

R-IN32M4-CL3

Programming Manual (OS edition)

U
s
e

r’s
 M

a
n

u
a

l

Document number : R18UZ0072EJ0100

Issue date : Oct 30, 2019

All information of mention is things at the time of this document publication, and Renesas

Electronics may change the product or specifications that are listed in this document without

a notice. Please confirm the latest information such as shown by website of Renesas

Electronics.

Renesas Electronics
www.renesas.com

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High
Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade,
as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio

and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a

direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should
not use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in
this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product

In this section, the precautions are described for over whole of CMOS device.

Please refer to this manual about individual precaution.

When there is a mention unlike the text of this manual, a mention of the text takes first priority

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in

the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.
- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are

undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these

addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching
the clock signal during program execution, wait until the target clock signal has stabilized.
- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,

ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

・ARM, AMBA, ARM Cortex, Thumb, ARM Cortex-M3 and Cortex-M4 are a trademark or a registered trademark of
ARM Limited in EU and other countries.

・Ethernet is a registered trademark of Fuji Zerox Limited.

・IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

・EtherCAT is a registered trademark of Beckhoff Automation GmbH, Germany.

・CC-Link and CC-Link IE Field are a registered trademark of CC-Link Partner Association (CLPA).

・Additionally all product names and service names in this document are a trademark or a registered trademark
which belongs to the respective owners.

・TRON is an acronym for "The Real-time Operation system Nucleus".

・ITRON is an acronym for "Industrial TRON".

・ITRON is an acronym for "Micro Industrial TRON".

・TRON, ITRON, and ITRON do not refer to any specific product or products.

How to use this manual

1. Purpose and target readers

This manual is intended for users who wish to understand the functions of Industrial Ethernet network LSI “R-

IN32M4-CL2” for designing application of it.

Target users are expected to understand the fundamentals of electrical circuits, logic circuits, and microcomputers.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur
within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer
to the text of the manual for details.
The mark “<R>” means the updated point in this revision. The mark “<R>” let users search for the updated
point in this document.

Literature Literature may be preliminary versions. Note, however, that the following descriptions do not

indicate "Preliminary".

Some documents on cores were created when they were planned or still under development.

So, they may be directed to specific customers. Last four digits of document number

(described as ****) indicate version information of each document. Please download the latest

document from our web site and refer to it.

Document related to R-IN32M4-CL2

Document name Document number

R-IN32M4-CL3 User’s Manual R18UZ0073EJ****

R-IN32M4-CL3 Programming Manual (Driver edition) R18UZ0076EJ****

R-IN32M4-CL3 Programming Manual (OS edition) This manual

Document related to this operating system

Document name Document number

μITRON4.0 Specification Ver.4.02.00 (ITRON Specification Study Group, TRON Association) -

The μITRON4.0 specification is the de-fact standard for the real-time kernel with the TRON Association at the center of

its development.

Descriptions related to the μITRON4.0 specification in this manual are excerpt from the μITRON4.0 Specification. For

more details on the specification, refer to the μITRON4.0 Specification itself.

The specification can be downloaded from the web site of the TRON Forum.

2. Notation of Numbers and Symbols

Weight in data notation: Left is high-order column, right is low-order column

Active low notation:

 xxxZ (capital letter Z after pin name or signal name)

 or xxx_N (capital letter _N after pin name or signal name)

 or xxnx (pin name or signal name contains small letter n)

Note:

 explanation of (Note) in the text

Caution:

 Item deserving extra attention

Remark:

 Supplementary explanation to the text

Numeric notation:

 Binary … xxxx , xxxxB or n’bxxxx (n bits)

 Decimal … xxxx

 Hexadecimal … xxxxH or n’hxxxx (n bits)

Prefixes representing powers of 2 (address space, memory capacity):

 K (kilo)… 210 = 1024

 M (mega)… 220 = 10242

 G (giga)… 230 = 10243

Data Type:

 Word … 32 bits

 Halfword … 16 bits

 Byte … 8 bits

Table of Contents

1. Overview .. 1

1.1 Features of the Hardware Real-time Operating System .. 1

1.2 OS Library .. 2

1.2.1 The Version of OS Library .. 2

1.3 Supported Service calls ... 3

1.4 Supported Static API Functions .. 6

1.5 Differences from the Standard Profile .. 6

1.6 Operating Modes of the Processor .. 7

1.7 OS Time Tick ... 7

1.8 Development Environments.. 8

2. Procedure for Software Development ... 9

2.1 Design flow ... 9

2.2 Creation of OS Configuration Files .. 9

2.3 Starting the Operating System .. 10

2.3.1 Setting Up the Operating System ... 10

2.3.2 Initial Settings of the Operating System .. 11

2.4 Reboot OS ... 12

2.5 Cautionary Notes .. 13

3. Data Types and Macros .. 14

3.1 Data Types .. 14

3.2 Constants .. 15

3.3 Data structure .. 17

3.3.1 Structures Defined for μITRON V4 ... 17

3.3.2 R-IN32M4-Specific Structures .. 24

3.4 Global Variables ... 31

4. Service calls .. 32

4.1 Task Management Function .. 32

4.2 Task Dependent Synchronization Functions ... 38

4.3 Synchronization and Communication Functions (Semaphore) ... 44

4.4 Synchronization and Communication Functions (Eventflag) ... 50

4.5 Synchronization and Communication Function (Mailbox) ... 57

4.6 Extended Synchronization and Communication Function (Mutex) .. 63

4.7 System Time Management Functions ... 69

4.8 System State Management Functions ... 72

5. Static Creation Methods of Objects ... 80

5.1 Creation Task .. 80

5.2 Creating Semaphore .. 81

5.3 Creating Eventflag .. 81

5.4 Creating Mailbox .. 82

5.5 Creating Mutex ... 82

5.6 Defining Interrupt Handler ... 83

6. Hardware ISRs .. 84

7. Interrupt Management Function .. 85

7.1 Types of Interrupts .. 85

7.2 Handling of CPU Exception ... 85

7.3 Multiple Interrupts .. 85

7.4 Interrupt Handler .. 85

8. Utility Functions ... 86

9. Development Tool Dependent Configuration .. 89

9.1 IAR ... 89

9.1.1 Startup .. 89

9.1.2 Stack area ... 90

9.1.3 Compilation Options .. 90

10. Resources.. 91

10.1 Hardware Resources ... 91

10.2 Memory .. 91

10.3 Stack ... 93

10.3.1 Calculating the Size of the Process Stacks ... 93

10.3.2 Calculating the Size of the Main Stack .. 93

List of Figures

Figure1.1 System Configuration .. 2

Figure2.1 Correlation Diagram between Files... 9

Figure2.2 The example code for reboot procedure .. 12

Figure5.1 Configuration Example of the static_task_table Array ... 80

Figure5.2 Configuration Example of an Idle Task .. 80

Figure 5.3 Configuration Example of the static_semaphore_table Array .. 81

Figure5.4 Configuration Example of the static_eventflag_table Array ... 81

Figure5.5 Configuration Example of the static_mailbox_table Array ... 82

Figure5.6 Configuration Example of the static_mutex_table Array .. 82

Figure5.7 Configuration Example of the static_interrupt_table Array .. 83

Figure5.8 Example code of interrupt handler .. 83

Figure6.1 Configuration Example of the static_hwisr_table Array ... 84

Figure9.1 Startup Routine with the IAR Compiler .. 89

Figure9.2 Stack Area at Startup of the Operating System of the IAR Compiler ... 90

List of Tables

Table1.1 Maximum Number of Objects .. 1

Table1.2 Service Calls Available for the Hardware ISR ... 1

Table1.3 Supported Service call (1/3) .. 3

Table1.4 Supported Static API .. 6

Table1.5 Software Development Tools ... 8

Table3.1 Software Development Tools(Development Environment) ... 14

Table3.2 Constants (General) ... 15

Table3.3 Constants (Object Attribute) .. 15

Table3.4 Constants (with Timeout) .. 15

Table3.5 Constants (Service Call Operating Mode) ... 16

Table3.6 Constants (with Timeout) .. 16

Table3.7 Constants (Error Code) .. 16

Table3.8 Global Variables .. 31

Table4.1 Task Management Functions ... 32

Table4.2 Task Management Functions ... 32

Table4.3 Task Dependent Synchronization Functions .. 38

Table4.4 Task Dependent Synchronization Function Specification ... 38

Table4.5 Synchronization and Communication Function (Semaphore) ... 44

Table4.6 Synchronization and Communication Function (Semaphore) Specification ... 44

Table4.7 Synchronization and Communication Function (Eventflag) .. 50

Table4.8 Synchronization and Communication Function (Eventflag) Specification .. 50

Table4.9 Synchronization and Communication Function (Mailbox) .. 57

Table4.10 Synchronization and Communication Function (Mailbox) Specification ... 57

Table4.11 Extended Synchronization and Communication Function (Mutex) .. 63

Table4.12 Extended Synchronization and Communication Function (Mutex) Specification 63

Table4.13 System Time Management Function... 69

Table4.14 System Time Management Function Specification ... 69

Table4.15 System State Management Function ... 72

Table10.1 Hardware Resources ... 91

Table10.2 Memory Usage .. 92

 R18UZ0072EJ0100

R-IN32M4-CL3 Programming Manual (OS edition) Oct 30, 2019

R18UZ0072EJ0100 Page 1 of 93

Oct 30, 2019

1. Overview

This document explains a procedure to use the Real-time OS (μITRON Ver. 4.0) and supporting service call in

industrial Ethernet network LSI “R-IN32M4-CL3”.

The combination of the hardware real-time OS technique and OS library provides RTOS functionality for free. It

means that hardware real-time OS technology does not require any cost such as license fee or maintenance cost.

(however, no guarantee)

1.1 Features of the Hardware Real-time Operating System

The R-IN32M4-CL2 includes a hardware real-time operating system accelerator (HW-RTOS), that realizes faster

processing of the real-time operating system. With the HW-RTOS, smoother responsiveness is ensured because the

hardware handles objects such as tasks and eventflags and processing such as task scheduling.

The number of objects allowed in this system is given in Table1.1 As shown in the table, the objects semaphore and

mutex share a hardware and the number of objects available for them is 128 in total. Which means, if 100 semaphores are

to be used, only 28 objects are available to be used as mutex. Note that semaphore and mutex cannot share a same object

ID. If IDs 1 to 10 are assigned to semaphore, available IDs for mutex are 11 and greater.

Table1.1 Maximum Number of Objects

object type Maximum Number

 Task number 64

Eventflag number 64

Mailbox number 64

Semaphore number Total 128

Mutex number

One of the major features of the HW-RTOS is the hardware interrupt service routine (hardware ISR). This is

implemented in the hardware and handles interrupt service routines and some of the service calls run in the routines. With

this function, when an interrupt is generated, the HW-RTOS automatically runs the service call previously registered in

response to the interrupt. For example, if a service call set_flg is executed in an interrupt routine, the call is run without

involving the CPU. The HW-RTOS handles task scheduling for the given service call, realizing service calls with

smoother responsiveness to interrupts.

Table1.2 is the list of service calls allowed for the hardware ISR. For the setting procedure, see Section 6.Hardware

ISRs.

Table1.2 Service Calls Available for the Hardware ISR

Service call name Description

set_flg Set eventflag

sig_sem Release semaphore resource

rel_wai Release Task from Waiting

wup_tsk Wakeup Task

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 2 of 93

Oct 30, 2019

1.2 OS Library

This OS library is software that provides the functionality of service calls of μITRON through control of the HW-RTOS.

This document describes the specification of the API functions for RTOS that is realized through the combination of the

HW-RTOS and the OS library.

Hardware real-time OS (HW-RTOS)

User application

OS library

R-IN Engine

μITRON API

Figure1.1 System Configuration

1.2.1 The Version of OS Library

The target library version for this document is shown below.

File name for OS library Version

libos.a 2.03

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 3 of 93

Oct 30, 2019

1.3 Supported Service calls

A list of the service calls supported by the R-IN32M4, and compared to those of the standard profile, is given below.

Table1.3 Supported Service call (1/3)

Category
Service

Call Name
Descriptions

R-IN32M4

μITRON

μITRON Ver. 4.0

Standard Profile

Task management function act_tsk Activates task - √

iact_tsk Activates task - √

can_act Cancels task activation requests - √

sta_tsk Activates task (with a start code) √ -

ext_tsk Terminates invoking task √ √

ter_tsk Terminates task √ √

chg_pri Changes task priority √ √

get_pri References task priority √ √

Task dependent synchronization

function

slp_tsk Puts task to sleep √ √

tslp_tsk Puts task to sleep (with timeout) √ √

wup_tsk Wakes up task √ √

iwup_tsk Wakes up task √ √

can_wup Cancels task wakeup requests √ √

rel_wai Forcibly releases task from waiting √ √

irel_wai Forcibly releases task from waiting √ √

sus_tsk Forcibly suspends task - √

frsm_tsk Forcibly resumes suspended task - √

rsm_tsk Resumes forcibly suspended task - √

dly_tsk Delays task - √

Task exception handling function ras_tex Raises task exception handling

request

- √

iras_tex Raises task exception handling

request

- √

dis_tex Disables task exceptions - √

ena_tex Enables task exceptions - √

sns_tex References task exception

handling state

- √

Synchronization

and

communication

functions

Semaphores cre_sem Creates semaphore - -

del_sem Deletes semaphore √ -

wai_sem Acquires semaphore resource √ √

pol_sem Acquires semaphore resource (by

polling)

√ √

twai_sem Acquires semaphore resource

(with timeout)

√ √

sig_sem Releases semaphore resource √ √

isig_sem Releases semaphore resource √ √

Note: √: Available, -: Not available

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 4 of 93

Oct 30, 2019

Table1.3 Supported Service call (2/3)

Category
Service

Call Name
Descriptions

R-IN32M4

μITRON

μITRON Ver. 4.0

Standard Profile

Synchronization

and

communication

functions

Eventflags cre_flg Creates eventflag - -

del_flg Deletes eventflag √ -

set_flg Sets eventflag √ √

iset_flg Sets eventflag √ √

clr_flg Clears eventflag √ √

wai_flg Waits for eventflag √ √

pol_flg Waits for eventflag (by polling) √ √

twai_flg Waits for eventflag (with timeout) √ √

Data queues snd_dtq Sends to data queue - √

psnd_dtq Sends to data queue (by polling) - √

ipsnd_dtq Sends to data queue - √

tsnd_dtq Sends to data queue (with timeout) - √

fsnd_dtq Forcibly sends to data queue - √

ifsnd_dtq Forcibly sends to data queue - √

rcv_dtq Receives from data queue - √

prcv_dtq Receives from data queue

(by polling)

- √

Mailboxes cre_mbx Creates mailbox - -

del_mbx Deletes mailbox √ -

snd_mbx Sends mailbox √ √

rcv_mbx Receives mailbox √ √

prcv_mbx Receives mailbox (by polling) √ √

trcv_mbx Receives mailbox (with timeout) √ √

Extended

synchronization

and

communication

functions

MutexesCreate

s mutex

cre_mtx Creates mutex - -

del_mtx Deletes mutex √ -

loc_mtx Locks mutex √ -

ploc_mtx Locks mutex (by polling) √ -

tloc_mtx Locks mutex (with timeout) √ -

unl_mtx Unlocks mutex √ -

Note: √: Available, -: Not available

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 5 of 93

Oct 30, 2019

Table1.3 Supported Service Calls(3/3)

Category
Service

Call Name
Descriptions

R-IN32M4

μITRON

μITRON Ver. 4.0

Standard Profile

Memory pool

management

functions

Fixed-sized get_mpf Acquires fixed-sized memory

block

- √

pget_mpf Acquires fixed-sized memory

block (by polling)

- √

tget_mpf Acquires fixed-sized memory

block (with timeout)

- √

rel_mpf Releases fixed-sized memory

block

- √

Time

management

functions

System time

management

set_tim Sets system time √ √

get_tim References system time √ √

isig_tim Supplies time tick - √

Cyclic handlers sta_cyc Starts cyclic handler operation - √

stp_cyc Stops cyclic handler operation - √

System state management

functions

rot_rdq Rotates task precedence √ √

irot_rdq Rotates task precedence √ √

get_tid References task ID in the

RUNNING state

√ √

iget_tid References task ID in the

RUNNING state

√ √

loc_cpu Locks the CPU √ √

iloc_cpu Locks the CPU - √

unl_cpu Unlocks the CPU √ √

iunl_cpu Unlocks the CPU - √

dis_dsp Disables dispatching √ √

ena_dsp Enables dispatching √ √

sns_ctx References contexts - √

sns_loc References CPU locked state √ √

sns_dsp References dispatching disabled

state

- √

sns_dpn References dispatch pending

state

- √

Note: √: Available, -: Not available

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 6 of 93

Oct 30, 2019

1.4 Supported Static API Functions

A list of the static API functions supported by the R-IN32M4, compared to those of the standard profile, is given

below. For details setting procedure, see Section 5. Static Creation Methods of Objects.

Table1.4 Supported Static API

Category
API Call

Name
Description

R-IN32M4

μITRON

μITRON Ver. 4.0

Standard Profile

Task management function CRE_TSK Creates task √ √

Task exception handling function DEF_TEX Defines task exception handling

routine

－ √

Synchronization and

communication

functions

Semaphore CRE_SEM Creates semaphore √ √

Eventflag CRE_FLG Creates eventflag √ √

Data queue CRE_DTQ Creates data queue － √

Mailbox CRE_MBX Creates mailbox √ √

Extended

synchronization and

communication function

Mutex CRE_MTX Creates mutex √ －

Memory pool

management function

Fixed-sized

length

CRE_MPF Creates fixed-sized memory pool － √

Time management

function

Cyclic

handler

CRE_CYC Creates cyclic handler － √

Interrupt management function DEF_INH Defines interrupt handler √ √

System configuration management

functions

DEF_EXC Defines CPU exception handler － √

ATT_INI Attaches initialization routine － √

Note: √: Available, -: Not available

1.5 Differences from the Standard Profile

 μITRON for R-IN32M4 Standard profile of theμITRON Ver. 4.0

Queuing of activation requests Not supported Supported

Task priority levels 1 to 15 1 to 16

Maximum number of semaphore resources 31 65535 or more

Message priority levels 1 to 7 1 to 16 (greater than or equal to the

number of task priority levels)

Eventflag attribute TA_WSGL is not supported.

Only TA_WMUL is supported.

TA_WSGL

The static API functions are extended from the standard profile. Among the service calls dedicated to task contexts, the

functions listed below are also usable from non-task contexts.

sta_tsk wup_tsk pol_flg rot_rdq

ter_tsk can_wup sig_sem get_tid

chg_pri rel_wai set_flg prcv_mbx

get_pri pol_sem clr_flg snd_mbx

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 7 of 93

Oct 30, 2019

1.6 Operating Modes of the Processor

The ARM processor core supports two operating modes (thread and handler) and two access modes (privileged and

non-privileged). In this system, they are used as follows.

・Task

Tasks are handled in thread mode with privileged access. Switching to non-privileged mode is not supported.

Operations in this mode use process stack.

・Non-Task

Non-tasks, such as interrupt handler and dispatching process are handled in handler mode with privileged access.

Operations in this mode use main stack.

Note that this core does not utilize the memory protection unit (MPU) because it does not support the management of

memory protection.

1.7 OS Time Tick

Because OS tick is executed by hardware, the interrupt for tick doesn’t happen. The timer for tick is implemented in

hardware RTOS, and it is configured during boot sequence of hardware RTOS.

Tick period is set to 1 millisecond by default, but it can be changed by invoking the function

“hwos_set_tick_time“ before RTOS boot.

R-IN32M4-CL3 Programming Manual (OS edition) 1.Overview

R18UZ0072EJ0100 Page 8 of 93

Oct 30, 2019

1.8 Development Environments

The software development tools which were used to build OS library are described as below.

Table1.5 Software Development Tools

Tool

Vendor

Compiler

IAR Embedded Workbench for ARM V8.42.1 (IAR Systems)

R-IN32M4-CL3 Programming Manual (OS edition) 2.Procedure for Software Development

R18UZ0072EJ0100 Page 9 of 93

Oct 30, 2019

2. Procedure for Software Development

A series of procedures for software development is described here.

2.1 Design flow

Figure2.1 shows the correlation between files.

Please refer to R-IN32M4-CL3 Programming manual (Driver edition) for detail about the file structure.

User programs

Application program files

.* .*
.c

Object files

New files

made by user

Makefile

Make file

Files modified by user
(reference file is provided as a sample）

kernel_id.h

OS configuration files

system_RIN32M4.c

startup_RIN32M4.c

kernel.h

itron.h kernel_cfg.c

Startup routine files Note μITRON

Header file

.* .*
.o libos.a

OS Driver library file

scat.ldNote

Link information file

.elf

Execution file

Link

Complie

Configurator

system.cfg
<reference>

Configurator

 is not supported

Files made by user

Files provided by Renesas *Note : In case of ARM tool

Figure2.1 Correlation Diagram between Files

2.2 Creation of OS Configuration Files

The objects to be statically created, the interrupt handlers, and the hardware ISRs are defined in the kernel_cfg.c file.

For details on definition method, see Section 5. Static Creation Methods of Objects and 6. Hardware ISRs.

R-IN32M4-CL3 Programming Manual (OS edition) 2.Procedure for Software Development

R18UZ0072EJ0100 Page 10 of 93

Oct 30, 2019

2.3 Starting the Operating System

Executing the function hwos_setup during startup procedure initializes the operating system and starts up the system.

hwos_init is an empty function for keeping backward compatibility with previous versions.

2.3.1 Setting Up the Operating System

hwos_setup

(1) Synopsis

Sets up the hardware operating system.

(2) C language format

ER hwos_setup(void);

(3) Parameter

None

(4) Function

This function makes configurations of the following resources for the operating system based on the OS

configuration file kernel_cfg.c.

・ Stack pointers

The addresses for the stack areas are assigned to the stack areas for tasks in order from the lowest address.

The main stack pointer (MSP) is set to the highest address of the stack area for interrupts.

The process stack pointer (PSP) is set as the stack pointer for the first task to be started.

・ Semaphores

・ Eventflags

・ Mailboxes

・ Mutexes

・ Kernel Interrupts

・ Hardware ISRs

(5) Returned Value

Return Value Meaning

ER_OK Successful setup

R-IN32M4-CL3 Programming Manual (OS edition) 2.Procedure for Software Development

R18UZ0072EJ0100 Page 11 of 93

Oct 30, 2019

2.3.2 Initial Settings of the Operating System

hwos_init

(1) Synopsis

An empty function for keeping backward compatibility with the operating system of the R-IN32M3 series.

(2) C language format

ER hwos_init(void);

(3) Parameter

None

(4) Function

None

(5) Returned Value

Return Value Meaning

ER_OK None

R-IN32M4-CL3 Programming Manual (OS edition) 2.Procedure for Software Development

R18UZ0072EJ0100 Page 12 of 93

Oct 30, 2019

2.4 Reboot OS

If reboot OS in order to update firmware or else purpose, should do the following procedure.

 Reset HW-RTOS itself by using the reset register for HW-RTOS module

 Disable interrupt and clear pending interrupt factor by using the interrupt controller for CPU (NVIC)

 Invoke hwos_setup

The example code for reboot is shown below.

 /* Release register protection */

 RIN_SYS->SYSPCMD = 0x000000A5;

 RIN_SYS->SYSPCMD = 0x00000001;

 RIN_SYS->SYSPCMD = 0x0000FFFE;

 RIN_SYS->SYSPCMD = 0x00000001;

 /* Assert reset */

 RINACS->RTOSRST.LONG = 0x00000000;

 /* Disable interrupt */

 NVIC_DisableIRQ(HWRTOS_IRQn);

 NVIC_ClearPendingIRQ(HWRTOS_IRQn);

 /* Deassert reset */

 RINACS->RTOSRST.LONG = 0x00000001;

 /* Set register protection */

 RIN_SYS->SYSPCMD = 0x00000000;

 /* Start HW-RTOS */

 hwos_setup();

Figure2.2 The example code for reboot procedure

R-IN32M4-CL3 Programming Manual (OS edition) 2.Procedure for Software Development

R18UZ0072EJ0100 Page 13 of 93

Oct 30, 2019

2.5 Cautionary Notes

Cautionary notes on using the operating system library are given below.

 Do not access the area for the peripheral registers (address range from 0x40080000 to 0x4008FFFF) of the HW-

RTOS. This area may be accessed by the debugger during debugging. To avoid this, make sure not to display this

area in the display of memory and to omit this area from the target for monitoring.

 Hardware ISRs of HW-RTOS do not stop even when a program is stopped at a breakpoint by a debugger.

 When the Ethernet MAC is used, commands sent by its hardware function cannot be executed and result in an error

if the system is in the dispatching disabled state or the CPU locked state. To avoid this, enable dispatching and

unlock the CPU to allow the execution of commands.

 OS library refers to both of the SVCall interrupt handler and the HWRTOS interrupt handler, which are placed in

vector table with symbol name “__vector_table”. These two interrupt vectors should have the following function

name for a compile.

 SVCall interrupt vector：SVC_Handler

 HWRTOS interrupt vector：HWRTOS_IRQHandler

 During OS boot, the vector table is overwritten by the registered interrupt handlers in “static_interrupt_table”.

Because OS library refers to the vector table with symbol name “__vector_table” at that time, this symbol name

should not be modified.

 In the state that SVCall is disabled, OS service call cannot be invoked. (e.g. invoking service call after invoking

__disable_irq, etc.)

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 14 of 93

Oct 30, 2019

3. Data Types and Macros

This section gives details on the data types, configurations, and macros used when issuing the service calls provided by

this software.

3.1 Data Types

Data types of the parameters to be specified when issuing the service calls are listed below.

Table3.1 Software Development Tools(Development Environment)

Macro Type Meaning

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

W signed long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

VB char 8-bit value with unknown data type

VH short 16-bit value with unknown data type

VW long 32-bit value with unknown data type

VP void * Pointer to an unknown data type

FP void (*) Processing unit start address (pointer to a function)

INT signed int Signed 32-bit integer

UINT unsigned int Unsigned 32-bit integer

BOOL INT Boolean value (TRUE or FALSE)

FN INT Function code

ER INT Error code (returned value from a service call)

ID INT Management object ID number

ATR UINT Management object attribute

STAT UINT Management object state

MODE UINT Service call operational mode

PRI INT Priority of the task or the message

SIZE UINT Memory area size (in bytes)

TMO INT Waiting time for a task (in milliseconds)

RELTIM UINT Relative time (in milliseconds)

SYSTIM UINT System time (in milliseconds)

VP_INT VP Pointer to an unknown data type, or a signed 32-bit integer

ER_BOOL ER Error code or a Boolean value (TRUE or FALSE)

ER_ID ER Error code or a management object ID number

ER_UINT ER Error code or an unsigned integer

FLGPTN UINT Bit pattern of the eventflag

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 15 of 93

Oct 30, 2019

3.2 Constants

Constants defined in this system are listed below.

Table3.2 Constants (General)

Constants Value Meaning

NULL 0 Invalid pointer

TRUE 1 True

FALSE 0 False

E_OK 0 Normal completion

Table3.3 Constants (Object Attribute)

Constants Value Meaning

TA_NULL 0 Object attribute not specified.

Attributes specified when task/handler creation

TA_HLNG 0x00 Start a processing unit through a high-level language interface.

TA_ASM 0x01 Start a processing unit through an assembly language interface.

TA_ACT 0x02 Task is executable after its creation.

TA_RSTR 0x04 Restricted task (not supported)

Attributes specified when Synchronization/ Extended synchronization communication

functions(Semaphores, event flags, mailboxes, mutexes) creation

TA_TFIFO 0x00 Task wait queue is in FIFO order.

TA_TPRI 0x01 Task wait queue is in task priority order.

Attribute specified when Synchronization communication functions(event flag) creation

TA_WSGL 0x00 Only one task is allowed to be in the waiting state for the eventflag (not supported).

TA_WMUL 0x02 Multiple tasks are allowed to be in the waiting state for the eventflag.

TA_CLR 0x04 Eventflag is cleared when a task is released from the waiting state for that eventflag.

Attribute specified when Synchronization communication functions(mailboxes) creation

TA_MFIFO 0x00 Message queue is in FIFO order.

TA_MPRI 0x02 Message queue is in message priority order.

Attribute specified when Extended synchronization communication functions(mutexes) creation

TA_INHERIT 0x02 Mutex uses the priority inheritance protocol (not supported).

TA_CEILING 0x03 Mutex uses the priority ceiling protocol (not supported).

Attribute specified when generated period handler (Not supported)

TA_STA 0x02 Cyclic handler is in an operational state after the creation (not supported).

TA_PHS 0x04 Cyclic handler is activated preserving the activation phase (not supported).

Table3.4 Constants (with Timeout)

Constants Value Meaning

TMO_POL 0 Polling

TMO_FEVR -1 Waiting forever

TMO_NBLK -2 Non-blocking (not supported)

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 16 of 93

Oct 30, 2019

Table3.5 Constants (Service Call Operating Mode)

Constants Value Meaning

TWF_ANDW 0x00 AND waiting condition for an eventflag

TWF_ORW 0x01 OR waiting condition for an eventflag

Table3.6 Constants (with Timeout)

Constants Value Meaning

TSK_SELF 0 Specifies invoking task.

TSK_NONE 0 No applicable task (not used)

TPRI_SELF 0 Specifies the base priority of the invoking task.

TPRI_INI 0 Specifies the initial priority of the task.

Table3.7 Constants (Error Code)

Constants Value Meaning

E_SYS -5 System error

E_RSATR -11 Reserved attribute

E_PAR -17 Parameter error

E_ID -18 Invalid ID number

E_CTX -25 Context error

E_ILUSE -28 Illegal service call use

E_OBJ -41 Object state error

E_NOEXS -42 Non-existent object

E_QOVR -43 Queue overflow

E_RLWAI -49 Forced release from waiting

E_TMOUT -50 Polling failure or timeout

E_DLT -51 Waiting object deleted

E_UNKNOWN -99 Unknown error (illegal response by the HW-RTOS due to hardware errors)

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 17 of 93

Oct 30, 2019

3.3 Data structure

3.3.1 Structures Defined for μITRON V4

T_CTSK

Synopsis

 Information required for creating a task.

Declaration

typedef struct t_ctsk {

 ATR tskatr; /*!< Task attribute */

 VP_INT exinf; /*!< Task extended information */

 FP task; /*!< Task start address */

 PRI itskpri; /*!< Task initial priority */

 SIZE stksz; /*!< Task stack size */

 VP stk; /*!< Base address of task stack space */

} T_CTSK;

Members

Member Description

ATR tskatr Task attribute

When TA_ACT is specified, a task is activated when it is created.

 TA_ACT (2): Create a task in an activated state

The following definitions can also be specified but make no difference to operation.

TA_HLNG(0): Start a processing unit through a high-level

language interface (not used)

 TA_ASM(1): Start a processing unit through an assembly language interface

(not used)

VP_INT exinf Task extended information (the argument given to the task when TA_ACT is specified)

FP task Task start address

PRI itskpri Task initial priority

 An integer value (1 to 15)*: Task priority number

SIZE stksz Task stack size (in bytes)

VP stk Base address of task stack space

 NULL (0): Start address allocated by the kernel (recommended)

 Value: The value specified as the start address

Note. This range is 1 to 16 In the μITRON 4.0 specification.

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 18 of 93

Oct 30, 2019

T_CSEM

Synopsis

 Information required for creating a semaphore.

Declaration

typedef struct t_csem {

 ATR sematr; /*!< Semaphore attribute */

 UINT isemcnt; /*!< Initial semaphore resource count */

 UINT maxsem; /*!< Maximum semaphore resource count */

} T_CSEM;

Members

Member Description

ATR sematr Semaphore attribute

 Task wait queue: TA_TFIFO 0x00 In FIFO order

 TA_TPRI 0x01 In task priority order

UINT isemcnt Initial semaphore resource count (maximum number: the value set in the maxsem member)

UINT maxsem Maximum semaphore resource count (maximum number: 31)

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 19 of 93

Oct 30, 2019

T_CFLG

Synopsis

 Information required for creating an eventflag.

Declaration

typedef struct t_cflg {

 ATR flgatr; /*!< Eventflag attribute */

 FLGPTN iflgptn; /*!< Initial value of eventflag bit pattern */

} T_CFLG;

Members

Member Description

ATR flgatr Eventflag attribute

 Task waiting queue: TA_TFIFO 0x00 In FIFO order

 TA_TPRI 0x01 In task priority order

 TA_WMUL 0x02 Multiple tasks are allowed to be in the waiting

state

 TA_CLR 0x04 Eventflag’s bit pattern is cleared when a task is

released from the waiting state

FLGPTN iflgptn Initial value of the eventflag bit pattern (valid bit length: 16 bits)

Restriction

TA_WSGL is not supported in this system. If TA_WSGL is specified, the eventflag behaves the same as it does

with TA_WMUL.

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 20 of 93

Oct 30, 2019

T_CMBX

Synopsis

 Information required for creating a mailbox.

Declaration

typedef struct t_cmbx {

 ATR mbxatr; /*!< Mailbox attribute */

 PRI maxmpri; /*!< Maximum message priority */

 VP mprihd; /*!< Start address of the area for message

 queue headers for each message priority */

} T_CMBX;

Members

Member Description

ATR mbxatr Mailbox attribute

 Task waiting queue: TA_TFIFO 0x00 In FIFO order

 TA_TPRI 0x01 In task priority order

 Message Queue: TA_MFIFO 0x00 In FIFO order

 TA_MPRI 0x02 In Message priority order

PRI maxmpri Highest message priority (allowable range: 1 to 7)

VP mprihd Start address of the area for message queue headers for each message priority (not used)

Caution:

 The mailbox attribute TA_MPRI cannot be used by default. To use this attribute, see the

function "hwos_set_mpri_operation" in section 8. Utility Functions.

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 21 of 93

Oct 30, 2019

T_CMTX

Synopsis

 Information required for creating a mutex.

Declaration

typedef struct t_cmtx {

 ATR mtxatr; /*!< Mutex attribute */

 PRI ceilpri; /*!< Mutex ceiling priority */

} T_CMTX;

Members

Member Description

ATR mtxatr Mutex attribute

 Task waiting queue: TA_TFIFO 0x00 In FIFO order

 TA_TPRI 0x01 In task priority order

PRI ceilpri Mutex ceiling priority (not used)

Caution: The mutex attributes TA_INHERIT and TA_CEILING are not supported.

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 22 of 93

Oct 30, 2019

T_DINH

Synopsis

 The packet format of the information required for defining an interrupt handler.

Declaration

typedef struct t_dinh {

 ATR inhatr; /*!< Interrupt handler attribute */

 FP inthdr; /*!< Interrupt handler start address */

} T_DINH;

Members

Member Description

ATR inhatr Interrupt handler attribute (not used)

FP inthdr Interrupt handler start address

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 23 of 93

Oct 30, 2019

T_MSG

Synopsis

 Message header information.

Declaration

typedef struct t_msg {

 struct t_msg *next; /*!< Start address of the message packet from the mailbox */

} T_MSG;

Members

Member Description

t_msg *next Start address of the message packet from the mailbox

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 24 of 93

Oct 30, 2019

3.3.2 R-IN32M4-Specific Structures

TSK_TBL

Synopsis

 Information required for static creation of a task. (the argument of CRE_TSK is defined as this structure)

Declaration

typedef struct task_table {

 ID id; /*!< Task ID */

 T_CTSK t_ctsk; /*!< Task creation information packet */

} TSK_TBL;

Members

Member Description

ID id ID number of the task to be created in static method

 An integer value (1 to 64): ID of the specified task

T_CTSK t_ctsk Task creation information

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 25 of 93

Oct 30, 2019

SEM_TBL

Synopsis

 Information required for static creation of a semaphore. (the argument of CRE_SEM is defined as this structure)

Declaration

typedef struct semaphore_table {

 ID id; /*!< Semaphore ID */

 T_CSEM pk_csem; /*!< Semaphore creation information packet */

} SEM_TBL;

Members

Member Description

ID id The semaphore ID to be created in static method

 An integer value (1 to 128): ID of the specified semaphore

 (This should not overlap with the mutex IDs)

T_CSEM pk_csem Semaphore creation information

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 26 of 93

Oct 30, 2019

FLG_TBL

Synopsis

 Information required for static creation of a flag. (the argument of CRE_FLG is defined as this structure)

Declaration

typedef struct flag_table {

 ID id; /*!< Eventflag ID */

 T_CFLG pk_cflg; /*!< Eventflag creation information packet */

} FLG_TBL;

Members

Member Description

ID id The Flag ID to be created in static method

 An integer value (1 to 64): ID of the specified flag

T_CFLG pk_cflg Flag creation information

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 27 of 93

Oct 30, 2019

MBX_TBL

Synopsis

 Information required for static creation of a mailbox. (the argument of CRE_MBX is defined as this structure)

Declaration

typedef struct mailbox_table {

 ID id; /*!< Mailbox ID */

 T_CMBX pk_cmbx; /*!< Mailbox creation information packet */

} MBX_TBL;

Members

Member Description

ID id The mailbox ID to be created in static method

 An integer value (1 to 64): ID of the specified mailbox

T_CMBX pk_cmbx Mailbox creation information

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 28 of 93

Oct 30, 2019

MTX_TBL

Synopsis

 Information required for static creation of a mutex. (the argument of CRE_MTX is defined as this structure)

Declaration of the structure

typedef struct mutex_table {

 ID id; /*!< Mutex ID */

 T_CMTX pk_cmtx; /*!< Mutex creation information packet */

} MTX_TBL;

Members

Member Description

ID id The mutex ID to be created in static method

 An integer value (1 to 128): ID of the specified mutex

 (This should not overlap with the semaphore IDs.)

T_CMTX pk_cmtx Mutex creation information

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 29 of 93

Oct 30, 2019

INT_TBL

Synopsis

 Information required for creating an interrupt handler. (the argument of DEF_INH is defined as this structure)

Declaration

typedef struct interrupt_table {

 INHNO id; /*!< Interrupt handler number to be defined */

 T_DINH pk_dinh; /*!< Pointer to the packet containing the

 interrupt handler definition information */

} INT_TBL;

Members

Member Description

INHNO inhno The interrupt number for which an interrupt handler is to be created

 An integer value (0 to 152): Specified interrupt number*

T_DINH pk_dinh Pointer to the packet that contains the interrupt handler definition information

Note: This should be the value obtained by subtracting 16 from the exception number because

interrupts are assigned to the exception numbers from 16. The given interrupt numbers are

the exception numbers from 16, which are replaced by the numbers from 0. For the

applicable interrupts, refer to List of Interrupts of the User's Manual.

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 30 of 93

Oct 30, 2019

HWISR_TBL

Synopsis

 Information required for creating a hardware ISRs.

Declaration

typedef struct hwist_table {

 INHNO inhno; /*!< Interrupt handler number to be defined */

 UINT hwisr_syscall; /*!< System call */

 ID id; /*!< Target ID */

 FLGPTN setptn; /*!< Bit pattern (only set_flg) */

} HWISR_TBL;

Members

Member Description

INHNO inhno Number of the interrupt for which a hardware ISR is to be created.

 An integer value (0 to 152): Target interrupt number*

UINT hwisr_syscall Service calls that are automatically executed on generation of the corresponding

interrupt.

 HWISR_SET_FLG (1) set_flg()

 HWISR_SIG_SEM (2) sig_sem()

 HWISR_REL_WAI (3) rel_wai()

 HWISR_WUP_TSK (4) wup_tsk()

ID id ID of the specified object for which the service call is automatically executed on

generation of the corresponding interrupt.

FLGPTN setptn Bit pattern to set (valid only when set_flg is specified)

R-IN32M4-CL3 Programming Manual (OS edition) 3.Data Types and Macros

R18UZ0072EJ0100 Page 31 of 93

Oct 30, 2019

3.4 Global Variables

The global variables used in this library are listed below. Make sure that you do not use these variable symbols in an

application.

Table3.8 Global Variables

Variable Name

HWRTOS_Sbt

HWRTOS_Sit

HWRTOS_IntTable

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 32 of 93

Oct 30, 2019

4. Service calls

4.1 Task Management Function

The service calls for task management are listed below.

Table4.1 Task Management Functions

Service Call Name Description Range of Objects that Can Issue This Call

sta_tsk Activates task (with a start code). Tasks and non-tasks

ext_tsk Terminates invoking task. Tasks

ter_tsk Forcibly terminates task. Tasks and non-tasks

chg_pri Changes task priority. Tasks and non-tasks

get_pri References task priority. Tasks and non-tasks

Specification of this function is given below.

Table4.2 Task Management Functions

No. Item Content

1 Task ID numbers 1 to 64

2 Task priority levels 1 to 15

3 Wakeup request count 63

4 Task attribute TA_HLNG: Activated through the high-level language interface (not

used)

TA_ASM: Activated through the assembler language interface (not used)

TA_ACT : Task is executable after its creation

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 33 of 93

Oct 30, 2019

sta_tsk

Synopsis

Activates task.

C Language format

ER sta_tsk(ID tskid, VP_INT stacd);

Parameter

I/O Parameter Description

I ID tskid Task ID

 An integer value (1 to 64): ID of specified task

I VP_INT stacd Start code of the task

Function

This call moves the task specified by tskid from the DORMANT state to the READY state.

The extended information is set in stacd and given to the specified task.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is invalid or unusable)

E_OBJ -41 Object state error (specified task is not in the DORMANT state)

E_NOEXS -42 Non-existent object (specified task is not registered)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 34 of 93

Oct 30, 2019

ext_tsk

Synopsis

Terminates task.

C Language format

void ext_tsk(void);

Parameter

None

Function

This call moves the invoking task from the RUNNING state to the DORMANT state.

This call does not return to its origin unless an error is detected. The errors include issuing this call while the CPU

is locked, dispatching is disabled, or from an interrupt handler.

Return parameter

 None

Restriction

If a task is terminated while its mutexes remain unlocked, they cannot be unlocked later. Be sure to unlock the

mutexes before terminating a task.

Caution

Do not issue this call while the CPU is locked, dispatching is disabled, or from an interrupt handler. Otherwise, the

operation is not guaranteed.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 35 of 93

Oct 30, 2019

ter_tsk

Synopsis

Forcibly terminates task.

C Language API

ER ter_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid Task ID

 An integer value (1 to 64): ID of specified task

Function

This call forcibly moves the task specified by tskid to the DORMANT state.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is invalid or unusable)

E_CTX -25 Execution in the CPU locked state

E_ILUSE -28 Illegal service call use (specified task is an invoking task)

E_OBJ -41 Object state error (specified task is not in the DORMANT state)

E_NOEXS -42 Non-existent object (specified task is not registered)

Restriction

If a task is terminated while its mutexes remain unlocked, they cannot be unlocked later. Be sure to unlock the

mutexes before terminating a task.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 36 of 93

Oct 30, 2019

chg_pri

Synopsis

 Changes task priority.

C Language format

 ER chg_pri(ID tskid, PRI tskpri);

Parameter

I/O Parameter Description

I ID tskid Task ID

 TSK_SELF (0): ID of the invoking task

 An integer value (1 to 64): ID of the specified task

I PRI tskpri New base priority of the task*1

 TPRI_INI (0): Initial priority of the specified task

 An integer value (1 to 15) *2: Base priority of the specified task

Note1.

 The base priority and the current priority are always the same because this system does not

support the priority control facilities, including priority inheritance.

Note2. This range is 1 to 16 in the μITRON4.0 specification.

Function

This call changes the base priority of the task specified by tskid to the priority value specified by tskpri.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (tskpri is invalid)

E_ID -18 Invalid ID number (tskid is invalid or unusable)

TSK_SELF is specified from an interrupt handler

E_CTX -25 The call was invoked while the CPU is locked

E_OBJ -41 Object state error (specified task is in the DORMANT state)

E_NOEXS -42 Non-existent object (specified task is not registered)

Restriction

When chg_pri () service call is called for the task waiting for resources with TA_TFIFO attribution, order of the

task moves to the last of the queue. In case of μITRON (ver4.03) specification, order does not change.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 37 of 93

Oct 30, 2019

get_pri

Synopsis

 References task priority.

C Language format

 ER get_pri(ID tskid, PRI *p_tskpri);

Parameter

I/O Parameter Description

I ID tskid Task ID

 TSK_SELF (0): ID of the invoking task

 An integer value (1 to 64): ID of the specified task

O PRI *p_tskpri Current Priority of the specified task

Function

This call looks up the current priority of the task specified by tskid and returns the value through p_tskpri.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Null pointer is specified in p_tskpri

E_ID -18 Invalid ID number (tskid is invalid or unusable)

TSK_SELF is specified from an interrupt handler

E_CTX -25 The call was invoked while the CPU is locked

E_OBJ -41 Object state error (specified task is in the DORMANT state)

E_NOEXS -42 Non-existent object (specified task is not registered)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 38 of 93

Oct 30, 2019

4.2 Task Dependent Synchronization Functions

The service calls for task dependent synchronization function are listed below.

Table4.3 Task Dependent Synchronization Functions

Service Call Name Description Range of Objects that Can Issue This Call

slp_tsk Puts task to sleep Tasks

tslp_tsk Puts task to sleep (with timeout) Tasks

wup_tsk Wakes up task Tasks and non-tasks

iwup_tsk Wakes up task Non-tasks

can_wup Cancels task wakeup request Tasks and non-tasks

rel_wai Releases task from waiting Tasks and non-tasks

irel_wai Releases task from waiting Non-tasks

Specification of this function is given below.

Table4.4 Task Dependent Synchronization Function Specification

No. Item Content

1 Wakeup request count for the task 63

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 39 of 93

Oct 30, 2019

slp_tsk

Synopsis

Puts task to sleep.

C Language format

ER slp_tsk(void);

Parameter

None

Function

This call moves the invoking task from the RUNNING state to the sleeping state.

However, if wakeup requests are queued, that is, if the wakeup request count for the invoking task is other than 0x0,

the count is decremented by 1 and the invoking task continues execution.

slp_tsk() has the same functionality as tslp_tsk(TMO_FEVR).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 40 of 93

Oct 30, 2019

tslp_tsk

Synopsis

Puts task to sleep (with timeout)

C Language format

ER tslp_tsk(TMO tmout);

Parameter

I/O Parameter Description

I TMO tmout Specified timeout

 TMO_FEVR(-1) Wait forever(same processing as slp_tsk())

 TMO_POL(0) Polling

 An integer value Waiting time in milliseconds

Function

This call moves the invoking task from the RUNNING state to the sleeping state.

However, if wakeup requests are queued, that is, if the wakeup request count for the invoking task is other than 0x0,

the count is decremented by 1 and the invoking task continues execution.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (tmout is invalid)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_TMOUT -50 Timeout

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 41 of 93

Oct 30, 2019

wup_tsk / iwup_tsk

Synopsis

Wakes up task.

C Language format

ER wup_tsk(ID tskid);

ER iwup_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid Task ID

 TSK_SELF(0) ID of the invoking task

 An integer value(1 to 64) ID of the specified task

Function

These calls move the task specified by tskid from the sleeping state to the READY state.

However, if the task is not in the sleeping state when a call is issued, the wakeup request for the task is queued, that

is, 0x1 is added to the count and the invoking task is not executed.

If the count exceeds the maximum possible count, an error code E_QOVR is returned.

Remark : The maximum wakeup request count is 63.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is invalid or unusable)

TSK_SELF is specified from an interrupt handler

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (iwup_tsk only)

E_OBJ -41 Object state error (specified task is in the DORMANT state)

E_NOEXS -42 Non-existent object (specified task is not registered)

E_QOVR -43 Queue overflow (wakeup request count exceeded 63)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 42 of 93

Oct 30, 2019

can_wup

Synopsis

Cancels task wakeup request.

C Language format

ER_UINT can_wup(ID tskid);

Parameter

I/O Parameter Description

I ID tskid Task ID

 TSK_SELF(0) ID of the invoking task

 An integer value(1 to 64) ID of the specified task

Function

This call cancels all queued wakeup requests for the task specified by tskid and clears the wakeup request count to

0. The value returned is the count before it was cleared.

Return value

Macro Value Meaning

- 0 or a positive integer Queued wakeup request count

E_ID -18 Invalid ID number (tskid is invalid or unusable)

TSK_SELF is specified from an interrupt handler.

E_CTX -25 The call was invoked while the CPU is locked.

E_OBJ -41 Object state error (specified task is in the DORMANT state)

E_NOEXS -42 Non-existent object (specified task is not registered)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 43 of 93

Oct 30, 2019

rel_wai / irel_wai

Synopsis

Release task from waiting.

C Language format

ER rel_wai(ID tskid);

ER irel_wai(ID tskid);

Parameter

I/O Parameter Description

I ID tskid Task ID

 An integer value(1 to 64) ID of the specified task

Function

These calls forcibly release the task specified by tskid from the WAITING states, that are, the states of waiting for a

semaphore, an eventflag, or a message.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (tskid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (irel_wai only)

E_OBJ -41 Object state error (specified task is not in the WAITING state)

E_NOEXS -42 Non-existent object (specified task is not registered)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 44 of 93

Oct 30, 2019

4.3 Synchronization and Communication Functions (Semaphore)

The service calls for synchronization and communication function (semaphore) are listed below.

Table4.5 Synchronization and Communication Function (Semaphore)

Service Call Name Description Range of Objects that Can Issue This Call

del_sem Deletes semaphore. Tasks

wai_sem Acquires semaphore resource. Tasks

pol_sem Acquires semaphore resource (by polling). Tasks and non-tasks

twai_sem Acquires semaphore resource (with timeout). Tasks

sig_sem Releases semaphore resource. Tasks and non-tasks

isig_sem Releases semaphore resource. Non-tasks

Specification of this function is given below.

Table4.6 Synchronization and Communication Function (Semaphore) Specification

No. Item Content

1 Semaphore ID numbers 1 to 128 (shared with mutexes)

2 Maximum semaphore resource count 31

3 Supported attributes TA_TFIFO: Task wait queue is in FIFO order

TA_TPRI: Task wait queue is in priority order

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 45 of 93

Oct 30, 2019

del_sem

Synopsis

Deletes semaphore.

C Language format

ER del_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid Semaphore ID

 An integer value(1 to 128) ID of the specified semaphore

Function

This call deletes the semaphore with its ID specified by semid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler

E_NOEXS -42 Non-existent object

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 46 of 93

Oct 30, 2019

wai_sem

Synopsis

Acquires semaphore resource.

C Language format

ER wai_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid Semaphore ID

 An integer value(1 to 128) ID of the specified semaphore

Function

This call acquires one resource from the semaphore specified by semid.

If the resource count of the specified semaphore is 0, the invoking task is moved to the semaphore waiting state.

wai_sem(smid) has the same functionality as twai_sem(semid, TMO_FEVR).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_DLT -51 Waiting object deleted (semaphore is deleted while waiting)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 47 of 93

Oct 30, 2019

pol_sem

Synopsis

Acquires semaphore resource (by polling).

C Language format

ER pol_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid Semaphore ID

 An integer value(1 to 128) ID of the specified semaphore

Function

This call acquires one resource from the semaphore specified by semid.

If the resource count of the specified semaphore is 0, the invoking task is not moved to the semaphore waiting state

and the result will be failure of polling.

pol_sem(semid) has the same functionality as twai_sem(semid, TMO_POL).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

E_NOEXS -42 Non-existent object

E_TMOUT -50 Polling failure

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 48 of 93

Oct 30, 2019

twai_sem

Synopsis

Acquires semaphore resource (with timeout).

C Language format

ER twai_sem(ID semid, TMO tmout);

Parameter

I/O Parameter Description

I ID semid Semaphore ID

 An integer value(1 to 128) ID of the specified semaphore

I TMO tmout Specified timeout

 TMO_POL (0) Polling (same processing as pol_sem())

 TMO_FEVR (-1) Wait forever (same processing as wai_sem())

 An integer value Waiting time in milliseconds

Function

This call acquires one resource from the semaphore specified by semid.

If the resource count of the specified semaphore is 0, the invoking tasks is moved to the semaphore waiting state.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (tmout is invalid)

E_ID -18 Invalid ID number (semid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

(It is invokable from an interrupt handler when TMO_POL is specified)

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_TMOUT -50 Timeout or polling failure

E_DLT -51 Waiting object deleted (semaphore is deleted while waiting).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 49 of 93

Oct 30, 2019

sig_sem / isig_sem

Synopsis

Release semaphore resource

C Language format

ER sig_sem(ID semid);

ER isig_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid Semaphore ID

 An integer value(1 to 128) ID of the specified semaphore

Function

These calls release one resource from the semaphore specified by semid.

If there are any tasks waiting for the specified semaphore, the task at the head of the semaphore's wait queue is

released from waiting.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (semid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (isig_sem only)

E_NOEXS -42 Non-existent object (specified semaphore is not registered)

E_QOVR -43 Queue overflow (release will exceed the maximum resource count, 31)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 50 of 93

Oct 30, 2019

4.4 Synchronization and Communication Functions (Eventflag)

The service calls for synchronization and communication function (eventflag) are listed below.

Table4.7 Synchronization and Communication Function (Eventflag)

Service Call Name Description Range of Objects that Can Issue This Call

del_flg Deletes eventflag. Tasks

set_flg Sets eventflag. Tasks and non-tasks

iset_flg Sets eventflag. Non-tasks

clr_flg Clears eventflag. Tasks and non-tasks

wai_flg Waits for eventflag. Tasks

pol_flg Waits for eventflag (by polling). Tasks and non-tasks

twai_flg Waits for eventflag (with timeout). Tasks

Specification of this function is given below.

Table4.8 Synchronization and Communication Function (Eventflag) Specification

No. Item Content

1 Eventflag ID numbers 1 to 64

2 Number of bits in an eventflag 16 bits

3 Supported attributes TA_TFIFO: Task wait queue is in FIFO order

TA_TPRI: Task wait queue is in priority order

TA_WMUL: Multiple tasks are allowed to be in the waiting state.

TA_CLR: Eventflag is cleared when a task is released from the waiting

state for that eventflag.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 51 of 93

Oct 30, 2019

del_flg

Synopsis

Deletes eventflag.

C Language format

ER del_flg(ID flgid);

Parameter

I/O Parameter Description

I ID flgid ID number of the eventflag to be deleted

 An integer value(1 to 64) ID of the specified eventflag

Function

This call deletes the eventflag with its ID specified by flgid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

E_NOEXS -42 Non-existent object

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 52 of 93

Oct 30, 2019

set_flg / iset_flg

Synopsis

Set evnetflag.

C Language format

ER set_flg(ID flgid, FLGPTN setptn);

ER iset_flg(ID flgid, FLGPTN setptn);

Parameter

I/O Parameter Description

I ID flgid ID of the eventflag to be set

 An integer value(1 to 64) ID of the specified eventflag

I FLGPTN setptn Bit pattern to be set (16 lower-order bits are effective)

Function

These calls set the bit pattern specified by setptn to the eventflag specified by flgid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (setptn is invalid or 1 is set to bit 16 or higher)

E_ID -18 Invalid ID number (flgid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (iset_flg only)

E_NOEXS -42 Non-existent object

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 53 of 93

Oct 30, 2019

clr_flg

Synopsis

Clears eventflag.

C Language format

ER clr_flg(ID flgid, FLGPTN clrptn);

Parameter

I/O Parameter Description

I ID flgid ID of the eventflag to be set

 An integer value(1 to 64) ID of the specified eventflag

I FLGPTN setptn Bit pattern to be cleared (16 lower-order bits are effective)

Function

This call clears the bits in the eventflag specified by flgid that correspond to the bits in clrptn having a value of 0.

This call differs from set_flg in that it does not return an error when 1 is set to bit 16 or higher in clrptn.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID number (flgid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

E_NOEXS -42 Non-existent object

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 54 of 93

Oct 30, 2019

wai_flg

Synopsis

Waits for eventflag.

C Language format

ER wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter

I/O Parameter Description

I ID flgid ID number of the eventflag to wait for

 An integer value(1 to 64) ID of the specified eventflag

I FLGPTN waiptn Wait bit pattern (16 lower-order bits are effective)

(an error is returned if 1 is set in bit 16 or higher, or if 0x0000 is set in the

effective bits)

I MODE wfmode Wait mode

 TWF_ANDW (0) AND waiting condition for an eventflag

 TWF_ORW (1) OR waiting condition for an eventflag

O FLGPTN *p_flgptn Pointer to the location where the bit pattern is stored on release from waiting

Function

This call causes the invoking task to wait until the bit pattern of the eventflag specified by flgid satisfies the waiting

conditions specified by waiptn and wfmode.

wai_flg(~) has the same functionality as twai_flg(~, TMO_FEVR).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (waiptn or wfmode is invalid)

E_ID -18 Invalid ID (flgid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_DLT -51 Waiting object deleted (specified eventflag is deleted while waiting)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 55 of 93

Oct 30, 2019

pol_flg

Synopsis

Waits for eventflag (by polling).

C Language format

ER pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter

I/O Parameter Description

I ID flgid ID number of the eventflag to wait for

 An integer value(1 to 64) ID of the specified eventflag

I FLGPTN waiptn Wait bit pattern (16 lower-order bits are effective)

(an error is returned if 1 is set in bit 16 or higher, or if 0x0000 is set in the

effective bits)

I MODE wfmode Wait mode

 TWF_ANDW (0) AND waiting condition for an eventflag

 TWF_ORW (1) OR waiting condition for an eventflag

O FLGPTN *p_flgptn Pointer to the location where the bit pattern is stored on release from waiting

Function

This call polls the bit pattern of the eventflag specified by flgid to see whether it satisfies the waiting conditions

specified by waiptn and wfmode.

pol_flg(~) has the same functionality as twai_flg(~, TMO_POL).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (waiptn or wfmode is invalid)

E_ID -18 Invalid ID (flgid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

E_NOEXS -42 Non-existent object

E_TMOUT -50 Polling failure

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 56 of 93

Oct 30, 2019

twai_flg

Synopsis

Waits for eventflag (with timeout).

C Language format

ER twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

Parameter

I/O Parameter Description

I ID flgid ID number of the eventflag to wait for

 An integer value(1 to 64) ID of the specified eventflag

I FLGPTN waiptn Wait bit pattern (16 lower-order bits are effective)

(an error is returned if 1 is set in bit 16 or higher, or if 0x0000 is set in the

effective bits)

I MODE wfmode Wait mode

 TWF_ANDW (0) AND waiting condition for an eventflag

 TWF_ORW (1) OR waiting condition for an eventflag

O FLGPTN *p_flgptn Pointer to the location where the bit pattern is stored on release from waiting

I TMO tmout Specified timeout

 TMO_POL (0) Polling (same processing as pol_flg())

 TMO_FEVR (1) Wait forever (same processing as wai_flg())

 An integer value Waiting time in milliseconds

Function

This call causes the invoking task to wait until the bit pattern of the eventflag specified by flgid satisfies the waiting

conditions specified by waiptn and wfmode.

*p_flgptn holds the bit pattern of the eventflag when the conditions are met.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (waiptn is invalid)

E_ID -18 Invalid ID

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

(It is invokable from an interrupt handler when tmo_pol is specified)

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_TMOUT -50 Timeout or polling failure

E_DLT -51 Waiting object deleted (specified eventflag is deleted while waiting).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 57 of 93

Oct 30, 2019

4.5 Synchronization and Communication Function (Mailbox)

The service calls for synchronization and communication function (mailbox) are listed below.

Table4.9 Synchronization and Communication Function (Mailbox)

Service Call Name Description Range of Objects that Can Issue This Call

del_mbx Deletes mailbox Tasks

snd_mbx Sends to mailbox Tasks and non-tasks

isnd_mbx Sends to mailbox Non-tasks

rcv_mbx Receives from mailbox Tasks

prcv_mbx Receives from mailbox (by polling) Tasks and non-tasks

trcv_mbx Receives from mailbox (with timeout) Tasks

Specification of this function is given below.

Table4.10 Synchronization and Communication Function (Mailbox) Specification

No. Item Content

1 Mailbox ID numbers 1 to 64

2 Message priority levels 1 to 7

3 Message queue count 192

4 Supported attributes TA_TFIFO: Task wait queue is in FIFO order

TA_TPRI: Task wait queue is in priority order

TA_MFIFO: Message queue is in FIFO order.

TA_MPRI: Message queue is in priority order (with functionality

restrictions).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 58 of 93

Oct 30, 2019

del_mbx

Synopsis

Deletes mailbox.

C Language format

ER del_mbx(ID mbxid);

Parameter

I/O Parameter Description

I ID mbxid ID number of the mailbox to be deleted

 An integer value(1 to 64) ID of the specified mailbox

Function

This call deletes the mailbox with its ID specified by mbxid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID (mbxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

E_NOEXS -42 Non-existent object

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 59 of 93

Oct 30, 2019

snd_mbx / isnd_mbx

Synopsis

Send to mailbox.

C Language format

ER snd_mbx(ID mbxid, T_MSG *pk_msg);

ER isnd_mbx(ID mbxid, T_MSG *pk_msg);

Parameter

I/O Parameter Description

I ID mbxid ID number of the mailbox to be sent

 An integer value(1 to 64) ID of the specified mailbox

I T_MSG *pk_msg Start address of the message packet to be sent to the mailbox

Function

These calls send messages whose start address is specified by pk_msg to the mailbox specified by mbxid.

An implementation-dependent error code E_RSATR is added for this system. This error is returned if message

packets are sent to a mailbox for which use of the TA_MPRI attribute has been disabled by using the utility function

hwos_set_mpri_operation.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_RSATR -11 Message was sent to a mailbox that was generated with the TA_MPRI attribute while

HWOS_DISABLE_MPRI is specified by using the hwos_set_mpri_operation function.

E_PAR -17 Parameter error (pk_msg or the message priority is invalid)

E_ID -18 Invalid ID (mbxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (isnd_mbx only).

E_NOEXS -42 Non-existent object

E_QOVR -43 Queue overflow (message queue count exceed the maximum number 192)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 60 of 93

Oct 30, 2019

rcv_mbx

Synopsis

Receive from Mailbox.

C Language format

ER rcv_mbx(ID mbxid, T_MSG **ppk_msg);

Parameter

I/O Parameter Description

I ID mbxid ID number of the mailbox for which a message is received.

 An integer value(1 to 64) ID of the specified mailbox

O T_MSG *ppk_msg Pointer to the location where the start address of the message packet

received from the mailbox is stored.

Function

This call receives a message from the mailbox specified by mbxid and returns its start address through ppk_msg. If

there are no messages in the specified mailbox, the invoking task is moved to the receiving waiting state for the

mailbox.

rcv_mbx(~) has the same functionality as trcv_mbx(~, TMO_FEVR).

An implementation-dependent error code E_RSATR is added for this system. This error is returned if message

packets are received from a mailbox for which use of the TA_MPRI attribute has been disabled by using the utility

function hwos_set_mpri_operation.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_RSATR -11 Message was sent to a mailbox that was generated with the TA_MPRI attribute while

HWOS_DISABLE_MPRI is specified by using the hwos_set_mpri_operation function.

E_PAR -17 Parameter error (ppk_msg is invalid)

E_ID -18 Invalid ID (mbxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_DLT -51 Waiting object deleted (specified mailbox was deleted while waiting)

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 61 of 93

Oct 30, 2019

prcv_mbx

Synopsis

Receives from mailbox (by polling).

C Language format

ER prcv_mbx(ID mbxid, T_MSG **ppk_msg);

Parameter

I/O Parameter Description

I ID mbxid ID number of the mailbox for which a message is received.

 An integer value(1 to 64) ID of the specified mailbox

O T_MSG *ppk_msg Pointer to the location where the start address of the message packet

received from a mailbox is stored.

Function

This call receives a message from the mailbox specified by mbxid and returns its start address through ppk_msg.

If there are no messages in the specified mailbox, the invoking task is not moved to the waiting state and the result

will be failure of polling.

prcv_mbx(~) has the same functionality as trcv_mbx(~, TMO_POL).

An implementation-dependent error code E_RSATR is added for this system. This error is returned if message

packets are received from a mailbox for which use of the TA_MPRI attribute has been disabled by using the utility

function hwos_set_mpri_operation.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_RSATR -11 Message was received (by polling) from a mailbox that was generated with the

TA_MPRI attribute while HWOS_DISABLE_MPRI is specified by using the

hwos_set_mpri_operation function.

E_PAR -17 Parameter error (ppk_msg is invalid)

E_ID -18 Invalid ID (mbxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked.

E_NOEXS -42 Non-existent object

E_TMOUT -50 Polling failure

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 62 of 93

Oct 30, 2019

trcv_mbx

Synopsis

Receives from mailbox (with timeout).

C Language format

ER trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameter

I/O Parameter Description

I ID mbxid ID number of the mailbox from which a message is received.

 An integer value(1 to 64) ID of the specified mailbox

O T_MSG *ppk_msg Pointer to the location where the start address of the message packet

received from the mailbox is stored.

I TMO tmout Specified timeout

 TMO_POL (0) Polling (same processing as prcv_mbx ())

 TMO_FEVR (-1) Wait forever (same processing as rcv_mbx())

 An integer value Waiting time in milliseconds

Function

This call receives a message from the mailbox specified by mbxid and return its start address through ppk_msg.

If there are no messages in the specified mailbox, the invoking task is moved to the message waiting state.

An implementation-dependent error code E_RSATR is added for this system. This error is returned if message

packets are received from a mailbox for that use of the TA_MPRI attribute has been disabled by using the utility

function hwos_set_mpri_operation.

This call is invokable from state of dispatch disable if TMO_POL is specified.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_RSATR -11 Message was received (with timeout) from a mailbox that was generated with the

TA_MPRI attribute while HWOS_DISABLE_MPRI is specified by using the

hwos_set_mpri_operation function.

E_PAR -17 Parameter error (ppk_msg or tmout is invalid)

E_ID -18 Invalid ID (mbxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_TMOUT -50 Timeout or polling failure

E_DLT -51 Waiting object deleted (specified mailbox deleted while waiting).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 63 of 93

Oct 30, 2019

4.6 Extended Synchronization and Communication Function (Mutex)

The service calls for extended synchronization and communication function (mutex) are listed below.

Table4.11 Extended Synchronization and Communication Function (Mutex)

Service Call Name Description Range of Objects that Can Issue This Call

del_mtx Deletes mutex Tasks

loc_mtx Locks mutex Tasks

ploc_mtx Locks mutex (by polling) Tasks

tloc_mtx Locks mutex (with timeout) Tasks

unl_mtx Unlocks mutex Tasks

Specification of this function is given below.

Table4.12 Extended Synchronization and Communication Function (Mutex) Specification

No. Item Content

1 Mutex IDs 1 to 128 (shared with semaphores)

2 Supported attributes TA_TFIFO: Task wait queue is in FIFO order

TA_TPRI: Task wait queue is in priority order

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 64 of 93

Oct 30, 2019

del_mtx

Synopsis

Deletes mutex.

C Language format

ER del_mtx(ID mtxid);

Parameter

I/O Parameter Description

I ID mtxid ID number of the mutex to be deleted

 An integer value(1 to 128) ID of the specified mutex

Function

This call deletes the mutex with its ID specified by mtxid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID (mtxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

E_NOEXS -42 Non-existent object

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 65 of 93

Oct 30, 2019

loc_mtx

Synopsis

Locks mutex.

C Language format

ER loc_mtx(ID mtxid);

Parameter

I/O Parameter Description

I ID mtxid ID number of the mutex to be locked

 An integer value(1 to 128) ID of the specified mutex

Function

This call locks the mutex specified by mtxid.

If the specified mutex is locked by another task, the invoking task is moved to the mutex waiting state.

loc_mtx(mtxid) has the same functionality as tloc_mtx(mtxid, TMO_FEVR).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID (mtxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.

E_ILUSE -28 Illegal service call use (already locked by the invoking task)

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_DLT -51 Waiting object deleted (specified mutex deleted while waiting).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 66 of 93

Oct 30, 2019

ploc_mtx

Synopsis

Locks mutex (by polling).

C Language format

ER ploc_mtx(ID mtxid);

Parameter

I/O Parameter Description

I ID mtxid ID number of the mutex to be locked

 An integer value(1 to 128) ID of the specified mutex

Function

This call locks the mutex specified by mtxid.

If the specified mutex is locked by another task, the invoking tasks is not moved to the mutex waiting state and the

result will be failure of polling.

ploc_mtx(mtxid) has the same functionality as tloc_mtx(mtxid, TMO_POL).

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID (mtxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

E_ILUSE -28 Illegal service call use (already locked by the invoking task)

E_NOEXS -42 Non-existent object

E_TMOUT -50 Polling failure

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 67 of 93

Oct 30, 2019

tloc_mtx

Synopsis

Locks mutex (with timeout).

C Language format

ER tloc_mtx(ID mtxid, TMO tmout);

Parameter

I/O Parameter Description

I ID mtxid ID number of the mutex to be locked

 An integer value(1 to 128) ID of the specified mutex

I TMO tmout Specified timeout

 TMO_POL (0) Polling (same processing as ploc_mtx())

 TMO_FEVR (-1) Waiting forever (same processing as loc_mtx())

 An integer value Waiting time in milliseconds

Function

This call locks the mutex specified by mtxid.

If the specified mutex is locked by another task, the invoking task is moved to the mutex waiting state.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (tmout is invalid)

E_ID -18 Invalid ID (mtxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked, dispatching is disabled, or from an

interrupt handler.It is invokable in the dispatching disabled state if tmo_pol is specified.

E_ILUSE -28 Illegal service call use (already locked by the invoking task)

E_NOEXS -42 Non-existent object

E_RLWAI -49 Forced release from waiting (accept rel_wai while waiting)

E_TMOUT -50 Timeout

E_DLT -51 Waiting object deleted (specified mutex deleted while waiting).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 68 of 93

Oct 30, 2019

unl_mtx

Synopsis

Unlocks mutex.

C Language format

ER unl_mtx(ID mtxid);

Parameter

I/O Parameter Description

I ID mtxid ID number of the mutex to be unlocked

 An integer value(1 to 128) ID of the specified mutex

Function

This call unlocks the mutex specified by mtxid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_ID -18 Invalid ID (mtxid is invalid or unusable)

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

E_ILUSE -28 Illegal service call use (the invoking task does not have the specified mutex locked)

E_NOEXS -42 Non-existent object

Restriction

In the original specification, mutexes such as ext_tsk and ter_tsk remain locked by a task when it is terminated will

be unlocked later. However, in this system, locked mutexes are not unlocked after a task is terminated. So, be sure to

unlock the mutexes before terminating a task.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 69 of 93

Oct 30, 2019

4.7 System Time Management Functions

The service calls for system time management function are listed below.

Table4.13 System Time Management Function

Service Call Name Description Range of Objects that Can Issue This Call

set_tim Sets system time Tasks and non-tasks

get_tim References system time Tasks and non-tasks

Specification of this function is given below.

Table4.14 System Time Management Function Specification

No. Item Content

1 System time value Unsigned 32-bit value

2 System time unit* 1[ms](default) 10 [us] ~ 100 [ms] can be set in 1 [us] precision.

3 Initial value of the system time (at initial start-up) 0x00000000

Note. The System time unit means tick period. It can be changed by calling hwos_set_tick_time

function before HW-RTOS setup.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 70 of 93

Oct 30, 2019

set_tim

Synopsis

Sets system time.

C Language format

ER set_tim(SYSTIM *p_systim);

Parameter

I/O Parameter Description

I SYSTIM *p_systim Pointer to the location where the information of the time to be set for the

system is stored.

Function

This call sets the system time to the value specified through p_systim.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (p_systim is invalid)

E_CTX -25 The call was invoked while the CPU is locked.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 71 of 93

Oct 30, 2019

get_tim

Synopsis

References system time.

C Language format

ER get_tim(SYSTIM *p_systim);

Parameter

I/O Parameter Description

O SYSTIM *p_systim Pointer to the location where the information of the current system time is

stored.

Function

This call returns the current system time through p_systim.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (p_systim is invalid)

E_CTX -25 The call was invoked while the CPU is locked.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 72 of 93

Oct 30, 2019

4.8 System State Management Functions

The service calls for system state management function are listed below.

Table4.15 System State Management Function

Service Call Name Description Range of Objects that Can Issue This Call

rot_rdq Rotates task precedence Tasks and non-tasks

irot_rdq Rotates task precedence Non-tasks

get_tid References task ID in the RUNNING state Tasks and non-tasks

iget_tid References task ID in the RUNNING state Non-tasks

loc_cpu Transitions to the CPU locked state Tasks

unl_cpu Releases the CPU locked state Tasks

sns_loc References the CPU locked state Tasks and non-tasks

dis_dsp Disables dispatching Tasks

ena_dsp Enables dispatching Tasks

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 73 of 93

Oct 30, 2019

rot_rdq / irot_rdq

Synopsis

Rotate task precedence.

C Language format

ER rot_rdq(PRI tskpri);

ER irot_rdq(PRI tskpri);

Parameter

I/O Parameter Description

I PRI tskpri Priority of the task whose precedence is rotated

 TPRI_SELF (0) Specify the base priority of the invoking task

to be rotated

 An integer value (1 to 15) Priority of the task specified for rotation

Function

These calls rotate the precedence of the tasks with the priority specified by tskpri. More specifically, the task with

the highest precedence in the ready queue, whose priority is specified by tskpri, will have the lowest precedence

among the tasks with the same priority after the precedence rotation. The next task in the queue will be executed.

If tskpri is TPRI_SELF (0), the ready queue of the base priority of the invoking task will be rotated.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error

(tskpri is invalid or TPRI_SELF is specified from an interrupt handler)

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (irot_rdq only).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 74 of 93

Oct 30, 2019

get_tid / iget_tid

Synopsis

Reference task ID in the RUNNING state.

C Language format

ER get_tid(ID *p_tskid);

ER iget_tid(ID *p_tskid);

Parameter

I/O Parameter Description

O ID *p_tskid ID number of the task in the RUNNING state

Function

These calls reference the ID number of the tasks in the RUNNING state and return it to p_tskid.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_PAR -17 Parameter error (p_tskid is invalid)

E_CTX -25 The call was invoked while the CPU is locked.

The call was issued by a task (iget_tid only).

Restriction

If these calls are issued while an idle task is running, the ID of the task defined as an idle task is returned instead of

TSK_NONE (= 0).

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 75 of 93

Oct 30, 2019

loc_cpu

Synopsis

Transitions to the CPU locked state.

C Language format

ER loc_cpu(void);

Parameter

None

Function

This call moves the system to the CPU locked state. In this state, kernel management interrupts and task dispatching

are disabled. In other words, the system can exclusively run programs except for the handler for the kernel

management interrupt.

Issuable service calls in this state are limited to loc_cpu, unl_cpu, and sns_loc.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_CTX -25 The call was invoked from an interrupt handler.

Restriction

This call cannot be invoked from an interrupt handler.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 76 of 93

Oct 30, 2019

unl_cpu

Synopsis

Releases the CPU locked state.

C Language format

ER unl_cpu(void);

Parameter

None

Function

This call releases the system from the CPU locked state.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_CTX -25 The call was invoked from an interrupt handler.

Restriction

This call cannot be invoked from an interrupt handler.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 77 of 93

Oct 30, 2019

sns_loc

Synopsis

References the CPU locked state.

C Language format

BOOL sns_loc(void);

Parameter

None

Function

This call gets the CPU locked state.

Return value

Macro Value Meaning

TRUE 1 The CPU is locked.

FALSE 0 The CPU is not locked.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 78 of 93

Oct 30, 2019

dis_dsp

Synopsis

Disables dispatching.

C Language format

ER dis_dsp(void);

Parameter

None

Function

This call moves the system to the dispatching disabled state.

In this state, task scheduling is disabled and the system can run a program exclusively against other tasks.

If this call is made while dispatching is disabled, it does not wait in a queue. Thus, no processing nor error handling

will be performed.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

R-IN32M4-CL3 Programming Manual (OS edition) 4.Service calls

R18UZ0072EJ0100 Page 79 of 93

Oct 30, 2019

ena_dsp

Synopsis

Enables dispatching.

C Language format

ER ena_dsp(void);

Parameter

None

Function

This call moves the system to the dispatching enabled state.

Return value

Macro Value Meaning

E_OK 0 Normal completion

E_CTX -25 The call was invoked while the CPU is locked or from an interrupt handler.

R-IN32M4-CL3 Programming Manual (OS edition) 5.Static Creation Methods of Objects

R18UZ0072EJ0100 Page 80 of 93

Oct 30, 2019

5. Static Creation Methods of Objects

5.1 Creation Task

When the system is started by the execution of hwos_setup() in the startup routine, tasks are created based on the

information written in the static_task_table array area reserved by the kernel.

This array is defined in the TSK_TBL structure. Task IDs and the members of the T_CTSK structure are listed in the

table.

The kernel recognizes TASK_TBL_END (-1) set in tskid as the end of the table.

//-------------------------------------

// Task information

//-------------------------------------

const TSK_TBL static_task_table[] = {

// CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz, stk});

 {ID_TASK_INIT, {TA_HLNG | TA_ACT, 0, (FP)init_task, 1, 0x400, NULL}},

 {ID_TASK_MAIN, {TA_HLNG | TA_ACT, 0, (FP)main_task, 2, 0x400, NULL}},

 {ID_TASK_IDLE, {TA_HLNG | TA_ACT, 0, (FP)idle_task, 15, 0x100, NULL}},

 {TASK_TBL_END, {0, 0, (FP)NULL, 0, 0, NULL}}

};

Figure5.1 Configuration Example of the static_task_table Array

Caution: This operating system does not have an idle task in the kernel, so one should be defined in

the application. Figure 5.2 shows an example of the definition of an idle task.

void idle_task(int exinf)

{

while (1) {

__NOP();

 }

}

Figure5.2 Configuration Example of an Idle Task

Caution:

 If two or more tasks with the same priority are created with TA_ACT specified, the tasks are

not placed in the ready state in the order of the array. This order is controlled when tasks

are created with TA_ACT not specified and invoked by the sta_tsk service call. Only static

creation is possible and dynamic creation after starting up the system is not possible. Also,

this operation requires at least one task to be created with TA_ACT specified.

R-IN32M4-CL3 Programming Manual (OS edition) 5.Static Creation Methods of Objects

R18UZ0072EJ0100 Page 81 of 93

Oct 30, 2019

5.2 Creating Semaphore

When the system is started by the execution of hwos_setup() in the startup routine, semaphores are created based on

the information written in the static_semaphore_table array area reserved by the kernel.

This array is defined in the SEM_TBL structure. Semaphore IDs and the members of the T_CSEM structure are listed

in the table.

The kernel recognizes SEMAPHORE_TBL_END (-1) set in semid as the end of the table.

//-------------------------------------

// Semaphore information

//-------------------------------------

const SEM_TBL static_semaphore_table[] = {

// CRE_SEM(semid, {sematr, isemcnt, maxsem});

 {ID_APL_SEM1, {TA_TFIFO, 0, 1}},

 {SEMAPHORE_TBL_END, {0, 0, 0}}

};

Figure 5.3 Configuration Example of the static_semaphore_table Array

5.3 Creating Eventflag

When the system is started by the execution of hwos_setup() in the startup routine, eventflags are created based on the

information written in the static_eventflag_table array area reserved by the kernel.

This array is defined in the FLG_TBL structure. Eventflag IDs and the members of the T_CFLG structure are listed in

the table.

The kernel recognizes EVENTFLAG_TBL_END (-1) set in flgid as the end of the table.

//-------------------------------------

// Eventflag information

//-------------------------------------

const FLG_TBL static_eventflag_table[] = {

// CRE_FLG(flgid, {flgatr, iflgptn});

 {ID_APL_FLG1, {TA_TFIFO | TA_WMUL | TA_CLR, 0}},

 {EVENTFLG_TBL_END, {0, 0}}

};

Figure5.4 Configuration Example of the static_eventflag_table Array

Caution: If TA_WSGL is specified, the eventflag behaves the same as it does with TA_WMUL.

R-IN32M4-CL3 Programming Manual (OS edition) 5.Static Creation Methods of Objects

R18UZ0072EJ0100 Page 82 of 93

Oct 30, 2019

5.4 Creating Mailbox

When the system is started up by the execution of hwos_setup() in the startup routine, mailboxes are created based on

the information written in the static_mailbox_table array area reserved by the kernel.

This array is defined in the MBX_TBL structure. Mailbox IDs and the members of the T_CMBX structure are listed in

the table.

The kernel recognizes MAILBOX_TBL_END (-1) set in mbxid as the end of the table.

//-------------------------------------

// Mailbox information

//-------------------------------------

const MBX_TBL static_mailbox_table[] = {

// CRE_MBX(mbxid, {mbxatr, maxpri, mprihd});

 {ID_APL_MBX1, {TA_TFIFO | TA_MFIFO, 0, 1}},

 {MAILBOX_TBL_END, {0, 0, 0}}

};

Figure5.5 Configuration Example of the static_mailbox_table Array

Caution:

 The mailbox attribute TA_MPRI cannot be used by default. To use this attribute, see the

function "hwos_set_mpri_operation" in section 8, Utility Function.

5.5 Creating Mutex

When the system is started by the execution of hwos_setup() in the startup routine, mutexes are created based on the

information written in the static_mutex_table array area reserved by the kernel.

This array is defined in the MTX_TBL structure. Mutex IDs and the members of the T_CMTX structure are listed in

the table.

The kernel recognizes MUTEX_TBL_END (-1) set in mtxid as the end of the table.

//-------------------------------------

// Mutex information

//-------------------------------------

const MTX_TBL static_mutex_table[] = {

// CRE_MTX(mtxid, {mtxatr, ceilpri});

 {ID_APL_MTX1, {TA_TFIFO, 0}},

 {MUTEX_TBL_END, {0, 0}}

};

Figure5.6 Configuration Example of the static_mutex_table Array

Caution:

 The mutex attributes TA_INHERIT and TA_CEILING are not supported. If specified, they are

ignored.

R-IN32M4-CL3 Programming Manual (OS edition) 5.Static Creation Methods of Objects

R18UZ0072EJ0100 Page 83 of 93

Oct 30, 2019

5.6 Defining Interrupt Handler

When the system is started by the execution of hwos_setup() in the startup routine, the interrupt handlers controlled by

this operating system (kernel interrupt) are created based on the information written in the static_interrupt_table array

area reserved by the kernel.

This array is defined in the INT_TBL structure. Interrupt handler numbers and the members of the T_DINH structure

are listed in the table.

The kernel recognizes INT_TBL_END (0xFFFFFFFF) set in inhno as the end of the table.

//-------------------------------------

// Interrupt handler information

//-------------------------------------

const INT_TBL static_interrupt_table[] = {

// DEF_INH(inhno, {inhatr, inthdr});

 {INTPZ0_IRQn, {TA_HLNG, (FP)int_task}},

 {INT_TBL_END, {0, (FP)NULL}}

};

Figure5.7 Configuration Example of the static_interrupt_table Array

Caution: All kernel interrupts have the lowest priority, 15. This means that an interrupt will not take

precedence over the current interrupt and lead to multiple interrupts.

The example code of interrupt handler is shown below.

void int_task(void)

{

 iset_flg(ID_APL_FLG1, 0x0001);

};

Figure5.8 Example code of interrupt handler

R-IN32M4-CL3 Programming Manual (OS edition) 6.Hardware ISRs

R18UZ0072EJ0100 Page 84 of 93

Oct 30, 2019

6. Hardware ISRs

When the system is started by the execution of hwos_setup() in the startup routine, the hardware ISRs are registered

based on the information written in the static_hwisr_table array area reserved by the kernel.

With hardware ISRs, when an interrupt is generated, the HW-RTOS automatically runs the service call previously

registered in response to the interrupt. This removes the overhead time of the CPU.

The service calls invokable by hardware ISRs are set_flg(), sig_sem(), rel_wai(), and wup_tsk(), as listed in Table 1.2.

Hardware ISR is detected at rising edge of interrupt signal.

The static_hwisr_table array is defined in the HWISR_TBL structure. Thirty-two hardware ISRs can be set in this

array.

As shown in the first example in Figure6.1, the HW-RTOS automatically issues the service call

"set_flg(ID_APL_FLG1, 0x0001);" when the INTPZ1 interrupt is generated.

In the second example in Figure6.1 the HW-RTOS automatically issues the service call

"wup_tsk(ID_TASK_MAIN);", when the INTPZ2 interrupt is generated.

The kernel recognizes HWISR_TBL_END (0xFFFFFFFF) set in inhno as the end of the table.

//-------------------------------------

// Hardware ISR

//-------------------------------------

const HWISR_TBL static_hwisr_table[] = {

// {inhno, hwisr_syscall, id, setptn}

 {INTPZ1_IRQn, HWISR_SET_FLG, ID_APL_FLG1, 0x0001},

 {INTPZ2_IRQn, HWISR_WUP_TSK, ID_TASK_MAIN, 0},

 {HWISR_TBL_END, 0, 0, 0}

};

Figure6.1 Configuration Example of the static_hwisr_table Array

R-IN32M4-CL3 Programming Manual (OS edition) 7.Interrupt Management Function

R18UZ0072EJ0100 Page 85 of 93

Oct 30, 2019

7. Interrupt Management Function

7.1 Types of Interrupts

Two types of interrupts specified in μITRON4.0 are available in this system, the kernel interrupts and non-kernel

interrupts. In addition, there is hardware ISR which function is dedicated to HW-RTOS.

 Kernel interrupt

The interrupts for which handlers are registered in the operating system are called "kernel interrupts".

If the handler is registered in static_interrupt_table, the handler works as kernel interrupt.

The kernel interrupt handler can issue service calls. If a kernel interrupt is generated while the system is

processing a service call, the call is postponed until the system becomes ready to accept the interrupt.

Kernel sets the priority of kernel interrupt to 15.

 Non-kernel interrupt

The interrupts which is not masked during kernel operation are called “non-kernel interrupts”. The non-kernel

interrupt handlers cannot issue service calls. If a non-kernel interrupt is generated while the system is processing a

service call, the interrupt request is accepted immediately. Being independent of the kernel processing, a high-speed

response is realized.

User should set the priority of non-kernel interrupt to the higher priority than 14, that is 0 to 13.

 Hardware ISR

The hardware ISR works independently in HW-RTOS itself.

This ISR can invoke only limited service call, but it works without CPU handling. (refer chapter 6 for a detail)

7.2 Handling of CPU Exception

The SVCall exception as exception number 11, out of the Cortex-M exceptions as exception number 1 to 15, is

handled by kernel. Other exceptions are handled as non-kernel interrupts.

7.3 Multiple Interrupts

All the kernel interrupts are configured to have the same priority. This means that an interrupt will not take precedence

over the current interrupt and lead to multiple interrupts.

7.4 Interrupt Handler

An interrupt handler is a routine for exclusive processing whenever the given interrupt is generated.

The kernel starts up an interrupt handler after the necessary processing.

Interrupt handlers are registered in the initial settings. See Section 5.6 Defining Interrupt Handler for details.

R-IN32M4-CL3 Programming Manual (OS edition) 8.Utility Functions

R18UZ0072EJ0100 Page 86 of 93

Oct 30, 2019

8. Utility Functions

rin_hwos_get_version

Synopsis

Gets version information.

C Language format

char *rin_hwos_get_version(uint8_t mode);

Parameter

I/O Parameter Description

I uint8_t mode Format of the version information to be output

 0 Version information only

 1 Version information with build date and time

Function

This call gets the version information of the operating system in the format specified by the parameter.

Return value

Version information in string format.

Example

printf("R-IN HWRTOS lib ver%s¥n",rin_hwos_get_version(0));

R-IN32M4-CL3 Programming Manual (OS edition) 8.Utility Functions

R18UZ0072EJ0100 Page 87 of 93

Oct 30, 2019

hwos_set_mpri_operation

Synopsis

Enables the TA_MPRI attribute.

C Language format

void hwos_set_mpri_operation(int32_t flag);

Parameter

I/O Parameter Description

I int32_t flag Enables the TA_MPRI attribute

 HWOS_DISABLE_MPRI (0) Disabled (default)

 HWOS_ENABLE_MPRI (1) Enabled

Function

This call enables the use of a mailbox with the TA_MPRI attribute. It is disabled by default as long as this function

is not called.

Call this API function before sending or receiving messages. Otherwise, the operation is undefined.

The error code E_QOVR is returned if this function is called 256 times or more while more than one message

remains in the queue for the mailbox. Return of the same error code is continued until the mailbox becomes empty

after all messages have been received by user operations.

Item

Parameter

HWOS_DISABLE_MPRI HWOS_ENABLE_MPRI

Creating a mailbox with

the TA_MPRI attribute

Successful Successful

Sending messages to

the mailbox with the

TA_MPRI attribute

Failed

Value returned by the function:

E_RSATR (-11)

If messages are continuously sent while more than

one message remains in the mailbox, this function

fails on the 256th attempt.

Value returned value by the function: E_QOVR (-43)

Receiving messages

from the mailbox with

the TA_MPRI attribute

Failed

Value returned by the function:

E_RSATR (-11)

Successful

Remark - If the error code E_QOVR is returned by the

function, message transmission has failed and the

error code continuous to be returned until the

mailbox has become empty.

Return value

None

R-IN32M4-CL3 Programming Manual (OS edition) 8.Utility Functions

R18UZ0072EJ0100 Page 88 of 93

Oct 30, 2019

hwos_set_tick_time

Synopsis

Set the Tick Time.

C Language format

int32_t hwos_set_tick_time(uint32_t tick_time);

Parameter

I/O Parameter Description

I uint32_t tick_time Set the Tick Time of the HW-RTOS. (1[us] precision)

The setting range is 10-100000. (10[us]-100[ms])

Function

This API sets the Tick Time of the HW-RTOS.

This API must be called before setting up of the HW-RTOS (hwos_setup function).

Tick Time is the default value (1[ms]) if this API is not called or is called with invalid parameter.

Return value

Macro Value Meaning

TRUE 1 Tick Time setting has been successful.

FALSE 0 Tick Time setting has been failed. (Parameter is invalid)

Restriction

When this API is called after setting up of the HW-RTOS (hwos_setup function), The Tick Time is not changed

even if TRUE is returned as a result of this API call.

R-IN32M4-CL3 Programming Manual (OS edition) 9.Development Tool Dependent Configuration

R18UZ0072EJ0100 Page 89 of 93

Oct 30, 2019

9. Development Tool Dependent Configuration

This section explains the differences between development tools.

The IAR compilers use the libraries provided with the respective compilers during startup.

9.1 IAR

9.1.1 Startup

Reset

Vector operation

・Jump to reset handler

ResetHanlder()

・Call SystemInit()

・Call __iar_data_init3()

・Vector address switch

Startup routine

main()

・Call hwos_set_tick_time() (option)

・Call hwos_setup()

SystemInit()

・Setup hardware if needed

C library

__iar_data_init3

・Copy code from ROM to RAM

・Initialize data section

OS library

hwos_init()

・No operation(Empty func）

hwos_setup()

・Setup stack pointer

・Create objects statistically

　　・Task

　　・Semaphore

　　・Message box

　　・Mutex

・Register interrupt handler

・Register Hardware ISR

・OS operation starts

User application

Idle task
アプリケーションタスク

HWRTOS_IRQHandler()

・Dispatch initial task

cstartup_M.c
system_RIN32M4.c

アプリケーションタスク
Application task

Figure9.1 Startup Routine with the IAR Compiler

R-IN32M4-CL3 Programming Manual (OS edition) 9.Development Tool Dependent Configuration

R18UZ0072EJ0100 Page 90 of 93

Oct 30, 2019

9.1.2 Stack area

The initial state of the stack area at startup of the operating system (after execution of hwos_setup) is illustrated below.

In the figure, the arrows indicate the pointer directions.

This operating system uses two stack pointers, the main stack pointer (MSP) and the process stack pointer (PSP). With

the IAR compiler, these two pointers are used with the same area (CSTACK).

The PSP is used in normal task processing while the MSP is used in other processing, such as the handling of

interrupts.

The initial value of PSP points to the stack for the first task to be activated. The pointer is switched to the end of the

stack area for the destination task when it is dispatched.

The operating system gets the addresses where each section starts and ends by referring to the symbols shown in the

figure below. Be sure to define the section names in the linker setting file (*.icf) with the same names as these symbols.

Task ID=0

Process Stack
Pointer (PSP)

Task ID=1

Task ID=n

:

Main Stack
Pointer (MSP)

Stack Area
for Interrupt /

Exception

Stack Area

for Tasks

Symbol for Top address :

__sfe(CSTACK)

Symbol for Bottom address :

__sfb(CSTACK)

 CSTACK
section

Task ID=0

Task ID=1

Task ID=n

: Process Stack
Pointer (PSP)

Main Stack
Pointer (MSP)

dispatch
Task ID=1

Figure9.2 Stack Area at Startup of the Operating System of the IAR Compiler

9.1.3 Compilation Options

Compilation options to use in creating the library for this operating system are listed below.

--cpu=Cortex-M4F

--fpu=VFPv4_sp

--endian=little

-e

-Ohs

--no_size_constraints

Target CPU: Cortex-M4

FPU type: Single floating point

Endian of generation code: Little

Enables language extension.

Optimization level

Removes measures to limit code size in optimization.

R-IN32M4-CL3 Programming Manual (OS edition) 10.Resources

R18UZ0072EJ0100 Page 91 of 93

Oct 30, 2019

10. Resources

10.1 Hardware Resources

The hardware resources used in the library for this operating system are listed below.

Table10.1 Hardware Resources

Resource Name Content

HW-RTOS Hardware real-time OS

Exceptions (interrupts) SVCall (exception number 11): A call of a system service by the SVC instruction

INTHWRTOS (exception number 92): An HW-RTOS interrupt

[Note] The timer of the HW-RTOS provides tick, so timers of peripheral functions are not used.

10.2 Memory

The memory resources used in the library for this operating system are listed below. In addition, memory for stack area

is also required. See Section 10.3

R-IN32M4-CL3 Programming Manual (OS edition) 10.Resources

R18UZ0072EJ0100 Page 92 of 93

Oct 30, 2019

Stack.

Table10.2 Memory Usage

Category

Size[bytes]

ARM GNU IAR

code -- -- 7,240

RO Data -- -- 4

RW Data -- -- 0

ZI Data -- -- 3,744

R-IN32M4-CL3 Programming Manual (OS edition) 10.Resources

R18UZ0072EJ0100 Page 93 of 93

Oct 30, 2019

10.3 Stack

Two types of stacks, the process stack and the main stack are available in this system.

The amount used for each stack is calculated by using the methods described in the subsequent sections. Definition of

a stack area differs according to the compiler. Section 9. Development Tool Dependent Configuration.

10.3.1 Calculating the Size of the Process Stacks

Process stacks are used for tasks. The stack for each task consumes the amount of memory obtained by adding a) and

b) below. To obtain the process stack requirements of a system, add up the amounts of stack for all tasks to be created,

which is the sum of the values of stksz defined in the array for task creation, static_task_table.

a) Maximum amount of stack consumed for the function call tree which starts with the function that initiates the

task.

b) The size taken up by storing the values of the task context registers, 72 bytes.

10.3.2 Calculating the Size of the Main Stack

Main stack is used for non-task processing.

Each non-task consumes the amount of stack obtained by adding a) and b) below, which equals the maximum amount

that may be used in handling an interrupt, because multiple interrupts are never generated. To obtain the main stack

requirements of a system, add up the amounts of stack for all non-tasks.

a) Maximum amount of stack consumed by the function call tree which starts with each interrupt handler initiating

function.

b) The amount required for saving the contents of registers before handling an interrupt, 4 bytes.

REVISION HISTORY R-IN32M4-CL3 Programming Manual (OS edition)

Rev. Date

Description

Page Summary

1.00 Oct 30, 2019 - First edition issued

[Memo]

R-IN32M4-CL3 Programming Manual (OS edition)

Publication Date: Rev.1.00 Oct 30, 2019

Published by: Renesas Electronics Corporation

R-IN32M4-CL3
Programming Manual (OS edition)

R18UZ0040EJ0102

	1. Overview
	1.1 Features of the Hardware Real-time Operating System
	1.2 OS Library
	1.2.1 The Version of OS Library

	1.3 Supported Service calls
	1.4 Supported Static API Functions
	1.5 Differences from the Standard Profile
	1.6 Operating Modes of the Processor
	1.7 OS Time Tick
	1.8 Development Environments

	2. Procedure for Software Development
	2.1 Design flow
	2.2 Creation of OS Configuration Files
	2.3 Starting the Operating System
	2.3.1 Setting Up the Operating System
	2.3.2 Initial Settings of the Operating System

	2.4 Reboot OS
	2.5 Cautionary Notes

	3. Data Types and Macros
	3.1 Data Types
	3.2 Constants
	3.3 Data structure
	3.3.1 Structures Defined for μITRON V4
	3.3.2 R-IN32M4-Specific Structures

	3.4 Global Variables

	4. Service calls
	4.1 Task Management Function
	4.2 Task Dependent Synchronization Functions
	4.3 Synchronization and Communication Functions (Semaphore)
	4.4 Synchronization and Communication Functions (Eventflag)
	4.5 Synchronization and Communication Function (Mailbox)
	4.6 Extended Synchronization and Communication Function (Mutex)
	4.7 System Time Management Functions
	4.8 System State Management Functions

	5. Static Creation Methods of Objects
	5.1 Creation Task
	5.2 Creating Semaphore
	5.3 Creating Eventflag
	5.4 Creating Mailbox
	5.5 Creating Mutex
	5.6 Defining Interrupt Handler

	6. Hardware ISRs
	7. Interrupt Management Function
	7.1 Types of Interrupts
	7.2 Handling of CPU Exception
	7.3 Multiple Interrupts
	7.4 Interrupt Handler

	8. Utility Functions
	9. Development Tool Dependent Configuration
	9.1 IAR
	9.1.1 Startup
	9.1.2 Stack area
	9.1.3 Compilation Options

	10. Resources
	10.1 Hardware Resources
	10.2 Memory
	10.3 Stack
	10.3.1 Calculating the Size of the Process Stacks
	10.3.2 Calculating the Size of the Main Stack

