
User Manual 

DA1468x Software Developer’s 
Guide 

UM-B-056 

Abstract 

This manual intends to assist software developers which implement applications using the DA1468x 
development platform. A certain degree of reader familiarity with programming environments, 
debugging tools and software engineering process in general is assumed by the authors. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 2 of 88 © 2022 Renesas Electronics 

Contents 

Abstract ................................................................................................................................................ 1 

Contents ............................................................................................................................................... 2 

Figures .................................................................................................................................................. 3 

Tables ................................................................................................................................................... 5 

Codes .................................................................................................................................................... 5 

1 Terms and definitions ................................................................................................................... 6 

2 References ..................................................................................................................................... 6 

3 Prerequisites .................................................................................................................................. 7 

4 Introduction.................................................................................................................................... 8 

5 The Proximity Reporter Application ............................................................................................ 9 

5.1 Basic Services and Features ................................................................................................ 9 

5.2 User Interface ...................................................................................................................... 10 

5.3 Importing the project ........................................................................................................... 10 

5.4 Project Execution ................................................................................................................ 11 

5.4.1 Building ................................................................................................................ 11 

5.4.2 Programming the QSPI Flash .............................................................................. 12 

5.5 Interacting with the application ............................................................................................ 16 

5.5.1 LightBlue iOS application..................................................................................... 16 

5.5.2 B-BLE Android application ................................................................................... 17 

5.6 Source code walkthrough.................................................................................................... 18 

6 Peripheral Demo Application ..................................................................................................... 26 

6.1 Basic services and features ................................................................................................ 26 

6.2 User Interface ...................................................................................................................... 27 

6.3 Importing the project ........................................................................................................... 28 

6.3.1 Building the project .............................................................................................. 28 

6.3.2 Programming the QSPI Flash .............................................................................. 28 

6.4 Interacting with the Application ........................................................................................... 29 

7 Power Measurements Demo Application .................................................................................. 33 

7.1 Basic Services and Features .............................................................................................. 33 

7.2 User Interface ...................................................................................................................... 36 

7.3 Importing the project ........................................................................................................... 36 

7.3.1 Building the project .............................................................................................. 36 

7.3.2 Programming the QSPI Flash .............................................................................. 37 

7.4 Interacting with the Application ........................................................................................... 38 

7.4.1 Controlling via UART2 ......................................................................................... 39 

7.4.2 Controlling via GPIO ............................................................................................ 39 

7.4.3 Set advertising interval ........................................................................................ 39 

7.4.4 Set channel map .................................................................................................. 42 

7.4.5 Set recharge period ............................................................................................. 43 

7.4.6 Set connection parameters .................................................................................. 45 

8 Create a custom application ...................................................................................................... 47 

8.1 Creating a Bluetooth low energy project ............................................................................. 47 

8.2 Configuring your application ............................................................................................... 47 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 3 of 88 © 2022 Renesas Electronics 

8.3 Adding Bluetooth low energy functionality .......................................................................... 47 

8.3.1 Including BLE header files ................................................................................... 47 

8.3.2 Adding BLE services ............................................................................................ 48 

8.3.3 Bonding information management ....................................................................... 49 

8.3.4 Hooks ................................................................................................................... 49 

9 Software Upgrade ........................................................................................................................ 52 

9.1 Software Upgrade Over The Air (SUOTA) .......................................................................... 52 

9.1.1 Introduction .......................................................................................................... 52 

9.1.2 SUOTA service description.................................................................................. 52 

9.1.3 SUOTA Flow ........................................................................................................ 55 

9.1.4 SUOTA Flash memory layout .............................................................................. 58 

9.1.5 Performing SUOTA upgrade using a mobile phone ............................................ 59 

9.1.6 Performing SUOTA upgrade using two DA1468x ............................................... 65 

9.1.6.1 Building the Bluetooth low energy Central device ........................... 66 

9.1.6.2 Building the Bluetooth low energy peripheral device ....................... 70 

9.1.6.3 Running the software upgrade procedure ....................................... 71 

9.1.7 SUOTA in Production and Field deployment ....................................................... 77 

9.1.8 Recommendations ............................................................................................... 78 

9.2 Software Upgrade Over USB (SUOUSB) ........................................................................... 78 

9.2.1 Introduction .......................................................................................................... 78 

9.2.2 QSPI based SUOUSB ......................................................................................... 78 

9.2.2.1 Prepare bootloader .......................................................................... 78 

9.2.2.2 Prepare main image ........................................................................ 78 

9.2.2.3 Prepare SUOUSB image for test ..................................................... 78 

9.2.2.4 Running the SUOUSB process ....................................................... 79 

9.2.2.5 Transfer from a Windows host ......................................................... 79 

9.2.2.6 Transfer from a Linux host ............................................................... 79 

9.2.3 RAM based SUOUSB .......................................................................................... 80 

9.2.3.1 Prepare bootloader .......................................................................... 80 

9.2.3.2 Prepare main image ........................................................................ 80 

9.2.3.3 Prepare SUOUSB image for test ..................................................... 80 

9.2.3.4 Running the SUOUSB process ....................................................... 81 

9.2.4 Use both SUOUSB and SUOTA .......................................................................... 81 

10 Enabling features on the Proximity Reporter application ....................................................... 82 

10.1 Enabling the Charger .......................................................................................................... 82 

10.2 Configuration for SUOTA .................................................................................................... 82 

10.2.1 Version header file ............................................................................................... 82 

10.2.2 Code analysis ...................................................................................................... 83 

10.2.3 Application start address ..................................................................................... 85 

Revision history ................................................................................................................................. 87 

Figures 

Figure 1: LED D1 on Pro DK DA1468x ................................................................................................. 9 
Figure 2: LED D1 on Basic DK DA1468x ............................................................................................ 10 
Figure 3: Importing “pxp_reporter" into Eclipse ................................................................................... 11 
Figure 4: Building Project in Release_QSPI mode ............................................................................. 12 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 4 of 88 © 2022 Renesas Electronics 

Figure 5: Selecting the build mode ...................................................................................................... 13 
Figure 6: External Tool Configurations Menu ...................................................................................... 14 
Figure 7: QSPI programming configuration ......................................................................................... 14 
Figure 8: Changing existing QSPI programming configuration ........................................................... 15 
Figure 9: Configuring COM Port .......................................................................................................... 15 
Figure 10: Configure and start Debug perspective ............................................................................. 16 
Figure 11: LightBlue application connected to Proximity Reporter application ................................... 17 
Figure 12: B-BLE in Play Store............................................................................................................ 17 
Figure 13: B-BLE application connected to Proximity Reporter application ........................................ 18 
Figure 14: pxp_reporter project structure ............................................................................................ 19 
Figure 15: FTDI cable connected to UART on Basic DK with no flow control .................................... 26 
Figure 16: Connecting USB-UART cable to UART2 ........................................................................... 27 
Figure 17: peripherals_demo – system overview ................................................................................ 27 
Figure 18: Building Project in Release_QSPI mode ........................................................................... 28 
Figure 19: Selecting the build mode to be programmed ..................................................................... 29 
Figure 20: Program the QSPI Flash .................................................................................................... 29 
Figure 21: Configuration of the Serial Terminal................................................................................... 30 
Figure 22: Enable local echo in TeraTerm .......................................................................................... 30 
Figure 23: Output in serial terminal ..................................................................................................... 31 
Figure 24: Jumper settings for UART2 and GPIO configuration ProDK Virtual COM port with Flow 
Control ................................................................................................................................................. 34 
Figure 25: Connect USB-UART cable to ProDK Breakout Headers with Flow Control ...................... 35 
Figure 26: Connect USB-UART cable to BasicDK Breakout Headers with Flow Control ................... 36 
Figure 27: Building Project in Release_QSPI mode ........................................................................... 37 
Figure 28: Selecting the build mode to be programmed ..................................................................... 37 
Figure 29: External Tools .................................................................................................................... 38 
Figure 30: Set advertising interval via CLI ........................................................................................... 40 
Figure 31: Set Advertising Interval via GPIOs ..................................................................................... 41 
Figure 32: Power Profiler output for the second configuration index .................................................. 41 
Figure 33: Set advertising channel map via CLI.................................................................................. 42 
Figure 34: Three advertising channels ................................................................................................ 43 
Figure 35: Two advertising channels ................................................................................................... 43 
Figure 36: Set recharge period via CLI ............................................................................................... 44 
Figure 37: SLEEP_TIMER_REGISTER contents ....................................................................................... 45 
Figure 38: Connection parameters update .......................................................................................... 46 
Figure 39: Sleep current measurement ............................................................................................... 46 
Figure 40: Advertising .......................................................................................................................... 51 
Figure 41: Connected .......................................................................................................................... 51 
Figure 42: BLE SUOTA loader ............................................................................................................ 56 
Figure 43: BLE SUOTA Service .......................................................................................................... 57 
Figure 44: Flash memory partition layout comparison between SUOTA and non-SUOTA build 
(1Mbyte QSPI Flash) ........................................................................................................................... 58 
Figure 45: Run mkimage.bat script on Windows ................................................................................. 60 
Figure 46: Run mkimage.sh on Linux .................................................................................................. 61 
Figure 47: Project directory ................................................................................................................. 61 
Figure 48: Scripts ................................................................................................................................ 62 
Figure 49: Device selection ................................................................................................................. 62 
Figure 50: Update device .................................................................................................................... 63 
Figure 51: Image file ............................................................................................................................ 63 
Figure 52: Parameter settings (ignore for DA1468x) .......................................................................... 64 
Figure 53: Uploading image and reboot .............................................................................................. 65 
Figure 54: When file upload is finished, press “Close” ........................................................................ 65 
Figure 55: Dual SUOTA architecture ................................................................................................... 66 
Figure 56: Building ble_suota_client ............................................................................................... 67 
Figure 57: Flash the ble_suota_client binary to the QSPI Flash ..................................................... 67 
Figure 58: Selecting the target device ................................................................................................. 67 
Figure 59: Building pxp_reporter for SUOTA ...................................................................................... 68 
Figure 60: Creating image ................................................................................................................... 68 
Figure 61: Jumpers only on Rx and Tx for ProDK no Flow Control .................................................... 69 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 5 of 88 © 2022 Renesas Electronics 

Figure 62: Uploading image to the Client ............................................................................................ 69 
Figure 63 : Building ble_suota_loader project ..................................................................................... 70 
Figure 64: Flashing ble_suota_loader to QSPI Flash ......................................................................... 70 
Figure 65: Selecting the target device ................................................................................................. 71 
Figure 66: Jumpers on Rx, Tx and CTS .............................................................................................. 71 
Figure 67: Specifying the serial port number....................................................................................... 72 
Figure 68: Configuring the serial port .................................................................................................. 72 
Figure 69: Information regarding the image stored in the NVMS_BIN_PART partition are displayed 
during boot ........................................................................................................................................... 72 
Figure 70: Specifying the serial port number....................................................................................... 73 
Figure 71: Configuring the serial port .................................................................................................. 73 
Figure 72: ble_suota_loader information is displayed during boot ...................................................... 74 
Figure 73: Scanning for available devices ........................................................................................... 74 
Figure 74: Stop scanning procedure ................................................................................................... 75 
Figure 75: Connecting to loader device ............................................................................................... 75 
Figure 76: Updating with new image the loader device ...................................................................... 76 
Figure 77: Transfer complete .............................................................................................................. 76 
Figure 78: Rebooting and loading image ............................................................................................ 77 
Figure 79: Verifying that loader is running PX Reporter ...................................................................... 77 

Tables 

Table 1 : Build configuration Pattern ................................................................................................... 11 
Table 2 : Components need for the "pxp_reporter" project ................................................................. 20 
Table 3: UART settings ....................................................................................................................... 39 
Table 4: GPIO configuration type ........................................................................................................ 39 
Table 5: GPIO configuration index ...................................................................................................... 39 
Table 6: Advertising interval settings ................................................................................................... 40 
Table 7: Channel map settings ............................................................................................................ 42 
Table 8: Recharge period settings ...................................................................................................... 44 
Table 9: Connection parameters settings ............................................................................................ 45 
Table 10 : Dialog BLE API header files ............................................................................................... 47 
Table 11 : BLE service API header files .............................................................................................. 48 
Table 12: Macros for the configuration of the hook functions ............................................................. 49 
Table 13: Notification bit masks .......................................................................................................... 50 
Table 14: SUOTA service characteristics ............................................................................................ 52 
Table 15: Product header description ................................................................................................. 59 
Table 16: Image header description .................................................................................................... 59 

 Codes 

Code 1: Create the Proximity Reporter application task ..................................................................... 21 
Code 2: Initializing and configuring the BLE........................................................................................ 21 
Code 3: Configure Device Name ......................................................................................................... 21 
Code 4: Immediate Alert and Link Loss Services................................................................................ 22 
Code 5: Set up device to start advertising ........................................................................................... 23 
Code 6: Handling events ..................................................................................................................... 24 
Code 7: Configuration for additional hardware .................................................................................... 32 
Code 8: Enable UART and/or GPIO configuration .............................................................................. 38 
Code 9: Flash memory partition table ................................................................................................. 59 
Code 10: Charger configuration .......................................................................................................... 82 
Code 11: sw_version.h ........................................................................................................................ 83 
Code 12: Macro to enable SUOTA ...................................................................................................... 83 
Code 13: Defining SUOTA version and L2CAP COC PSM ................................................................ 83 
Code 14: Passing L2CAP events to the SUOTA service .................................................................... 83 
Code 15: Declare SUOTA variable ..................................................................................................... 84 
Code 16: Register SUOTA and DIS .................................................................................................... 84 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 6 of 88 © 2022 Renesas Electronics 

Code 17: DIS data ............................................................................................................................... 84 
Code 18: Header files .......................................................................................................................... 84 
Code 19: Advertising and scan response data ................................................................................... 85 
Code 20: Code Base Address ............................................................................................................. 85 
Code 21: Set starting address ............................................................................................................. 86 

1 Terms and definitions 

ADC Analog to Digital Converter 

API Application Programming Interface 

ATT Attribute Protocol 

BLE Bluetooth Low Energy  

BSP Board Support Package 

CCC Client Characteristic Configuration 

COC Connection Oriented Channels 

DIS Device Information Service 

DK Development Kit  

FreeRTOS Free Real Time Operating System 

ISR Interrupt Service Routine  

LED Light Emitting Diode 

L2CAP Logical Link Control and Adaptation Protocol 

MTU Maximum Transmission Unit 

NVMS Non-Volatile Memory Storage 

OS Operating System 

OSAL Operating System Abstraction Layer 

PM Proximity Monitor 

PR Proximity Reporter 

SDK Software Development Kit 

SUOTA Software Update Over The Air 

SW Software 

QSPI Queued Serial Peripheral Interface 

ROM Read Only Memory 

RTOS Real Time Operating System 

GATT Generic Attribute Profile  

GAP Generic Access Profile 

UUID Universally Unique Identifier 

2 References 

[1] DA14680, Datasheet, Dialog Semiconductor.

[2] UM-B-057-SmartSnippetsTM Studio user guide, User manual, Dialog Semiconductor.

[3] UM-B-047 DA1468x Getting Started, User manual, Dialog Semiconductor.

[4] UM-B-044 DA1468x Software Platform Reference, User manual, Dialog Semiconductor.

[5] UM-B-060-DA1468x_DA1510x Development kit – Pro, User manual, Dialog Semiconductor.

[6] UM-B-066-DA1468x_DA1510x Development kit – Basic, User manual, Dialog Semiconductor.

[7] UM-B-083 SmartSnippetsTM Toolbox, User manual, Dialog Semiconductor.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 14 Dec 0124-Feb-2022

CFR0012 7 of 88 © 2022 Renesas Electronics 

3 Prerequisites 

● SmartSnippetsTM Studio package

● Dialog’s Semiconductor SmartSnippetsTM  DA1468x SDK

● Operating System (Windows or Linux)

● Pro DA1468x and accessories or Basic DA1468x Development Kits (DK)

● Android or iOS mobile phone

● SUOTA Dialog Application for mobile

● A PC terminal application, for example Tera Term (download at
https://ttssh2.osdn.jp/index.html.en)



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 8 of 88 © 2022 Renesas Electronics 

4 Introduction 

This document provides an overview of the SmartSnippetsTM Software Development Kit (SDK) used 
for application development using the DA1468x chipset devices and boards. The SmartSnippetsTM 
DA1468x SDK includes a set of libraries, example projects, drivers and middleware modules which 
facilitate the creation of complex applications by fully exploiting the provided hardware resources of 
the connected DA1468x device. 

The SmartSnippetsTM DA1468x SDK provides all necessary programming tools, libraries, APIs, 
resources and access to device features that a developer is likely to use for implementing a software 
application. The main features of the SDK are: 

● Preemptive multitasking using the freeRTOS real time operating system (www.freeRTOS.org).

● Access to the on-chip peripherals via Low Level Drivers and Adapters which allow multiple tasks
to share peripherals.

● Seamlessly integrating a version 4.2 compliant Bluetooth® low energy stack and radio.

● Firmware updates, including the novel Software Upgrade Over The Air (SUOTA) process.

● Structured access to the Flash memory device via a Non-Volatile Memory Storage (NVMS)
adapter that supports wear levelling.

● Support of the on-chip power management facilities enabling sleep and hibernation functionality.

● On-chip charger integration.

● OS-aware watchdog service.

In order to successfully run the applications and examples included in this guide, users must have 
already completed the installation of all necessary software described in UM-B-057-SmartSnippets 
TM Studio user guide [2].  

The SmartSnippetsTM DA1468x SDK supports two Development Kits – the Pro [5] and the Basic [6] 
DK which share many features: 

● 1Mbyte QSPI Flash

● Breakout Headers that support daughter boards such as the Sensor Board.

● Virtual COM port exposed over USB (only works correctly on Pro DK)

● Onboard J-Link debugger

In addition to these shared features the Pro DK also supports charging and power profiling using 
onboard current measurement circuitry.  

In this document they will both be referred to as Development Kit (DK) and if functionality is only 
available on the Pro DK this will be noted.  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 9 of 88 © 2022 Renesas Electronics 

5 The Proximity Reporter Application 

The Proximity Reporter application is an implementation of the adopted GATT Proximity Profile 
(PXP). More details can be found at https://www.bluetooth.com/specifications/gatt. It is designed to 
monitor any change to the physical proximity of two connected Bluetooth low energy devices using 
the established communication channel between them. The Proximity Profile defines the behavior of 
any Bluetooth device when it moves relative to a peer node to trigger an alert to the user.  

There are two cases that can be identified by the Profile 

● Two peers are further apart as the connection has dropped or the signal loss has increased

● Two peers are closer together as the connection has been established or the signal loss has
decreased

The Proximity profile defines two roles: 

● Proximity Monitor (PM) which is a Generic Attribute Profile (GATT) client.

● Proximity Reporter (PR) which is a Generic Attribute Profile (GATT) server.

This section shall describe in detail only the Proximity Reporter entity. 

5.1 Basic Services and Features 

The Proximity Reporter Application supports the following services each marked with an adopted 

Universally Unique Identifier (UUID). 

● Immediate Alert service (UUID 0x1802).

● Link Loss service (UUIID 0x1803).

● Tx Power service (UUID 0x1804).

● Battery service (UUID 0x180F).

The Proximity Reporter application provides the following set of features: 

● Two levels of alert indications, marked as “Low” and “High” which respectively flash white LED1
either slowly or fast. The position of White LED D1 is shown in Figure 1 for Pro DK and Figure 2
for Basic DK.

Figure 1: LED D1 on Pro DK DA1468x 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 10 of 88 © 2022 Renesas Electronics 

Figure 2: LED D1 on Basic DK DA1468x 

● Two levels of advertising interval, a “fast” one (approx. 20-30ms) for the first 45 seconds of
operation and a “reduced power” one (approx.1/1.5s) after the first 45 seconds until a connection
has been established.

● Extended Sleep mode.

● Pairing/bonding/encryption.

The Proximity Reporter functionality is implemented in the pxp_reporter_task.c source file. 

5.2 User Interface 

For user notification purposes the application shall use the white LED D1 presented in Figure 1 or 
Figure 2 when either link loss or immediate alerts are triggered. The Alert Notifications are: 

● High level alert: A fast blinking white LED D1.

● Low level alert: A slow blinking white LED D1.

5.3 Importing the project 

The first step is importing the project into the Project Explorer of SmartSnippets™ Studio from the 

folder <sdk_root_directory>\projects\dk_apps\demos\ 

Start SmartSnippets™ Studio by double clicking the icon located in the Desktop. 

Go to File > Import > General > Existing Projects into Workspace and click Next. 

1. Find the folder that contains the project and click “OK” (the project location is shown in Figure 3,
Reference Point 1).

2. Tick the pxp_reporter (Figure 3, Reference Point 2).

3. Click Finish (Figure 3, Reference Point 3).



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 11 of 88 © 2022 Renesas Electronics 

Figure 3: Importing “pxp_reporter" into Eclipse 

5.4 Project Execution 

5.4.1 Building 

The Proximity Reporter Application project, like all other Bluetooth low energy projects in the 
SmartSnippetsTM SDK, comes with a built-in configuration for QSPI cached execution mode. The 

project can be built with either the Debug_QSPI or the Release_QSPI configuration to generate the 

binary which is programmed into the device’s QSPI Flash memory. This is done by selecting the 
project and clicking on the Build button (Hammer icon) on the SmartSnippets™ Studio toolbar as 
shown in Figure 4 or by right clicking on the project’s name and select Build Project from the pop-up 
menu. The build configuration options are listed in Table 1.  At this point recommended build is 

DA14681-01-Release_QSPI. 

Table 1 : Build configuration Pattern 

Device Version Build Configuration Type Build configuration name 

DA14680/1 01 Debug_QSPI DA14681-01-Debug_QSPI 

DA14680/1 01 Debug_QSPI with SUOTA DA14681-01-Debug_QSPI_SUOTA 

DA14680/1 01 Release_QSPI DA14681-01-Release_QSPI 

DA14680/1 01 Release_QSPI with SUOTA DA14681-01-Release_QSPI_SUOTA 

DA14683 00 Debug_QSPI DA14683-00-Debug_QSPI 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 12 of 88 © 2022 Renesas Electronics 

Device Version Build Configuration Type Build configuration name 

DA14683 00 Debug_QSPI with SUOTA DA14683-00-Debug_QSPI_SUOTA 

DA14683 00 Release_QSPI DA14683-00-Release_QSPI 

DA14683 00 Release_QSPI with SUOTA DA14683-00-Release_QSPI_SUOTA 

Figure 4: Building Project in Release_QSPI mode 

After the build process is completed the generated binary must be written to the QSPI Flash memory. 

The scripts to write to the QSPI Flash are contained in the project scripts which must first be 

imported. This is done in the same way as the pxp_reporter project was previously imported. The 

scripts project is found at: 

<sdk_root_directory>\utilities\scripts 

If after importing the scripts they are not visible, expand the Run > External tools drop-down, click 
on Organize Favourites, click Add and then click Select all > OK > OK. 

The scripts are needed so that the user does not have to manually enter commands through a 
command line interface. Scripts for preparing the binary image and writing to flash memory are 
provided. 

5.4.2 Programming the QSPI Flash 

After the build process is completed, one of the provided program_QSPI script files may be used to 

program the Proximity Reporter binary to the QSPI Flash memory.  

There are several program_QSPI scripts supplied with the following naming format 

program_QSPI_<transport>_<hostOS> 

● where <transport> can be either

○ jtag –SWD link is used to transfer the binary image to the target device which then writes it

to QSPI flash. The name JTAG is used as a generic term even although actual link is SWD.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 13 of 88 © 2022 Renesas Electronics 

○ serial – serial link is used to transfer the binary image to the target device using the ROM

bootloader which then writes it to QSPI flash

● and <hostOS> can be either

○ win – for running on a Windows host, or

○ linux – for running on a Linux host

More details on which script and how to use it can be found in the [2], Section 9. However, the basic 

steps are as follows for a Windows host (use _linux for a Linux host) 

4. Select the project folder and click on the icon as shown Figure 5 and make active the desired
build configuration to produce the binary to be programmed to the QSPI Flash memory. The
programming script uses the binary from the selected build.

Figure 5: Selecting the build mode 

5. Select the External Tool Configurations button (highlighted in Figure 6), choose the appropriate

script file (in this example, the program_qspi_serial_win script is used) to program the QSPI

Flash memory and select Run (alternatively, click Run > External Tools >
program_qspi_serial_win).



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 14 of 88 © 2022 Renesas Electronics 

Figure 6: External Tool Configurations Menu 

When executed for the first time the user is asked to configure the QSPI header. The configuration 
dialog is shown in Figure 7. For the DA14681 enter 0. 

Figure 7: QSPI programming configuration 

After completing the procedure, the QSPI configuration is saved and subsequently used by the 
program script. The user may change the configuration at any time by running the script 

program_qspi_config_win. Running this script shows the current configuration in the console 

window and then provide the option to change it as shown in Figure 8. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 15 of 88 © 2022 Renesas Electronics 

Figure 8: Changing existing QSPI programming configuration 

The virtual1COM port currently assigned to the DA1468x device should be entered for the QSPI 
Flash programming to run as shown in Figure 9. In addition, a board reset may be necessary. Once 
programming is completed, the Proximity application may be run by simply resetting the device. 

Figure 9: Configuring COM Port 

1 For instruction on finding the virtual COM port, please check [3]. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 16 of 88 © 2022 Renesas Electronics 

Now that the QSPI flash is programmed there are two ways to run the application. 

1. Press the K2 RESET button on the DK board.

2. Start the debugger and run the application in it. To do this the project must be built in

DA14681-01-Debug_QSPI mode. As SmartSnippets TM Studio is an Eclipse based tool the

Debug view is shown a different perspective. The Debug perspective is started as follows
(Figure 10):

 Run > Debug Configurations > Smartbond “SmartSnippets DA1468x SDK” via J-Link GDB 

Server > QSPI > Debug. 

This starts the debug perspective and load the symbols for the selected project from the bin file. The 
application can then be run using the Run button (F5). 

Figure 10: Configure and start Debug perspective 

When the application is running the device starts advertising and will be visible to all Bluetooth low 
energy devices that have scanning capabilities. 

5.5 Interacting with the application 

Now the project is running on the DA1468x device it is possible to interact with it via a mobile phone 
(the mobile phone must support Bluetooth low energy). Applications that can communicate with the 
DA1468x device are presented in the next two sections. 

Note 1 There many mobile applications for Android and iOS that can interact with the Proximity Reporter 

firmware. The two listed are just examples. 

5.5.1 LightBlue iOS application 

The LightBlue iOS application can be used to connect an iOS device to the Proximity Reporter 

application. In such a case, the iOS device acts as a Bluetooth low energy central device and the 
application as a Bluetooth low energy peripheral device. Figure 11 shows LightBlue’s display after it 
has connected to a Dialog PX Reporter device. LightBlue can be downloaded from Apple App Store. 



UM-B-056 

DA1468x Software Developer’s Guide 

 User Manual Version 6.1 24-Feb-2022

CFR0012 17 of 88 © 2022 Renesas Electronics 

Figure 11: LightBlue application connected to Proximity Reporter application 

The LightBlue application can be used to change the values of the Immediate Alert or the Link Loss 

Alert level attributes. These trigger the appropriate Proximity Reporter response.  

In the Immediate Alert case, writing a hex value of 0x02 triggers a fast flashing white LED D1 (high 

alert), while writing a hex value of 0x01 triggers a slow flashing white LED D1 (low alert). To turn off a 

triggered alert, simply write the hex value of 0x00 in the application.  

Writing these values to the Link Loss Alert Level attribute section does not trigger the Link Loss Alert 
immediately. It only triggers the when a link loss subsequently occurs. A link loss is not triggered 
when one of the devices disconnects. It is triggered by the devices moving apart and the signal 
strength deteriorating enough. 

5.5.2 B-BLE Android application

The B-BLE Android application is an application similar to LightBlue iOS application described in the 
previous paragraph, but for the Android mobile OS. The application is free of charge and can be 
downloaded from Google Play Store. 

Figure 12: B-BLE in Play Store 

Figure 13 shows B-BLE display after it has established connection with a Dialog PX Reporter device. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 18 of 88 © 2022 Renesas Electronics 

Figure 13: B-BLE application connected to Proximity Reporter application 

The application can be used to read or write the available service attributes in the same manner as 
LightBlue application or any other Bluetooth low energy app. 

5.6 Source code walkthrough  

Figure 14 shows the pxp_reporter folder structure with an emphasis on the project configuration 

files. More info about the SmartSnippetsTM DA1468x SDK structure can be found in the Software 
Platform Reference manual [4]. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 19 of 88 © 2022 Renesas Electronics 

Figure 14: pxp_reporter project structure 

To customize the project configuration the developer needs to change the parameters in just the 
following three files: 

● config/custom_config_qspi.h: All project specific configuration options are defined in this file.

They cover the system clocks, the execution mode, the minimum sleep time, the charging
functionality, the total heap size, etc.

● config/pxp_reporter_config.h: Can be used to configure the default name of the device.

Note 2 If the user has modified the BD_ADDR of the device via platform_nvparam_values.h, then the device 

shall use as its advertising name the one which is configured in platform_nvparam_values.h 

● ldscripts/mem.ld.h: Can be used to configure the sizes of the different memory sections. This

file is used when the project is built to generate the mem.ld file needed by the linker.

The misc folder contains the ROM symbol definition file (da14681_01_rom.symbols) for the Dialog 

software; it is included in all projects that require linking to ROM functions and variables. 

The project’s sdk linked folder contains the SmartSnippetsTM DA1468x SDK components needed for 

the pxp_reporter project. The components included are the following: 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 20 of 88 © 2022 Renesas Electronics 

Table 2 : Components need for the "pxp_reporter" project 

Components Description 

Adapters 
Peripheral adapters used by the system and the Bluetooth low energy software for access to 

the Non-Volatile Memory Storage (NVMS), the Flash memory and the radio. 

Ble 

The Bluetooth low energy framework used by the pxp_reporter application. This includes the 

BLE API, the BLE manager and the BLE adapter header and source code files, as well as the 
BLE stack API header files. 

ble_services 
The BLE services framework used to implement the BLE services used by the Proximity 

Reporter application. 

bsp_include BSP-related files. Board Support Package (BSP). 

Config BSP default configuration files – not to be modified. 

Cpm Clock and Power Manager. 

FreeRTOS The FreeRTOS operating system. 

Memory The Non-Volatile Memory Storage (NVMS) implementation. 

Osal The Operating System Abstraction Layer. 

peripherals The peripherals low-level drivers. 

The linked folder startup contains the necessary files for the initialization of the system. 

● The main application logic is implemented in the following files, main.c and the

pxp_reporter_task.c. The system’s initialization is implemented in main.c, which contains both

main() and system_init() functions, while the main Proximity Reporter application functionality

is implemented in pxp_reporter_task.c, which contains the Proximity Reporter task function,

called pxp_reporter_task().

The main() function in most projects only accomplishes the following basic actions: 

1. Performs a basic initialization of the system’s clock.

2. Creates the system initialization task.

3. Starts the FreeRTOS scheduler.

The system initialization task is implemented by function system_init() in file main.c. When the 

scheduler is started, this is the only task created and it is run by the scheduler.  

The system_init() function initializes all other required components and creates all other required 

tasks, including the application task that implements the Proximity Reporter. In particular, 

system_init() does the following: 

1. Initializes the system clocks that were not initialized by the cm_clk_init_low_level().

2. Initializes the watchdog service (which is the mechanism that is used to detect and recover from
an unexpected execution sequence).

3. Initializes the power manager and configures the sleep mode used by the project.

4. Configures the system clock (cm_sys_clk_set(sysclk_XTAL16M)).

5. Initializes adapter and manager components, as needed:

a. The NVMS adapter (ad_nvms_init()).

b. The BLE adapter task, which implements the interface to the BLE stack (ad_ble_init()).

c. The BLE manager task, which implements the BLE framework (ble_mgr_init()).

6. Creates the Proximity Reporter application task, using OSAL macro OS_TASK_CREATE():



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 21 of 88 © 2022 Renesas Electronics 

/* Start the PXP reporter application task. */ 
OS_TASK_CREATE("PXP Reporter",  /* The text name assigned to the task, for 

   debug only; not used by the kernel. */ 
pxp_reporter_task,  /* The function that implements the task. */ 

 NULL,  /* The parameter passed to the task. */ 
#if (dg_configDISABLE_BACKGROUND_FLASH_OPS == 1) 

 512,   /* The number of bytes to allocate to the 
stack of the task. */ 
#else 

 756,   /* The number of bytes to allocate to the 
stack of the task. */ 
#endif 

mainPXP_REPORTER_TASK_PRIORITY, /* The priority assigned to the task. */ 
 handle); 

Code 1: Create the Proximity Reporter application task 

7. Finally, after having completed its operation, the system initialization task deletes itself

(OS_TASK_DELETE(OS_GET_CURRENT_TASK())). From this point on, the scheduler schedules all

tasks created by the system initialization task, which was given the highest priority to prevent it
being interrupted during the initialization process.

The next sections focus on the Proximity Reporter application task and the way it interfaces with the 
BLE manager using the Dialog BLE API and the BLE services framework. 

The function that implements the Proximity Reporter task is pxp_reporter_task() which is located in 

pxp_reporter_task.c. The following Dialog API calls are used to initialize and configure the BLE 

subsystem, just before the main application infinite loop. 

  ble_peripheral_start(); 

 ble_register_app(); 

Code 2: Initializing and configuring the BLE 

The ble_peripheral_start() function enables the Bluetooth low energy functionality and configures 

the device with the peripheral role. The application registers itself for task notifications from the BLE 

manager when an event is posted on the BLE event queue using the ble_register_app() function. 

This is only necessary when the application task relies on the RTOS task notifications mechanism to 
unblock, otherwise it can just block on the BLE manager’s event queue.  

The Device Name for the particular project is configured in pxp_reporter_config.h. This header file 

is located in the config folder. Other projects may use different files to store the Device Name 
configuration. 

/* Name can not be longer than 29 bytes (BLE_SCAN_RSP_LEN_MAX - 2 bytes)*/ 

#define PX_REPORTER_DEFAULT_NAME        "Dialog PX Reporter" 

Code 3: Configure Device Name 

The application uses the BLE services API to add the services needed for the Proximity Reporter 
role. There are two steps when adding a service to an application: 

1. The service has to be initialized and added to the BLE stack database. This is done using the
service’s initialization function. If the service requires specific initialization information, like
callback functions for certain events the application should respond to, or values that should have
an initial value, these are passed as arguments to the initialization function.

2. If the service defines certain events that need to be processed in its context (for example, writing
of an attribute whose handle belongs to the service handle range), the service has to be

registered to the BLE service framework. This is done using ble_service_add() and the service

handle is passed as an argument (in SDK release 1.0.10 and later this is seamlessly done by the

service initialization function and there is no need to use ble_service_add()).



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 22 of 88 © 2022 Renesas Electronics 

The following code snippet from the Proximity Reporter task is used to register the required services 
to the BLE service framework. 

/* 

* Register IAS and LLS

 * 

* Both IAS and LLS instances should be registered in ble_service framework in 
order   

* for events inside service to be processed properly.

 */ 

svc = ias_init(ias_alert_cb); 

svc = lls_init(lls_alert_cb); 

/* 

* Register TPS

 * 

* TPS doesn't contain any dynamic data thus it doesn't need to be registered 
in  

* ble_service framework (but it's not an error to do so). For now we have
output 

* power set to 0 dBm.

 */ 

tx_power_level = 0; 

tps_init(tx_power_level); 

/* 

* Register BAS

 * 

* BAS is not included in PXP, but it can be so PXP monitor can also monitor 
out 

* battery level. This service should also be registered in ble_service
framework. 

 */ 

bas = bas_init(NULL, NULL); 

Code 4: Immediate Alert and Link Loss Services 

For the Immediate Alert and Link Loss Services (IAS and LLS respectively), the corresponding 
callback functions are passed as arguments. These callbacks shall be called respectively by the BLE 
service framework if a peer device modifies the Immediate Alert or the Link Loss Alert attributes. 

These callback functions are defined in the same file, pxp_reporter_task.c.  

After been initialized using ias_init() and lls_init(), the services are registered to the BLE 

service framework using the ble_service_add() function (in SDK release 1.0.10 and later this is 

seamlessly done by the service initialization function and there is no need to explicitly call 

ble_service_add()). The Tx Power service is initialized using tps_init() with the argument setting 

the Tx power level used by the system’s RF. The Battery Service is initialized using bas_init() and 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 23 of 88 © 2022 Renesas Electronics 

added to the service framework. Then, bas_set_level() is called to set the default battery level 

exposed by the service attribute. 

The application then creates two software timers using the OS_TIMER_START()function, one to disable 

the Link Loss Alert, 15 seconds after the actual link loss event, and a second one to trigger the 
switch from “Fast” to “Slow” advertising interval. 

The last operations before entering the for(;;) loop set up the device to start advertising: 

/* 

* Set advertising data and scan response, then start advertising.

   * 

* By default, interval values are set to "fast connect" and timer is started 
to 

* change them after

   */ 

   set_advertising_interval(ADV_INTERVAL_FAST); 

   ble_gap_adv_data_set(sizeof(adv_data), adv_data, name_len + 2, scan_rsp); 

   ble_gap_adv_start(GAP_CONN_MODE_UNDIRECTED); 

   OS_TIMER_START(adv_tim, OS_TIMER_FOREVER); 

Code 5: Set up device to start advertising 

The advertising interval is configured using set_advertising_interval(), which is also defined in 

pxp_reporter_task.c and eventually calls ble_gap_adv_intv_set() to set the desired interval. The 

advertising data is defined in adv_data array and set using ble_gap_adv_data_set(). Finally, 

ble_gap_adv_start() is called to start an undirected connectable advertising air operation. 

At this point the device is properly configured as a peripheral, having an initialized attribute database 
and has started advertising. After starting the timer needed to switch to the “reduced power” 
advertising after 45 seconds, the task now enters the main loop that defines its lifetime behavior and 
responsiveness to BLE events. 

Immediately after entering the for(;;) loop, the task notifies the system watchdog, suspends it and 

then blocks on its task notification value. Task notification is an integral FreeRTOS mechanism 
(http://www.freertos.org/RTOS-task-notification-API.html) which allows tasks to handle multiple 

events, such as queues, interrupts, semaphores, etc. Calling OS_TASK_NOTIFY_WAIT() results in the 

calling task being blocked as it waits to receive a task notification on one of the specified notification 
bits. Each bit of the 32-bit task notification value represents a possible cause to unblock; the least 
significant bit is always assigned to notifications from the BLE manager’s event queue. For the 

pxp_reporter application, two additional notification bits are defined at the start of the 

pxp_reporter_task.c file and they are assigned to the time-out interrupts of the two software timers 

used by the application. 

The task is unblocked when the notification value of the task has been modified to be other than 

zero. The rest of the for(;;) loop handles the event that caused the task to unblock. The most 

common source would be a BLE event posted at the BLE manager’s event queue. The following 
code snippet presents a method of handling similar events. 

/* 

* First, application needs to try pass event through ble_framework.

* Then it can handle it itself and finally pass to default event handler.

 */ 

if (!ble_service_handle_event(hdr)) { 

http://www.freertos.org/RTOS-task-notification-API.html


 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 24 of 88 © 2022 Renesas Electronics 

  switch (hdr->evt_code) { 

  case BLE_EVT_GAP_CONNECTED:   
handle_evt_gap_connected((ble_evt_gap_connected_t *) hdr); 

    break; 

  case BLE_EVT_GAP_DISCONNECTED:   
handle_evt_gap_disconnected((ble_evt_gap_disconnected_t *) hdr); 

    break; 

  case BLE_EVT_GAP_ADV_COMPLETED:   
handle_evt_gap_adv_completed((ble_evt_gap_adv_completed_t *) hdr); 

    break; 

   case BLE_EVT_GAP_PAIR_REQ:   
handle_evt_gap_pair_req((ble_evt_gap_pair_req_t *) hdr); 

    break; 

#if dg_configSUOTA_SUPPORT && defined (SUOTA_PSM) 
   case BLE_EVT_L2CAP_CONNECTED: 
   case BLE_EVT_L2CAP_DISCONNECTED: 
   case BLE_EVT_L2CAP_DATA_IND: 

 suota_l2cap_event(suota, hdr); 
    break; 

#endif 
   default: 

     ble_handle_event_default(hdr); 
     break; 

  } 
  } 

Code 6: Handling events 

After unblocking and verifying that the notification source is related to the BLE manager’s event 

queue, the application task utilizes ble_get_event() function to retrieve the actual BLE event from 

that queue. If the event header is valid then the event is handled appropriately. 

The Proximity Reporter application which is used as a functional example contains three ways of 
handling events from the BLE Manager: 

1. The BLE service framework Handling: The event is checked against the added BLE services

using ble_service_handle_event(). This function checks if any of the added services has

defined a specific behavior related to the received event. This may be a write request to an
attribute whose handle belongs to a service’s handle range, a received notification, etc.

2. Application Specific Handling: If the event is not handled by ble_service_handle_event(), then

the application can define a default behavior for it. The Proximity Reporter application defines
event handlers for connection, completion of advertising and pair request events.

3. Default Handling: If the event is not handled by the BLE service framework and a specific handler

has not been defined by the application, then ble_handle_event_default() is called. This

service certain events, like a connection parameter request and GATT server confirmation
requests.

During initialization of the BLE services, the pxp_reporter_task() function is passed two specific 

callback functions to be used when certain service events occurred. These events are the following: 

● Immediate Alert: An Immediate alert event is triggered when a peer device writes the Immediate
Alert attribute of the Immediate Alert service. The callback function defined by the application to

be fired at such an event is ias_alert_cb(), which simply calls the do_alert() function with the

level that has been set, to trigger an immediate alert using the board’s breath LED (D1 LED).



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 25 of 88 © 2022 Renesas Electronics 

● Link Loss Alert: A Link Loss alert event is triggered when the link with a peer device, that has
previously written the Link Loss Alert attribute of the Link Loss service, is lost. The callback

function defined by the application to be fired at such an event is lls_alert_cb(). This callback

function adds the device, with which the link has been lost, to a reconnection list, starts the alert
timeout timer and restarts “fast” advertising (with a 20/30ms advertising interval).

In addition to the service callbacks defined, the Proximity Reporter application also defines three 
event handlers, as seen in the code segment Code 6: 

● handle_evt_gap_connected(): The application checks the reconnection list and if the connected

device is listed there, it removes it, stops the alert and the reconnection timeout timer, and re-sets
the advertising interval to “reduced power” (1/1.5s).

● handle_evt_gap_adv_completed(): Upon advertising completion, the application restarts

advertising using ble_gap_adv_start().

● handle_evt_gap_pair_req(): The application’s pair request handler by default accepts all pair

requests using ble_gap_pair_reply(). The pairing procedure shall then be completed by the

BLE manager, which also initiates bonding if requested by the peer device.

More events can be handled by the application by adding more cases to the switch() statement in 

the main loop with appropriate handlers or direct calls. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 26 of 88 © 2022 Renesas Electronics 

6 Peripheral Demo Application 

This sample application shows how to use the drivers for the main peripherals on the DA1468x family 
of devices.  

6.1 Basic services and features 

This application demonstrates using device peripherals on the Dialog DA1468x Platform. 

● The application is controlled using text-based menu via UART1 which is accessed through the
virtual COM port over USB on Pro DK (ensure jumpers are fitted on J15.1-2 and 3-4). On the
Basic DK it must be accessed via an RS232-TTL level converter cable such as an FTDI
TTL-232R-RPi. This demo does not use flow control and so the FTDI cable must be
connected as follows. The orange wire is connected to P1_3 (Rx), the yellow wire is
connected to P2_3 (Tx) and the black wire is connected to GND (J4.2). There must also be
no jumpers on J13. This is shown in Figure 15.

Figure 15: FTDI cable connected to UART on Basic DK with no flow control 

● Some demos emit debug messages that are only visible only via UART2,

● Almost all peripherals are exercised by this application.

On both Pro and Basic DK UART2 must be accessed using an RS232-TTL level converter cable such 

as an FTDI TTL-232R-RPi or a UART-USB conversion module to connect to the host PC. 

Figure 16 shows a FTDI TTL-232R-RPI cable connected to UART2. The orange wire is connected to 
P4_1 (Rx), the yellow wire is connected to P4_2 (Tx) and the black wire is connected to GND (J4.1). 

The actual function of these pins (P4_1 and P4_2) is controlled by the function periph_setup() 

which sets the pin multiplexing.  

http://www.ftdichip.com/Products/Cables/RPi.htm
http://www.ftdichip.com/Products/Cables/RPi.htm


 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 27 of 88 © 2022 Renesas Electronics 

Figure 16: Connecting USB-UART cable to UART2 

6.2 User Interface 

The DK is connected to a PC running windows using a USB cable which is used to power the 
development kit. On the Pro DK it is also used to provide a virtual COM port to transfer data between 

a serial terminal running on the PC and the peripherals_demo application running on the DA1468x 

using UART1. On the Basic board UART1 is accessed directly from the Breakout header 

When the application starts a menu appears on the terminal application on the host that allows the 

user to interact with the peripherals_demo executable running on the DK.  

The peripherals_demo was written to run on the DK development kit for the DA1468x family of 

devices. Figure 17 illustrates the general setup of the project. 

Figure 17: peripherals_demo – system overview 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 28 of 88 © 2022 Renesas Electronics 

6.3  Importing the project 

The user must import the project into the Project Explorer of SmartSnippetsTM Studio. To import the 

project located in <sdk_root_directory>\projects\dk_apps\demos\peripherals_demo folder do 

the following steps: 

1. Start SmartSnippetsTM Studio by double clicking to the icon located in the Desktop.

2. Go to File > Import > General > Existing Projects into Workspace and click Next.

3. Find the folder containing the project is located:

<sdk_root_directory>\projects\dk_apps\demos\peripherals_demo and click OK.

4. Tick peripherals_demo.

5. Click Finish.

6.3.1 Building the project 

The Peripheral Demo Application project, like all other Bluetooth low energy projects, comes with a 
built-in configuration for QSPI cached execution mode. The project can be built using either the 

DA14681-01-Debug_QSPI or the DA14681-01-Release_QSPI configuration. This is done by selecting 

the project and clicking on the Build button on the  SmartSnippetsTM Studio toolbar as shown in 
Figure 18 or right click on the project’s name and select Build Project from the pop-up menu. 

Figure 18: Building Project in Release_QSPI mode 

6.3.2 Programming the QSPI Flash 

1. Select the project folder and click on the icon as shown Figure 19 and make active the build
mode that you want to be programmed to the QSPI Flash memory.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 29 of 88 © 2022 Renesas Electronics 

Figure 19: Selecting the build mode to be programmed 

8. Under the External Tool Configurations menu, click on the program_qspi_serial_win option

as shown in Figure 20 (Or Run > External Tools > program_qspi_serial_win).

Figure 20: Program the QSPI Flash 

6.4 Interacting with the Application 

1. Open the Terminal program on the host PC. These instructions are for TeraTerm on Windows.

Configure TeraTerm by selecting ‘serial’, then navigate to ‘Setup’ and select ‘Serial port..’

and configure it with the parameters as shown inError! Reference source not found..



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 30 of 88 © 2022 Renesas Electronics 

Figure 21: Configuration of the Serial Terminal 

2. On a Linux Host connect the terminal program to /dev/ttyUSB0 and use the same serial port

configuration options shown in Figure 21.

3. In TeraTerm it is necessary to enable local echo so that the commands typed on the Host PC
appear in the terminal. Configure TeraTerm using Setup > Terminal and then tick local echo as
shown in Figure 22.

Figure 22: Enable local echo in TeraTerm 

4. Press K2 Reset button on the DK board to start the application.

When the serial terminal adapter has been correctly set up and the peripherals_demo has been 

started, the following screen (Figure 23) should appear in the terminal: 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 31 of 88 © 2022 Renesas Electronics 

Figure 23: Output in serial terminal 

User is now able to select an option by inserting a number in the terminal and then pressing the 
Enter key. There are a couple of things to note 

● the menu may differ depending on which demos have been selected in the project’s
configuration.

● The first line in terminal is the Boot ROM transmitting its name at a different baud rate (57k)

Entering a number either initiates the execution of the selected option or shows a prompt to a 
submenu with more options. In this way, users can interact with the application. 

It should be stated here that the peripherals_demo project is only able to evaluate peripherals that 

are found on the DK board and do not require additional hardware. In order to test additional 

hardware components such as those on the sensor board, the peripherals_demo project needs to 

be properly configured.  

These additional components are enabled in the userconfig.h file, located in config/default folder 

as shown in Code 7. After rebuilding the project, the UART menu, shown above, is extended with the 

newly defined demo functionality. It is recommended to copy config/default/userconfig.h to 

config/userconfig.h and make any changes there. This file overrides the default one during 

building. 

/* 

* Below you can enable or disable devices demos for demo_sensors.

* They require a sensor board.

 * 

* HW_GPADC, AD_GPADC and HW_TIMER2 demos should be disabled to use sensors 
demos which use I2C 

* interface for communication with the motherboard.

 */ 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 32 of 88 © 2022 Renesas Electronics 

#define CFG_DEMO_SENSOR_BH1750 (0)

#define CFG_DEMO_SENSOR_BME280 (0)

#define CFG_DEMO_SENSOR_ADXL362 (0) 

#define CFG_DEMO_SENSOR_BMM150 (0)

#define CFG_DEMO_SENSOR_BMG160 (0)

Code 7: Configuration for additional hardware  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 33 of 88 © 2022 Renesas Electronics 

7 Power Measurements Demo Application 

The Power Measurements Demo Application is a simple connectable advertising demo. It is 
designed to let the user configure several parameters such as advertising interval and connection 
parameters using either UART for a Command Line Interface (CLI) or via GPIOs. Several 
preconfigured settings can be used to examine the effect that they have on the power consumption. 
This application can be used as a reference for minimizing the power consumption on any given 
project. This way the user can determine the optimum configuration settings for the device to achieve 
significant energy savings.  

7.1 Basic Services and Features 

The Power Measurements demo application supports the configuration of the following parameters: 

● Advertising interval.

● Advertising channel map.

● Connection parameters (a device must be connected).

● Recharge period (this is the period of the Sleep Timer).

There are two possible ways of interacting with the application. The choice is made at compile time 

via config/power_demo_config.h 

1. Using the predefined CLI commands via UART2. This is selected by setting

#define POWER_DEMO_CLI_CONFIGURATION  1 

#define POWER_DEMO_GPIO_CONFIGURATION 0 

2. Using GPIO settings and a button (not the K1 button). The button must be connected in P1_0 as

referred in 7.4 and shown in Figure 31.

#define POWER_DEMO_CLI_CONFIGURATION  0 

#define POWER_DEMO_GPIO_CONFIGURATION 1 

This application uses UART2 for logging with printf() in both these configurations with the pin mux 

in periph_init() routes UART2 pins to these pins. In the CLI build UART2 is also used for the CLI. 

There are two ways of accessing UART2 from the host PC. This demo requires CTS to be controlled 

as UART2 is defined to have auto-flow-control. 

1. UART2 over USB (ProDK only)

For the UART to work on the COMx or /dev/ttyUSBx port three jumpers are required on J15 as

shown in Figure 24. There are the two usual jumpers on Tx (J15.1-2) and Rx (J15.3-4) plus

CTS (J15.7-8). CTS must be driven as the UART_BUS macro enables hardware flow control in

this project. J5 must also be removed to stop P1_6 controlling LED2.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 34 of 88 © 2022 Renesas Electronics 

Figure 24: Jumper settings for UART2 and GPIO configuration ProDK Virtual COM port with 
Flow Control 

2. UART2 via the breakout headers (mandatory on Basic DK or optional on ProDK)

In this mode a USB to TTL level UART cable (such as FTDI TTL-232R-RPI) is connected directly
to the breakout headers and the on board FTDI USB to UART converter is disconnected. This
approach allows UART2 to be used for control in Basic DK.

On the ProDK it allows demo to be controlled and/or logging to be taken when the board is being

powered by battery and no USB cable is connected to USB2(DBG).

To do this on ProDK remove all jumpers from J15 and connect FTDI TTL-232R-RPI as shown in

Figure 25. The orange wire is connected to P2_3 (Rx), the yellow wire is connected to P1_3 (Tx),

the black wire is connected to GND (J4.1) and P1_6 (CTS) is connected to J4.28 (GND) to

assert CTS.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 35 of 88 © 2022 Renesas Electronics 

Figure 25: Connect USB-UART cable to ProDK Breakout Headers with Flow Control 

To do this on BasicDK remove all jumpers from J13 and connect FTDI TTL-232R-RPI as shown 

in Figure 26. The orange wire is connected to P2_3 (Rx), the yellow wire is connected to P1_3 

(Tx), the black wire is connected to GND (J4.1) and P1_6 (CTS) is connected to J4.28 (GND) to 

assert CTS. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 36 of 88 © 2022 Renesas Electronics 

Figure 26: Connect USB-UART cable to BasicDK Breakout Headers with Flow Control 

7.2 User Interface 

The DK Development Kit is connected to a PC using a USB cable. This cable is used to power the 
development kit. On ProDK it also and to transfer data between a serial terminal running on the PC 

and the power_demo application running on the DA1468x. On BasicDK this is over a separate USB-

UART cable.  

For user notification purposes the application uses the serial terminal to print various messages 
depending on the current configuration and the user’s actions. For example, once the application has 
started, 'Advertising started...' messages are  printed out. 

7.3 Importing the project 

The user must import the project into the Project Explorer of SmartSnippetsTM Studio. To import the 

project located in <sdk_root_directory>\projects\dk_apps\demos\power_demo folder use the 

following steps: 

1. Start the SmartSnippetsTM Studio by double clicking to the icon located in the Desktop.

2. Go to File > Import > General > Existing Projects into Workspace and click Next.

3. Find the folder containing the project is located:

<sdk_root_directory>\projects\dk_apps\demos\power_demo and click OK.

4. Tick the power_demo.

5. Click Finish.

7.3.1 Building the project 

The Power Demo Application project, like all other Bluetooth low energy projects, comes with a built-

in configuration for QSPI cached execution mode. The project can be built using either the DA14681-

01-Debug_QSPI or the DA14681-01-Release_QSPI configuration. This is done by selecting the project 

and clicking on the Build button on the SmartSnippetsTM Studio toolbar as shown in Figure 27 or 
right click on the project’s name and select Build Project from the pop-up menu. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 37 of 88 © 2022 Renesas Electronics 

Figure 27: Building Project in Release_QSPI mode 

7.3.2 Programming the QSPI Flash 

1. Select the project folder, click on the Build Configuration icon as shown in Figure 28 and select
the build configuration that you want to program into the QSPI Flash memory.

Figure 28: Selecting the build mode to be programmed 

2. Under the External Tool Configurations menu, click on the program_qspi_serial_win option

(Or Run > External Tools > program_qspi_serial_win) as shown in Figure 29



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 38 of 88 © 2022 Renesas Electronics 

Figure 29: External Tools 

Set up TeraTerm as described in section 6.4 for the Peripheral demo. 

3. Press K2 RESET button on the DK board.

7.4 Interacting with the Application 

After building and loading the project to the DA1468x device, the user is able to interact with it and 

apply the various settings using serial terminal over UART2 or GPIO configurations. A mobile phone is 

also needed to apply the connection parameters update settings (the mobile phone must support 
Bluetooth low energy).   

To control the application through UART, macro POWER_DEMO_CLI_CONFIGURATION in the 

config/power_demo_config.h file must be set to 1.  

To control the application using GPIO settings and a button POWER_DEMO_GPIO_CONFIGURATION macro 

in file config/power_demo_config.h must be set to 1.  

The default configuration for the application is shown in Code 8. In order to control the application 

using the GPIO settings the POWER_DEMO_CLI_CONFIGURATION macro must be set to 0 and the 

POWER_DEMO_GPIO_CONFIGURATION macro must be set to 1. 

Note 3 Only the desired configuration setting can be enabled each time and not both. Otherwise the 
application is not built. 

/** 
* Set power configuration over CLI
*/

#define POWER_DEMO_CLI_CONFIGURATION  (1) 

/** 
* Set power configuration through GPIO settings
*/

#define POWER_DEMO_GPIO_CONFIGURATION  (0) 

#endif /* POWER_DEMO_CONFIG_H_ */ 

Code 8: Enable UART and/or GPIO configuration 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 39 of 88 © 2022 Renesas Electronics 

7.4.1 Controlling via UART2 

The settings to control the application via UART are shown in the Table 3. This assumes that one of 
the connections described in Section 7.1 has been used to connect to UART2. 

Table 3: UART settings 

Setting Value 

Baudrate 115200 

Data bits 8 

Stop bits 1 

Parity 01 

Flow control RTS/CTS 

7.4.2 Controlling via GPIO 

● In this mode the configuration type and index to select are defined by using jumper leads to tie
GPIOs P1_2, P1_4, P1_5 and P1_7 either high or low as shown in Table 4 and Table 5.

● The configuration is then set when a “button” is pressed. The “button” press is emulated by using

a jumper to pull P1_0 low for a short period. The jumper can be applied between pins J4.2 and

J4.4.

● This mode still uses UART2 for logging and so every time a setting is applied by using a jumper

on P1_0 a log message appears on a terminal connected to UART2.

Table 4: GPIO configuration type 

Configuration type P1_2 P1_4 

Advertising interval GND GND 

Advertising channel map VCC GND 

Recharge period GND VCC 

Connection parameters update VCC VCC 

Table 5: GPIO configuration index 

Configuration index P1_5 P1_7 

0 GND GND 

1 VCC GND 

2 GND VCC 

For example, to set advertising interval configuration, user must connect P1_2 to GND and P1_4 to 

GND. To apply the second configuration index (index 1 from Table 6) P1_5 must be connected to VCC 

and P1_7 to GND. Finally, to apply these settings P1_0 must be connected to GND as the “button” 

press. 

7.4.3 Set advertising interval 

The user can change the advertising interval using either the UART or the GPIOs. Table 6 shows the 
available settings.  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 40 of 88 © 2022 Renesas Electronics 

Table 6: Advertising interval settings 

Configuration index Interval min [ms] Interval max [ms] 

0 400 600 

1 30 60 

2 1000 1200 

To apply the desirable setting using serial console type: 

set_adv_interval <cfg_idx> 

For example to apply the third configuration (index 2 from Table 6) the user must type in Tera Term 
the following command: 

> set_adv_interval 2

Figure 30: Set advertising interval via CLI 

To set the advertising interval using GPIOs user must connect P1_2 and P1_4 to GND (Table 4). 

Then to select the configuration index, Table 6 must be used. 

For example, the GPIO connections for the second configuration index (index 1 from Table 6) are 
shown in Figure 31 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 41 of 88 © 2022 Renesas Electronics 

Figure 31: Set Advertising Interval via GPIOs 

Note 4 To emulate the button press, P1_0 should be connected to GND for a short time and not permanently, 

just like a real button press. 

On the ProDK the Power Profiler [6] can be used to confirm that there was a change in the 
advertising interval. Figure 31 shows the output of the Power Profiler, the adverting interval has been 
set to configuration index 1. 

Figure 32: Power Profiler output for the second configuration index 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 42 of 88 © 2022 Renesas Electronics 

7.4.4 Set channel map 

The user can set the advertising channel map using either the UART or the GPIOs. Table 7 shows 
the available settings.  

 Table 7: Channel map settings 

Configuration index Channel map 

0 37 and 38 and 39 

1 38 and 39 

To apply the desirable setting using the serial console type: 

set_adv_channel_map <cfg_idx> 

For example to apply the second configuration (index 1 from Table 7) user must type in Tera Term 
the following command: 

> set_adv_channel_map 1

To set the advertising interval using GPIOs the user must connect P1_2 to VCC and P1_4 to GND 

(Table 4). Table 7 must be then used to select the configuration index 

Figure 33: Set advertising channel map via CLI 

The Power Profiler can be used on the ProDK to confirm that the advertising channel map actually. 
Figure 34 shows the output of the Power Profiler before changing the adverting channel map while 
Figure 35 after channel map has set to configuration index 1. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 43 of 88 © 2022 Renesas Electronics 

Figure 34: Three advertising channels 

Figure 35: Two advertising channels 

7.4.5 Set recharge period 

The user can set the recharge period using either the UART or the GPIOs. Table 8 shows the 
available settings.  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 44 of 88 © 2022 Renesas Electronics 

Table 8: Recharge period settings 

Configuration index Recharge period 

0 3000 

1 100 

2 900 

To apply the desirable setting using serial console type: 

set_recharge_period <cfg_idx> 

For example to apply the second configuration (index 1 from Table 8) user must type in Tera Term 
the following command: 

> set_recharge_period 1

To set the recharge period using GPIOs the user must connect P1_2 to GND and P1_4 to VCC (Table 

4). Then to select the configuration index, Table 8 must be used. 

Figure 36: Set recharge period via CLI 

The change to the recharge period can be verified by checking the contents of the 

SLEEP_TIMER_REGISTER sleep Timer which is used to bring-up part of the system periodically to 

resample the bandgap voltage or to restore the energy of the inductor of the DCDC. So, after changing 

the recharge period the content of this register is changed. Figure 37 shows the contents of the 

SLEEP_TIMER_REGISTER after setting the recharge period to 100 ms (configuration index 1). See 

section 14 in [2] for instructions to configure and view the register mapping for DA14681. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 45 of 88 © 2022 Renesas Electronics 

Figure 37: SLEEP_TIMER_REGISTER contents 

7.4.6 Set connection parameters 

Connection parameters can change using either the UART or the GPIOs. The update of the 
connections parameters only takes place in an active connection. Table 9 shows the available 
settings. 

Table 9: Connection parameters settings 

Configuration index 
Interval min 
[ms] 

Interval max 
[ms] 

Slave latency Sup. timeout [ms] 

0 400 600 0 1500 

1 10 15 0 100 

2 1000 1200 0 3000 

To apply the desirable setting using serial console type: 

conn_param_update <cfg_idx> 

For example to apply the second configuration (index 1 from Table 9) the user must type in the serial 
terminal the following command: 

> conn_param_update 1

To update the connection parameters using GPIOs the user must connect P1_2 and P1_4 to VCC 

(Table 4). Then to select the configuration index, Table 9 must be used. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 46 of 88 © 2022 Renesas Electronics 

Figure 38: Connection parameters update 

Note 5 to measure properly the sleep current with the Power Profiler tool on ProDK or with an external tool 
the Tera Term UART over USB session must be terminated or remove J15.7-8 jumper to de-assert 

CTS as shown in Figure 39. If a UART is required in this configuration use the direct connection to 
breakout header described in section 7.1. 

Doing this prevents any leakage current that may affect the proper measurement of the sleep 
current. 

Figure 39: Sleep current measurement 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 47 of 88 © 2022 Renesas Electronics 

8 Create a custom application 

8.1 Creating a Bluetooth low energy project 

The recommended way to begin a new Bluetooth low energy project is to use one of the existing 
examples as a basis. The ble_central and ble_peripheral projects are great starting points for 
Bluetooth low energy central and peripheral applications respectively, while ble_multi_link is 
appropriate for applications that need to use both roles simultaneously.  

The next sections summarize the different aspects to be considered when using one of these existing 
projects as a template upon which to build a new application. 

8.2 Configuring your application 

The user can configure any project using a series of MACRO definitions. Some of the options that 
can be modified are: 

● System clocks

● Minimum sleep time

● Charging functionality

● Total heap size

● Chip revision and stepping

● Power up/down peripherals

● Watchdog

● RAM Retention Configuration (refer to section 13.3 of [4]).

The key file for any project is config/custom_config_qspi.h which contains all the new 

configuration options for this project that overrides the default values in the SDK.   

8.3 Adding Bluetooth low energy functionality 

To extend a Bluetooth low energy project’s functionality, the developer should become familiar with 
the Dialog BLE API. These API header files come with additional Doxygen documentation and are 
summarized in Table 10. The Doxygen documentation is available in SmartSnippetsTM Studio via the 
API Documentation Open button (at the bottom left) or directly in the SmartSnippetsTM  DA1468x 

SDK via doc/html/index.html 

8.3.1 Including BLE header files 

Table 10 : Dialog BLE API header files 

File name Description 

sdk/ble/include/ble_att.h Attribute Protocol API: Mostly definitions. 

sdk/ble/include/ble_common.h 
Common API: Functions used for operations not specific to a certain 
BLE host software component 

sdk/ible/include/ble_gap.h 

GAP API: 

● Device parameters configuration: device role, MTU size, device

name exposed in the GAP service attribute, etc.

● Air operations: Advertise, scan, connect, respond to connection

requests, initiate or respond to connection parameters update,
etc.

● Security operations: Initiate and respond to a pairing or bonding
procedure, set the security level, unpair, etc.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 48 of 88 © 2022 Renesas Electronics 

File name Description 

sdk/ble/include/ble_gattc.h 

GATT client API: 

● Discover services, characteristics, etc. of a peer device

● Read or write a peer device’s attributes

● Initiate MTU exchanges

● Confirm the reception of indications

sdk/ble/include/ble_gatts.h 

GATT server API: 

● Set up the attribute database

● Set attribute values

● Notify/indicate characteristic values

● Initiate MTU exchanges

● Respond to write and read requests

sdk/ble/include/ble_storage.h BLE persistent storage API. 

sdk/ble/include/ble_uuid.h BLE UUID declarations and helper functions. 

8.3.2 Adding BLE services 

Table 11 summarizes the API header files of the Bluetooth low energy adopted GATT services 
already implemented by the SmartSnippetsTM DA1468x SDK. These files can be found under 

<sdk_root_directory>\sdk\ble_services\include. The developer can use these APIs to add 

these services to another project. 

Table 11 : BLE service API header files 

File name Description 

ble_service.h 

BLE service framework API: 

● Add service to framework

● Handle event using BLE service framework

● Elevate permission

● Get number of attributes in a service

● Add included services

bas.h Battery Service – BAS 

bcs.h Body Composition Service – BCS 

bms.h Bond Management Service – BMS 

cts.h Current Time Service – CTS 

dis.h Device Information Service – DIS 

dlg_debug.h Dialog Debug Service 

dlg_suota.h Dialog SUOTA Service 

hids.h Human Interface Device Service – HID 

hrs.h Heart Rate Service – HRS 

ias.h Immediate Alert Service – IAS 

lls.h Link Loss Service – LLS 

scps.h Scan Parameters Service – ScPS 

sps.h Serial Port Service – SPS 

tps.h Tx Power Service – TPS 



UM-B-056 

DA1468x Software Developer’s Guide 

24-Feb-2022

CFR0012 49 of 88 © 2022 Renesas Electronics 

File name Description 

uds.h User Data Service – UDS 

wss.h Weight Scale Service – WSS 

8.3.3 Bonding information management 

Most aspects of security are handled seamlessly by the BLE Framework. An application that needs 
to set-up security, for example initiate pairing, do a security request or set-up encryption using 
previously exchanged keys, needs only to use the appropriate API. Most details of the procedures 
are handled internally by the BLE Framework and the application is notified only if intervention is 
needed or when the procedure is completed.  

The generation and storage of the security keys and other bonding information is also handled by the 
BLE Framework. Persistent storage can also be used to store the security keys and bonding data 
information in the flash. This allows the information to be retrieved by the BLE Framework after a 
power cycle and so used to reestablish connections with previously bonded devices.  

Note 6 For more a detailed description about the Bonding management (API’s, Events, MSC’s…) please refer 
to section 7.3 of [4]. 

8.3.4 Hooks 

The BLE Hooks mechanism provides the user application a way to be notified about the exact time of 
occurrence of specific BLE events. 

This mechanism enables the user application to receive notifications of BLE Interrupt Service 
Routine (ISR) events. These events can be received either directly from inside the BLE ISR, or as 
task notifications to the application task registered to the BLE manager 

To enable this feature, define dg_configBLE_EVENT_NOTIF_TYPE to either 

BLE_EVENT_NOTIF_USER_ISR or BLE_EVENT_NOTIF_USER_TASK.  

When dg_configBLE_EVENT_NOTIF_TYPE == BLE_EVENT_NOTIF_USER_ISR, then the following macros 

can be defined in the application code: 

Table 12: Macros for the configuration of the hook functions 

Macro name Description 

dg_configBLE_EVENT_NOTIF_HOOK_END_EVENT The BLE End Event 

dg_configBLE_EVENT_NOTIF_HOOK_CSCNT_EVENT The BLE CSCNT Event 

dg_configBLE_EVENT_NOTIF_HOOK_FINE_EVENT The BLE FINE Event 

These macros must be set to the names of functions defined inside the user application and which 
have the following prototype: 

● void func(void); 2

If a macro is not defined, then the respective notification is suppressed. 

Note 7 These functions are called in an ISR context, directly from the BLE ISR. They should therefore 
be very fast and should NEVER block. 

When dg_configBLE_EVENT_NOTIF_TYPE == BLE_EVENT_NOTIF_USER_TASK, the user application 

receives task notifications on the task registered to the BLE manager. Notifications are received 
using the following bit masks: 

2  The user application does not need to explicitly define the prototype.  

User Manual  Version 6.1 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 50 of 88 © 2022 Renesas Electronics 

Table 13: Notification bit masks 

Macro name Description 

dg_configBLE_EVENT_NOTIF_MASK_END_EVENT End Event Mask (Default: bit 24) 

dg_configBLE_EVENT_NOTIF_MASK_CSCNT_EVENT CSCNT Event Mask (Default: bit 25) 

dg_configBLE_EVENT_NOTIF_MASK_FINE_EVENT FINE Event Mask (Default: bit 26) 

The bit mask for each of the macros in Table 13 can be redefined as needed. 

If one of the macros for callback functions listed in Table 12  (for direct ISR notifications) is defined 
then the ISR mode takes precedence and the function with the same name is called directly from the 
ISR instead of sending a task notification for this particular event to the application task. 

The macro dg_configBLE_EVENT_NOTIF_RUNTIME_CONTROL (Default: 1) enables/disables runtime 

control/masking of notifications. 

If dg_configBLE_EVENT_NOTIF_RUNTIME_CONTROL == 1 then task notifications must be 

enabled/disabled using the ble_event_notif[enable|disable]_[end|cscnt|fine]_event() 

functions. By default, all notifications are disabled. 

If dg_configBLE_EVENT_NOTIF_RUNTIME_CONTROL == 0, all notifications are sent unconditionally to 

the application task. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 51 of 88 © 2022 Renesas Electronics 

Timing diagrams: 

Figure 40: Advertising 

Figure 41: Connected 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 52 of 88 © 2022 Renesas Electronics 

9 Software Upgrade 

9.1 Software Upgrade Over The Air (SUOTA) 

9.1.1 Introduction 

The Bluetooth low energy platform allows the user to update the software of the device wirelessly. 
This process is called Software Upgrade Over The Air (SUOTA) and is simple enough to be 
performed by the end user. 

When an update procedure is initiated from an Android or iOS device, a new image is first transferred 
to the Firmware update partition located in the Flash memory and then the device reboots to 
complete the update. After the reboot is completed, the SUOTA loader transfers the image to the 
Executable partition and executes it. The new software version should start after the reboot with a 
small delay. 

The SUOTA GATT server runs on the DA1468x device and the GATT client on the Android or iOS 
device running the SUOTA application. 

9.1.2 SUOTA service description 

This section gives a brief description of the SUOTA service, responsible for performing software 
upgrades over BLE. A detailed service characteristic description is given on Table 14. 

Table 14: SUOTA service characteristics 

Characteristic 
SUOTA Version 

(SUOTA_VERSION definition) 
Access Size Description 

MEM_DEV since version v1.0 
READ 

WRITE 
4 

Using this characteristic 
the client is able to send 

commands to the 
SUOTA service. Some 

of the most commonly 
used commands are the 

following: 

● SPOTAR_IMG_SPI
_FLASH (0x13):

Prepare for SUOTA.

Image is going to be
stored to the FLASH

memory.

● SPOTAR_REBOOT
(0xFD): Reboot the

device.

● SPOTAR_IMG_EN
D (0xFE): Client

sent the whole
image. SUOTA

service is allowed to
perform CRC

calculations and
other sanity tests to

verify that the image
transfer was

successful.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 53 of 88 © 2022 Renesas Electronics 

Characteristic 
SUOTA Version 

(SUOTA_VERSION definition) 
Access Size Description 

GPIO MAP 
READ 

WRITE 
4 

Used to specify GPIO 
map of external FLASH 

device. Currently not 
applicable. 

MEM_INFO READ 4 
Stores the total number 
of bytes received until 

now. 

PATCH_LEN since version v1.0 
READ 

WRITE 
2 

Specifies the number of 

bytes after which they 
are received, will send a 

notification back to the 
client. This is meant to 

be used for flow control. 
The exact value is set by 

the client during 
SUOTA. The notification 

is generated from the 
“STATUS” 

characteristic. 

PATCH_DATA since version v1.0 

READ 

WRITE 

WRITE_N

O_RESP 

SUOTA v1.0, 

v1.1, v1.2: 120 
bytes 

SUOTA v1.3 and 

later: 

Exact size is 

specified by 
PATCH_DATA_C

HAR_SIZE 

This is the endpoint to 
which SUOTA image 

data are sent. The 
default size for SUOTA 

versions v1.0, v1.1, v1.2 
is fixed at 120 bytes. 

From versions v1.3 and 
later the exact size is 

specified by the 
“PATCH_DATA_CHAR_SIZE” 

characteristic, and 

different values (23 – 
509) can be used

depending on the
throughput

requirements.

STATUS since version v1.0 
READ 

NOTIFY 
1 

This characteristic is 

used to notify the client 
of the status of the 

SUOTA process. Status 
notifications are sent to 

indicate error conditions 
(for example bad 

command, or CRC) or to 
allow flow control during 

SUOTA process. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 54 of 88 © 2022 Renesas Electronics 

Characteristic 
SUOTA Version 

(SUOTA_VERSION definition) 
Access Size Description 

L2CAP_PSM since version v1.2 READ 2 

This is an optional 
characteristic that, if it 

exists, indicates that the 
SUOTA service supports 

both SUOTA over GATT 
and SUOTA over 

L2CAP CoC. The value 
indicates the dynamic 

L2CAP channel on 
which the SUOTA 

service is listening for 
connections. The 

absence of this 
characteristic indicates 

that only SUOTA over 
GATT is supported. 

VERSION since version v1.3 READ 1 

Indicates the version of 
the SUOTA service. The 

value is retrieved from 
the “SUOTA_VERSION” 

definition. 

MTU since version v1.3 READ 2 

Stores the current value 
of the MTU, which is 

going to be either 23 
(default), or a bigger 

value, if MTU exchange 
took place. This value 

can be used by the 
client to retrieve the 

MTU size (if such API is 
not available on its side) 

and write with optimal 
rate to the “PATCH_DATA” 

characteristic. 

PATCH_DATA_CHAR_

SIZE 
since version v1.3 READ 2 

Specifies the size of the 
“PATCH_DATA” 

characteristic. 

CCC 
READ 

WRITE 
1 

Client Characteristic 
Configuration. Allows 

the client to enable 
notifications from the 

“STATUS” source. 

Once the SUOTA service is discovered on the remote device and the client has enabled notifications 
by writing the CCC characteristic, the SUOTA procedure can be started by issuing the 

SPOTAR_IMG_SPI_FLASH command. The write command executes successfully only if: 

● No more than one device is currently connected to the SUOTA enabled device

● The application hosted in the SUOTA enabled device allows the upgrade to take place

● There is enough memory to allocate the internal working buffers

If any of the above restrictions is violated, then command fails and an error notification is sent back to 

the client (status SUOTA_SRV_EXIT). After a successful command execution the service is able to 

receive data either using GATT or L2CAP CoC layer (if the L2CAP_PSM characteristic is available).  



UM-B-056 

DA1468x Software Developer’s Guide 

24-Feb-2022

CFR0012 55 of 88 © 2022 Renesas Electronics 

On SUOTA v1.3 and later, the client can use the value of the characteristic “MTU” to perform ATT 

write commands to the characteristic PATCH_DATA with optimal size if the client itself has no API to 

find the optimal packet size. On previous versions the client can either retrieve the MTU value using 
an OS specific command, or use the default minimum value which is 23 bytes.  

On SUOTA v1.3 and later the client can find the size of the PATCH_DATA characteristic by reading the 

PATCH_DATA_CHAR_SIZE characteristic. On previous versions the size of PATCH_DATA was fixed to 120 

bytes. 

Following this, the client should specify the value of the patch_len variable by writing the PATCH_LEN 

characteristic. PATCH_LEN specifies the number of bytes that once received, triggers a notification 

back to the client. This kind of flow control could be used by the client to avoid flooding the SUOTA 
enabled device with too much image data. The bigger the value, the better the throughput, since 
notifications are going to be generated less frequently and therefore the number of missed 
connection events (where flow has stopped waiting for the notification) is decreased.  

For example, if patch_len is set to 500 bytes, notification are going to be sent to the client when byte 
ranges 1-500, 501-1000, 1001 – 1500 etc. are received. Following the Bluetooth low energy 

specification, the maximum number of bytes that can be written to the PATCH_DATA characteristic with 

a single ATT write command is the minimum of MTU – 3 and the size of the PATCH_DATA 

characteristic. 

When the whole image has been sent, the client should issue the SPOTAR_IMG_END command to 

indicate this to the SUOTA service. The service is going to perform some sanity checks to verify that 
image transfer took place without errors, and then it is going to generate the appropriate status 

notification (SUOTA_CMP_OK on success,  SUOTA_APP_ERROR or SUOTA_CRC_ERR on error). 

Finally, the client could issue an SPOTAR_REBOOT command to force a device reboot. This step is 

optional, but it is highly recommended. 

Note 8 The PATCH_DATA, PATCH_DATA_CHAR_SIZE and PATCH_LEN characteristics are only relevant when 

SUOTA over GATT is taking place. When L2CAP CoC are used, a connection should be established 

to the L2CAP_PSM channel via L2CAP CoC and the flow is controlled using L2CAP credits. SUOTA 

service assigns enough credits to ensure that flow won’t stop during the upgrade. Notifications 
relevant to the PATCH_LEN characteristic are not sent during image transfer, but all other notifications 

are still valid. 

9.1.3 SUOTA Flow 

When the software update process is initiated by the SUOTA mobile application, the SUOTA-enabled 
application downloads the new image and reboots the system. During boot, SUOTA loader verifies 
the new image, copies it into the executable partition and starts execution as shown in Figure 42.  

● SUOTA enabled application code

The execution of a SUOTA-enabled application always starts from the same address. As a result
of this during the update, the new application image is stored in a separate location in the Flash
memory in the Firmware update partition. After the new image is verified, it must be copied to the
Executable Flash partition. Since the application runs from Flash memory, it is impossible to
safely overwrite itself with a new image, therefore this part of the update is conducted by the
SUOTA loader after the reboot.

● Bootloader

After each reboot, SUOTA loader checks for a valid application image in the Firmware Update
partition. If a SUOTA update was performed during the previous run then the new image would
have been stored in the Firmware Update partition as part of the update process. The SUOTA
loader detects this new image, verifies its checksum and copies it to the Executable partition.
When the copy is completed, the SUOTA loader updates the Image header partition with the new
image information. Finally, the image data in the Firmware Update partition is marked as invalid
so that it is ignored by the loader on a subsequent reboot.

Figure 42 and Figure 43 presents an outline of the overall SUOTA process.  

User Manual Version 6.1 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 56 of 88 © 2022 Renesas Electronics 

Figure 42: BLE SUOTA loader 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 57 of 88 © 2022 Renesas Electronics 

Figure 43: BLE SUOTA Service 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 58 of 88 © 2022 Renesas Electronics 

9.1.4 SUOTA Flash memory layout 

The DA1468x platform uses partitions to divide the Flash memory into smaller sections. The NVMS 
layer provides unified access to those partitions. The applications can use the partition access API to 
read and write to the Flash memory partitions. The API also allows the modification of the size and 
position of partitions. The partition layout differs significantly between a SUOTA enabled build and a 
non-SUOTA enabled build as shown in Figure 44. 

To update the software, both the SUOTA enabled application and the SUOTA bootloader need to 
know the location of the downloaded image in Flash memory. The following partitions are used by an 
application that supports software update: 

● Bootloader partition, contains the bootloader that manages the update process if a new firmware
executable has been uploaded.

● Product header partition (a partition with information about a device)

● Image header partition with software version information

● Application executable partition, contains the current application firmware version. In a SUOTA
application this is limited to 320kB.

● Firmware update partition, this contains the new updated firmware version that the bootloader will
detect on the next reboot. Practically this is limited to 320kB as well by the size of the application
executable partition.

The SUOTA Partition layout is color coded in Figure 44. The yellow partitions are the ones that are 
modified during the update procedure, the blue partitions are accessed during the SUOTA update 
while green ones that remain intact throughout the update. 

Figure 44: Flash memory partition layout comparison between SUOTA and non-SUOTA build 
(1Mbyte QSPI Flash)  

The SUOTA Flash memory layout is defined in sdk/bsp/config/1M/suota/partition_table.h  in 

the ble_suota_loader project (the non-SUOTA version is found at 

sdk/bsp/config/1M/partition_table.h.).   



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 59 of 88 © 2022 Renesas Electronics 

Code 9 shows how the partition table is defined in the SUOTA partition_table.h. Product and 

Image header description are given in Table 15 and Table 16 respectively. 

PARTITION2( 0x000000,0x01E000,NVMS_FIRMWARE_PART       ,0 ) 

PARTITION2( 0x01E000,0x001000,NVMS_PRODUCT_HEADER_PART ,0 ) 

PARTITION2( 0x01F000,0x001000,NVMS_IMAGE_HEADER_PART   ,0 ) 

PARTITION2( 0x020000,0x050000,NVMS_FW_EXEC_PART        ,0 ) 

PARTITION2( 0x070000,0x00D000,NVMS_LOG_PART  ,0 ) 

PARTITION2( 0x07D000,0x002000,NVMS_PLATFORM_PARAMS_PART,PARTITION_FLAG_READ_ONLY ) 

PARTITION2( 0x07F000,0x001000,NVMS_PARTITION_TABLE     ,PARTITION_FLAG_READ_ONLY ) 

PARTITION2( 0x080000,0x010000,NVMS_PARAM_PART  ,0 ) 

PARTITION2( 0x090000,0x051000,NVMS_FW_UPDATE_PART      ,0 ) 

PARTITION2( 0x0E1000,0x01F000,NVMS_GENERIC_PART        ,PARTITION_FLAG_VES ) 

Code 9: Flash memory partition table 

Table 15: Product header description 

Size Description 

2 bytes Container Identifier (0x70 0x62) 

2 bytes Flags 

4 bytes Absolute address indicating the location of the current Image 

4 bytes Absolute address indicating the location of the Image Update 

8 bytes Reserved 

Table 16: Image header description 

Size Description 

2 bytes FW Image Identifier (0x70 0x61) 

2 bytes Flags 

4 bytes Executable Size 

4 bytes CRC 

16 bytes Version String 

4 bytes Image creation timestamp 

4 bytes Executable location 

9.1.5 Performing SUOTA upgrade using a mobile phone 

Note 9 The following procedure applies when using Android or iOS devices 

The Proximity Reporter application described in section 5 can also be built with SUOTA support. To 
add SUOTA a different build procedure needs to be followed: 

1. Import the following three projects into SmartSnippetsTM Studio from these locations.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 60 of 88 © 2022 Renesas Electronics 

scripts: <sdk_root_directory>\utilities  

ble_suota_loader: <sdk_root_directory>\sdk\bsp\system\loaders 

pxp_reporter:  <sdk_root_directory>\projects\dk_apps\demos 

2. Build the two source code projects in the following configurations:

○ ble_suota_loader in DA14681-01-Release_QSPI configuration and

○ pxp_reporter in DA14681-01- Release_QSPI_SUOTA configuration.

3. Create a SUOTA image. A SUOTA image is a binary file with a proper header that can be sent to
a target device from an Android or iOS device. To create the image, build PXP Reporter project,
open a command prompt and navigate to

<sdk_root_directory>/projects/dk_apps/demos/pxp_reporter folder.

4. On Windows run the MKIMAGE script with the following command (Figure 45):

> mkimage.bat DA14681-01-Release_QSPI_SUOTA

Figure 45: Run mkimage.bat script on Windows 

5. On Linux run the mkimage.sh script with the following command (Figure 46)

$ ./mkimage.sh DA14681-01-Release_QSPI_SUOTA 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 61 of 88 © 2022 Renesas Electronics 

Figure 46: Run mkimage.sh on Linux 

6. A new image named pxp_reporter.1.0.0.1.img, containing a version number taken from

sw_version.h, is created under pxp_reporter/DA14681-01-Release_QSPI_SUOTA folder as shown

in Figure 47.

Figure 47: Project directory 

7. Download the Dialog SUOTA application from Google PlayStore or Apple App Store.

8. Copy pxp_reporter.1.0.0.1.img to an Android phone or tablet or to an iOS device and placed

into the SUOTA folder. The folder is automatically created, if it does not exist, on the device by
running the “Dialog Suota” application. On Android it is located at the root directory of the
“Internal Storage” drive.

9. Erase the Flash memory of DA1468x using the erase_qspi_jtag_win script (to ensure the

correct partition table is used) and then download ble_suota_loader and pxp_reporter binaries

to DA1468x using suota_initial_flash_jtag_win script. This script download both

ble_suota_loader and pxp_reporter binaries on partitions FIRMWARE_PART (bootloader) and

FW_EXEC_PART respectively.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 62 of 88 © 2022 Renesas Electronics 

Press the K2 Reset button on the ProDK board. The bootloader (ble_suota_loader) should start 

executing the pxp_reporter image. Before executing suota_initial_flash_jtag_win ensure 

pxp_reporter is the selected project at “project explorer” 

Figure 48: Scripts 

10. Launch the Dialog SUOTA application on the Android phone and select the DA1468x device you
want to update.

Figure 49: Device selection 

11. Select Update device.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 63 of 88 © 2022 Renesas Electronics 

Figure 50: Update device 

12. Select the appropriate image file – this is a list of the files in the SUOTA directory.

Figure 51: Image file 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 64 of 88 © 2022 Renesas Electronics 

13. This screen is required only by DA1458x devices. For the DA1468x just press Send to device as
whatever values are here have no effect.

Parameter settings for SPI Parameter settings for I2C 

Figure 52: Parameter settings (ignore for DA1468x) 

14. Wait until the process is completed. When the image is uploaded, a dialog box pops up and ask
to reboot the device. Select OK.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 65 of 88 © 2022 Renesas Electronics 

Uploading the image file Reboot device 

Figure 53: Uploading image and reboot 

15. Press Close to return to the main menu.

Figure 54: When file upload is finished, press “Close” 

9.1.6 Performing SUOTA upgrade using two DA1468x 

This section describes the procedure for performing SUOTA using two DA1468x devices. 

● one acting as Bluetooth low energy central. It performs as the SUOTA image transmitter running
ble_suota_client 

● one acting as Bluetooth low energy peripheral. It performs as the SUOTA image receiver, initially

running ble_suota_loader and after first successful SUOTA running pxp_reporter.

Using this setup, it is possible to test both SUOTA methods (over GATT and over L2CAP 
Connection-Oriented Channels) without using any phone. The image to be transferred is stored in 
the NVMS_BIN_PART partition (Figure 44) in the Flash memory of the BLE central device.  

Import the following projects using SmartSnippetsTM Studio from the following locations: 

scripts:  <sdk_root_directory>\utilities 

ble_suota_client:  <sdk_root_directory>\projects\dk_apps\features 

ble_suota_loader:  <sdk_root_directory>\sdk\bsp\system\loaders 

pxp_reporter:   <sdk_root_directory>\projects\dk_apps\demos 

There are several configuration changes to the SDK required to run this demo. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 66 of 88 © 2022 Renesas Electronics 

● To communicate successfully between the two devices they need to have different BD
addresses. This can be achieved by overriding the address of the device running

ble_suota_loader by adding this line to its config/custom_config_qspi.h:

#define defaultBLE_STATIC_ADDRESS  {0x02,0x00,0x80,0xCA,0xEA,0x80} 

● As delivered ble_suota_loader has logging disabled, so it is difficult to track if the device is

running correctly. To enable logging, change this line in config/custom_config_qspi.h to:

#define dg_configDEBUG_TRACE  1 

To enable SUOTA over L2CAP Connection-Oriented Channels (COC), both SUOTA_VERSION and 

SUOTA_PSM should be defined in the config/custom_config_qspi.h in both ble_suota_loader and 

pxp_reporter images. This is done by default in SDK. 

The overall architecture of the SUOTA demo is shown in Figure 55. The Central device is not 
enabled for SUOTA, so it is using the normal partition layout (Figure 44). 

Figure 55: Dual SUOTA architecture 

9.1.6.1 Building the Bluetooth low energy Central device 

1. Select the build configuration for each of these projects

○ ble_suota_client in “DA14681-01-Release_QSPI” configuration

○ pxp_reporter in “DA14681-01-Release_QSPI_SUOTA” configuration.

The aim is to program ble_suota_client into the executable partition NVMS_FW_EXEC_PART so that it 

runs and then to put the update image to be transmitted by SUOTA in the NVMS_FW_UPDATE_PART. 

To prepare the DA1468x acting as Bluetooth low energy central device follow the procedure below: 

1. Build the project ble_suota_client (See Figure 56).



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 67 of 88 © 2022 Renesas Electronics 

Figure 56: Building ble_suota_client 

2. Select the External Tool Configurations button, choose the appropriate script file (in Figure 57 the

program_qspi_jtag_win script is used) to program the QSPI Flash memory and execute it.

Figure 57: Flash the ble_suota_client binary to the QSPI Flash 

As soon as the script is executed, a new window pops up asking to choose which of the DKs is the 
target; select the appropriate device.  

Figure 58: Selecting the target device 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 68 of 88 © 2022 Renesas Electronics 

3. Build the pxp_reporter project using the Release_QSPI_SUOTA build configuration.

Figure 59: Building pxp_reporter for SUOTA 

4. Create a SUOTA image. To create the image, open a command prompt, navigate to

<sdk_root_directory>/projects/dk_apps/demos/pxp_reporter folder and run the following

command (Figure 60) on Windows:

> mkimage.bat DA14681-01-Release_QSPI_SUOTA

Figure 60: Creating image 

For Linux use the command 

$ ./mkimage.sh DA14681-01-Release_QSPI_SUOTA 

5. Copy the image from
<sdk_root_directory>/projects/dk_apps/demos/pxp_reporter/DA14681-01-

Release_QSPI_SUOTA\ and paste it to <sdk_root_directory>/binaries 

6. Use cli_programmer to download the binary pxp_reporter.1.0.0.1.img to the

NVMS_FW_UPDATE_PART partition. Open a command prompt, navigate to the

<sdk_root_directory>\binaries folder and run one of the following commands



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 69 of 88 © 2022 Renesas Electronics 

○ On a ProDK make sure that CTS is not connected on the UART by ensuring there is no
jumper on J15.7-8 as shown in Figure 61.

○ On a BasicDK use the no flow control configuration described in Figure 15.

Figure 61: Jumpers only on Rx and Tx for ProDK no Flow Control 

To download pxp_reporter.1.0.0.1.img using UART as shown in Figure 62. During this 

procedure the user is asked to press the K2 Reset button.  

> cli_programmer.exe COM13 write_qspi 0x00090000 pxp_reporter.1.0.0.1.img

      To download pxp_reporter.1.0.0.1.img using SWD 

> cli_programmer.exe gdbserver write_qspi 0x00090000 pxp_reporter.1.0.0.1.img

Figure 62: Uploading image to the Client 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 70 of 88 © 2022 Renesas Electronics 

On a Linux host the equivalent commands are for a Serial download (Jumper J15.7-8 on Pro DK 
must not be installed for this to work) 

$ ./cli_programmer.sh COM13 write_qspi 0x00090000 pxp_reporter.1.0.0.1.img 

 And for SWD 

$ ./cli_programmer.sh gdbserver write_qspi 0x00090000 pxp_reporter.1.0.0.1.img 

9.1.6.2 Building the Bluetooth low energy peripheral device 

1. Build the project ble_suota_loader in “DA14681-01-Release_QSPI” configuration.

Figure 63 : Building ble_suota_loader project 

2. Select the External Tool Configurations menu, choose the appropriate script file (in this example,

the program_qspi_jtag_win script is used) to program the QSPI Flash memory, and execute/run

the script.

Figure 64: Flashing ble_suota_loader to QSPI Flash 

As soon as the script is executed, a new window pops up asking to choose which device is the 
target; select the appropriate device. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 71 of 88 © 2022 Renesas Electronics 

a

Figure 65: Selecting the target device 

3. Press the K2 Reset button.

9.1.6.3 Running the software upgrade procedure 

When the previous procedure has finished, the two DA1468x devices are ready to communicate. To 
load the image, the following steps should be followed. 

A Pro DK running the Bluetooth low energy central device needs to have a jumper put on J15.7-8 to 

connect the CTS line (Figure 66) for ble_suota_client to run correctly. This jumper must be 

removed if UART is used to reprogram a different update image with cli_programmer. 

Figure 66: Jumpers on Rx, Tx and CTS 

A Basic DK running the Bluetooth low energy central device needs to CTS line driven as shown in 

Figure 26) for ble_suota_client to run correctly. The jumper wire connecting CTS to GND must be 

removed if UART is used to reprogram a different update image with cli_programmer. 

Open two terminals, one for each device. A serial terminal is needed to control each device. In the 
example below, "TeraTerm" is used for this purpose 

Configure serial terminal for the Bluetooth low energy central device: 

● Select the serial port number for the client.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 72 of 88 © 2022 Renesas Electronics 

Figure 67: Specifying the serial port number  

● From the Menu bar choose Setup > Serial port ... and configure the serial port as 115200-8-

n-1 as shown in Figure 68.

Figure 68: Configuring the serial port 

● Press the K2 RESET button.

Figure 69: Information regarding the image stored in the NVMS_BIN_PART partition are 
displayed during boot  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 73 of 88 © 2022 Renesas Electronics 

The Bluetooth low energy peripheral device does not have flow control on its UART so on a ProDK 
on the virtualCOM port configure as shown in Figure 61Figure 24 and on a BasicDK with an FTDI 
cable connect as in Figure 15. 

● Select the appropriate serial port number for the loader.

Figure 70: Specifying the serial port number 

● From the Menu bar choose Setup > Serial port ... and configure the serial port as 115200-8-

n-1 as shown in Figure 71.

Figure 71: Configuring the serial port 

● Press the K2 Reset button.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 74 of 88 © 2022 Renesas Electronics 

Figure 72: ble_suota_loader information is displayed during boot 

● In the serial terminal of the Bluetooth low energy central device, write the following command:

> scan start

Figure 73: Scanning for available devices 

The Bluetooth low energy central device starts scanning for available devices immediately (Figure 
73). In this in example, form the devices listed Figure 73, the Bluetooth low energy peripheral device, 

is the device with sequence number [01] and an advertising name of <Dialog SUOTA 1.2>.  

● As soon as the Bluetooth low energy peripheral device is found, the scanning operation can be
stopped with the following command:

> scan stop



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 75 of 88 © 2022 Renesas Electronics 

Figure 74: Stop scanning procedure 

● A connection to the Bluetooth low energy peripheral device can be initiated with the command:

> connect 1

The first argument of the “connect” command refers to the device index on the scan result list. Once 
a connection is established, the application automatically queries the remote device for available 
services and device information. The characteristic values of the Device Information Service (DIS) 
are read. The following output is printed on the terminal: 

Figure 75: Connecting to loader device 

The presence of “L2CAP PSM” indicates that the remote device supports SUOTA and over-L2CAP 
COC. 

● To update a device supporting L2CAP COC over L2CAP, issue the update command. To update
the same device over GATT, issue the update gatt command. If the remote device does not
support L2CAP COC ("L2CAP PSM" is not displayed), both update and update gatt commands
begin SUOTA over GATT.

> update



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 76 of 88 © 2022 Renesas Electronics 

Figure 76: Updating with new image the loader device 

After the image transfer has been completed, the remote device disconnects and reboot as shown in 
Figure 77. 

Figure 77: Transfer complete 

When the Bluetooth low energy peripheral device boots, ble_suota_loader transfers the new image 

from the NVMS_FW_UPDATE_PART to the NVMS_FW_EXEC_PART partition, and execution of the new image 

begins.  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 77 of 88 © 2022 Renesas Electronics 

Figure 78: Rebooting and loading image 

The software upgrade has finished. Now the Bluetooth low energy peripheral device must start 

advertising as <Dialog PX Reporter>. To verify that, scan again from Bluetooth low energy central 

device’s terminal. 

> scan start

Figure 79: Verifying that loader is running PX Reporter 

9.1.7 SUOTA in Production and Field deployment 

When the device is deployed in the field it contains both the bootloader (ble_suota_loader) which 

checks for the presence of a new firmware image in the update partition as well as the existing 

application in the execute partition (pxp_reporter in this case).  

The first part of this code resides in the bootloader, where it checks if a new firmware version is 
available on the update partition on every single reboot. The second part is inside the SUOTA-
enabled application. This part decides how and when the new image can be downloaded. The user 

application must broadcast the presence of the SUOTA service (using the DIALOG SUOTA UUID) in its 

advertising data. The Android or IOS SUOTA application can then identify a SUOTA capable device 
and initiate a software update. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 78 of 88 © 2022 Renesas Electronics 

9.1.8 Recommendations 

Only one SUOTA-capable Bluetooth low energy peripheral device should be connected to the 
Bluetooth low energy central device (e.g. an Android device running the Dialog SUOTA application) 
that performs a software update at any given time. If more than one device is connected to the 
accessory, then the SUOTA process should never be initiated. The application should decide how to 
handle this case.  

9.2 Software Upgrade Over USB (SUOUSB) 

9.2.1 Introduction 

The DA1468x platform also allows the user to update the software over USB CDC. This process is 
called Software Upgrade Over USB (SUOUSB), and is simple enough to be performed by the end 
user. It can only be done on a ProDK. 

The SUOUSB process starts with putting the DA1468x in SUOUSB mode, then connecting USB1 to 
the host PC (Windows or Linux) which then initiates the transfer of the new image to the Firmware 
Update partition in the Flash memory of the DA1468x. After the transfer is completed the device 
reboots to complete the update with the SUOUSB loader transferring the image to the Executable 
partition and executing it. The new software version should start after the reboot with a small delay. 

9.2.2 QSPI based SUOUSB 

Import the following three projects into SmartSnippets Studio from these locations. 

scripts:  <sdk_root_directory>\utilities  

suousb_loader: <sdk_root_directory>\projects\dk_apps\features\suousb_loader 

pxp_reporter:    <sdk_root_directory>\projects\dk_apps\demos  

9.2.2.1 Prepare bootloader 

Build the suousb_loader using the DA14681-01-Release_QSPI configuration. 

9.2.2.2 Prepare main image 

To make the flash partition table of pxp_reporter the same with the suousb_loader project, below 

defines must be included: 

#define dg_configIMAGE_FLASH_OFFSET   (0x20000) 

#define USE_PARTITION_TABLE_1MB_WITH_SUOTA 

Note 10 The build configurations for SUOTA DA14681-01-Release_QSPI_SUOTA and DA14681-01-

Debug_QSPI_SUOTA have the defines already included. These configurations can be used without any 

changes.  

1. Build the project with a configuration like DA14681-01-Release_QSPI or DA14681-01-Debug_QSPI 

with these defines changed or DA14681-01-Release_QSPI_SUOTA or DA14681-01-

Debug_QSPI_SUOTA which has them already defined.

2. Erase flash entirely using erase_qspi_jtag_win (or _linux).

3. Download the bootloader and the main image to flash using the script

suousb_initial_flash_jtag_win (or _linux ).

4. The suousb_loader and pxp_reporter projects must be built in this order so that when the

mkimage tool is run in the next stage the pxp_reporter project was the last active project.

9.2.2.3 Prepare SUOUSB image for test 

SUOUSB image is a binary file with a proper header that can be sent to a target device from 
Windows and Linux. To create an image, open command prompt in a project folder like 

pxp_reporter located in <sdk_root_directory>/projects/dk_apps/features/suousb_loader and 

run script to create the image file. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 79 of 88 © 2022 Renesas Electronics 

● To build an image in Windows run:

> mkimage.bat DA14681-01-Release_QSPI_SUOTA 

● To build an image in Linux run:

> ./mkimage.sh DA14681-01-Release_QSPI_SUOTA 

It prepares an image file with the following naming format pxp_reporter.1.0.0.1.img. The version 

number in the image file is taken from file sw_version.h. 

9.2.2.4 Running the SUOUSB process 

The first step is to connect a USB cable from the host PC to USB1 connector on ProDK – note this is 
the charger USB port and not the debug one. 

Put the DA1468x into USB-CDC mode by resetting the device while holding down button K1. 

Press K1 button. While it is pressed, press and release K2 RESET button. Then release K1 button. 

When the target enters the download mode, the messages below are shown on the serial console of 
host through UART if USB2 is also connected for debug. 

● Bootloader started.

● Checking status of K1 Button.

● K1 Button is pressed, starting SUOUSB service without booting application.

Now that SUOUSB mode has started it enumerates a USB-CDC port that appears as another COMx 

port in Windows and /dev/ttyACM0 in Linux.  

9.2.2.5 Transfer from a Windows host 

● Open a command prompt window at <sdk_root_folder>\utilities\suousb_host\ in Windows.

● Build using the following command:

> C:\DiaSemi\SmartSnippetsStudio\Tools\mingw64_targeting32\bin\gcc.exe -o

host_usb_updater.exe host_usb_updater.c

Note 11 Another gcc.exe can be used. (e.g, cygwin or mingw.) 

● Run using the following command:

> host_usb_updater.exe 24

..\..\..\..\..\projects\dk_apps\demos\pxp_reporter\DA14681-01-

Release_QSPI\pxp_reporter.1.0.0.1.img -verbose

o The number `24` is the com port number of USB-CDC device. User can see the com port
number on Windows device manager.

o Debug message can be enabled by -verbose option.

9.2.2.6 Transfer from a Linux host

● Open a command terminal in <sdk_root_directory>\utilities\suousb_host\ on Linux

machine.

● Build using the following command

> gcc -o host_usb_updater host_usb_updater.c

● Run using the following command

> sudo ./host_usb_updater /dev/ttyACM0 ./pxp_reporter.1.0.0.1.img

o The /dev/ttyACM0 is the usb-cdc driver of Linux. It can be changed according to test

machine.

● Sometimes a modemmanager in Linux system like Ubuntu might interrupt the usb-cdc
communication. So, it should be disabled using one of the methods below.



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 80 of 88 © 2022 Renesas Electronics 

● Remove the modemmanger :

● > sudo apt-get remove modemmanager

● Disable the modemmanger in case of usb-cdc communication by adding the rule below to
/etc/udev/rules.d/10-local.rules

 ATTRS{idVendor}=="2dcf", ATTRS{idProduct}=="6001", 
ENV{ID_MM_DEVICE_IGNORE}="1" 

9.2.3 RAM based SUOUSB 

Import the following three projects into SmartSnippets Studio from these locations. 

scripts:  <sdk_root_directory>\utilities  

suousb_loader: <sdk_root_directory>\projects\dk_apps\features\suousb_loader 

pxp_reporter:   <sdk_root_directory>\projects\dk_apps\demos  

9.2.3.1 Prepare bootloader 

Build the suousb_loader using the DA14681-01-Release_RAM configuration. 

9.2.3.2 Prepare main image 

Prepare the main image to be downloaded and programmed to QSPI with the following steps: 

1. To make the flash partition table of pxp_reporter the same with the suousb_loader project,

below defines must be included:

#define dg_configIMAGE_FLASH_OFFSET   (0x20000) 

#define USE_PARTITION_TABLE_1MB_WITH_SUOTA 

Note 12 The build configurations for SUOTA DA14681-01-Release_QSPI_SUOTA and DA14681-01-

Debug_QSPI_SUOTA have the defines already included. These configurations can be used without any 

changes.  

2. Build the project with a configuration like DA14681-01-Release_QSPI or DA14681-01-Debug_QSPI 

with these defines changed or DA14681-01-Release_QSPI_SUOTA or DA14681-01-

Debug_QSPI_SUOTA which has them already defined.

3. Erase flash entirely using erase_qspi_jtag_win (or _linux).

4. Download the bootloader and the main image to flash using the script

suousb_initial_flash_jtag_win (or _linux ).

5. The suousb_loader and pxp_reporter projects must be built in this order so that when the

mkimage tool is run in the next stage the pxp_reporter project was the last active project.

9.2.3.3 Prepare SUOUSB image for test 

SUOUSB image is a binary file with a proper header that can be sent to a target device from 
Windows and Linux. To create an image, open command prompt in a project folder like 

pxp_reporter located in <sdk_root_directory>/projects/dk_apps/features/suousb_loader and 

run script to create the image file. 

● To build an image in Windows run:

> mkimage.bat <build_configuration>

Where build_configuration may be DA14681-01-Release_QSPI, DA14681-01-Debug_QSPI, etc. 

● To build an image in Linux run:

> ./mkimage.sh <build_configuration>

Where build_configuration may be DA14681-01-Release_QSPI, DA14681-01-Debug_QSPI, etc. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 81 of 88 © 2022 Renesas Electronics 

It prepares an image file like pxp_reporter.1.0.0.1.img. The file name contains a version number 

taken from file sw_version.h. 

9.2.3.4 Running the SUOUSB process 

The first step is to connect a USB cable from the host PC to USB1 connector on ProDK – note this is 
the charger USB port and not the debug one. 

To enter the download mode user should follow the next steps: 

1. Load suousb_loader into RAM using RAM script.

2. suousb_loader should be paused at break point of the main function.

3. Press K1 button of board and select resume debug mode in SmartSnippetsTM Studio.

4. Now that SUOUSB mode has started it enumerates a USB-CDC port that appears as another

COMx port in Windows and /dev/ttyACM0 in Linux.

Everything else is the same as in the QSPI based SUOUSB and the windows and linux host 
download instructions are the same as in the QSPI based SUOUSB in sections 9.2.2.5 and 9.2.2.6. 

9.2.4 Use both SUOUSB and SUOTA 

SUOUSB and SUOTA can be enabled together in the image. The SUOUSB is applied to the 

bootloader (suousb_loader) while SUOTA is applied to the main image e.g. `pxp_reporter`. For the 

preparation of the bootloader and the main image please follow the steps described in the 
corresponding sections of the SUOSB and SUOTA. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 82 of 88 © 2022 Renesas Electronics 

10 Enabling features on the Proximity Reporter application 

The following paragraphs explain how to enable SmartSnippetsTM DA1468x SDK features on the 
Proximity Reporter application (the same can be applied on any project). Modifications are needed 
depending the specific implementation of each project.  

10.1 Enabling the Charger 

A very useful feature that Proximity Reporter provides is the ability to enable the charger. The 
configuration of the Charger can be divided in three parts: 

● Configuration of the USB.

● Charging algorithm configuration.

● Charging parameters.

For more information about the charger please refer to the Platform Reference Manual [4]. 

All these configuration options are defined in config/custom_config_qspi_suota.h header file. 

#define dg_configBATTERY_TYPE    (BATTERY_TYPE_CUSTOM) 

#define dg_configBATTERY_CHARGE_VOLTAGE  0xD  // 4.35V 

#define dg_configBATTERY_TYPE_CUSTOM_ADC_VOLTAGE (3563) 

//#define dg_configBATTERY_LOW_LEVEL          (2457)  // 3V 

#define dg_configPRECHARGING_THRESHOLD    (2462)  // 3.006V 

#define dg_configCHARGING_THRESHOLD    (2498)  // 3.05V 

#define dg_configBATTERY_CHARGE_CURRENT    2    // 30mA 

#define dg_configBATTERY_PRECHARGE_CURRENT    20    // 2.1mA 

#define dg_configBATTERY_CHARGE_NTC    1    // disabled 

#define dg_configPRECHARGING_TIMEOUT    (30 * 60 * 100)  // N x 10msec 

#define dg_configUSE_USB    1 

#define dg_configUSE_USB_CHARGER    1 

#define dg_configALLOW_CHARGING_NOT_ENUM    1 

#define dg_configUSE_NOT_ENUM_CHARGING_TIMEOUT  0 

Code 10: Charger configuration 

10.2 Configuration for SUOTA 

The following sections describe the Proximity Reporter demo from the SUOTA point of view. The 
steps need to enable/configure SUOTA in an application are the following: 

1. Create or modify a header file containing information about the version used for creating images.

2. Add code to include the SUOTA in an application.

3. Configure the application start address.

10.2.1 Version header file 

Code 11 shows the content of sw_version.h, which is the header file that should be modified 

whenever a new version is produced. This header file is important because it is required by the 

mkimage tool in order to create the new image file.  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 83 of 88 © 2022 Renesas Electronics 

#define BLACKORCA_SW_VERSION "1.0.0.1" 

#define BLACKORCA_SW_VERSION_DATE "2016-01-28 15:00" 

#define BLACKORCA_SW_VERSION_STATUS "REPOSITORY VERSION" 

Code 11: sw_version.h 

10.2.2 Code analysis 

All SUOTA-related lines of code are inside #if dg_configSUOTA_SUPPORT #endif blocks. The 

preprocessor macro for enabling the SUOTA is already in a configuration header file located in 
<sdk_root_directory>/projects/dk_apps/demos/pxp_reporter/config 

/custom_config_qspi_suota.h:  

#define dg_configSUOTA_SUPPORT  (1) 

Code 12: Macro to enable SUOTA 

The desired SUOTA version is defined using the SUOTA_VERSION definition. SUOTA version v1.1 

(SUOTA_VESRION_1_1) allows the application to be upgraded only over GATT, whereas versions v1.2, 

v1.3 (SUOTA_VERSION_1_2, SUOTA_VERSION_1_3) allow the application to be upgraded both over 

GATT and L2CAP COC. To enable SUOTA over L2CAP COC, SUOTA_PSM should also be defined, in 

addition to SUOTA_VERSION. This definition specifies the PSM that must be used to establish the 

L2CAP COC connection. 

/* 
* SUOTA loader configuration:
* - To enable SUOTA over GATT only, set SUOTA_VERSION to any version >=

SUOTA_VERSION_1_1 
* and leave SUOTA_PSM undefined.
* - To enable SUOTA over GATT and L2CAP CoC, set SUOTA_VERSION to any version

>= SUOTA_VERSION_1_2 
* and also define SUOTA_PSM to match the desired PSM. In this case the

central device 
* can use either of both according to its preference.
*/

#define SUOTA_VERSION   SUOTA_VERSION_1_3 
#define SUOTA_PSM    0x81 

Code 13: Defining SUOTA version and L2CAP COC PSM 

In addition, when support for L2CAP COC is enabled (SUOTA_PSM is defined), L2CAP related events 

should be passed from the application to the SUOTA service as shown in Code 14. 

#if dg_configSUOTA_SUPPORT && defined (SUOTA_PSM) 
 case BLE_EVT_L2CAP_CONNECTED: 
 case BLE_EVT_L2CAP_DISCONNECTED: 
 case BLE_EVT_L2CAP_DATA_IND: 

 suota_l2cap_event(suota, hdr); 
 break; 

#endif 

Code 14: Passing L2CAP events to the SUOTA service 

For SUOTA to be enabled in the Proximity Reporter application, the pxp_reporter_task.c should be 

modified accordingly. The code snippet presented in Code 15 should be included in the 

pxp_reporter_task() function to declare the variable that handles the service: 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 84 of 88 © 2022 Renesas Electronics 

ble_service_t *suota; 

Code 15: Declare SUOTA variable 

Additionally, the SUOTA service should be initialized and added to the BLE framework, inside the 
same function. This service is the starting point where all services are created.  In addition, it is 
important to add the Device Information Service (DIS) as Android and iOS applications relies on DIS, 
as shown in Code 16. 

/* Register SUOTA 
* 
* SUOTA instance should be registered in ble_service framework in order for 
events 
* inside service to be processed properly.
*/
suota = suota_init(&suota_cb);
OS_ASSERT(suota != NULL);
/*
* Register DIS
*
* DIS doesn't contain any dynamic data thus it doesn't need to be registered in 
* ble_service framework (but it's not an error to do so).
*/
dis_init(NULL, &dis_info);

Code 16: Register SUOTA and DIS 

Code 17 shows the required data for the DIS standard BLE service. This project uses the same 
header file version for both building the image and for providing data for the DIS. 

/* Device Information Service data 

 * 

* Manufacturer Name String is mandatory for devices supporting HRP. 

 */ 

static const dis_device_info_t dis_info = { 

.manufacturer = "Dialog Semiconductor", 

.model_number = "Dialog BLE", 

.serial_number = "123456", 

.hw_revision = "REV.D", 

.fw_revision = "1.0", 

.sw_revision = BLACKORCA_SW_VERSION, 

}; 

Code 17: DIS data 

The header files shown in Code 18 must be included to build these changes. 

#include "dis.h" 

#include "dlg_suota.h" 

#include "sw_version.h" 

Code 18: Header files 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 85 of 88 © 2022 Renesas Electronics 

In order to make the SUOTA process operational, the SUOTA service has to be included in the 
advertising data. 

/* 

* PXP advertising and scan response data

* While not required, PXP specification states that PX reporter device using

* peripheral role can advertise support for LLS. Device name is set in scan

* response to make it easily recognizable.

 */ 

static const uint8_t adv_data[] = { 

#if dg_configSUOTA_SUPPORT 

0x07, GAP_DATA_TYPE_UUID16_LIST_INC, 

0x03, 0x18, // = 0x1803 (LLS UUID) 

0x02, 0x18, // = 0x1802 (IAS UUID) 

0xF5, 0xFE, // = 0xFEF5 (DIALOG SUOTA UUID) 

#if dg_configSUOTA_SUPPORT 
        0x07, GAP_DATA_TYPE_UUID16_LIST_INC, 
        0x03, 0x18, // = 0x1803 (LLS UUID) 
        0x02, 0x18, // = 0x1802 (IAS UUID) 
        0xF5, 0xFE, // = 0xFEF5 (DIALOG SUOTA UUID) 

Code 19: Advertising and scan response data 

10.2.3 Application start address 

SUOTA-enabled applications should be compiled for execution from address 0x20000. 

The following lines are already there but it is likely that CODE_BASE_ADDRESS is always set to 

0x8000000. This does not work when a bootloader is present. The modification required to 

CODE_BASE_ADDRESS is highlighted with red font in Code 20. 

#  if (dg_configEXEC_MODE == MODE_IS_MIRRORED) 

#warning "QSPI mirrored execution mode is not supported!" 

#undef CODE_SIZE 

#define CODE_SIZE               0 

#  else 

#define CODE_BASE_ADDRESS  0x8000000 + dg_configIMAGE_FLASH_OFFSET 

#define RAM_BASE_ADDRESS  0x7FC0000 

#  endif 

Code 20: Code Base Address 

These changes are not sufficient in themselves and the application still builds from address 0 unless 

dg_configIMAGE_FLASH_OFFSET is defined.  

In case of the Proximity Reporter application, this macro is defined in the 

config/custom_config_qspi_suota.h file. Code 21 defines the correct starting address. 



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 86 of 88 © 2022 Renesas Electronics 

#define dg_configIMAGE_FLASH_OFFSET  (0x20000) 

Code 21: Set starting address 

The Proximity Reporter includes two configurations: one without the SUOTA functionality, which 

allows building an application for address 0x0, and another one with the SUOTA functionality, which 

builds for address 0x20000.  



 

UM-B-056 

DA1468x Software Developer’s Guide 

User Manual Version 6.1 24-Feb-2022

CFR0012 87 of 88 © 2022 Renesas Electronics 

Revision history 

Revision Date Description 

1.0 19-Nov-2015 First released version 

2.0 22-Apr-2016 Update for SmartSnippets DA1468x SDK Release 1.0.4 .812 

2.1 17-Jun-2016 Update for SmartSnippets DA1468x SDK Engineering Release 
1.0.5.885 

3.0 26-Jul-2016 Update for SmartSnippets DA1468x SDK Release 1.0.6.968 

3.1 26-Jul-2016 Chapter 10 deleted because of improvements in scripts. 

4.0 07-Dec-2016 Update for SmartSnippets DA1468x SDK Release 1.0.8 

5.0 21-Jul-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10 

5.03 15-Nov-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10 

6.0 14-Dec-2017 Update for SmartSnippets DA1468x SDK Release 1.0.12 

6.1 24-Feb-2022 Updated logo, disclaimer, copyright. 



UM-B-056 

DA1468x Software Developer’s Guide 

Version 6.1 24-Feb-2022

CFR0012 88 of 88 © 2022 Renesas Electronics 

Status definitions 

Status Definition 

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or 

additions.  

APPROVED The content of this document has been approved for publication. 

or unmarked 

 User Manual 

http://www.diasemi.com/terms.php
http://www.diasemi.com/terms.php

	Abstract
	Contents
	Figures
	Tables
	Codes
	1 Terms and definitions
	2 References
	3 Prerequisites
	4 Introduction
	5 The Proximity Reporter Application
	5.1 Basic Services and Features
	5.2 User Interface
	5.3 Importing the project
	5.4 Project Execution
	5.4.1 Building
	5.4.2 Programming the QSPI Flash

	5.5 Interacting with the application
	5.5.1 LightBlue iOS application
	5.5.2 B-BLE Android application

	5.6 Source code walkthrough

	6 Peripheral Demo Application
	6.1 Basic services and features
	6.2 User Interface
	6.3  Importing the project
	6.3.1 Building the project
	6.3.2 Programming the QSPI Flash

	6.4 Interacting with the Application

	7 Power Measurements Demo Application
	7.1 Basic Services and Features
	7.2 User Interface
	7.3 Importing the project
	7.3.1 Building the project
	7.3.2 Programming the QSPI Flash

	7.4 Interacting with the Application
	7.4.1 Controlling via UART2
	7.4.2 Controlling via GPIO
	7.4.3 Set advertising interval
	7.4.4 Set channel map
	7.4.5 Set recharge period
	7.4.6 Set connection parameters


	8 Create a custom application
	8.1 Creating a Bluetooth low energy project
	8.2 Configuring your application
	8.3 Adding Bluetooth low energy functionality
	8.3.1 Including BLE header files
	8.3.2 Adding BLE services
	8.3.3 Bonding information management
	8.3.4 Hooks


	9 Software Upgrade
	9.1 Software Upgrade Over The Air (SUOTA)
	9.1.1 Introduction
	9.1.2 SUOTA service description
	9.1.3 SUOTA Flow
	9.1.4 SUOTA Flash memory layout
	9.1.5 Performing SUOTA upgrade using a mobile phone
	9.1.6 Performing SUOTA upgrade using two DA1468x
	9.1.6.1 Building the Bluetooth low energy Central device
	9.1.6.2 Building the Bluetooth low energy peripheral device
	9.1.6.3 Running the software upgrade procedure

	9.1.7 SUOTA in Production and Field deployment
	9.1.8 Recommendations

	9.2 Software Upgrade Over USB (SUOUSB)
	9.2.1 Introduction
	9.2.2 QSPI based SUOUSB
	9.2.2.1 Prepare bootloader
	9.2.2.2 Prepare main image
	9.2.2.3 Prepare SUOUSB image for test
	9.2.2.4 Running the SUOUSB process
	9.2.2.5 Transfer from a Windows host
	9.2.2.6 Transfer from a Linux host

	9.2.3 RAM based SUOUSB
	9.2.3.1 Prepare bootloader
	9.2.3.2 Prepare main image
	9.2.3.3 Prepare SUOUSB image for test
	9.2.3.4 Running the SUOUSB process

	9.2.4 Use both SUOUSB and SUOTA


	10 Enabling features on the Proximity Reporter application
	10.1 Enabling the Charger
	10.2 Configuration for SUOTA
	10.2.1 Version header file
	10.2.2 Code analysis
	10.2.3 Application start address


	Revision history



