
© 2008 Integrated Device Technology, Inc.

Notes By Kwok Kong, Alex Chang

Software API
Software API for Upstream Port
Failover in Inter-domain PCIe
Switches
Introduction
The IDT Inter-domain PCIe switches (PES24NT3 and PES12NT3) supports an NTB upstream port

failover mechanism that enables the construction of fault tolerant systems. In the document, the PES24NT3
is used as examples but the all the failover descriptions apply to the PES12NT3 as well.

The NTB upstream port failover usage model is illustrated in Figure 1. In this usage there is a primary
root and a secondary root. Both roots are active and may communicate using transactions flowing through
the NTB, mechanisms provided by the NTB for interprocessor communications, or an out-of-band commu-
nications channel. In normal mode, the primary root is responsible for configuring and managing the internal
PCIe hierarchy (i.e., the PCIe hierarchy consisting of upstream port A, downstream port B, P2P bridges,
and the internal NTB endpoint).

NTB upstream port failover enables the swapping of the upstream port (i.e., port A) with the NTB port
(i.e., port C). When a hardware or software failure is detected in the primary root, the PES24NT3 may be
directed to operate in a failover mode. In failure mode, the secondary root (i.e., the root associated with port
C) becomes the root responsible for configuring and managing the internal PCIe hierarchy and the primary
root becomes the root of the external NTB hierarchy.

Figure 1 NTB Upstream Port Failover Usage Model

The PES24NT3 NTB upstream port failover architecture is shown in Figure 2. The two main compo-
nents of this device are switch logic and a SerDes switch. The PES24NT3 switch logic implements a three
port non-transparent switch that does not support NTB upstream port failover. It consists of PCIe stacks, a
switch core and NTB logic. The SerDes switch enables SerDes lanes associated with port A and C to be
passed through unmodified or swapped.

Primary

Port A
(Upstream Port)

Port C
(NTB Port)

Port B
(Downstream Port)

PES24NT3

Root
Secondary

Root

PCIe Hierarchy

(a) Normal Mode Operation (b) Failover Mode Operation

Primary

Port A
(NTB Port)

Port C
(Upstream Port)

Port B
(Downstream Port)

PES24NT3

Root
Secondary

Root

PCIe Hierarchy
1 of 27 Feb 22, 2008

IDT Software API

Notes
 In normal mode, the SerDes switch operates in a pass-through configuration. This connects the external
SerDes lanes associated with port A with the internal port A upstream port of the switch logic and the
SerDes lanes associated with port C with the internal port C NTB port. In failover mode, the SerDes switch
operates in a swapped configuration. This connects the SerDes lanes associated with port A to the internal
port C NTB port and the external SerDes lanes associated with port C to the internal port A upstream port.

In failover mode the device associated with port C SerDes assumes all of the resources and responsibil-
ities of the internal port A upstream port and visa versa. This means that the root associated with port C has
direct access to all port A upstream port registers, receives internal PCIe hierarchy messages (e.g., error
and INTx), and so on.

Figure 2 PES24NT3 NTB Upstream Port Failover Architecture

Type 1
Configuration Header

PCI-PCI
Transparent

Bridge

Internal Type 0
Configuration Header

Non-Transparent

External Type 0
Configuration Header

Bridge

Type 1
Configuration Header

PCI-PCI
Transparent

Bridge

Virtual PCI Bus

Type 1
Configuration Header

PCI-PCI
Transparent

Bridge

SerDes Switch

PES24NT3 Switch
Logic

Port A Port C

Internal Port A
(Upstream Port)

Internal Port C
(NTB Port)

Port B

PES24NT3
2 of 27 Feb 22, 2008

IDT Software API

Notes
 This document describes the basic configuration of upstream port failover and the software API to
configure it.

Failover
Failover may be initiated statically or dynamically. A static upstream port failover requires a fundamental

reset to be initiated whenever a failover mode change is required. An static upstream port failover consists
of the following steps:

u Assert the PCIe fundamental reset signal
u Modify the switch mode signals to the selected failover mode (i.e., normal mode or failover mode).
u Negate the PCIe fundamental reset signal

Since the static upstream port failover requires external signals to be modified and is system dependent,
software API does not support the static upstream port failover.

Dynamic upstream port failover allows a failover to occur while the system is live and in a manner that
preserves the system state. There are three methods to initiates a dynamic upstream port failover:

u Software initiated failover - A failover may be initiated by modifying the failover control register.
u Signal initiated failover - An upstream port failover may be initiated by a change in the state of the

NTB Upstream Port Failover signal.
u Watchdog timer initiated failover - An NTB upstream port failover may be initiated as the result of an

expiration of a watchdog timer.
Software API supports all three methods of dynamic upstream port failover.

Failover Examples
The PCI topology changes after the NTB upstream port failover. The system software has to update its

PCI topology after the NTB upstream port failover. A total of four failover examples are described in this
section to show the failover procedure.

u Managed Failover - There is no failure in the system. For software maintenance or management
purpose, user initiates a failover via software.

u Recovery Failover - The active root complex has crashed or removed from the upstream port of the
PES24NT3 device. The Standby root complex forces a failover such that it becomes the active root
complex.

u Watchdog Timer Failover - The watchdog timer has expired and initiates a failover automatically.
It is assumed that the primary root is the active root complex and the PES24NT3 device is used in all the

examples.

Managed Failover
In this example, there is no failure in the system. Both the primary and secondary roots are active. The

primary root is the active root complex. A failover is initiated by management for the purpose of software
maintenance or management.

Primary Root Change
Before the NTB upstream port failover, the primary root is the root complex of the PES24NT3 device.

The primary root sees three PCI-PCI bridges and the Internal Endpoint inside the PES24NT3 device. There
may also be a PCI tree below Port B of the PES24NT3 device. The PCI tree may consists of zero, one or
multiple PCIe switches and zero, one of multiple endpoints. The primary root configures the Internal
Endpoint registers to initiate the NTB upstream port failover.

After the NTB upstream port failover, the primary root is no longer the root complex of the PES24NT3
device. The primary root sees a single External Endpoint inside the PES24NT3. The multiple PCI-PCI
bridges, Internal Endpoint and the PCI tree below Port B of the PES24NT4 device disappear. The primary
root has no access to the Internal Endpoint anymore before recognizing the External Endpoint first. The
topology as viewed by the Primary root before and after the failover is shown in Figure 3.
3 of 27 Feb 22, 2008

IDT Software API

Notes
 The procedure to initiate the NTB upstream port failover are:
1. Stop communication to External Endpoint

2. Initiate a “virtual” unplug of all the devices that are connected to Port B of the
PES24NT3 device. This uninitializes all the device drivers that are associated with
the devices that are below Port B of the PES24NT3 device.

3. Initiate the NTB Upstream port failover. At this point, software has to assume that it
has no access to the Internal Endpoint anymore.

4. Initiate a “virtual” unplug of the PES24NT3 device

5. Look for a new device “External Endpoint of the PES24NT3”

6. When the External Endpoint is discovered, run the External Endpoint device driver
to initialize the External Endpoint.

7. Re-establish communication with the Internal Endpoint

8. NTB Upstream Port Failover is completed.

Figure 3 PCI tree for Primary root before and after NTB Upstream Port Failover

Secondary Root Change
Before the NTB upstream port failover, the secondary root is not the root complex of the PES24NT3

device. The secondary root sees a single External Endpoint inside the PES24NT3 device.
After the NTB upstream port failover, the secondary root is the root complex of the PES24NT3 device.

The secondary root now sees three PCI-PCI bridges and the Internal Endpoint inside the PES24NT3
device. There may also be a PCI tree below Port B of the PES24NT3 device. The PCI tree may consists of
zero, one or multiple PCIe switches and zero, one of multiple endpoints. The External Endpoints disap-

P-P Bridge

P-P Bridge P-P Bridge

Internal
Endpoint

PCI tree

Primary Root Primary Root

External Endpoint

Before NTB Upstream Port Failover After NTB UpStream Port Failover
4 of 27 Feb 22, 2008

IDT Software API

Notes
 pears from the secondary root. The topology as viewed by the Secondary root before and after the failover
is shown in Figure 4. In this example, the primary root is responsible for initiating the NTB Upstream Port
Failover. The secondary root never initiates the NTB Upstream Port Failover.

The procedure to initiate the NTB upstream port failover are:
1. Get notification from the primary root that the NTB upstream port failover is going

to happen

2. Initiate a “virtual” unplug of External Endpoint

3. Look for a new PCI-PCI bridge device of the PES24NT3 device

4. When the PCI-PCI bridge device is discovered, run PCI enumeration procedure to
discover and configure the three PCI-PCI bridges, Internal Endpoint and the devices
in the PCI tree that is connected to port B of the PES24NT3 device.

5. Re-establish communication with the Internal Endpoint

Figure 4 PCI tree for Secondary Root before and after NTB Upstream Port Failover

Recovery Failover
The primary root has failed. The secondary root detects that the primary root has failed and it initiates

the recovery failover automatically. After the failover, the secondary root becomes the active root complex
of the PES24NT3 device.

Primary Root Change
Before the NTB upstream port failover, the primary root is the root complex of the PES24NT3 device.

The primary root sees three PCI-PCI bridges and the Internal Endpoint inside the PES24NT3 device. There
may also be a PCI tree below Port B of the PES24NT3 device. The PCI tree may consists of zero, one or
multiple PCIe switches and zero, one of multiple endpoints.

P-P Bridge

P-P Bridge P-P Bridge

Internal
Endpoint

PCI tree

Secondary RootSecondary Root

External Endpoint

Before NTB Upstream Port Failover After NTB UpStream Port Failover
5 of 27 Feb 22, 2008

IDT Software API

Notes
 After the NTB upstream port failover, the primary root is no longer the root complex of the PES24NT3
device. The primary root sees a single External Endpoint inside the PES24NT3. The multiple PCI-PCI
bridges, Internal Endpoint and the PCI tree below Port B of the PES24NT4 device disappear. The topology
as viewed by the Primary root before and after the failover is shown in Figure 3.

As the primary root has failed, there is no need to recover from the failover.

Secondary Root Change
Before the NTB upstream port failover, the secondary root is not the root complex of the PES24NT3

device. The secondary root sees a single External Endpoint inside the PES24NT3 device.
After the NTB upstream port failover, the secondary root is the root complex of the PES24NT3 device.

The secondary root now sees three PCI-PCI bridges and the Internal Endpoint inside the PES24NT3
device. There may also be a PCI tree below Port B of the PES24NT3 device. The PCI tree may consists of
zero, one or multiple PCIe switches and zero, one of multiple endpoints. The External Endpoints disap-
pears from the secondary root. The topology as viewed by the Secondary root before and after the failover
is shown in Figure 4.

In this example, the Primary root has failed and hence the Secondary root is responsible for initiating the
NTB Upstream Port Failover. How the secondary root determines if the Primary root fails is system depen-
dent. A few examples are heartbeats stops or the link that is connected to the Primary root is down.

The procedure to initiate the NTB upstream port failover are:
1. Reach a decision that the Primary root has failed and a NTB upstream port failover is

necessary to recover from the failure

2. Initiate the NTB Upstream port failover. At this point, software has to assume that it
has no access to the External Endpoint anymore.

3. Initiate a “virtual” unplug of External Endpoint

4. Look for a new PCI-PCI bridge device of the PES24NT3 device

5. When the PCI-PCI bridge device is discovered, run PCI enumeration procedure to
discover and configure the three PCI-PCI bridges, Internal Endpoint and the devices
in the PCI tree that is connected to port B of the PES24NT3 device.

Watchdog Timer Failover
The primary root has failed and the Watchdog timer has expired. A failover is initiated by hardware auto-

matically because of the Watchdog Timer expiration. The secondary root detects that a failover has
happened and it starts the recovery procedure. After the failover, the secondary root becomes the active
root complex of the PES24NT3 device.

Primary Root Change
Before the NTB upstream port failover, the primary root is the root complex of the PES24NT3 device.

The primary root sees three PCI-PCI bridges and the Internal Endpoint inside the PES24NT3 device. There
may also be a PCI tree below Port B of the PES24NT3 device. The PCI tree may consists of zero, one or
multiple PCIe switches and zero, one of multiple endpoints.

After the NTB upstream port failover, the primary root is no longer the root complex of the PES24NT3
device. The primary root sees a single External Endpoint inside the PES24NT3. The multiple PCI-PCI
bridges, Internal Endpoint and the PCI tree below Port B of the PES24NT4 device disappear. The topology
as viewed by the Primary root before and after the failover is shown in Figure 3.

As the primary root has failed, there is no need to recover from the failover.
6 of 27 Feb 22, 2008

IDT Software API

Notes
 Secondary Root Change
Before the NTB upstream port failover, the secondary root is not the root complex of the PES24NT3

device. The secondary root sees a single External Endpoint inside the PES24NT3 device.
After the NTB upstream port failover, the secondary root is the root complex of the PES24NT3 device.

The secondary root now sees three PCI-PCI bridges and the Internal Endpoint inside the PES24NT3
device. There may also be a PCI tree below Port B of the PES24NT3 device. The PCI tree may consists of
zero, one or multiple PCIe switches and zero, one of multiple endpoints. The External Endpoints disap-
pears from the secondary root. The topology as viewed by the Secondary root before and after the failover
is shown in Figure 4.

In this example, the primary root has failed and the watchdog timer causes the NTB Upstream Port
Failover. Where there is a failover, the link is down on Port C as well as on Port A. Secondary root gets a
link down interrupt on the downstream port that is connected to Port C of PES24NT3.

The procedure to initiate the NTB upstream port failover are:
1. Get a link down interrupt on the downstream port that is connect to Port C of

PES24NT3.

2. Look for a new PCI-PCI bridge device of the PES24NT3 device

3. Initiate a “virtual” unplug of External Endpoint

4. When the PCI-PCI bridge device is discovered, run PCI enumeration procedure to
discover and configure the three PCI-PCI bridges, Internal Endpoint and the devices
in the PCI tree that is connected to port B of the PES24NT3 device.

Software API
A software API is created to make it easier to configure the NTB Upstream Port Failover. The software

API is to be delivered as a “C” library and is OS independent. The customer is expected to build their own
configuration software or device driver to configure the NTB Upstream Port Failover. The software architec-
ture is shown in Figure 5. At the top layer is the user application that runs in the user space or user device
driver that runs in the kernel space. This layer is provided by the customer. The middle layer is the NTB
Upstream Port Failover API that is provided by IDT. It provides API to the user level program for NTB
Upstream Port Failover. The NTB Upstream Port Failover API relies on the I/O Access layer to access the
PCIe Configuration Registers. The I/O Access layer is system and OS dependent. It makes the appropriate
system or OS services to access the PCIe Configuration Registers. A few examples are provided in the I/O
Access layer. The examples are Linux user level and Linux kernel level.

User Application

Upstream Port Failover API

I/O Access API

Figure 5 Software Architecture
7 of 27 Feb 22, 2008

IDT Software API

Notes
 API Description
Multiple APIs are provided to support the user application. The NTB Upstream Port Failover layer API

uses the I/O Access layer API to read/write from/to the device’s configuration registers. I/O Access API is
system and OS dependent.
8 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesAmIRootComplex()
int IdtPesAmIRootComplex
unsigned bdf,
unsigned *is_rc;
)

Parameters

bdf The bus, function and device numbers to identify the
device to be configured. The function number occupies
the lower 3 bits, the device number occupies the next 5
bits and the bus number occupies the next 8 bits. This is
the bdf of the NTB endpoint.

is_rc 0 means no.

 1 means yes.

 Others mean error.

Description
It checks if I am the root complex for the Inter-domain switch. I am the root complex if the bdf is the

Internal endpoint of the Inter-domain switch.

Returns
PES_OK bdf is valid. The result is saved in

“*is_rc”.

PES_INVALID_BDF bdf is invalided. Could not locate any
IDT endpoints of the Inter-domain
switch in the system.
9 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesGetCurrentFailoverMode()
int IdtPesGetCurrentFailoverMode(
unsigned bdf,
int *mode;
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

mode current failover mode is returned here if there is no
error.

PES_FAILOVER_NORMAL External port A associated with internal port A and
external port C associated with internal port C.

PES_FAILOVER_FAILOVERExternal port A associated with internal Port C and
external port C associated with internal port A.

PES_UNKNOWN_ERROR Certain unknown error encountered when identifying
current failover mode.

Description
It returns the current failover mode.

Returns
PES_OK failover mode is returned in “*mode”

PES_INVALID_BDF bdf is invalided. Failover mode is not
returned.
10 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesGetFailoverControl()
int IdtPesGetFailoverControl(
unsigned bdf
unsigned *control;
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

control Failover control register value. Possible bit fields are:

FLD_FAILOVER_MODE_SELECT (bit 0)

FLD_SIGNAL_FAILOVER_ENABLE (bit 1)

FLD_TIMER_FAILOVER_ENABLE (bit 2)

FLD_FAILOVER_HOT_RESET_DISABLE (bit 3)

FLD_FAILOVER_IHLDHR_DISABLE (bit 4)

FLD_FAILOVER_EHLDHR_DISABLE (bit 5)

FLD_FAILOVER_IHHRP_DISABLE (bit 6)

FLD_FAILOVER_EHHRP_DISABLE (bit 7)

Description
It returns the content of the failover control register in “control”. Please refer to the PES24NT3 User

Manual Failover Control (0x22C) register for detailed description of the control bits.

Returns
PES_OK failover control is returned in

“*control”

PES_INVALID_BDF bdf is invalided. Failover control is
not returned.
11 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesSetFailoverControl()
int IdtPesSetFailoverControl(
unsigned bdf
unsigned control
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

control Failover control. This is a bit field and each field can be
“or” to set multiple modes. Possible fields are:

FLD_FAILOVER_MODE_SELECT (bit 0)

FLD_SIGNAL_FAILOVER_ENABLE (bit 1)

FLD_TIMER_FAILOVER_ENABLE (bit 2)

FLD_FAILOVER_HOT_RESET_DISABLE (bit 3)

FLD_FAILOVER_IHLDHR_DISABLE (bit 4)

FLD_FAILOVER_EHLDHR_DISABLE (bit 5)

FLD_FAILOVER_IHHRP_DISABLE (bit 6)

FLD_FAILOVER_EHHRP_DISABLE (bit 7)

Unused bit fields are ignored by this function.

Description
It sets the failover control register. Please refer to the PES24NT3 user manual Failover Control (0x22C)

register for detailed description of the control bits

Returns

PES_OK failover control has been written
successful into the failover control
register.

PES_INVALID_BDF bdf is invalided.
12 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesGetWatchdogTimer()
int IdtPesGetWatchdogTimer(
unsigned bdf,
unsigned *value
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

value Watchdog timer value is returned here. The value is in
microsecond.

Description
It returns the value of the watchdog timer in “value”.

Returns
PES_OK content of the watchdog timer is

returned in “*value”.

PES_INVALID_BDF bdf is invalided.
13 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesSetWatchdogTimer()
int IdtPesSetWatchdogTimer(
unsigned bdf,
unsigned value
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

value Watchdog timer value to be set. The value is in micro-
second.

Description
It sets the “value” to the watchdog timer.

Returns
PES_OK value has been written to the watchdog

time successfully.

PES_INVALID_BDF bdf is invalided.
14 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesGetFailoverSignal()
int IdtPesGetFailoverSignal(
unsigned bdf,
unsigned *level
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

level Current signal level.

0: low level

1: high level

Otherwise: error

Description
It returns the current failover signal level.

Returns
PES_OK failover signal is returned in

“*level”.

PES_INVALID_BDF bdf is invalided.
15 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesSetFailoverSignal()
int IdtPesSetFailoverSignal(
unsigned bdf,
unsigned level
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

level Set the current signal level to match this level.

0: to low level.

1: to high level.

 Otherwise: error.

Description
It sets the failover signal to initiate a failover.

Returns
PES_OK Failover signal has been set accord-

ing to level.

PES_INVALID_BDF bdf is invalided.
16 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesEnableSignalFailover()
int IdtPesEnableSignalFailover
unsigned bdf,
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

Description
It disables the timer failover process by writing 1 to the SIGFEN field of Failover Control register. It

should be noted that the failover may not be completed when this function returns.

Returns
PES_OK The signal failover has been enabled.

PES_INVALID_BDF bdf is invalid.
17 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesDisableSignalFailover()
int IdtPesDisableSignalFailover
unsigned bdf,
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

Description
It disables the timer failover process by writing 0 to the SIGFEN field of Failover Control register. It

should be noted that the failover may not be completed when this function returns.

Returns
PES_OK The signal failover has been dis-

abled.

PES_INVALID_BDF bdf is invalid.
18 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesInitiateSignalFailover()
int IdtPesInitiateSignalFailover
unsigned bdf,
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

Description
It initiates the failover process via signal only when SIGFEN of FOVRCTL register is 1. The alternate

function of GPIO[5] is used as the failover signal. It should be noted that the failover may not be completed
when this function returns.

Returns
PES_OK The failover has been initiated.

PES_INVALID_BDF bdf is invalid.
19 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesInitiateConfigFailover()
int IdtPesInitiateConfigFailover
unsigned bdf,
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

Description
It initiates the failover process by modifying value of bit field FOVRMSEL of the Failover Control register.

It should be noted that the failover may not be completed when this function returns.

Returns
PES_OK The failover has been initiated.

PES_INVALID_BDF bdf is invalid.
20 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesEnableTimerFailover()
int IdtPesEnableTimerFailover
unsigned bdf,
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

Description
It enables the timer failover process by writing 1 to the TIMFEN field of Failover Control register. It

should be noted that the failover may not be completed when this function returns.

Returns
PES_OK The timer failover has been enabled.

PES_INVALID_BDF bdf is invalid.
21 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesDisableTimerFailover()
int IdtPesDisableTimerFailover
unsigned bdf,
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

Description
It disables the timer failover process by writing 0 to the TIMFEN field of Failover Control register. It

should be noted that the failover may not be completed when this function returns.

Returns
PES_OK The timer failover has been disabled.

PES_INVALID_BDF bdf is invalid.
22 of 27 Feb 22, 2008

IDT Software API

Notes
 IdtPesMakeBDF()
unsigned IdtPesMakeBDF(
unsigned bus;
unsigned device;
unsigned function
)

Parameters

bus The bus number of a device ID. Only the lower 8 bits of
the bus number is used.

device The device number of a device ID. Only the lower 5 bits
of the device number is used.

function The function number of a device ID. Only the lower 3
bits of the function number is used.

Description
It takes the bus, device and function numbers of a device ID to form a single bdf value that can be used

to call the API as specified in this document. The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus number occupies the next 8 bits.

Returns
bdf The device ID that can be used to call the API as speci-

fied in this document.

I/O Access API
The I/O access API hides the system and OS dependency from the Port Arbitration layer API to access

both the PCI Configuration Space and the PCI Express Extended Configuration Space of a PCIe device.
The I/O Access API is to be provided by the platform developer and not by IDT.

IDT provides sample implementation of I/O Access API for the platform that IDT uses to develop this
API. The sample implementation is base on Fedora 6 Linux.
23 of 27 Feb 22, 2008

IDT Software API

Notes
 ioa_pci_read_config()
int ioa_pci_read_config(
unsigned bdf,
unsigned offset,
unsigned *value
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

offset To specify which register to read. The offset may be
between 0 and 0xFFC and must be a multiple of 4 bytes.

value The value of the register is returned here.

Description
It looks for the device as specified in the bdf and returns the configuration space register as specified in

offset.

Returns
IOA_OK Success.

IOA_BAD_BDF bdf does not identify a valid device.

IOA_INVALID_OFFSET offset is invalid.

IOA_UNKNOWN_ERROR Unknown error.
24 of 27 Feb 22, 2008

IDT Software API

Notes
 ioa_pci_write_config()
int ioa_pci_read_config(
unsigned bdf,
unsigned offset,
unsigned value
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

offset To specify which register to read. The offset may be
between 0 and 0xFFC and must be a multiple of 4 bytes.

value To be written to the register

Description
It looks for the device as specified in the bdf and write the value to the configuration space register as

specified in offset.

Returns
IOA_OK Success.

IOA_BAD_BDF bdf does not identify a valid device.

IOA_INVALID_OFFSET offset is invalid.

IOA_UNKNOWN_ERROR Unknown error.
25 of 27 Feb 22, 2008

IDT Software API

Notes
 ioa_get_failover_signal_level()
int ioa_get_failover_signal_level(
unsigned bdf,
boolean *level
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

level The current failover signal level:

0: low level(0)

1: high level(1)

otherwise: error

Description
It returns the current failover signal level in “level”.

Returns
IOA_OK Success.

IOA_BAD_BDF bdf does not identify a valid device.
26 of 27 Feb 22, 2008

IDT Software API

Notes
 ioa_set_failover_signal_level()
int ioa_set_failover_signal_level(
unsigned bdf,
boolean level
)

Parameters

bdf The bus, function and device numbers to identify the
device of which port arbitration setup is to be returned.
The function number occupies the lower 3 bits, the
device number occupies the next 5 bits and the bus num-
ber occupies the next 8 bits. This is the bdf of the NTB
endpoint.

level Set the failover signal level to this level

0: low level (0)

1: high level (1)

otherwise: error

Description
It sets the failover signal level to “level”.

Returns
IOA_OK Success.

IOA_BAD_BDF bdf does not identify a valid device.

Linux Kernel IO Access API
When the user program is running in the Linux kernel space, the IO Access API makes use of the Linux

system provided API to access the PCI configuration space:
u pci_read_config_dword()
u pci_write_config_dword()

Linux user level IO Access API
When the user program is running in the Linux user space, the IO Access API makes use of the libpci

(or pciutil) library to access the PCI configuration space. The following libpci functions are used:
u pci_read_long()
u pci_write_long()
27 of 27 Feb 22, 2008

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Introduction
	Failover
	Failover Examples
	Managed Failover
	Recovery Failover
	Watchdog Timer Failover

	Software API
	API Description

	IdtPesAmIRootComplex()
	IdtPesGetCurrentFailoverMode()
	IdtPesGetFailoverControl()
	IdtPesSetFailoverControl()
	IdtPesGetWatchdogTimer()
	IdtPesSetWatchdogTimer()
	IdtPesGetFailoverSignal()
	IdtPesSetFailoverSignal()
	IdtPesEnableSignalFailover()
	IdtPesDisableSignalFailover()
	IdtPesInitiateSignalFailover()
	IdtPesInitiateConfigFailover()
	IdtPesEnableTimerFailover()
	IdtPesDisableTimerFailover()
	IdtPesMakeBDF()
	ioa_pci_read_config()
	ioa_pci_write_config()
	ioa_get_failover_signal_level()
	ioa_set_failover_signal_level()

