable run-time by the setting of the motor variable commutation_mode.

commutation_mode setting Description

0 (CM_SVM) Voltage Control with Space Vector Modulation

1 (CM_FOC) Current Loop with Field Oriented Control

2 (CM_HALLS) Hall Sensor Based Control

3 (CM_FORCED) External / User Defined Phase Voltage Setting

4 (CM_ENC_AND_DSM) Sinusoidal Vector Control with Encoder and Delta Sigma Modulator

5 (CM_ENC_AND_CT) Sinusoidal Vector Control with Encoder and Current Transducer

6 (CM_CT) Sinusoidal Vector Control with Current Transducer

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 34 of 67
Aug.8, 2024

6.3 Position Control – PID Regulator

The position control algorithm takes the position error as an input and calculates output result intended to counter this
error. The position loop control function is called pid_calc() and is implemented in the file m_pid_calc.c.

The structure of the PID regulator is shown on the picture below:

KVff

KAff

KP-
KD * Derivative

Term

KI * Integral
Term

+

Integral Limit

Output Limit

Encoder Position Feedback

Output

Command
Acceleration

Bias

Command
Velocity

Command
Position

Figure 8 PID Regulator Structure

The position error is calculated and passed as an input parameter to the pid_calc() function. The position error is
represented in encoder counts.

The configuration parameters for the position control function are stored in the t_motor data structure. They are
described in the detail in the table below:

t_motor Data Member Description

crnt_kp Proportional gain (0 – 32767)

crnt_ki Integral gain (0 – 32767)

crnt_kd Differential gain (0 – 32767)

integral_limit Integration limit (0 – 32767)

crnt_kvff Velocity feed forward (velocity gain)

crnt_kaff Acceleration feed forward (acceleration gain)

crnt_bias Bias – added directly to the output result

cmd_vel Command velocity

cmd_acc Command acceleration

pos_loop_limit Output limit (0 – 32767)

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 35 of 67
Aug.8, 2024

 Temporary variables:

pos_error Stores the position error from the last invocation of the pid_calc() function.

derivative_err Stores the calculated derivative of the position error (the difference between
the last and the current position error)

integral_err Stores the calculated integral of position error

The PID control parameters are not directly accessible by the host computer. They are buffered and copied to the
variables used by the pid_calc() function only when the servo control is turned on, a new motion is started or an existing
motion is stopped. The parameters are updated inside the function m_update() that gets invoked by the functions
described above. The picture below shows the parameter buffering mechanism and the related functions.

The purpose of the PID gains buffering is intended to update them synchronously and all at the same time. Setting the
parameters one at a time or allowing the update to be interrupted may lead to glitch in the output of the control function.
This would introduce undesired position error.

The function pid_calc() returns a new output value to be fed as an input to the motor commutation algorithms described
in the previous chapter. The output value range is in the range of +/-32767.

buff_kp
buff_ki
buff_kd

buff_kvff
buff_kaff

Interpreter m_update() pid_calc()

Figure 9 Buffering of Position Loop Parameters

crnt_kp
crnt _ki
crnt _kd

crnt _kvff
crnt _kaff

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 36 of 67
Aug.8, 2024

6.4 Motion Planning - Velocity Profile Generator

The Motion Planning function defines how the motor will execute a motion from one position to another. First, the
algorithm uses the current and the target positions to calculate the desired travel distance. Then it uses the defined
maximum acceleration, velocity, and deceleration to calculate the length of the acceleration and deceleration motion
phases. The figure below presents typical trapezoidal velocity profile that includes all motion phases:

Figure 10 Trapezoidal Velocity Profile

Based on the travel distance and the motion parameters, the algorithm also determines the length of the constant velocity
motion phase. In case the travel distance is too short, the motion may never reach the maximum desired velocity.

The diagrams below present an example of a short move where the motion never reaches the maximum velocity.

Figure 11 Position Profile for short move to 1000

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 37 of 67
Aug.8, 2024

Figure 12 Trapezoidal Profile for a short move

CN032 AC Servo Solution Firmware includes several velocity profile generation algorithms that use different math
functions to shape the velocity profile such that it will meet the application specific requirements (*). The figure below
shows the velocity profile calculated with the help of a Spline function:

Figure 13 Spline-based Velocity Profile

The smoother velocity profile reduces the vibrations inherent to the trapezoidal profile, but this comes at the expense of
longer time to reach a target position. The selection of specific velocity profile is a tradeoff between the time to reach a
target position and the settle time at the end of the motion.

The figure below shows a velocity profile generated with the help of a Bezier-curve which enables the individual
definition not only of the acceleration and deceleration settings, but of their derivatives (jerk) as well.

(*) CN032 Servo Solution supports the Trapezoidal Velocity Profile only, but not the Spline-based Velocity Profile and
Bezier-curve based Velocity Profile.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 38 of 67
Aug.8, 2024

Figure 14 Bezier-curve based Velocity Profile

All the velocity profiles described above only execute a single motion from one position to another. The velocity is zero
at the beginning and at the end of this operation. This mechanism is not sufficient for the control of complex mechanism
such as robots, gantry stages or CNC machines. These applications require that the host computer generates the complex
velocity profiles of the motor. Since the communication bandwidth between the host and the controller is inherently
limited, the velocity profiles are presented as sets of Position and Velocity over a fixed time slices (typically 5ms to
20ms). Hence the name Position-Velocity-Time for these profile time. The PVT points are streamed to the controller
which in turn execute interpolation algorithm to generate the desired position and velocity set-points each 50
microseconds.

The Velocity Profile Generator operation is defined by state machine with the following states:

State Value Description

Idle / Motion
Completed

0 Default / Final state.

Acceleration 1 The motion is accelerating

Deceleration 2 The motion is decelerating

Plateau 3 Constant velocity

Streaming /
PVT
Interpolation

4 Interpolation

The state of the velocity profile generator is stored in the t_motor data member vpg_state.

When the motion is started all motion preparation is handled by the function update_ctrl(). It in turn invokes the startup
function of the currently selected velocity profile generator that returns the new VPG state. From this point on the VPG is
invoked periodically to produce position and velocity set-points for every cycle of the position control loop. In addition,
the VPG returns the new state. Once the motion profile is completed, the state is set to Idle and the periodic VPG
function is not invoked anymore.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 39 of 67
Aug.8, 2024

The table below describes the startup and the periodically invoked functions for each velocity profile type:

 VPG Type Startup VPG Function

update_ctrl()

Periodic VPG Function

vpg_update()

Trapezoidal vpg_trap_start() vpg_trap_next()

Spline-Curve vpg_spline_start() vpg_spline_next()

Bezier-Curve vpg_bezier_start() vpg_bezier_next()

PVT
Interpolation

vpg_pvt_start() vpg_pvt_next()

The data produced by the VPG is not passed directly to the Position Control Loop. Instead, they are buffered in a
dedicated FIFO buffer. This mechanism allows the asynchronous execution of the VPG functions with respect to the
position control loop operation. This separation serves two goals:

1. The generation of the velocity profile can be very complex and may require calculation ahead of time. The
asynchronous approach avoids the need to “oversize” computational budget of the real-time position and current
control loops.

2. The separation of the VPG calculation from the real-time control loop allows for easy redesign where the VPG
generator is running on another CPU core or even on another network device.

6.5 Motion Control Parameters

The Motion Control Parameters include the settings that define where the motor is going to and how it is supposed to get
there. The motion to be executed also depends on the current state of the motion controller – its current position, position
error, current velocity, and current state.

6.5.1 Target Position

The target position is expressed in encoder counts. It can be defined explicitly with a request for Absolute Target
Position. (ASCII command ABS).

Alternatively, the target position can be defined as a distance relative to the current position (ASCII command REL).
This way of defining the target obviously depends on the motor position at the moment the motion is started. Note that
the between specifying the relative distance and the moment the motion is started, the current position may change. This
in turn will lead to change of the expected target position.

6.5.2 Maximum Velocity

The maximum velocity parameter defines a limit that may or may not be reached depending on the other motion
parameters. The velocity parameter units are defined as “Encoder Counts per Position Loop interval”. Since the position
loop interval can be very short time (as little as 62.5 microseconds), the velocity value is communicated as a fixed-point
number in 16.16-bit format after being multiplied by 65536.

The conversion of the units from Encoder Counts per Second to the CN032 AC Servo Solution Firmware format, the
number must be multiplied by the position loop time slice and then multiplied by 65536. For example:

If the position loop is running at 125 microseconds then 5000 enc.counts per second is converted as:

5000 * 0.000125 * 65536 = 40960

The maximum velocity value corresponding to 5000 enc.counts per second is 40960.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 6. Servo Control Operation

R11UM0169EJ0502 Rev.5.02 Page 40 of 67
Aug.8, 2024

6.5.3 Maximum Acceleration and Deceleration

The maximum acceleration and deceleration parameters define a velocity profile slope that may or may not be reached
depending on the capabilities of the control hardware and the specific motor load. The acceleration parameter units are
defined as “Encoder Counts per Position Loop interval squared”. Since the position loop interval can be very short time
(as little as 62.5 microseconds), the acceleration and deceleration values are communicated as a fixed-point number in
16.16 bit format after being multiplied by 65536.

The conversion of the units from Encoder Counts per Second to the CN032 AC Servo Solution Firmware format, the
number must be multiplied by the position loop time slice squared and then multiplied by 65536. For example:

If the position loop is running at 125 microseconds then 30000 enc.counts per second squared is converted as:

30000 * 0.000125 * 0.000125 * 65536 = 31

The maximum acceleration value corresponding to 30000 enc.counts per second is 31.

6.5.4 Maximum Acceleration and Deceleration Jerk

The maximum acceleration and deceleration jerk parameters define a velocity profile slope only when a Bezier-curve
velocity profile is being used. The jerk units are dimensionless because they define the Bezier-curve tangent orientation
as a ratio. The Jerk value is expressed as integer between 0 and 1000.

6.5.5 Motion Start Modes

The point-to-point motion is started with a single function (ASCII command GO). It invokes the function update_ctrl()
which disables the interrupts and copies all motion parameters and position loop parameters from their buffered locations
to the variables used by the control loop algorithms. This is intended to update all control parameters simultaneously
because of their interdependencies.

The trapezoidal velocity profile allows change of its motion parameters on-the-fly. This allows a new motion to be
started even before the last one is completed. The new motion may have some or all of its parameters changed.

Alternatively, the PVT streaming mode can initiate a motion after the PVT buffer is filled to a certain level.

6.5.6 Motion Stop Modes

The Motion Stop modes allow the motion to be stopped in a controlled manner even if the target position is not reached.
There are three modes of stopping available:

1. Smooth Stop - in this mode the controller executes graceful completion of the current motion. This is
accomplished by switching the current velocity profile generator to Trapezoidal and calculating target position
based on the programmed maximum deceleration.

2. Abrupt Stop – in this mode the controller uses the deceleration 32 times the maximum defined value. This mode
is intended for emergency situations.

3. Servo Off Stop – in this mode the servo control is turned off and the motor windings are shorted by the inverter
so that it operates in dynamic braking mode – using the Back EMF as a stopping force.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 41 of 67
Aug.8, 2024

7. System Control Functions

7.1 Interlocks

The interlocks are hardware defined or software calculated conditions indicating abnormal state of the control system.
They are implemented in the function interlocks() which is in the file m_interlock.c.

The figure below summarizes the algorithm implemented by the interlocks() function.

Interlocks check
Start

Motor over
temperature

detection

End

Inverter Over
Current detection

Position error
detection

Inverter Fault
detection

(S/W Polling)

Interlock Digital
Input detection

Inverter Under
Voltage detection

Inverter Over
Voltage detection

Inverter Fault
detection

(POE3 unit use *1)

Overload pre-
detection

Over speed
detection

Instructed speed
difference detection

Abnormal Position
detection

PVT Buffer Empty
detection

Inverter Over
temperature

detection

Motor Stop Check

*1 RZ/T2M or RZ/T2L or RZ/N2L Port Output Enable 3 Unit

Figure 15 Interlocks Evaluation

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 42 of 67
Aug.8, 2024

1. Motor over temperature detection

The first interlock is tracking the energy consumed and compares it with the threshold value reflecting the ability of the
motor to dissipate heat resulting from its efficiency. The algorithm calculates the square of the measured current
consumption. Then it subtracts the nominal current consumption parameter (I2t_nominal). The result is integrated in the
variable I2t_integral and then the integral is compared to configurable limit (I2t_limit). Since the overheating is
relatively slow process, when the limit is exceeded, the only action is raising a flag in the activity state
(ACT_MtOverTemp). When the integral value drops below the limit, the flag is cleared.

2. Inverter Over Current detection

The next interlock is comparing the total current consumption to a limit (tc_limit) that is exceeded more than a certain
time (tc_limit_time). The overcurrent interlock is intended to prevent overloading the motor or the machine connected to
it in case of mechanical obstruction or other disturbances. When the overload condition is detected, the interlock function
sets a flag in the motor activity state (ACT_OverCurrent) and turns off the servo control loop. Subsequently, any
motion is stopped as well.

3. Inverter Fault detection (S/W Polling)

(This fault detection is disabled in the CN032 AC Servo Solution Firmware)

The PWM amplifier has hardware protection against overcurrent due to faulty cable (shortage) or component. When the
Amplifier Fault occurs, the hardware protection turns off the bridge instantly and signals a dedicated digital input. When
the interlock function detects that this input is set, it raises a flag in the motor activity state (ACT_AmpFault) and turns
off the servo control loop.

4. Position error detection

The Position Error interlock tracks the absolute value of the position error. If the position error exceeds the limit
(pos_error_limit) then a dedicated timer (pos_error_timer) starts measuring the duration of the error condition. If it
exceeds the configured time (pos_error_time), the interlock function stops any motion. Depending on the value of the
variable auto_stop_mode it may also turn off the servo control. This interlock condition is indicated in the motor activity
state by raising the flag ACT_PosError.

5. Interlock Digital Input detection

The interlock function can be configured to treat any of the available digital inputs as triggers for an Interlock condition.
The inputs to be evaluated are defined as a bitmask in the variable dinputs_err_mask. The triggering of the interlock is
instantaneous after the AND operation between the inputs byte and the mask is evaluated is non-zero. In response the
interlock function turns off the servo control, and the power amplifier output is disabled. The motor activity state is also
updated by raising the flag ACT_Inhibit.

6. Inverter Under Voltage detection

Set the error detection flag when the inverter bus voltage falls below the threshold value.

7. Inverter Over Voltage detection

Set the error detection flag when the inverter bus voltage exceeds the threshold value.

8. Inverter Fault detection (POE3 unit use)

The Fault signal of the inverter board is monitored with POE3 Unit, the PWM output is automatically switched to high
impedance when the Fault signal is detected, and the error detection flag is set.

9. Overload pre-detection

Set the error detection flag when the inverter current value exceeds the threshold value. By setting a lower threshold than
"Inverter Overcurrent detection" and masking the servo OFF in this item, it is possible to detect the alarm before the
servo turns off due to overcurrent.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 43 of 67
Aug.8, 2024

10. Over speed detection

Set the error detection flag when the motor speed exceeds the threshold value.

11. Instructed speed difference detection

Set the error detection flag when the change in motor rotation speed exceeds the threshold for 5 seconds.

12. Abnormal Position detection

Set the error detection flag when the position information of the motor deviates from the upper limit threshold or the
lower limit threshold range.

13. PVT Buffer Empty detection

Checks the FIFO state of the Velocity Profile Generator every 1.25ms and sets the error detection flag when the state of
Empty exceeds the threshold number of times.

14. Inverter Over temperature detection

(This fault detection is disabled in the CN032 AC Servo Solution Firmware)

Set the error detection flag when the temperature of the inverter exceeds the threshold value.

15. Motor Stop Check

Checks the status of each error detection flag and mask setting and stops the motor when the condition is satisfied.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 44 of 67
Aug.8, 2024

7.2 Data Recording

The Data Recording functions are intended to enable the analysis of the system behavior in real time. It is indispensable
tool for analyzing the performance of the different control loops, their configuration parameters, and their efficiency in
application specific contest. The data recorder stores up to four user defined parameters in buffers during system
operation. The support functions and configuration parameters enable the selection of rate of recording, which variables
are recorded, when the recording is started and when it is supposed to end.

The length of the recording as number of samples is defined by the macro TRACE_BUFFER_SIZE. By default, it is set
to 512. This value can be increased when the application requires longer records and the RAM memory is available. All
buffers are combined into a single array named traceData[], The data type of the array is short – 16-bit integer. For this
reason, when a 32-bit variable is being recorded, its value is split between the fist and the fourth buffers. When the data is
reported, it is combined appropriately.

The host specifies the data to be recorded for each channel by using the commands CH1, CH2, CH3 and CH4. These
commands are used to set a code representing the data of interest. The first 8 codes are reserved for 32-bit variables. The
rest are referencing 16-bit data. The table below defines the correspondence between different data variables and the
codes that need to be set for their recording:

CH1, CH2, CH3, CH4
codes

Referenced motor variable

0 Motor position

1 Commanded velocity

2 Commanded acceleration

3 I2t integral

4 - 7 Reserved

8 Position error

9 PID regulator output value

10 Reserved

11 Direct current (heat generating)

12 Quadrature current (torque generating)

13 Direct current error

14 Quadrature current error

15 Raw current A

16 Raw current B

17 PVT FIFO buffer depth

18 FOC voltage output D

19 FOC voltage output Q

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 45 of 67
Aug.8, 2024

20 Real time task timing

21 Phase angle

22 Raw current C

23 Input captured position

24 Position error 2

25 Position control integral error 2

26 Velocity error 2

27 Velocity control integral error 2

28 Direct current control integral error 2

29 Quadrature current control integral error 2

30 Torque estimate

31 Motor electric angle

The start and stop conditions of the data recorder are configured by the ASCII command TRACE (variable
trace.Trigger). The table below describes the possible settings representing different trigger conditions:

TRACE codes Trigger Start Condition Trigger Stop Condition

0 N/A Stop data recording

1 Start recording immediately. Stop when the motion is completed. This
trigger is useful for examining the end of a
motion.

2 Start recording immediately. Stop when the buffer is full. This trigger is
useful for examining the beginning of a
motion.

3 Start recording on start of motion. Stop on end of motion.

4 Start recording immediately. Stop on input change. The input bit mask is
defined in the trace.Level variable.

5 Start recording immediately. Stop on value exceeding the threshold
defined in trace.Level variable.

6 Start recording immediately. Stop on value below the threshold defined in
trace.Level variable.

7 Start on PWM output change. Stop when the buffer is full.

8 Start recording on input change. Input mask is
defined in the trace.Level variable.

Stop when the buffer is full.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 46 of 67
Aug.8, 2024

9 Start on value exceeding the threshold defined in
trace.Level variable.

Stop when the buffer is full.

10 Start on value below the threshold defined in
trace.Level variable.

Stop when the buffer is full.

The recorder operates synchronously to the real-time task that executes every 50us. The rate of the recorder can be
expressed as multiples of this time interval. The multiple factor is set by the ASCII command TRATE and stored in the
variable trace.RateMult. For example, if the desired rate of the data recorder is 1ms then the TRATE should be set to
20.

Another variable evaluated during some of the trigger conditions is the ASCII command TLEVEL (variable
trace.Level). The value of this variable is the threshold that the recorded variable is compared against. Depending on the
trigger code, the condition to start recording can test for value either bigger or smaller than the threshold.

The function invoked periodically to test the start trigger condition is m_rec_begin().

The function invoked periodically to test the stop trigger condition and perform the recording is m_recorder().

The recorder mode of operation is reported by the ASCII command TMODE (variable trace.Mode). The meaning of the
codes stored is described in the table below:

TMODE codes Modes of operation / status

0 Idle, stops recording if started

1 Recorder is armed – ready to start on beginning of motion

2 Recording in ongoing. Stop once the buffer is full.

3 Recording in circular buffer. Stop once the motion completes.

Once the data recording is completed, the host can use the command PLAY to get content of the recording buffers. The
function implementing this request is m_Play(). It also formats binary packet response if the invocation context is packet
command handler.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 47 of 67
Aug.8, 2024

7.3 Motor Phasing

The Phasing procedure is intended to identify the absolute angle of the rotor of a brushless motor. This is needed by the
control algorithms that calculate the orientation of the torque generating magnetic flux. The execution of the phasing
procedure is required after each power cycle when incremental encoder feedback is used. The absolute encoders
eliminate the need for such procedure. Still – they need at least once configuration of their phase offset – value that
defines the rotor angle within the single turn encoder position.

The selected phasing mode is defined by the value in the motor variable phasing_mode.

The phasing algorithm to be used depends on different factors. The summary below describes the different phasing
options as well as the pros and cons of each algorithm.

Phasing Procedure Description

Forced Phasing

phasing_mode == 0

In this mode the firmware forms a voltage vector a known angle. It is formed
by applying appropriate PWM duty cycle to each of the three phase outputs.

The voltage is applied with magnitude defined by the motor variable
motor_power for a duration defined in the motor variable phasing_time.
These two variables must be configured so that they will cause the motor to
rotate its rotor such that it is oriented along the orientation of the magnetic
flux. Once the time expires, the algorithm stores the current position and sets
the phase origin 90degrees back from it.

This procedure is implemented in the function forced_phasing() in the file
m_phasing.c

The pros of this function are its simplicity and robustness. The cons are the
small move in random direction the motor would make during the procedure
execution. Another disadvantage is that the motor should have no static
friction or gravity load that would affect the proper rotor orientation.

Hall Sensor Based
Phasing

phasing_mode == 1

In this mode the phasing depends on scanning the transitions of the hall
sensors from one configuration to another.

On startup the phase origin is set to one of the 6 possible angles defined by the
steady state hall sensor. This allows the motor operation although with less
efficiency and noticeable “cogging”. It is because the hall sensors only
provide 60 degrees accuracy in determining the steady state rotor orientation.

Once the hall sensors report transition from one configuration to another the
algorithm infers the rotor position by analyzing the old and the new hall
sensor combination. Once this is done the motor status is set to “phased” and
the motor commutation is switched to sinusoidal.

The algorithm is implemented by the function hall_phasing() in the file
m_phasing.c

The pros of this approach are the robustness with regards to any mechanical
loads and the lack of unwanted moves before the motion is started for the first
time. The biggest cons are the need of hall sensors and the related wiring, cost,
and reliability issues.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 48 of 67
Aug.8, 2024

Phasing Procedure Description

Dithering Based
Phasing

phasing_mode == 2

The dithering algorithm is derived from the Forced phasing algorithm –
identifying the rotor position by observing its position after known flux is
applied for a certain time.

Unlike the Forced phasing algorithm, the Dithering algorithm does not wait
for a certain time – instead it monitors the position change of the rotor. Once
the motion direction is detected, the flux orientation is changed so that it
causes change in the opposite direction. The magnitude of the flux angle
changes is gradually reduced until the motion is no longer detected. The result
is motor phasing that only includes small motor vibrations for a short time as
part of the phasing.

This algorithm has the benefits of the Forced Phasing algorithm but without
the drawback of unwanted motion. The cons are the need of carefully tuning
the algorithm parameter to match the dynamic characteristics of the
mechanical system the motor is attached to. The presence of static friction and
gravity load are also undesired.

The algorithm is implemented by the function dither_phasing() in the file
m_phasing.c

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 49 of 67
Aug.8, 2024

7.4 Motor Homing

The homing procedure is required in applications that do not have absolute encoders or when the position of the absolute
encoder is not calibrated. The execution of the home procedure executes series of moves and reads the feedback from
external sensors to establish the origin of the coordinate system of the controlled axis.

The homing procedure can be executed in three different modes depending on the position feedback and home sensor
available. They are described in the table below:

Homing Procedure Description

Index Based This home procedure is started if the home_mask motor parameter is set to 0.

This homing mode is used when a device uses a rotational axis and its
coordinate system need to identify the angle where the orientation of the
motor shaft is at 0 degree.

The use of the index pulse as home position reference is only possible with
incremental encoders with index pulse output. Normally it is labeled with
Z+/Z-. Note that some encoders do not have differential index output. In this
case the Z- input must be biased with 3.3V at the connector.

The homing procedure starts a motion and arms the position capture hardware
so that it would be triggered as soon as the index pulse is registered. Once the
index position is captured, it is subtracted from the current position along with
user defined home offset. This effectively adjusts the position offset and
establishes the index position (plus the home offset) as new origin (zero) of
the axis coordinate system.

Once this is done, the axis target position is set to zero and a motion is started.

Hard Stop Based This home procedure is executed when the home_mask motor parameter is
set to 3.

The hard stop based home procedure is polling the position error continuously.
Once it exceeds 100 encoder counts, the current position is considered origin
of the axis coordinate system.

Similar to the Index based homing, user defined home offset is subtracted
from the current position. Once this is done, the axis target position is set to
zero and a motion is started.

Home Sensor
Based

This homing procedure is executed when the home_mask is a non-zero value
different than 3. The home_mask value is applied to logical AND operation
with the digital inputs value. This effectively allows selection of the digital
input to be considered “home switch”.

The execution of the home procedure starts with motion in direction
dependent on the home switch status. The objective of the motion is to cause
change in the input state. The triggering of the home switch is the indication
of detecting vicinity of the coordinate system origin.

Due to the lag in sensing the home sensor trigger (it is polled every 100
microseconds) the accuracy of the home sensor position is not sufficient in
high-precision applications. For this reason, the homing continues with the
Index Based procedure.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 7. System Control Functions

R11UM0169EJ0502 Rev.5.02 Page 50 of 67
Aug.8, 2024

The state diagram shows the states and the transitions between them. The execution flow is defined by the motor variable
home_mask as described above.

Finding Hard Stop Finding Limit Switch

Finding Index

Wait to Stop

Wait to Stop2

Wait to Stop3

Begin

End OK

Error

From any state

End
Failure

home_mask == 3 home_mask != 0 home_mask == 0

Stopping

Moving to Home
Position

Move to
Hard Stop

Move to
Home Switch

Move to
Index

Figure 16 Homing Procedure State Machine

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Chapter 8. Host Communication

R11UM0169EJ0502 Rev.5.02 Page 51 of 67
Aug.8, 2024

8. Host Communication

8.1 ASCII Communication Protocol

The ASCII protocol is based on commands consisting of ASCII characters terminated with Carriage Return (CR, ASCII
13). The controller responds with an optional data string followed by a prompt.

The ASCII protocols uses the following communication parameters:

115,200 bps, 8 data bits, 1 stop bit, no parity

When the command is accepted the prompt consist of CR, Line Feed (LF, ASCII 10) and Greater Than sign (>). When
the command is rejected, the prompt has Question Mark (?) instead of the Greater Than sign.

Example:

POS ; Host command terminated by CR

120 ; Reply Data String

> ; Reply Prompt

The variable names entered at the command prompt report the value of the referenced variable. If a parameter follows the
name it is interpreted as a request to set the variable to a new value. Some variables are read-only. An attempt to set a
value to them will be reported as invalid command. Examples:

>POS ; Request value of the variable POS

2100

>POS 2000 ; Set POS to a new value

>POS ; Report the new value

2000

>

The full set of ASCII commands is described in the Appendix A to this application note.

8.2 Binary Packet Communication Protocol

Binary Packet Communication Protocol is not supported.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Resources

R11UM0169EJ0502 Rev.5.02 Page 52 of 67
Aug.8, 2024

9. Resources

9.1 Hardware

The CN032 AC Servo Solution Firmware is designed to work on the Controller board. It depends on its hardware
resources.

9.2 Operating System

The CN032 AC Servo Solution Firmware does not depend on any operating system.

9.3 Memory

The firmware memory blocks occupied for code, constants and uninitialized data are described in the map file.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix A: ASCII Communication Protocol Commands

R11UM0169EJ0502 Rev.5.02 Page 53 of 67
Aug.8, 2024

Appendix A: ASCII Communication Protocol Commands

The table below represents unified enumeration of all configuration parameters, status variables and functions in the
Biplane firmware.

R/O = Read Only, R/W = Read / Write, Cmd – Command

Par
ID

Name Byte

Size

Access Description

0 STA 4 R/O Status word (reported as 4 digit Hex word). The bit flags are documented
below.

1 ERR 2 R/O Position error – the difference between the actual and the expected encoder
position. The value is meaningful only when servo control is on.

2 ADC1 2 R/O Current reading as reported by the ADC channel 1. The correspondence
between the number reported and the actual current is hardware dependent.

3 ADC2 2 R/O Current reading as reported by the ADC channel 2

4 TC 2 R/O Total current – calculated as a sum of the modulus of ADC1 and ADC2
currents

5 CV 2 R/O Current velocity as encoder counts per sample interval (the position loop
cycle time)

6 PVT 2 R/O Number of points in the PVT buffer

7 ITIME 2 R/W Time interval between consecutive PVT points

8 VEL 4 R/W Command Velocity – (encoder counts per sample interval) * 65536

9 ACC R/W Command Acceleration – (encoder counts per sample interval squared) *
65536

10 DEC 4 R/W Command Deceleration – (encoder counts per sample interval squared) *
65536. If the value is zero then the Acceleration value is used in its place.

11 AJERK 4 R/W Acceleration Jerk (0 – 1000)

12 DJERK 4 R/W Deceleration Jerk (0 – 1000)

13 PRO 2 R/W Velocity profile mode

14 KP 2 R/W Proportional Gain in the position control loop algorithm (0 – 32767)

15 KI 2 R/W Integral Gain in the position control loop algorithm (0 – 32767)

16 KD 2 R/W Differential Gain in the position control loop algorithm (0 – 32767)

17 IL 2 R/W Integral Limit in the position control loop algorithm (0 – 32767)

18 VFF 2 R/W Velocity Feed Forward in the position control loop algorithm (0 – 32767)

19 AFF 2 R/W Acceleration Feed Forward in the position control loop algorithm (0 – 32767)

20 MAX 2 R/W Maximum position error (0 – 32767)

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix A: ASCII Communication Protocol Commands

R11UM0169EJ0502 Rev.5.02 Page 54 of 67
Aug.8, 2024

Par
ID

Name Byte

Size

Access Description

21 ETIME 2 R/W Maximum position error time (in sample intervals)

22 DS 2 R/W Position Loop Derivative Sample Interval (sample interval) in multiples of
50us. Setting of 2 indicates 100 us sample interval.

23 MLIMIT 2 R/W Motor output limit from the position loop PID regulator (0 – 32767)

24 BIAS 4 R/W Value to be added to the output of the PID regulator continuously

25 ASTOP 2 R/W Automatic stop mode. Determines the action after position error is exceeded:
0 – stop the motion, 1 – stop the servo control in addition to stopping the
motion.

26 PIMODE 2 R/W Phase initialization mode: 0 – Forced, 1 – Hall Based, 2 – Dithering Based

27 PITIME 2 R/W Phase initialization time [sample intervals]

28 PIOUT 2 R/W Phase initialization output (32767 = 100%)

29 PMAP 2 R/W Phase mapping to PWM output channels. Allows software defined wiring
between the controller outputs and the motor windings. Values should range
from 0 to 5.

30 PORIGIN 4 R/W Phase origin – the encoder position within the current motor revolution where
the flux is at 0 degree.

31 PCMODE 2 R/W Phase commutation mode: 0 = voltage controlled Space Vector Modulation, 1
= Field Oriented Control, 2 = Hall based commutation, 3 = Host defined
phase angle,

32 PVECTOR 4 R/W Phase vector orientation times 60 degree. Values should range from 0 to 5.

33 PPAIRS 2 R/W Pole pairs – this parameter reflects motor rotor construction.

34 PCOUNTS 4 R/W Encoder counts per electrical cycle (encoder counts per rev divided by the
number of pole pairs)

35 ECPR 4 R/W Encoder counts per revolution – encoder resolution

36 PIOFFS 4 R/W Phase Initialization Offset – position offset added at the end of the phase
initialization procedure

37 PANGLE 4 R/O The current angle of the magnetic flux

38 PADV 4 R/W Phase advance gain (not used)

39 VCOMP 4 R/W Velocity compensation (not used)

40 CLIMIT 2 R/W Current limit threshold

41 CTIME 2 R/W Current limit time (in sample intervals)

42 IDM 4 R/O Direct (heat generating) current

43 IQM 4 R/O Quadrature (torque generating) current

44 IQERR 4 R/O Quadrature current error

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix A: ASCII Communication Protocol Commands

R11UM0169EJ0502 Rev.5.02 Page 55 of 67
Aug.8, 2024

Par
ID

Name Byte

Size

Access Description

45 QKP 2 R/W Proportional gain in the Quadrature current control loop

46 QKI 2 R/W Integral gain in the Quadrature current control loop

47 PCT 2 R/W Position capture mode (only index capture supported)

48 HMASK 2 R/W Home switch mask – defines the type of the home algorithm and the specific
input wired to home sensor

49 INVERT 2 R/W Home switch invert mask – defines the inversion of the home switch input so
that it will be searched in the correct direction.

50 HINVERT 4 R/W Hall sensor signal inversion: 0 – no inversion, 1 – inverted

51 HSHIFT 4 R/W Hall sensor position shift (not used)

52 HPOS 4 R/W Hall sensor position change – the last position where the hall sensors changed
their status

53 EMASK 2 R/W Digital inputs error mask – defines digital input as an interlock that can
trigger motion stop if triggered.

54 ECP 4 R/W Command position where the following error exceeded the maximum
threshold

55 ECV 4 R/W Velocity at which the following error exceeded the maximum threshold

56 EPO 4 R/W Actual position where the following error exceeded the maximum threshold

57 U 4 R/W The output voltage of phase U. (32767 = 100% duty cycle)

58 V 4 R/W The output voltage of phase V. (32767 = 100% duty cycle)

59 W 4 R/W The output voltage of phase W. (32767 = 100% duty cycle)

60 TYPE 2 R/W Module type: 1 = single channel, 2 = dual channel with electronic gearing, 3
= dual channel / two independent motors

61 HTYPE 2 R/W Hall sensors type (only parallel type supported)

62 HOFFS 4 R/W Home offset – value added to the zero coordinate at the end of the home
procedure.

63 DATA0 4 R/W

User defined data – no specific use in the firmware

64 DATA1 4 R/W

65 DATA2 4 R/W

66 DATA3 4 R/W

67 DATA4 4 R/W

68 DATA5 4 R/W

69 DATA6 4 R/W

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix A: ASCII Communication Protocol Commands

R11UM0169EJ0502 Rev.5.02 Page 56 of 67
Aug.8, 2024

Par
ID

Name Byte

Size

Access Description

70 DATA7 4 R/W

71 PHASES 2 R/W Defines the motor type: 2 – DC Brush type, 3 – Brushless DC / PMSM motor
type

72 BRAKE 2 R/W Brake control mode (not used)

73 TMODE 2 R/W Trace mode: 0 - Idle, 1 = Armed – waiting for trigger event, 2 = Start now,
Stop on buffer full , 3 = Start now, Stop on end of motion

74 TRATE 2 R/W Data recorder rate (in 50us intervals)

75 TLEVEL 4 R/W Data recorder threshold level

76 SIM 2 R/W Enables (1) or disables(0 – default) encoder simulation

77 TIMER 2 R/W Timer register that generates the PWM carrier frequency.

78 ADDP 4 R/W Add Position set point for PVT streaming

79 ADDV 4 R/W Add Velocity set point for PVT streaming

80 ABS 4 R/W Defines absolute target position

81 REL 4 R/W Defines target position relative to the current position

82 POS 4 R/W Current encoder position

83 INP 2 R/O Reports the state of the digital inputs as 4 byte hex number.

84 IND 4 R/O Index position captured

85 GO 0 Cmd Start motion to the defined target position

86 FWD 0 Cmd Start jogging forward (positive direction)

87 REV 0 Cmd Start jogging in reverse (negative direction)

88 RESET 0 Cmd Resets the firmware / soft restart

89 ON 0 Cmd Enables the servo control

90 OFF 0 Cmd Disables the servo control

91 ENABLE 0 Cmd Enables the PWM amplifier (inverter)

92 DISABLE 0 Cmd Disables the PWM amplifier (inverter)

93 STOP 0 Cmd Stop motion smoothly (with the programmed deceleration)

94 ABORT 0 Cmd Stops motion abruptly (with the maximum deceleration)

95 HOME 0 Cmd Starts the execution of the Home procedure.

96 ALIGN 0 Cmd Starts the execution of the Phasing procedure

97 VER 4 R/O Reports the current firmware version

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix A: ASCII Communication Protocol Commands

R11UM0169EJ0502 Rev.5.02 Page 57 of 67
Aug.8, 2024

Par
ID

Name Byte

Size

Access Description

98 OUT1 2 R/W Controls output #1

99 OUT2 2 R/W Controls output #2

100 PWM 2 R/W Output voltage set as PWM duty cycle (32767 = 100%). Requires that the
servo control is turned off.

101 IQPKT 2 R/W Output voltage to generate the Quadrature current component of the motor
flux.

102 IDPKT 2 R/W Output voltage to generate the Direct current component of the motor flux.

103 CH1 2 R/W Specifies data to be recorded on channel #1 of the data recorder

104 CH2 2 R/W Specifies data to be recorded on channel #2 of the data recorder

105 CH3 2 R/W Specifies data to be recorded on channel #3 of the data recorder

106 CH4 2 R/W Specifies data to be recorded on channel #4 of the data recorder

107 TRACE 2 R/W Initialize new data recording session

108 PLAY 2 R/W Reports recorded data

109 PLIMIT 2 R/W I2T Protection Threshold Limit

110 PTIME 2 R/W I2T Protection Time Span

111 GEARIN 2 R/W Specifies the input number of a gear box transmission ratio that defines the
electronic gearing ratio.

112 GEAROUT 2 R/W Specifies the output number of a gear box transmission ratio that defines the
electronic gearing ratio.

113 SETUP 2 R/W Starts procedure to identify the proper mapping of the motor windings and the
hall sensors.

114 PINVERT 2 R/W Specifies if the encoder position feedback should be inverted: 0 – no
inversion, 1 = inverted

115 SAVE Cmd Saves the persistent parameters to the external Flash memory

116 RESTORE Cmd Restores the persistent parameters from the external Flash memory

117 ETYPE 2 R/W Encoder type: 0 = incremental, 1 = EnDat, 2 = BiSS, 3 = FA-Coder, 4 = A-
format

118 EID 4 R/W Encoder ID:

119 EADDR 2 R/W Encoder EEPROM address

120 EDATA 2 R/W Encoder EEPROM data to be stored at or retrieved from the address defined
by the EADDR variable

121 EBAUDRATE 2 R/W Encoder communication baud rate

122 ESTATUS 2 R/W Absolute Encoder status

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix A: ASCII Communication Protocol Commands

R11UM0169EJ0502 Rev.5.02 Page 58 of 67
Aug.8, 2024

Par
ID

Name Byte

Size

Access Description

123 ADDR 2 R/W Module address used by the packet host communication protocol

124 GROUP 2 R/W Module group used by the packet host communication protocol

125 TBSIZE 2 R/O Trace buffer size. Informs the host for the maximum number of samples that
can be reported by the data recorder.

126 WMARK 2 R/W PVT Buffer Watermark – defines the number of slots in the PVT which need
to be occupied before watermark warning flag is raised. This is required to
properly synchronize the streaming of new PVT points by the host computer.

127 QKD 2 R/W Proportional Gain in the Quadrature current control loop

128 VKP 2 R/W Proportional Gain in the velocity velocity loop

129 VKI 2 R/W Integral Gain in the velocity control loop

130 VKD 2 R/W Differential Gain in the velocity control loop

131 ELVOLT 4 R/W Inverter bus voltage Low voltage detection threshold. value is 12bit AD
value.

132 EHVOLT 4 R/W Inverter bus voltage overvoltage detection threshold. value is 12bit AD value.

133 EWPOSMIN 4 R/W Position abnormality Min threshold

134 EWPOSMAX 4 R/W Position abnormality Max threshold

135 EOVS 4 R/W Over speed threshold. value is (Position*65535)/100us.

136 EWOVS 4 R/W Instructed speed difference threshold. value is (Position*65535)/100us. make
it abnormal after continuous detection time (fixed 5 sec).

137 EEMP 4 R/W PVT Buffer EMPTY Threshold. value is the number of times.

138 EOVTEMP 4 R/W Temperature anomaly threshold. value is 12bit AD value.

139 ERRMASK 4 R/W Abnormal state mask. value of ErrMsk in hexadecimal.

140 EVOLT 4 R/O Bus voltage display. value is 12bit AD value.

141 EQUERY 4 R/O Abnormal status indication. value of ErrSts in hexadecimal.

142 ERESET 0 Cmd Abnormal status reset.

143 EOVC 4 R/W Overload (current) threshold. value is 12bit AD value.

144 ETEMP 4 R/O Current temperature. value is 12bit AD value.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix B: Stacks Configuration

R11UM0169EJ0502 Rev.5.02 Page 59 of 67
Aug.8, 2024

Appendix B: Stacks Configuration

The table below shows stacks configuration of HAL driver. The configuration excepted the following is used with
default.

Stacks Configuration Table (1/3)

RZ/T2M RZ/N2L RZ/T2L
Enable

0

RS485 Half Duplex

One

user_uart_rs_callback
Priority 2
Priority 2
Priority 2
Priority 2

-

-

-
-

-

Enable

3

0

One

user_uart_rs_callback
Priority 2
Priority 2
Priority 2
Priority 2
Enable

0x1
Milliseconds

timer_callback
Priority 7

Enable

1

2500000
Enabled

On Chip Baud Rate Generator source
clock divided by 2

Stacks Property
Value

Transmit Data Empty Interrupt Priority Priority 2

0
Flow Control

UART Communication Mode RS485 Half Duplex
Extra

Receive FIFO Trigger Level One

Max Error (%)

Interrupts
Callback user_uart_rs_callback
Receive Interrupt Priority Priority 2

Transmit End Interrupt Priority Priority 2
Error Interrupt Priority Priority 2

UART Driver
g_uart0

FIFO Support Enable
Baud

BaudUART Driver
g_uart1

FIFO Support
General

Channel

Baud Rate
Buad Rate Modulation

Interrupts

Extra

Noise Filter

UART Driver
g_uart3

FIFO Support Enable
General

Channel 3
Baud

Max Error (%) 0
Extra

Receive FIFO Trigger Level One

Callback user_uart_rs_callback
Receive Interrupt Priority Priority 2

CMTW Driver
g_timer0

FIFO Support Enable
General

Period 0x1
Period Unit Milliseconds

Interrupts
Callback timer_callback
Compare Match Interrupt Priority Priority 7

Transmit Data Empty Interrupt Priority Priority 2
Transmit End Interrupt Priority Priority 2
Error Interrupt Priority Priority 2

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix B: Stacks Configuration

R11UM0169EJ0502 Rev.5.02 Page 60 of 67
Aug.8, 2024

Stacks Configuration Table (2/3)

RZ/T2M RZ/N2L RZ/T2L

Trigger 0
Positive Edge

Capture Trigger A Trigger 0

Clock(clock master mode) -

Decimation Ratio -

-

-
-

-
-

-
-
-

 10MHz(PCLKH=200MHz)

64

64

Enabled
 0xF7FF

Enabled
0x800

 Enabled
0x3E8
0x3E8

Master
10MHz(PCLKH=200MHz)

64

64

Enabled

Enabled
0x800

Enabled
0x3E8
0x3E8

Counter Reset
Division counter initialization trigger Trigger 0
Edge Positive Edge

Trigger 0

Stacks Property
Value

ADC Driver
g_dsmif_0

Common

Extra
Channel Synchronization

DSMIF0 Channel0
Configuration

g_dsmif_channel0

A/D Convert(Current Measurement)
Clock

 10MHz(PCLKH=200MHz)
Sinc Filter

64
Extra

Overcurrent

Short Circuit
Detection Enabled
High Count Threshold 0x3E8
Low Count Threshold 0x3E8

Lower Limit
Detection Enabled
Limit Value 0x800

Sinc Filter
Decimation Ratio 64

Upper Limit
Detection Enabled
Limit Value 0xF7FF

DSMIF0 Channel1
Configuration

g_dsmif_channel1

A/D Convert(Current Measurement)
Clock

Clock(clock master mode) -
Sinc Filter

Decimation Ratio -
Extra

Overcurrent
Sinc Filter

Decimation Ratio -
Upper Limit

Detection -

Short Circuit
Detection -
High Count Threshold -
Low Count Threshold -

Limit Value -
Lower Limit

Detection -
Limit Value -

DSMIF0 Channel2
Configuration

g_dsmif_channel2

A/D Convert(Current Measurement)
Clock

Clock Mode Master
Clock(clock master mode) 10MHz(PCLKH=200MHz)

Sinc Filter

Detection Enabled
Limit Value 0xF7FF

Lower Limit

Decimation Ratio 64
Extra

Overcurrent
Sinc Filter

Decimation Ratio 64
Upper Limit

Detection Enabled
High Count Threshold 0x3E8
Low Count Threshold 0x3E8

Detection Enabled
Limit Value 0x800

Short Circuit

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix B: Stacks Configuration

R11UM0169EJ0502 Rev.5.02 Page 61 of 67
Aug.8, 2024

Stacks Configuration Table (3/3)

RZ/T2M RZ/N2L RZ/T2L

Trigger 0
Positive Edge

Trigger 0

1
1

Master
10MHz(PCLKH=200MHz)

64

64

Enabled
0xF7FF

Enabled
0x800

Enabled
0x3E8
0x3E8

High-Impedance Enable Enabled
MTIOC3B Pin Select P00_6
MTIOC3D Pin Select P01_1

High-Impedance Enable Enabled
MTIOC4B Pin Select P01_2
MTIOC4D Pin Select P01_3

High-Impedance Enable Enabled
MTIOC4A Pin Select P01_5
MTIOC4C Pin Select P01_0

Mode Select(Trigger)
Sampling 16 times with

PCLKH / 8 clock All low level.

12500
3225
3225
3225

Complementary PWM mode 2
(transfer at trough)

200
Pin Output Support Enabled with Extra Features

Enabled
Enabled

PCLK divided by 32

m_background
Priority 1
Priority 1

Timer Driver
g_timer4

Pin Output Support Enabled with Extra Features

16MB
6

0xEB

Stacks Property
Value

ADC Driver
g_dsmif_1

Common

Extra
Channel Synchronization

DSMIF1 Channel0
Configuration

g_dsmif_channel3

A/D Convert(Current Measurement)
Clock

Counter Reset
Division counter initialization trigger Trigger 0
Edge Positive Edge

Capture Trigger A Trigger 0

Clock Mode Master
Clock(clock master mode) 10MHz(PCLKH=200MHz)

Sinc Filter
Decimation Ratio 64

General
Unit 1

Unique No 1

Extra
Overcurrent

Sinc Filter
Decimation Ratio 64

Upper Limit
Detection

Short Circuit
Detection Enabled
High Count Threshold 0x3E8
Low Count Threshold 0x3E8

Enabled
Limit Value 0xF7FF

Lower Limit
Detection Enabled
Limit Value 0x800

Port Output Enable for MUT3
g_poe30

General
POE0#

MTU3 and MTU4
MTU3-B (MTIOC3B) and MTU3-D (MTIOC3D)

Enabled

MTU4-A (MTIOC4A) and MTU4-C (MTIOC4C)
Enabled
P00_7
P01_0

Sampling 16 times with
PCLKH / 8 clock All low level.

P00_6
P01_1

MTU4-B (MTIOC4B) and MTU4-D (MTIOC4D)
Enabled
P01_2
P01_3

PWM output (2 for MTU4, 5 for MTU7) compare 3225
PWM output (3 for MTU4, 6 for MTU7) compare 3225

Mode Complementary PWM mode 2
(transfer at trough)

Three-Phase
PWM Driver

g_three_phase0

Common

General
Compare match value

Count upper limit 12500
PWM output (1 for MTU3, 4 for MTU6) compare 3225

Dead Time 200

Timer Driver
g_timer3

Enabled with Extra Features
Noise Filter

Extarnal Clock
Enable

Interrupts
Callback m_background
Overflow/Crest Interrupt Priority Priority 1
Capture A Interrupt Priority Priority 1

MTCLKA Enabled Enabled
MTCLKB Enabled Enabled

Clock Select PCLK divided by 32

0xEB

 Enabled with Extra Features

QSPI Driver
g_qspi0

General
Flash Size 16MB
Dummy Clock for Read 6

Command Definitions
Read Command

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix C Linker configuration

R11UM0169EJ0502 Rev.5.02 Page 62 of 67
Aug.8, 2024

Appendix C Linker configuration

The table shows the changes to linker file (changes or additions are shown in red). The project with default linker
configuration shown in Table 8 use the linker file generated by FSP configurator as is.

Table 8 Linker configuration

Device IDE Project Type Linker Configuration

RZ/T2M
(CPU0)

EWARM ram_exe Default
serial_boot Customize as shown in Table 9

e2studio ram_exe Default
serial_boot Customize as shown in Table 10

RZ/T2M
(CPU1)

EWARM ram_exe Default
e2studio ram_exe Default

RZ/T2L
EWARM ram_exe Default serial_boot

e2studio ram_exe Default serial_boot

RZ/N2L
EWARM ram_exe Customize as shown in Table 11 serial_boot

e2studio ram_exe Customize as shown in Table 12 serial_boot

Table 9 Linker configuration table (RZ/T2M, EWARM, serial_boot)

Memory Allocation Address Memory
Region Block Section Start End

intvec VECTOR_WBLOCK - 0x00000000 -

ATCM

RAM_Region

USER_PRG_WBLOCK .code

0x00000100 0x0005FFFF

R_ECL_CODE_SEC

USER_DATA_WBLOCK
R_ECL_RO_SEC
R_ECL_RW_SEC
R_ECL_ZI_SEC

USER_DATA_ZBLOCK .bss
D_RODATA_FAC_SEC_

BIN_region FAC_BIN_WBLOCK - 0x00060000 0x0006FFFF

D_RODATA_FAC_SEC_
PIN_region FAC_PIN_WBLOCK - 0x00070000 0x000701FF

D_LDR_DATA_region LDR_DATA_WBLOCK - 0x00100000 0x00101FFF BTCM LDR_DATA_ZBLOCK -
D_LDR_PRG_region LDR_PRG_WBLOCK - 0x00102000 0x0010FFFF
LDR_PARAM_region - .loader_param 0x60000000 0x6000004B

xSPI0 CS0

S_LDR_PRG_region LDR_PRG_RBLOCK - 0x6000004C 0x6000604B
S_LDR_DATA_region LDR_DATA_RBLOCK - 0x6000604C 0x6000804B

S_intvec_region VECTOR_RBLOCK - 0x60020000 0x600200FF

ROM_region
USER_PRG_RBLOCK .code

0x60020100 0x6007FFFF R_ECL_CODE_SEC

USER_PRG_RBLOCK2 ENC_SEC_FAC
CPU1_SECTION

S_RAM_region USER_DATA_RBLOCK
R_ECL_RO_SEC_init

0x60080000 0x6008FFFF R_ECL_RW_SEC_init
R_ECL_ZI_SEC_init

SYSTEM_RAM_region CPU1_SECTION_WBLOCK - 0x10000000 0x101FFFFF SYSTEM_RAM

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group Appendix C Linker configuration

R11UM0169EJ0502 Rev.5.02 Page 63 of 67
Aug.8, 2024

Table 10 Linker configuration table (RZ/T2M, e2studio, serial_boot)

Memory Allocation Address Memory Section Label Start
.loader_param - 0x60000000

xSPI0_CS0_SPACE .flash_contents

_mloader_text

0x6000004C

_mfvector
_mtext

_mdummy
_mdata

_mencoder_fac_bin
_mencoder_fac_pin

_cpu1code
.loader_text - 0x00102000 BTCM .loader_data - -

.intvec - 0x00000000

ATCM

.text - 0x00000100
.dummy - -

.data - -
.bss (NOLOAD) - -

.encoder_FAC_SEC_BIN - 0x00060000

.encoder_FAC_SEC_PIN - 0x00070000
cpu1code - 0x10000000 SYSTEM_RAM

Table 11 Linker configuration table (RZ/N2L, EWARM)

Memory Allocation Address Memory
Region Block Section Start End
intvec VECTOR_WBLOCK - 0x00000000 - ATCM RAM_Region USER_PRG_WBLOCK .code 0x00000100 0x0005FFFF

D_LDR_DATA_region LDR_DATA_WBLOCK - 0x00100000 0x00101FFF BTCM LDR_DATA_ZBLOCK -
D_LDR_PRG_region LDR_PRG_WBLOCK - 0x00102000 0x0010FFFF
LDR_PARAM_region - .loader_param 0x60000000 0x6000004B

xSPI0 CS0

S_LDR_PRG_region LDR_PRG_RBLOCK - 0x6000004C 0x6000604B
S_LDR_DATA_region LDR_DATA_RBLOCK - 0x6000604C 0x6000804B

S_intvec_region VECTOR_RBLOCK - 0x60020000 0x600200FF
ROM_region USER_PRG_RBLOCK .code 0x60020100 0x6007FFFF

S_RAM_region USER_DATA_RBLOCK - 0x60080000 0x6008FFFF
SYSTEM_RAM_MIRROR

_region
USER_DATA_WBLOCK - 0x30000000 0x301FFFFF SYSTEM_RAM

(MIRROR) USER_DATA_ZBLOCK .bss

Table 12 Linker configuration table (RZ/N2L, e2studio)

Memory Allocation Address Memory
Section Label Start

.loader_param - 0x60000000

xSPI0_CS0_SPACE .flash_contents

_mloader_text

0x6000004C
_mfvector

_mtext
_mdummy

_mdata
.loader_text - 0x00102000 BTCM .loader_data - -

.intvec - 0x00000000
ATCM .text - 0x00000100

.dummy - -
.data - -

SYSTEM_RAM_MIRROR .bss - -

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group

R11UM0169EJ0502 Rev.5.02 Page 64 of 67
Aug.8, 2024

Revision History

Rev. Date Description
Page Summary

1.00 Jun.7, 2022  First Edition issued

2.00 Aug.9, 2022

3.00 Sep.30, 2022 11-16 Fix folder structure.

4.00 Feb.28, 2023 8,10,
14-16,
21,27,
53

Description for AC Servo Solution (RZ/T2L) added.

5.00 Dec.15, 2023 10
11,12
13,14,
15,16,
17,18,
19
59,60,
61
62,63

Operation Environment is updated.
FSP configuration tables are added.
File structure is updated.

Stacks configuration tables are added.

Linker configuration table are added.

5.01 Jun.18,2024 5
-

Related Document updated.
Deleted blank page.

5.02 Aug.8,2024 5 Related Document updated.

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group

R11UM0169EJ0502 Rev.5.02 Page 65 of 67
Aug.8, 2024

CN032 AC Servo Solution Firmware Manual

Publication Date: Rev.4.00 Feb, 2023

Published by: Renesas Electronics Corporation

RZ/T2M Group, RZ/T2L Group, RZ/N2L Group

R11UM0169EJ0502 Rev.5.02 Page 66 of 67
Aug.8, 2024

SALES OFFICES http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

16
RZ/T2M Group, RZ/T2L Group, RZ/N2L Group

R11UM0169EJ0400

	1. Introduction
	1.1 Summary
	1.2 Function
	1.3 Firmware Configuration

	2. Operating Environment
	3. File Structure
	3.1 AC Servo Solution Kit (RZ/T2M)
	3.2 AC Servo Solution Kit (RZ/T2L)
	3.3 AC Servo Solution Kit (RZ/N2L)

	4. Firmware Architecture
	4.1 Overview
	4.1.1 Startup Functions
	4.1.2 Non-Real-Time Functions
	4.1.3 Periodic, Real-Time Functions
	4.1.4 Communication Functions

	4.2 Data Types
	4.3 Data Structures and Variables
	4.4 Enumerations, Macros and Constants

	5. Initialization and Startup Functions
	5.1 Bootloader
	5.2 Peripherals Initialization
	5.3 Firmware Initialization

	6. Servo Control Operation
	6.1 Motor Position - Encoder Interface
	6.2 Motor Control - Torque Generator
	6.3 Position Control – PID Regulator
	6.4 Motion Planning - Velocity Profile Generator
	6.5 Motion Control Parameters
	6.5.1 Target Position
	6.5.2 Maximum Velocity
	6.5.3 Maximum Acceleration and Deceleration
	6.5.4 Maximum Acceleration and Deceleration Jerk
	6.5.5 Motion Start Modes
	6.5.6 Motion Stop Modes

	7. System Control Functions
	7.1 Interlocks
	7.2 Data Recording
	7.3 Motor Phasing
	7.4 Motor Homing

	8. Host Communication
	8.1 ASCII Communication Protocol
	8.2 Binary Packet Communication Protocol

	9. Resources
	9.1 Hardware
	9.2 Operating System
	9.3 Memory

	Appendix A: ASCII Communication Protocol Commands
	Appendix B: Stacks Configuration
	Appendix C Linker configuration
	Revision History

