
User Manual

DA14585/586 SDK 6 Porting
Guide

UM-B-082

Abstract

This is a guide explaining the porting steps of an application to the latest SDK 6 release.

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 2 of 28

Contents

Abstract .. 1

Contents ... 2

References ... 3

1 Introduction.. 4

1.1 Scope .. 4

1.2 Summary ... 4

2 Porting from SDK 5.0.4 to 6.0.4 .. 5

2.1 Changes in SDK 6 ... 5

2.1.1 Sleep Modes .. 5

2.1.2 Support for DLE (Data Packet Length Extension) ... 6

2.1.3 OTP Programming ... 6

2.1.4 Custom Profile ... 6

2.1.5 Service Database Creation for Custom Profile .. 6

2.1.6 Creation of service database for 128bits long UUIDs ... 6

2.1.7 Attribute Permissions ... 8

2.1.8 Service attribute ... 10

2.1.9 Characteristic attribute ... 10

2.1.10 Non-Volatile Data Storage (NVDS) ... 13

2.1.11 External Processor Periodic Wakeup .. 15

2.1.12 Kernel Timer .. 15

2.2 Porting Instructions ... 16

2.2.1 Porting the prox_reporter example application .. 16

2.2.2 Porting the all_in_one example application ... 17

3 Porting from SDK 6.0.4 to 6.0.6 .. 19

3.1 Changes in SDK 6 ... 19

3.1.1 Security .. 19

3.1.2 Custom Profile ... 19

3.2 Porting Instructions ... 19

3.2.1 Porting Pillar 1 (Bare Bone) ... 20

3.2.2 Porting Pillar 2 (Custom Profile) .. 20

3.2.3 Porting Pillar 3 (Peripheral).. 20

3.2.4 Porting Pillar 4 (Security) ... 20

3.2.5 Porting Pillar 5 (Sleep Mode) ... 21

3.2.6 Porting Pillar 6 (OTA) ... 21

3.2.7 Porting Pillar 7 (All in One) .. 22

3.2.8 Porting Proximity Reporter example application ... 22

3.2.9 Porting AES Encryption example application .. 22

3.2.10 Porting empty peripheral template ... 23

4 Porting from SDK 6.0.6 to 6.0.8 .. 24

4.1 da1458x_config_advanced.h file .. 24

4.2 user_callback_config.h.. 25

4.3 user_config.h ... 25

Revision History .. 27

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 3 of 28

References

[1] UM-B-079, DA14585/586 Software Platform Reference, User Manual, Dialog Semiconductor.

[2] UM-B-080, DA14585/586 Software Developer’s Guide, User manual, Dialog Semiconductor.

[3] DA14580 Data sheet, Dialog Semiconductor.

[4] DA14585 Data sheet, Dialog Semiconductor.

[5] DA14586 Data sheet, Dialog Semiconductor.

[6] Bluetooth Specification Version 5.0, Bluetooth SIG.

[7] ATTDB Interface Specification (RW-BLE-ATTDB-IS), Riviera Waves

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 4 of 28

1 Introduction

1.1 Scope

This document describes the changes and the steps needed for porting an application that has been
developed either under DA14580/581/583 SDK 5.0.4 release, or in a previous DA14585/586 6.0.x
SDK release, to the latest DA14585/586 SDK 6 release.

1.2 Summary

The latest release SDK 6 for DA14585/586 has changes and improvements that affect the
backwards compatibility for existing applications developed in a previous DA14585/586 6.0.x SDK
release.

Moreover given also the differences between the DA14580/581/583 and the DA14585/586 devices, it
illustrates the changes needed in order to port an application developed in the SDK 5.0.4 for
DA14580/581/583.

The following section 2 focuses on 5.0.4 to 6.0.6 SDK porting, while section 3 on the 6.0.4 to 6.0.6
SDK porting essentials.

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 5 of 28

2 Porting from SDK 5.0.4 to 6.0.4

The SDK 5.0.4 (and earlier versions) is explicitly used with the DA14580/581/583 devices while the
SDK 6 release is to be used explicitly with the DA14585/586 devices.

The SDK areas where there have been changes that affect the compatibility are due to that:

● The DA14585/586 devices incorporate a different BLE stack compared to the BLE stack used in
the DA14580/581/583. The changes in the BLE stack are reflected to the API which has some
modifications compared to the SDK 5.0.4.

● The DA14585/586 have a different memory layout compared to the 580/581/583. As a result
scatter file has changed.

● The DA14585/586 sleep modes have changed. As a result, the Sleep API has been modified.

● The new SDK supports Data Length extension, which affects the MTU size.

Due to the changes mentioned above and the changes to the APIs caused by them, an application
developed with SDK 5.0.4 will not compile and link under SDK 6 release by just importing the
application. Even if it compiles it will not produce code able to run as designed.

For more detailed information about the new APIs and the demo projects please refer to [1] and [2].

The steps to port an application developed in SDK 5.0.4 to SDK 6, are explained in detail in the
following sections.

2.1 Changes in SDK 6

The changes are in Sleep behaviour, due to support the Data Length Extension feature, OTP
programming, custom profile, custom database service with 128 bit UUIDs support, attribute
permissions, service and characteristic definition, Non-Volatile Data Storage (NVDS), periodic
wakeup period and at the maximum valid timeout for Kernel Timer.

2.1.1 Sleep Modes

This section describes the software architecture of the sleep modes of DA14585/586. The various
modes of operation of the chip are:

● No sleep

● Extended sleep without OTP copy.

● Extended sleep with OTP copy.

● Deep sleep

When the Extended sleep without OTP copy is used, the application code shall be stored in a
memory source other than OTP memory. After wake-up from sleep, no OTP mirror and no boot from
SPI, I2C, UART interface shall happen. The RAM blocks which include code will be retained. The
RAM blocks which include retention data will be retained. RAM block 4 is always retained (BLE
state).This mode resembles to the extended sleep mode of 580.

When the Extended sleep with OTP copy is used, the application code shall be stored in OTP
memory. After wake-up from sleep, the OTP mirror will take place. The RAM blocks which include
code will not be retained. The RAM blocks which include retention data will be retained. RAM block 4
is always retained (BLE state). This mode resembles the deep sleep mode of 580.

As in the 580 SDK, the user can preselect to use either the Extended sleep mode without OTP copy
or the Extended sleep mode with OTP copy, by providing the respective sleep configuration in the
user_config.h file.

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 6 of 28

/**

* Default sleep mode. Possible values are:

*

* - ARCH_SLEEP_OFF

* - ARCH_EXT_SLEEP_ON

* - ARCH_EXT_SLEEP_OTP_COPY_ON

*

**

*/

One of the above sleep modes will be used when the system logic decides that the 585 chip is ready
to sleep.

In Deep sleep, nothing is retained (all RAM blocks off). The system wakes-up from external interrupt
or a POR source and the boot code will be invoked. This mode can be used as the shipping or
hibernation mode of the 585 chip. A BLE connection cannot be maintained.

The system enters the deep sleep mode, only if the user explicitly calls the API function:

void arch_set_deep_sleep(bool ext_wakeup)

2.1.2 Support for DLE (Data Packet Length Extension)

The DA14585/586 support the Data Length Extension feature. The Maximum Transmission Unit
(MTU) should be computed according to the maximum allowed size. This means that, during a
connection, if the packet length changes, the max packet length should be taken into consideration
for the computation of the MTU. For the SUOTA examples which demonstrate the DLE feature, the
max payload has 251 octets length while the L2CAP header has 4 octets length. This means that the
MTU size will be 251-4 = 247 octets.

2.1.3 OTP Programming

DA14585/586 uses different OTP controller and memory layout than DA14580. DA14585/586 has a
bigger OTP region (64 KB) which is supported by the latest SmartSnippets Toolbox.

2.1.4 Custom Profile

In SDK 6 multiple Primary Services can be implemented in a single custom profile.

2.1.5 Service Database Creation for Custom Profile

In this section the creation of custom database service in SDK 6 is presented. Examples from the
SDK 6 for the creation of 128bit service database are used along with some definitions from [6]. For
more info about the database creation please also refer to [7]. The differences that exist between
SDK 6 and SDK 5.0.4 are highlighted.

Note 1 Custom profile demo application has slightly changed in SDK 6. For more information please check
section 8.3 of [2].

2.1.6 Creation of service database for 128bits long UUIDs

The GATT Profile requires the implementation of the Attribute Protocol (ATT). Attribute Protocol
commands and requests act on values stored in Attributes on the server device. An Attribute is
composed of four parts: Attribute Handle, Attribute Type, Attribute Value, and Attribute Permissions.
The Attribute Handle is an index corresponding to a specific Attribute. The Attribute Type is a UUID
that describes the Attribute Value. The Attribute Value is the data described by the Attribute Type
and indexed by the Attribute Handle. Attribute Permissions is part of the Attribute that cannot be read
from or written to using the Attribute Protocol. It is used by the server to determine whether read or
write access is permitted for a given attribute. A profile is composed of one or more services

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 7 of 28

necessary to fulfill a use case. A service is composed of characteristics or references to other
services. Each characteristic contains a value and may contain optional information about the value.
The service and characteristic and the components of the characteristic (i.e. value and descriptors)
contain the profile data and are all stored in Attributes on the server.

struct attm_desc_128, located in file attm_db_128.h, is used for attributes database creation (128

bit UUIDs) both in SDK 6 and SDK 5.0.4.

SDK6

/// Attribute description (used to create database)

struct attm_desc_128

{

 /// Element UUID

 uint8_t *uuid;

 /// UUID size

 uint8_t uuid_size;

 /// Attribute Permissions (@see enum attm_perm_mask)

 att_perm_type perm;

 /// Attribute Max Size (@see enum attm_value_perm_mask)

 /// note: for characteristic declaration contains handle offset

 /// note: for included service, contains target service handle

 att_size_t max_length;

 /// Current length of the element

 att_size_t length;

 /// Element value array

 uint8_t *value;

};

SDK 5.0.4

struct attm_desc_128

 {

 /// Element UUID

 uint8_t* uuid;

 /// UUID size

 uint8_t uuid_size;

 /// Attribute permission

 uint16_t perm;

 /// Maximum length of the element

 att_size_t max_length;

 /// Current length of the element

 att_size_t length;

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 8 of 28

 /// Element value array

 uint8_t* value;

 };

Comments

1. There is a change in the database creation between SDK 6 and SDK 5.0.4.

○ In SDK 5.0.4 the max_length field contains the max size of the attribute. Especially if the

attribute is characteristic declaration then this field contains the handle offset. If the attribute

is included service then the max_length field contains the target service handle. The

max_length/offset applies for the bits [0-14] of the member max_length of struct
attm_desc_128.

○ In SDK 6, the enum attm_value_perm_mask in attm.h file has a new bit field added (RI). The

new bit [15] is Trigger Read Indication. The usage of Trigger Read Indication is explained

below:

When RI is Disabled (0), the value is present in Database. When reading, lower layers will

send GATTC_READ_CFM with the value that is already stored in the database. The upper layers

will not receive a GATTC_READ_REQ_IND, since the value is already in the database.

When RI is Enabled (1), the value is not present in the database. When reading, upper layers

will receive a GATTC_READ_REQ_IND and are responsible for replying with a GATTC_READ_CFM

that contains the value.

2. An example of an 128bit database creation is custs1_att_db from ALL IN ONE Ble project. The

database is described in users_custs1_def.c file located in
<sdk_root>\projects\target_apps\ble_examples\ble_app_all_in_one\src\custom_profile

2.1.7 Attribute Permissions

To retrieve the permission field of an attribute in SDK 6, the following macro, that can be found in

attm.h file located at <sdk_root>\sdk\ble_stack\host\att\attm:, is used:

PERM(access, right)

● The available server access permissions (enum attm_perm_mask) are:

ALL = Retrieve all permission info

RD = Read Access

WR = Write Access

IND = Indication Access

NTF = Notification Access

EXT = Extended properties descriptor present

BROADCAST = Broadcast descriptor present

EKS = Check Encryption key size

WRITE_COMMAND = Write Command Enabled attribute

WRITE_SIGNED = Write Signed Enabled attribute

WRITE_REQ = Write Request Enabled attribute

UUID_LEN = UUID Length

● The available server Attribute & Service access rights are :

DISABLE = Disable access

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 9 of 28

ENABLE = Enable access

UNAUTH = Access Requires Unauthenticated link

AUTH = Access Requires Authenticated link

SECURE = Access Requires Secure Connection

● To add more than one access permissions to an attribute OR the macros like the following
examples:

// Control Point Characteristic Value

 [CUST1_IDX_CONTROL_POINT_VAL] = {CUST1_CTRL_POINT_UUID_128, ATT_UUID_128_LEN,

PERM(WR, ENABLE) | PERM(WRITE_REQ, ENABLE), DEF_CUST1_CTRL_POINT_CHAR_LEN, 0, NULL}

// LED State Characteristic Value

 [CUST1_IDX_LED_STATE_VAL] = {CUST1_LED_STATE_UUID_128, ATT_UUID_128_LEN, PERM(WR,

ENABLE) | PERM(WRITE_COMMAND, ENABLE), DEF_CUST1_LED_STATE_CHAR_LEN, 0, NULL}

 // ADC Value 1 Client Characteristic Configuration Descriptor

 [CUST1_IDX_ADC_VAL_1_NTF_CFG] = {(uint8_t*)&att_decl_cfg, ATT_UUID_16_LEN, PERM(RD,

ENABLE) | PERM(WR, ENABLE) | PERM(WRITE_REQ, ENABLE), sizeof(uint16_t), 0, NULL}

In SDK 5.0.4 the same macro as in SDK 6 is used to retrieve the permission field of an attribute.

PERM(access, right)

● The available server access permissions (enum attm_perm_mask) are:

RD = Read Access

WR = Write Access

IND = Indication Access

NTF = Notification Access

EKS = Check Encryption key size

HIDE = Hide/Show attribute

WRITE_SIGNED = Write Signed Enabled attribute

● The available server Attribute & Service access rights are :

DISABLE = Disable access

ENABLE = Enable access

UNAUTH = Access Requires Unauthenticated link

AUTH = Access Requires Authenticated link

AUTHZ = Access Requires authorization

Notice

1. SDK 6 has more server access permissions than SDK 5.0.4. There is also a difference in the
available access rights between the two SDKs.

2. In SDK6 to enable writing on an attribute, apart from the Write Access, WRITE_COMMAND or

WRITE_SIGNED or WRITE_REQ or a combination of them should be enabled as shown in the next

figure:

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 10 of 28

2.1.8 Service attribute

A service definition contains a service declaration and may contain include definitions and
characteristic definitions. Service definitions appear on the server in an order based on Attribute
Handle. A service declaration is an Attribute with the Attribute Type set to the UUID for «Primary
Service» or «Secondary Service». The Attribute Value shall be the 16-bit Bluetooth UUID or 128-bit
UUID for the service, known as the service UUID. All Attributes on a Server shall either contain a
service declaration or exist within a service definition.

2.1.8.1 Service definition example (128bit UUID)

Below the custom service declaration located in user_custs1_def.c file of ALL IN ONE Ble project is
shown for:

SDK6

// CUSTOM1 Service Declaration

 [CUST1_IDX_SVC] = {(uint8_t*)&att_decl_svc, ATT_UUID_16_LEN, PERM(RD, ENABLE),

sizeof(custs1_svc), sizeof(custs1_svc), (uint8_t*)&custs1_svc}

SDK 5.0.4

// CUSTOM1 Service Declaration

 [CUST1_IDX_SVC] = {(uint8_t*)&att_decl_svc, ATT_UUID_16_LEN, PERM(RD, ENABLE),

sizeof(custs1_svc), sizeof(custs1_svc), (uint8_t*)&custs1_svc}

Notice

1. There are no changes between the two SDKs.

2.1.9 Characteristic attribute

A characteristic definition contains a characteristic declaration, a Characteristic Value declaration and
may contain characteristic descriptor declarations. A characteristic definition ends at the start or the
next characteristic declaration or service declaration or after the maximum Attribute Handle.
Characteristic definitions appear on the server. The two required declarations are the characteristic
declaration and the Characteristic Value declaration. Characteristic descriptors are used to contain
related information about the Characteristic Value.

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 11 of 28

2.1.9.1 Characteristic definition example (128bit UUID)

The declaration, value and descriptor of the custom characteristic "Control Point" is presented below.
It is in user_custs1_def.c file of ALL IN ONE Ble project which is located in
<sdk_root>\projects\target_apps\ble_examples\ble_app_all_in_one

SDK6

// Control Point Characteristic Declaration

[CUST1_IDX_CONTROL_POINT_CHAR] = {(uint8_t*)&att_decl_char, ATT_UUID_16_LEN,

PERM(RD, ENABLE),0, 0, NULL}

// Control Point Characteristic Value

[CUST1_IDX_CONTROL_POINT_VAL] = {CUST1_CTRL_POINT_UUID_128, ATT_UUID_128_LEN,

PERM(WR, ENABLE) | PERM(WRITE_REQ, ENABLE),

DEF_CUST1_CTRL_POINT_CHAR_LEN, 0, NULL}

// Control Point Characteristic User Description

[CUST1_IDX_CONTROL_POINT_USER_DESC]= {(uint8_t*)&att_decl_user_desc, ATT_UUID_16_LEN,

PERM(RD, ENABLE),

sizeof(CUST1_CONTROL_POINT_USER_DESC) - 1,

sizeof(CUST1_CONTROL_POINT_USER_DESC) - 1,

CUST1_CONTROL_POINT_USER_DESC}

SDK 5.0.4

// Control Point Characteristic Declaration

[CUST1_IDX_CONTROL_POINT_CHAR] = {(uint8_t*)&att_decl_char, ATT_UUID_16_LEN,

PERM(RD, ENABLE),

sizeof(custs1_ctrl_point_char),

sizeof(custs1_ctrl_point_char),

(uint8_t*)&custs1_ctrl_point_char}

// Control Point Characteristic Value

[CUST1_IDX_CONTROL_POINT_VAL] = {CUST1_CTRL_POINT_UUID_128, ATT_UUID_128_LEN,

PERM(WR, ENABLE),

DEF_CUST1_CTRL_POINT_CHAR_LEN, 0, NULL}

// Control Point Characteristic User Description

[CUST1_IDX_CONTROL_POINT_USER_DESC]= {(uint8_t*)&att_decl_user_desc, ATT_UUID_16_LEN,

PERM(RD, ENABLE),

sizeof(CUST1_CONTROL_POINT_USER_DESC) - 1,

sizeof(CUST1_CONTROL_POINT_USER_DESC) - 1,

CUST1_CONTROL_POINT_USER_DESC}

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 12 of 28

Notice

1. [CUST1_IDX_CONTROL_POINT_CHAR]: This is a custom SDK 6 characteristic declaration attribute.

The max_length field of this attribute contains the handle offset. This custom characteristic

declaration does not define descriptors (as SDK 5.0.4 does) for the max (att_size_t

max_length) and the current (att_size_t length) length. Value field is NULL (SDK 6). In SDK

5.0.4 the value field contains custs1_ctrl_point_char struct which is a value desciptor. From

the definition of this struct user can observe that it has its attribute handle equal to zero.

2. [CUST1_IDX_CONTROL_POINT_USER_DESC]: This is a custom SDK 6 characteristic value attribute.

The perm field of this attribute is PERM(WR, ENABLE) | PERM(WRITE_REQ, ENABLE). This means

that this characteristic value attribute has enabled two writing attributes: Write Request and write.
SDK 5.0.4 has write access (writing attribute) enabled.

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 13 of 28

2.1.10 Non-Volatile Data Storage (NVDS)

The Non-Volatile Data Storage (NVDS) can be used to keep system configuration settings such as

the Bluetooth device address. This is achieved with the struct nvds_data_struct
nvds_data_storage.

SDK6

static const struct nvds_data_struct nvds_data_storage =

{

 .lpclk_drift = CFG_NVDS_TAG_LPCLK_DRIFT,

 .bd_address = CFG_NVDS_TAG_BD_ADDRESS,

 /// Default Channel Assessment Timer duration (20s - Multiple of 10ms)

 .ble_ca_timer_dur = CFG_NVDS_TAG_BLE_CA_TIMER_DUR,

 /// Default Channel Reassessment Timer duration (Multiple of Channel Assessment

Timer duration)

 .ble_cra_timer_dur = CFG_NVDS_TAG_BLE_CRA_TIMER_DUR,

 /// Default Minimal RSSI Threshold - -48dBm

 .ble_ca_min_rssi = CFG_NVDS_TAG_BLE_CA_MIN_RSSI,

 /// Default number of packets to receive for statistics

 .ble_ca_nb_pkt = CFG_NVDS_TAG_BLE_CA_NB_PKT,

 /// Default number of bad packets needed to remove a channel

 .ble_ca_nb_bad_pkt = CFG_NVDS_TAG_BLE_CA_NB_BAD_PKT,

};

SDK 5.0.4

const struct nvds_data_struct nvds_data_storage

__attribute__((section("nvds_data_storage_area")))

#ifdef CFG_INITIALIZE_NVDS_STRUCT

= {

 .NVDS_VALIDATION_FLAG = (BD_ADDRESS_VALID | DEVICE_NAME_VALID |

LPCLK_DRIFT_VALID | APP_BLE_ADV_DATA_VALID \

 | APP_BLE_SCAN_RESP_DATA_VALID |

UART_BAUDRATE_VALID | SLEEP_ENABLE_VALID | EXT_WAKEUP_ENABLE_VALID \

 | DIAG_BLE_HW_VALID | DIAG_SW_VALID |

SECURITY_ENABLE_VALID | NEB_ID_VALID \

 | NVDS_BLE_CA_TIMER_DUR_VALID |

NVDS_BLE_CRA_TIMER_DUR_VALID | NVDS_BLE_CA_MIN_RSSI_VALID | NVDS_BLE_CA_NB_PKT_VALID \

 | NVDS_BLE_CA_NB_BAD_PKT_VALID),

 .NVDS_TAG_UART_BAUDRATE = 115200,

 .NVDS_TAG_DIAG_SW = 0,

 .NVDS_TAG_DIAG_BLE_HW = 0,

 .NVDS_TAG_NEB_ID = 0,

 .NVDS_TAG_LPCLK_DRIFT = CFG_NVDS_TAG_LPCLK_DRIFT,

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 14 of 28

 .NVDS_TAG_SLEEP_ENABLE = 1,

 .NVDS_TAG_EXT_WAKEUP_ENABLE = 0,

 .NVDS_TAG_SECURITY_ENABLE = 1,

 .NVDS_TAG_APP_BLE_ADV_DATA = USER_ADVERTISE_DATA,

 .NVDS_TAG_APP_BLE_SCAN_RESP_DATA = USER_ADVERTISE_SCAN_RESPONSE_DATA,

 .NVDS_TAG_DEVICE_NAME = USER_DEVICE_NAME,

 .NVDS_TAG_BD_ADDRESS = CFG_NVDS_TAG_BD_ADDRESS,

 .ADV_DATA_TAG_LEN = USER_ADVERTISE_DATA_LEN,

 .SCAN_RESP_DATA_TAG_LEN = USER_ADVERTISE_SCAN_RESPONSE_DATA_LEN,

 .DEVICE_NAME_TAG_LEN = USER_DEVICE_NAME_LEN,

 /// Default Channel Assessment Timer duration (20s - Multiple of 10ms)

 .NVDS_TAG_BLE_CA_TIMER_DUR = CFG_NVDS_TAG_BLE_CA_TIMER_DUR,

 /// Default Channel Reassessment Timer duration (Multiple of Channel Assessment

Timer duration)

 .NVDS_TAG_BLE_CRA_TIMER_DUR = CFG_NVDS_TAG_BLE_CRA_TIMER_DUR,

 /// Default Minimal RSSI Threshold - -48dBm

 .NVDS_TAG_BLE_CA_MIN_RSSI = CFG_NVDS_TAG_BLE_CA_MIN_RSSI,

 /// Default number of packets to receive for statistics

 .NVDS_TAG_BLE_CA_NB_PKT = CFG_NVDS_TAG_BLE_CA_NB_PKT,

 /// Default number of bad packets needed to remove a channel

 .NVDS_TAG_BLE_CA_NB_BAD_PKT = CFG_NVDS_TAG_BLE_CA_NB_BAD_PKT,

}

#endif

;

Notice

1. In SDK 6 struct nvds_data_struct nvds_data_storage members have changed.

2. The most significant change is that the RO (read-only) nvds_data_storage variable is no longer

placed at a fixed location in RAM, as it was done in the SDK 5.0.4. Its location may differ from
build to build. The SDK 5.0.4 uses the following attribute that specifies that the

nvds_data_storage must be placed in a particular section:

struct nvds_data_struct nvds_data_storage

__attribute__((section("nvds_data_storage_area")))

The section to be placed is defined during the linking phase, by the scatter file:

LR_IROM4 0x20000340 0x100 {

 ER_IROM4 0x20000340 0x100 {

* (nvds_data_storage_area)

 }

 }

Note 2 The above linker file is valid for DA14580 (SDK5) and not for DA14585 (SDK 6)

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 15 of 28

3. By placing the nvds module to the same location (as instructed by the linker file) the same
behavior as for SDK 5.0.4 can be achieved.

2.1.11 External Processor Periodic Wakeup

The Periodic wakeup period if GTL interface is not enabled has increased to 600s.

Note 3 For more info about the Wake-Up and External Processor Configuration please refer to [1].

2.1.12 Kernel Timer

The maximum valid timeout for Kernel Timer has increased. More specifically the

KE_TIMER_DELAY_MAX define has increased to:

41943030 msec = 41943.030 sec ~ 699 minutes

Note 4 The KE_TIMER_DELAY_MAX definition can be found in app_easy_timer.h header file which is located in:

<sdk_root>\sdk\app_modules\api. For more info about the Real Time Kernel and the Timer please

refer to [1].

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 16 of 28

2.2 Porting Instructions

In this section, the steps in porting two key example applications, the prox_reporter and all_in_one
from SDK 5.0.4 to SDK 6 are presented. The steps depicted below can to some extend be used also
as a guide in porting applications developed with SDK 5.0.4 to SDK 6.

2.2.1 Porting the prox_reporter example application

The following steps describe how to port the prox_reporter example application from SDK 5.0.4 to
SDK 6. The procedure is as follows:

1. To port an application developed in SDK5.0.4, to SDK 6 the empty_peripheral_template located

in <sdk_root>\projects\target_apps\template can be used. Any of the BLE demo projects

located in <sdk_root>\projects\target_apps\ble_examples can also be used depending on

the features of the application to be ported.

2. All the “user_ x” application files must be copied to the

<sdk_root>\projects\target_apps\template\empty_template_ext\src folder of the project to

their corresponding folders.

3. da1458x_config_advanced.h and da1458x_config_basic.h files must not be copied but keep

the latest versions of these files located in the user_config folder as shown in Figure 1. Apply

your settings in these files.

Figure 1

4. Instead of including files to enable specific profiles user must use configuration flags. For

example, in user_profiles_config.h file of the prox_reporter demo application the following

includes:

#include "proxr.h"

#include "spotar.h"

#include "bass.h"

#include "diss.h"

Have been replaced with the flags:

#define CFG_PRF_DISS

#define CFG_PRF_BASS

#define CFG_PRF_PXPR

#define CFG_PRF_SUOTAR

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 17 of 28

5. All the ATT DB related flags can be found in the rwip_config.h located in

<sdk_root>\sdk\platform\core_modules\rwip\api folder.

6. In gapm_task.h file, located in <sdk_root>\sdk\ble_stack\host\gap\gapm, user can find the

GAPM messages which may have changed due to the BLE stack upgrade. For example, the

advertise configuration section in the user_config.h file of the prox_reporter demo project.

7. In app_user_config.h file, located in <sdk_root>\sdk\app_modules\api, the

central_configuration has changed (in Central configuration). For this reason in

user_config.h file of the prox_reporter demo project Central configuration section must be

updated.

8. SPOTAR has been renamed to SUOTAR. So any file, function, message… containing the word

spotar must be renamed to suotar. For example, in user_profiles_config.h file of the

prox_reporter demo project #include "spotar.h" must be renamed to #include "suotar.h"

9. For errors in user_callback_config.h file please check changes in app_callback.h file located

in <sdk_root>\sdk\app_modules\api. For example, struct user_profile_callbacks has been

removed from user_callback_config.h, of the prox_reporter demo project, because struct

profile_callbacks has been removed respectively from app_callback.h file. Also struct

app_callbacks has some new members added.

10. In user_callback_config.h file,of the SDK6.0.4 prox_reporter demo project, we can see the

structs app_bass_cb, app_proxr_cb and app_suotar_cb that are replacing struct

profile_callback. These are new structs that can been found in app_suotar.h, app_proxr.h

and app_bass.h files respectively.

11. TASK_NONE renamed to TASK_ID_INVALID in rwip_config.h located in

<sdk_root>\sdk\platform\core_modules\rwip\api. Please check for any other changes in

tasks type definitions.

12. In user_profiles_config.h file, of the SDK6.0.4 prox_reporter demo project, DISS and

SUOTAR application profiles configuration has been altered. These profile configurations must
be used by the application to be ported (if it uses these two profiles).

2.2.2 Porting the all_in_one example application

The following steps describe how to port the all_in_one example application from SDK 5.0.4 to
SDK 6. The procedure is as follows:

1. To port the all_in_one demo application from SDK 5.0.4 to SDK 6 the empty_peripheral_template

located in <sdk_root>\projects\target_apps\template will be used. Any of the BLE demo

projects located in <sdk_root>\projects\target_apps\ble_examples can also be used

depending on the features of the application to be ported.

2. all_in_one demo project is located in <sdk_root>\projects\target_apps\ble_examples.

3. All the “user_ x” application files must be copied to the

<sdk_root>\projects\target_apps\template\empty_template_ext\src folder of the project to

their corresponding folders.

4. da1458x_config_advanced.h and da1458x_config_basic.h files must not be copied but keep

the latest versions of these files located in the user_config folder as shown in Figure 1. Apply

your settings on these files.

5. SPOTAR has been renamed to SUOTAR. So any file, function, message… containing the word

spotar must be renamed to suotar. For example, in user_profiles_config.h file of the

all_in_one demo project #include "spotar.h" must be renamed to #include "suotar.h"

6. Instead of including files to enable specific profiles user must use configuration flags. For

example in user_profiles_config.h file of the all_in_one demo application the following

includes:

#include "diss.h"

#include "suotar.h"

#include "custs1.h"

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 18 of 28

Have been replaced with the flags:

#define CFG_PRF_DISS

#define CFG_PRF_SUOTAR

#define CFG_PRF_CUST1

7. All the ATT DB related flags can be found in the rwip_config.h located in

<sdk_root>\sdk\platform\core_modules\rwip\api folder.

8. Sleep modes have changed. In user_config.h make the appropriate change in

app_default_sleep_mode. The possible values are:

- ARCH_SLEEP_OFF

- ARCH_EXT_SLEEP_ON

- ARCH_EXT_SLEEP_OTP_COPY_ON

9. In gapm_task.h file, located in <sdk_root>\sdk\ble_stack\host\gap\gapm, user can find the

GAPM messages which may have changed due to the BLE stack upgrade. For example, the

advertise configuration in the user_config.h file of the all_in_one demo project.

10. struct advertise_configuration in app_user_config.h file has some changes. As a result

advertising configuration in user_config.h file must change accordingly.

11. In user_config.h select memory offset for bond data storage file. For SUOTA-ready memory

layout:

#define USER_CFG_BOND_DB_DATA_OFFSET (0x39000)

12. struct gapm_configuration in app_user_config.h file has some changes. As a result GAPM

configuration in user_config.h file must change accordingly.

13. In app_user_config.h file, located in <sdk_root>\sdk\app_modules\api, the

central_configuration has changed (in Central configuration section). For this reason, in

user_config.h file of the prox_reporter demo project Central configuration section must be

updated.

14. struct app_callbacks has some new members added in file app_callback.h file located in

<sdk_root>\sdk\app_modules\api. For this reason, struct user_app_callbacks must be

corrected in user_callback_config.h to reflect these changes.

15. In user_profiles_config.h file in SUOTA configuration section #define SUOTAR_PATCH_AREA

is not valid anymore and has been removed.

16. In DISS application profile configuration in user_profiles_config.h some definitions have

changed and some new have been added.

17. In rwip_config.h file located in <sdk_root>\sdk\platform\core_modules\rwip\api please

check for changes in task type definitions. For example, TASK_NONE has been renamed to

TASK_ID_INVALID and custom profile server tasks TASK_CUSTS1 while TASK_CUSTS2 have been

renamed to TASK_ID_CUSTS1 and TASK_ID_CUSTS2 respectively. In general task type

definitions are in TASK_ID_x format.

18. Timer drivers can now be found in <sdk_root>\sdk\platform\driver\timer folder which has

replaced the \pwm folder. The pwm driver has been replaced with two timer drivers timer0 and

timer2.

19. In user_custs1_def.c there are some changes in the PERM field of the characteristics added to

the database. For example, in the Control Point Characteristic Value the PERM field has been
modified:

from PERM(WR, ENABLE) to PERM(WR, ENABLE) | PERM(WRITE_REQ, ENABLE)

In LED State Characteristic Value the PERM field has been modified:

from PERM(WR, ENABLE) to PERM(WR, ENABLE) | PERM(WRITE_COMMAND, ENABLE)

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 19 of 28

3 Porting from SDK 6.0.4 to 6.0.6

The latest SDK 6.0.6 release for the DA14585/586 devices has changes and improvements that
affect the backwards compatibility for existing applications developed in a previous DA14585/586
6.0.4 or 6.0.2 SDK release.

3.1 Changes in SDK 6

The areas where there have been changes that affect the compatibility in SDK 6.0.6 are due to that it
introduced:

● new security features and improvements

● an enhanced custom service that now can support multiple primary services

These changes affect the environment structure, callbacks, behavior of the default handlers, security
and user function definitions.

3.1.1 Security

Support on security has been updated in 6.0.6 as this includes and has:

● Added support for Secure Connections (4.2 feature)

● Added the extra pairing method of the Secure Connections, the Numeric Comparison.

● Changed user configuration file (user_config.h) to support all possible Security configurations.

● Updated the application bond database implementation and API.

● Added support for address resolution.

● Changed security related user callbacks.

● Updated app_easy_security API.

● Modified callback app_on_tk_exch() to support all TK types, including TK_KEY_CONFIRM for
Numeric Comparison pairing.

● Enhanced the application security environment variables.

● Changed the implementation of the security default handlers to support all the possible security
processes (e.g. major change in default_app_on_encrypt_req_ind())

3.1.2 Custom Profile

The custom profile has been improved in order to support multiple services. Due to the changes
introduced, the following three global variables need now to be defined in the user space
(user_custs1_def.c file):

● const uint8_t custs1_services[]

● const uint8_t custs1_services_size

● const uint16_t custs1_att_max_nb

3.2 Porting Instructions

In this section, the steps in porting the SDK example applications, from SDK 6.0.4 to SDK 6.0.6 are
presented. Specifically, the modifications that need to be made in the Pillar examples, pxp reporter,
AES and empty peripheral demo projects, are described.

The steps depicted below can to some extend be used also as a guide in porting applications
developed with SDK 6.0.4 to SDK 6.0.6.

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 20 of 28

3.2.1 Porting Pillar 1 (Bare Bone)

Backwards compatibility is not affected. This demo project can be ported from SDK 6.0.4 to SDK
6.0.6.

Note 5 In case the CFG_APP_SECURITY configuration flag is defined in the da1458x_config_basic.h file then the

following should be done to port the project to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. Files app_bond_db.c and app_bond_db.h has to be added in the project tree under sdk_app

3. user_app_callbacks table shall be updated in the user_callback_config.h file :

○ app_on_mitm_passcode_req has been removed

○ app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

○ app_on_pairing_succeded has been renamed to app_on_pairing_succeeded

4. user_app_bond_db_callbacks table has to be added in the user_callback_config.h file

3.2.2 Porting Pillar 2 (Custom Profile)

Backwards compatibility is not affected. This demo project can be ported from SDK 6.0.4 to SDK
6.0.6.

Note 6 The custom service’s compatibility should be checked.

Note 7 In case the CFG_APP_SECURITY configuration flag is defined in the da1458x_config_basic.h file then the

following should be done to port the project to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. Files app_bond_db.c and app_bond_db.h has to be added in the project tree under sdk_app

3. user_app_callbacks table shall be updated in the user_callback_config.h file :

○ app_on_mitm_passcode_req has been removed

○ app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

○ app_on_pairing_succeded has been renamed to app_on_pairing_succeeded

4. user_app_bond_db_callbacks table has to be added in the user_callback_config.h file

3.2.3 Porting Pillar 3 (Peripheral)

Backwards compatibility is not affected. This demo project can be ported from SDK 6.0.4 to SDK
6.0.6.

Note 8 The custom service’s compatibility should be checked.

Note 9 In case the CFG_APP_SECURITY configuration flag is defined in the da1458x_config_basic.h file then the

following should be done to port the project to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. Files app_bond_db.c and app_bond_db.h has to be added in the project tree under sdk_app

3. user_app_callbacks table shall be updated in the user_callback_config.h file :

○ app_on_mitm_passcode_req has been removed.

○ app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

○ app_on_pairing_succeded has been renamed to app_on_pairing_succeeded

4. user_app_bond_db_callbacks table has to be added in the user_callback_config.h file.

3.2.4 Porting Pillar 4 (Security)

Backwards compatibility is affected due to the new Security features and improvements and the
updated Custom Service. The following steps should be done for the application to be ported from
SDK 6.0.4 to SDK 6.0.6:

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 21 of 28

1. user_app_callbacks table shall be updated in the user_callback_config.h file:

o app_on_mitm_passcode_req has been removed

o app_on_tk_exch_nomitm has been renamed to app_on_tk_exch and supports all TK

exchange cases

o app_on_pairing_succeded has been renamed to app_on_pairing_succeeded and has an

extra uint8_t conidx argument

2. user_app_bond_db_callbacks table has to be added in user_callback_config.h. Bond

database functions should be used through the app_easy_security API. The callback table

connects the bond database operations to either the default or custom implementation of the
bond database.

3. user_app_on_tk_exch_nomitm() should be changed to the new user_app_on_tk_exch()

4. user_app_on_encrypt_req_ind() should be removed, since new

default_app_on_encrypt_req_ind() implements all possible cases

5. user_app_on_pairing_succeeded() should be removed, since all bond data functions and

app_sec_env are no longer valid. Can be replaced with default_app_on_pairing_succeeded()

6. app_sec_env_tag has been changed to app_sec_bond_data_env_tag

7. struct bond_db_data has been removed

8. default_app_on_tk_exch_nomitm()has been replaced with default_app_on_tk_exch()

9. app_easy_security_tk_exch() has an extra ‘bool accept’ argument

3.2.5 Porting Pillar 5 (Sleep Mode)

Backwards compatibility is not affected. This demo project can be ported from SDK 6.0.4 to SDK
6.0.6.

Note 10 In case the CFG_APP_SECURITY configuration flag is defined in the da1458x_config_basic.h file then the

following should be done to port the project to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. Files app_bond_db.c and app_bond_db.h has to be added in the project tree under sdk_app

3. user_app_callbacks table shall be updated in the user_callback_config.h file :

○ app_on_mitm_passcode_req has been removed

○ app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

○ app_on_pairing_succeded has been renamed to app_on_pairing_succeeded

4. user_app_bond_db_callbacks table has to be added in the user_callback_config.h file

3.2.6 Porting Pillar 6 (OTA)

Backwards compatibility is affected due to the new Security features and. The following steps should
be done for the application to be ported from SDK 6.0.4 to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. Files app_bond_db.c and app_bond_db.h has to be added in the project tree under sdk_app

3. user_app_callbacks table shall be updated in the user_callback_config.h file:

o app_on_mitm_passcode_req has been removed

o app_on_tk_exch_nomitm has been renamed to app_on_tk_exch and supports all TK

exchange cases

o app_on_pairing_succeded has been renamed to app_on_pairing_succeeded and has an

extra uint8_t conidx argument.

4. user_app_bond_db_callbacks table has to be added in the user_callback_config.h file

5. default_app_on_tk_exch_nomitm()has been replaced with default_app_on_tk_exch()

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 22 of 28

3.2.7 Porting Pillar 7 (All in One)

Backwards compatibility is affected due to the new Security features and improvements and the
updated Custom Service. The following steps should be done for the application to be ported from
SDK 6.0.4 to SDK 6.0.6:

1. user_app_callbacks table shall be updated in the user_callback_config.h file:

o app_on_mitm_passcode_req has been removed.

o app_on_tk_exch_nomitm has been renamed to app_on_tk_exch and supports all TK

exchange cases

o app_on_pairing_succeded has been renamed to app_on_pairing_succeeded and has an

extra uint8_t conidx argument

2. user_app_bond_db_callbacks table has to be added in user_callback_config.h. Bond

database functions should be used through the app_easy_security API. The callback table

connects the bond database operations to either the default or custom implementation of the
bond database.

3. user_app_on_tk_exch_nomitm() should be changed to the new user_app_on_tk_exch()

4. user_app_on_encrypt_req_ind() should be removed, since new

default_app_on_encrypt_req_ind() implements all possible cases.

5. user_app_on_pairing_succeeded() should be removed, since all bond data functions and

app_sec_env are no longer valid. Can be replaced with default_app_on_pairing_succeeded()

6. app_sec_env_tag has been changed to app_sec_bond_data_env_tag.

7. struct bond_db_data has been removed.

8. default_app_on_tk_exch_nomitm()has been replaced with default_app_on_tk_exch()

9. app_easy_security_tk_exch() has an extra ‘bool accept’ argument

3.2.8 Porting Proximity Reporter example application

Backwards compatibility is affected due to the new Security features and improvements. The
following steps should be done for the application to be ported from SDK 6.0.4 to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. user_app_callbacks table shall be updated in the user_callback_config.h file:

o app_on_mitm_passcode_req has been removed.

o app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

o app_on_pairing_succeded has been renamed to app_on_pairing_succeeded and has an

extra uint8_t conidx argument

3. user_app_bond_db_callbacks table has to be added in user_callback_config.h.

4. default_app_on_tk_exch_nomitm()has been replaced with default_app_on_tk_exch()

3.2.9 Porting AES Encryption example application

Backwards compatibility is not affected. This demo project can be ported from SDK 6.0.4 to SDK
6.0.6.

Note 11 In case the CFG_APP_SECURITY configuration flag is defined in the da1458x_config_basic.h file then the

following should be done to port the project to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. Files app_bond_db.c and app_bond_db.h has to be added in the project tree under sdk_app

3. user_app_callbacks table shall be updated in the user_callback_config.h file :

○ app_on_mitm_passcode_req has been removed

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 23 of 28

○ app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

○ app_on_pairing_succeded has been renamed to app_on_pairing_succeeded

4. user_app_bond_db_callbacks table has to be added in the user_callback_config.h file

3.2.10 Porting empty peripheral template

Backwards compatibility is affected due to the new Security features and improvements. The
following steps should be done for the application to be ported from SDK 6.0.4 to SDK 6.0.6:

1. Files app_utils.c and app_utils.h have to be added in the project tree under sdk_app

2. user_app_callbacks table shall be updated in the user_callback_config.h file:

o app_on_mitm_passcode_req has been removed

o app_on_tk_exch_nomitm has been renamed to app_on_tk_exch

o app_on_pairing_succeded has been renamed to app_on_pairing_succeeded and has an

extra uint8_t conidx argument.

3. user_app_bond_db_callbacks table has to be added in user_callback_config.h.

4. default_app_on_tk_exch_nomitm()has been replaced with default_app_on_tk_exch()

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 24 of 28

4 Porting from SDK 6.0.6 to 6.0.8

Backwards compatibility is affected only in applications that are not using a Public Address.
Specifically for applications that are using Random Static or Host RPA BD address

USER_CFG_ADDRESS_MODE flag must defined in the user_config file of the application. Below default

value for all_in_one demo application is shown:

#define USER_CFG_ADDRESS_MODE APP_CFG_ADDR_PUB

Available values are shown in the next list:

Privacy Capabilities and address configuration of local device:

● APP_CFG_ADDR_PUB No Privacy, Public BDA

● APP_CFG_ADDR_STATIC No Privacy, Random Static BDA

● APP_CFG_HOST_PRIV_RPA Host Privacy, RPA, Public Identity

● APP_CFG_HOST_PRIV_NRPA Host Privacy, NRPA

● APP_CFG_CNTL_PRIV_RPA_PUB Controller Privacy, RPA or PUB, Public Identity

● APP_CFG_CNTL_PRIV_RPA_RAND Controller Privacy, RPA, Public Identity

To port prox_reporter user must define USER_CFG_ADDRESS_MODE flag as described above and also

comment out .priv1_2 = 0 in struct gapm_configuration in user_config.h file of the project.

Note 12 File and path of thirdparty\hash folder must be also included, if the Keil project file is from the previous
SDK version.

Changes that are not affecting backwards compatibility are described in the next sections. The
changes are in the configuration files of the demo applications provided with the SDK. The
configuration files are located in the config folder of each application.

4.1 da1458x_config_advanced.h file

● CFG_USE_DEFAULT_XTAL16M_TRIM_VALUE_IF_NOT_CALIBRATED is defined

#define CFG_USE_DEFAULT_XTAL16M_TRIM_VALUE_IF_NOT_CALIBRATED

● In the definition CFG_TRNG, for enabling the TRNG, user must select the desirable Buffer size. The

default value is 1024 bytes.

#define CFG_TRNG (1024)

Available Buffer sizes: 32, 64, 128, 256, 512, 1024 bytes. For more info please check Appendix

E.3 of [1].

● Define CFG_ENABLE_SMP_SECURE to enable creation of private and public keys using Elliptic Curve

Diffie Hellman algorithms. Advised for applications using secure connections feature.

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 25 of 28

#define CFG_ENABLE_SMP_SECURE

● Temperature range selection has been added. Default value is CFG_AMB_TEMPERATURE definition.

Available values are: CFG_HIGH_TEMPERATURE, CFG_AMB_TEMPERATURE, CFG_MID_TEMPERATURE,
CFG_EXT_TEMPERATURE

#define CFG_AMB_TEMPERATURE

● To enable power optimizations using the XTAL16M adaptive settling algorithm the following
definition must be added:

#define CFG_XTAL16M_ADAPTIVE_SETTLING

4.2 user_callback_config.h

● following check should be added

#if (BLE_APP_SEC)

#include "app_bond_db.h"

#endif

4.3 user_config.h

● To select the Controller Privacy Mode USER_CFG_CNTL_PRIV_MODE flag must be defined. Default

value is

#define USER_CFG_CNTL_PRIV_MODE APP_CFG_CNTL_PRIV_MODE_NETWORK

Available values can be found in app_user_config.h file located in

<sdk_root>\sdk\app_modules\api folder.

● In struct advertise_configuration the addr_src value is calculated through

APP_CFG_ADDR_SRC macro. Default value is

.addr_src = APP_CFG_ADDR_SRC(APP_CFG_ADDR_PUB)

Available values can be found in app_user_config.h file located in

<sdk_root>\sdk\app_modules\api folder.

● In struct advertise_configuration the addr_type value is calculated through

APP_CFG_ADDR_TYPE macro. Default value is

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 26 of 28

.addr_type = APP_CFG_ADDR_TYPE(APP_CFG_ADDR_PUB)

Available values can be found in app_user_config.h file located in

<sdk_root>\sdk\app_modules\api folder.

● In struct advertise_configuration the renew_dur default value is 15000

.renew_dur = 15000

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

UM-B-082

DA14585/586 SDK 6 Porting Guide

User Manual

CFR0012 27 of 28

Revision History

Revision Date Description

1.0 24-Mar-2017 Initial version.

2.0 15-Jun-2017 First cleanup version.

3.0 09-Nov-2017 Update for the DA14585/586 SDK Release 6.0.6.

4.0 14-May-2018 Update for the DA14585/586 SDK Release 6.0.8.

Change details:

● Section 5: Porting from SDK 6.0.6 to 6.0.8

New Section

Revision 4.1 25-Jan-2022

© 2022 Renesas Electronics

4.1 25-Jan-2022 Updated logo, disclaimer, copyright.

UM-B-082

DA14585/586 SDK 6 Porting Guide

Revision 4.1 25-Jan-2022

CFR0012 28 of 28 © 2022 Renesas Electronics

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in

modifications or additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

 User Manual

RoHS Compliance

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our
suppliers are available on request.

	Abstract
	Contents
	References
	1 Introduction
	1.1 Scope
	1.2 Summary

	2 Porting from SDK 5.0.4 to 6.0.4
	2.1 Changes in SDK 6
	2.1.1 Sleep Modes
	2.1.2 Support for DLE (Data Packet Length Extension)
	2.1.3 OTP Programming
	2.1.4 Custom Profile
	2.1.5 Service Database Creation for Custom Profile
	2.1.6 Creation of service database for 128bits long UUIDs
	2.1.7 Attribute Permissions
	2.1.8 Service attribute
	2.1.8.1 Service definition example (128bit UUID)

	2.1.9 Characteristic attribute
	2.1.9.1 Characteristic definition example (128bit UUID)

	2.1.10 Non-Volatile Data Storage (NVDS)
	2.1.11 External Processor Periodic Wakeup
	2.1.12 Kernel Timer

	2.2 Porting Instructions
	2.2.1 Porting the prox_reporter example application
	2.2.2 Porting the all_in_one example application

	3 Porting from SDK 6.0.4 to 6.0.6
	3.1 Changes in SDK 6
	3.1.1 Security
	3.1.2 Custom Profile

	3.2 Porting Instructions
	3.2.1 Porting Pillar 1 (Bare Bone)
	3.2.2 Porting Pillar 2 (Custom Profile)
	3.2.3 Porting Pillar 3 (Peripheral)
	3.2.4 Porting Pillar 4 (Security)
	3.2.5 Porting Pillar 5 (Sleep Mode)
	3.2.6 Porting Pillar 6 (OTA)
	3.2.7 Porting Pillar 7 (All in One)
	3.2.8 Porting Proximity Reporter example application
	3.2.9 Porting AES Encryption example application
	3.2.10 Porting empty peripheral template

	4 Porting from SDK 6.0.6 to 6.0.8
	4.1 da1458x_config_advanced.h file
	4.2 user_callback_config.h
	4.3 user_config.h

	Revision History

