
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 

 
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 

Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



Regarding the change of names mentioned in the document, such as Mitsubishi 
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas 

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog 

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) 

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi 

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names 

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. 

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been 

made to the contents of the document, and these changes do not constitute any alteration to the 

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

           and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers



M32R family
Software Manual

32

S
oftw

are M
anual

Revised publication, 1998.07

MITSUBISHI 32-BIT SINGLE-CHIP 
MICROCOMPUTER



Mitsubishi Electr ic Corporat ion puts the maximum effort  into making semiconductor
products better and more reliable, but there is always the possibil ity that trouble may
occur with them. Trouble with semiconductors may lead to personal in jury,  f i re or
property damage. Remember to give due consideration to safety when making your
c i rcui t  designs,  wi th appropr iate measures such as ( i )  p lacement of  subst i tu t ive,
auxiliary circuits, (ii) use of non-flammable materials or (iii) prevention against any malfunction
or mishap.

 • These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.

  Mi tsubishi  Elect r ic  Corporat ion assumes no responsib i l i ty  for  any damage,  or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts or circuit application examples contained in these materials.

  All information contained in these materials, including product data, diagrams and
char ts ,  represent  in format ion on products  a t  the t ime of  publ icat ion of  these
materials,  and are subject to change by Mitsubishi Electr ic Corporat ion without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconduc to r  p roduc t  d i s t r i bu to r  fo r  the  la tes t  p roduc t  i n fo rmat ion  be fo re
purchasing a product listed herein.

  Mitsubishi Electric Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for  any speci f ic  purposes,  such as apparatus or  systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

  The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or
reproduce in whole or in part these materials.

  I f  these products or  technologies are subject  to  the Japanese expor t  contro l
restrictions, they must be exported under a license from the Japanese government
and cannot  be impor ted in to  a  count ry  o ther  than the approved dest inat ion.
Any diversion or reexport contrary to the export control laws and regulat ions of
Japan and/or the country of destination is prohibited.

  P lease  con tac t  M i tsub ish i  E lec t r i c  Corpora t ion  o r  an  au thor i zed  Mi tsub ish i
Semiconductor product  d istr ibutor  for  fur ther detai ls  on these mater ia ls or  the
products contained therein.

KEEP SAFETY FIRST IN YOUR CIRCUIT DESIGNS !

NOTES REGARDING THESE MATERIALS

•

•

•

•

•

•



M32R family Software Manual i

Table of contents

Table of contents
CHAPTER 1 CPU PROGRAMMING MODEL

1.1 CPU register ....................................................................................................................... 1-2
1.2 General-purpose registers ..............................................................................................1-2
1.3 Control registers ............................................................................................................... 1-3

1.3.1 Processor status word register: PSW (CR0) ................................................... 1-4
1.3.2 Condition bit register: CBR (CR1) ..................................................................... 1-5
1.3.3 Interrupt stack pointer: SPI (CR2)

User stack pointer: SPU (CR3) ......................................................................... 1-5
1.3.4 Backup PC: BPC (CR6) .......................................................................................1-5

1.4 Accumulator ....................................................................................................................... 1-6
1.5 Program counter ............................................................................................................... 1-6
1.6 Data format ......................................................................................................................... 1-7

1.6.1 Data types ............................................................................................................. 1-7
1.6.2 Data formats ..........................................................................................................1-8

1.7 Addressing mode ............................................................................................................ 1-10

CHAPTER 2 INSTRUCTION SET

2.1 Instruction set overview .................................................................................................. 2-2
2.1.1 Load/store instructions .........................................................................................2-2
2.1.2 Transfer instructions ............................................................................................. 2-4
2.1.3 Operation instructions ..........................................................................................2-4
2.1.4 Branch instructions ............................................................................................... 2-6
2.1.5 EIT-related instructions ........................................................................................ 2-8
2.1.6 DSP function instructions ....................................................................................2-8

2.2 Instruction format ........................................................................................................... 2-11

CHAPTER 3 INSTRUCTIONS

3.1 Conventions for instruction description  .................................................................... 3-2
3.2 Instruction description .....................................................................................................3-5

APPENDICES

Appendix A Instruction list .................................................................................................. A-2
Appendix B Pipeline stages ................................................................................................. A-5

B.1 Overview of pipeline processing ........................................................................... A-5
B.2 Instructions and pipeline processing .................................................................... A-6
B.3 Pipeline processing ................................................................................................ A-7

Appendix C Instruction execution time ........................................................................... A-10



CHAPTER 1 
CPU

PROGRAMMING
MODEL

1.1 CPU register
1.2 General-purpose registers
1.3 Control registers
1.4 Accumulator
1.5 Program counter
1.6 Data format
1.7 Addressing mode



1-2 M32R family Software Manual

CPU PROGRAMMING MODEL
1.1 CPU register

1.1 CPU register
The M32R CPU has 16 general-purpose registers, 5 control registers, an accumulator and a program
counter. The accumulator is of 64-bit width. The registers and program counter are of 32-bit width.

1.2 General-purpose registers
The 16 general-purpose registers (R0 - R15) are of 32-bit width and are used to retain data and base
addresses. R14 is used as the link register and R15 as the stack pointer (SPI or SPU). The link register
is used to store the return address when executing a subroutine call instruction. The interrupt stack pointer
(SPI) and the user stack pointer (SPU) are alternately represented by R15 depending on the value of the
stack mode bit (SM) in the processor status word register (PSW).

Fig. 1.2.1 General-purpose registers

R0

R1

R2

R3

R4

R5

R6

R7

310

R8

R9

R10

R11

R12

R13

R14 (link register)

R15 (stack pointer)

310

(see note)

Note: The interrupt stack pointer (SPI) and the user stack pointer (SPU) are alternatively 
represented by R15 depending on the value of the stack mode bit (SM) in the PSW. 



M32R family Software Manual

CPU PROGRAMMING MODEL

1-3

1.3 Control registers

1.3 Control registers
There are 5 control registers which are the processor status word register (PSW), the condition bit register
(CBR), the interrupt stack pointer (SPI), the user stack pointer (SPU) and the backup PC (BPC). The MVTC
and MVFC instructions are used for writing and reading these control registers.

Fig. 1.3.1 Control registers

processor status register

condition bit register

interrupt stack pointer

user stack pointer

backup PC

310

CR0

CR1

CR2

CR3

CR6

(see notes) CRn

Notes 1: CRn (n = 0 - 3, 6) denotes the control register number.
2: The MVTC and MVFC instructions are used for writing and reading these control registers.

PSW

CBR

SPI

SPU

BPC



1-4 M32R family Software Manual

CPU PROGRAMMING MODEL
1.3 Control registers

1.3.1 Processor status word register: PSW (CR0)
The processor status word register (PSW) shows the M32R CPU status. It consists of the current PSW
field, and the BPSW field where a copy of the PSW field is saved when EIT occurs.
The PSW field is made up of the stack mode bit (SM), the interrupt enable bit (IE) and the condition bit
(C).
The BPSW field is made up of the backup stack mode bit (BSM), the backup interrupt enable bit (BIE) and
the backup condition bit (BC) .

D bit name function init. R W

16 BSM (backup SM) saves value of SM bit when EIT occurs undefined

17 BIE (backup IE) saves value of IE bit when EIT occurs undefined

23 BC (backup C) saves value of C bit when EIT occurs undefined

24 SM (stack mode) 0: uses R15 as the interrupt stack pointer 0

1: uses R15 as the user stack pointer

25 IE (interrupt enable) 0: does not accept interrupt 0

1: accepts interrupt

31 C (condition bit) indicates carry, borrow and overflow resulting 0

from operations (instruction dependent)

16 17 23 24 25 3115870

SM IE CBCBSM BIE

00000000000000000000000000PSW

BPSW field PSW field

Note: "init." ...initial state immediately after reset
"R"... : read enabled
"W"...  : write enabled



M32R family Software Manual

CPU PROGRAMMING MODEL

1-5

1.3 Control registers

1.3.2 Condition bit register: CBR (CR1)
The condition bit register (CBR) is a separate register which contains the condition bit (C) in the PSW. The
value of the condition bit (C) in the PSW is reflected in this register. This register is read-only. An attempt
to write to the CBR with the MVTC instruction is ignored.

1.3.3 Interrupt stack pointer: SPI (CR2)
User stack pointer: SPU (CR3)

The interrupt stack pointer (SPI) and the user stack pointer (SPU) retain the current stack address. The
SPI and SPU can be accessed as the general-purpose register R15. R15 switches between representing
the SPI and SPU depending on the value of the stack mode bit (SM) in the PSW.

1.3.4 Backup PC: BPC (CR6)
The backup PC (BPC) is the register where a copy of the PC value is saved when EIT occurs.  Bit 31 is
fixed at "0". When EIT occurs, the PC value immediately before EIT occurrence or that of the next
instruction is set. The value of the BPC is reloaded to the PC when the RTE instruction is executed. 

  However, the values of the lower 2 bits of the PC become "00" on returning (It always returns to the
word boundary).

310

00000000000000000000000000CBR C00000

310

SPI

SPU SPU
310

SPI

310

BPCBPC 0



1-6 M32R family Software Manual

CPU PROGRAMMING MODEL
1.4 Accumulator

1.4 Accumulator
The accumulator (ACC) is a 64-bit register used for the DSP function.
Use the MVTACHI and MVTACLO  instructions for writing to the accumulator. The high-order 32 bits (bit 0
- bit 31) can be set with the MVTACHI instruction and the low-order 32 bits (bit 32 - bit 63) can be set with
the MVTACLO  instruction. Use the MVFACHI, MVFACLO  and MVFACMI instructions for reading from the
accumulator. The high-order 32 bits (bit 0 - bit 31) are read with the MVFACHI  instruction, the low order
32 bits (bit 32 - bit 63) with the MVFACLO  instruction and the middle 32 bits (bit 16 - bit 47) with the
MVFACMI  instruction.
The MUL  instruction also uses the accumulator and the contents are destroyed when this instruction is
executed.

Note:  Bits 0 - 7 are always read as the sign-extended value of bit 8.
An attempt to write to this area is ignored.

1.5 Program counter
The program counter (PC) is a 32-bit counter that retains the address of the instruction being executed.
Since the M32R CPU instruction starts with even-numbered addresses, the LSB (bit 31) is always "0".

32 48 633116150 477 8

ACC

(see note)

read/write range with 
MVTACLO or MVFACLO instruction

read/write range with 
MVTACHI or MVFACHI instruction

read range with MVFACMI instruction

310

PCPC 0



M32R family Software Manual

CPU PROGRAMMING MODEL

1-7

1.6 Data format

1.6 Data format

1.6.1 Data types
Signed and unsigned integers of byte (8 bits), halfword (16 bits), and word (32 bits) types are supported
as data in the M32R CPU instruction set.  A signed integer is represented in a 2's complement format.

Fig. 1.6.1 Data types

signed byte (8-bit) integer

unsigned byte (8-bit) integer

signed halfword (16-bit) integer

0

0

0

0

0

0

7

7

15

15

31

31

S

S

S

S: sign bit

unsigned halfword (16-bit) integer

signed word (32-bit) integer

unsigned word (32-bit) integer



1-8 M32R family Software Manual

CPU PROGRAMMING MODEL
1.6 Data format

1.6.2 Data formats

(1) Data format in a register 
Data size of a register is always a word (32 bits).
Byte (8 bits) and halfword (16 bits) data in memory are sign-extended (the LDB  and LDH instructions)
or zero-extended (the LDUB  and LDUH instructions) to 32 bits, and loaded into the register.
Word (32 bits) data in a register is stored to memory by the ST instruction. Halfword (16 bits) data
in the LSB side of a register is stored to memory by the STH instruction. Byte (8 bits) data in the
LSB side of a register is stored to memory by the STB  instruction.

Fig. 1.6.2 Data format in a register

Rn

0 31

< load >

byte

Rn

0 31

halfword

Rn

0 31

word

sign-extention (LDB  instruction) or
zero-extention (LDUB  instruction)

from memory
(LDB , LDUB  instruction)

< store >

Rn

0 31

byte

Rn

0 31

halfword

Rn

0 31

word

to memory (STB instruction)

to memory (STH instruction)

to memory (ST instruction)

from memory (LDH, LDUH instruction)

from memory  (LD instruction)

24

16

24

16

sign-extention (LDH instruction) or
zero-extention (LDUH instruction)



M32R family Software Manual

CPU PROGRAMMING MODEL

1-9

1.6 Data format

(2) Data format in memory
Data stored in memory can be one of these types: byte (8 bits), halfword (16 bits) or word (32 bits).
Although the byte data can be located at any address, the halfword data and the word data can only
be located on the halfword boundary and the word boundary, respectively.  If an attempt is made to
access data in memory which is not located on the correct boundary, an address exception occurs.

Fig. 1.6.3 Data format in memory

address

byte

halfword

word

+ 0 + 1 + 2 + 3

0 31

byte

byte

byte

byte

halfword

halfword

word

7 8 15 16 23 24



1-10 M32R family Software Manual

CPU PROGRAMMING MODEL
1.7 Addressing mode

1.7 Addressing mode
M32R supports the following addressing modes.

(1) Register direct [R or CR]
The general-purpose register or the control register to be processed is specified.

(2) Register indirect [@R]
The contents of the register specify the address of the memory. This mode can be used by all load/store
instructions.

(3) Register relative indirect [@(disp, R)]
(The contents of the register) + (16-bit immediate value which is sign-extended to 32 bits) specify the
address of the memory.

(4) Register indirect and register update
• 4 is added to the register contents [@R+]

 the contents of the register before update specify address of memory
 (can be specified with LD instruction).

• 4 is added to the register contents [@+R]
  the contents of the register after update specify address of memory
  (can be specified with ST instruction).

• 4 is subtracted from the register contents [@–R]
 the contents of the register after update specify address of memory
 (can be specified with ST instruction).

(5) immediate [#imm]
The 4-, 5-, 8-, 16-  or 24-bit immediate value.

(6) PC relative [pcdisp]
(The contents of PC) + (8, 16, or 24-bit displacement which is sign-extended to 32 bits and 2 bits left-
shifted) specify the address of memory.



CHAPTER 2 
INSTRUCTION SET

2.1 Instruction set overview
2.2 Instruction format



M32R family Software Manual2-2

INSTRUCTION SET
2.1 Instruction set overview

2.1 Instruction set overview
The M32R CPU has a RISC architecture. Memory is accessed by using the load/store instructions and other
operations are executed by using register-to-register operation instructions.  A total of 83 instructions are
implemented.
M32R supports compound instructions such as " load & address update" and "store & address update" which
are useful for high-speed data transfer.
The M32R instruction set overview is explained below.

2.1.1 Load/store instructions
The load/store instructions carry out data transfers between a register and a memory.

LD Load
LDB Load byte
LDUB Load unsigned byte
LDH Load halfword
LDUH Load unsigned halfword
LOCK Load locked
ST Store
STB Store byte
STH Store halfword
UNLOCK Store unlocked



M32R family Software Manual

INSTRUCTION SET

2-3

2.1 Instruction set overview

Three types of addressing modes can be specified for load/store instructions.

(1) Register indirect
The contents of the register specify the address. This mode can be used by all load/store instructions.

(2) Register relative indirect
(The contents of the register) + (32-bit sign-extended 16-bit immediate value) specifies the address.
This mode can be used by all except LOCK  and UNLOCK  instructions.

(3) Register indirect and register update
• 4 is added to the register value

 the value in the register before update specifies the address
 (can be specified only with the LD  instruction).

• 4 is added to the register value
  the value in the register after update specifies address
  (can be specified only with the ST instruction).

• 4 is subtracted to the register value
 the value in the register after update specifies address
 (can be specified only with the ST instruction).

When accessing halfword and word size data, it is necessary to specify the address on the halfword
boundary or the word boundary (Halfword size should be such that the low-order 2 bits of the address are
"00" or "10", and word size should be such that the low order 2 bits of the address are "00"). If an unaligned
address is specified, an address exception occurs.
When accessing byte data or halfword data with load instructions, the high-order bits are sign-extended or
zero-extended to 32 bits, and loaded to a register.



M32R family Software Manual2-4

INSTRUCTION SET

2.1.2 Transfer instructions
The transfer instructions carry out data transfers between registers or a register and an immediate value.

LD24 Load 24-bit immediate
LDI Load immediate
MV Move register
MVFC Move from control register
MVTC Move to control register
SETH Set high-order 16-bit

2.1.3 Operation instructions
Compare, arithmetic/logic operation, multiply and divide, and shift are carried out between registers.

• compare instructions
CMP Compare
CMPI Compare immediate
CMPU Compare unsigned
CMPUI Compare unsigned immediate

• arithmetic operation instructions
ADD Add
ADD3 Add 3-operand
ADDI Add immediate
ADDV Add with overflow checking
ADDV3 Add 3-operand with overflow checking
ADDX Add with carry
NEG Negate
SUB Subtract
SUBV Subtract with overflow checking
SUBX Subtract with borrow

2.1 Instruction set overview



M32R family Software Manual

INSTRUCTION SET

2-5

• logic operation instructions
AND AND
AND3 AND 3-operand
NOT Logical NOT
OR OR
OR3 OR 3-operand
XOR Exclusive OR
XOR3 Exclusive OR 3-operand

• multiply/divide instructions
DIV Divide
DIVU Divide unsigned
MUL Multiply
REM Remainder
REMU Remainder unsigned

• shift instructions
SLL Shift left logical
SLL3 Shift left logical 3-operand
SLLI Shift left logical immediate
SRA Shift right arithmetic
SRA3 Shift right arithmetic 3-operand
SRAI Shift right arithmetic immediate
SRL Shift right logical
SRL3 Shift right logical 3-operand
SRLI Shift right logical immediate

2.1 Instruction set overview



M32R family Software Manual2-6

INSTRUCTION SET
2.1 Instruction set overview

2.1.4 Branch instructions
The branch instructions are used to change the program flow.

BC Branch on C-bit
BEQ Branch on equal
BEQZ Branch on equal zero
BGEZ Branch on greater than or equal zero
BGTZ Branch on greater than zero
BL Branch and link
BLEZ Branch on less than or equal zero
BLTZ Branch on less than zero
BNC Branch on not C-bit
BNE Branch on not equal
BNEZ Branch on not equal zero
BRA Branch
JL Jump and link
JMP Jump
NOP No operation

Only a word-aligned (word boundary) address can be specified for the branch address.



M32R family Software Manual

INSTRUCTION SET

2-7

2.1 Instruction set overview

The addressing mode of the BRA , BL , BC  and BNC  instructions can specify an 8-bit or 24-bit immediate
value. The addressing mode of the BEQ , BNE , BEQZ, BNEZ, BLTZ , BGEZ, BLEZ , and BGTZ instructions
can specify a 16-bit immediate value.
In the JMP  and JL  instructions, the register value becomes the branch address. However, the low-order
2-bit value of the register is ignored. In other branch instructions, (PC value of branch instruction) + (sign-
extended and 2 bits left-shifted immediate value) becomes the branch address. However, the low order
2-bit value of the address becomes "00" when addition is carried out. For example, refer to Figure 2.1.1.
When instruction A or B is a branch instruction, branching to instruction G, the immediate value of either
instruction A or B becomes 4.
Simultaneous with execution of branching by the JL  or BL  instructions for subroutine calls, the PC value
of the return address is stored in R14. The low-order 2-bit value of the address stored in R14 (PC value
of the branch instruction + 4 ) is always cleared to "0".  For example, refer to Figure 2.1.1. If an
instruction A or B is a JL  or BL  instruction, the return address becomes that of the instruction C.

H'00

H'04

H'08

H'0C

H'10

instruction A instruction B

instruction C instruction D

instruction E

instruction F

instruction G instruction H

address +0 +1 +2 +3

1 word (32 bits)

branch instruction

Fig. 2.1.1 Branch addresses of branch instruction



M32R family Software Manual2-8

INSTRUCTION SET
2.1 Instruction set overview

2.1.5 EIT-related instructions
The EIT-related instructions carry out the EIT events (Exception, Interrupt and Trap). Trap initiation and
return from EIT are EIT-related instructions.

TRAP Trap
RTE Return from EIT

2.1.6 DSP function instructions
The DSP function instructions carry out multiplication of 32 bits x 16 bits and 16 bits x 16 bits or multiply
and add operation; there are also instructions to round off data in the accumulator and carry out transfer
of data between the accumulator and a general-purpose register.

MACHI Multiply-accumulate high-order halfwords
MACLO Multiply-accumulate low-order halfwords
MACWHI Multiply-accumulate word and high-order halfword
MACWLO Multiply-accumulate word and low-order halfword
MULHI Multiply high-order halfwords
MULLO Multiply low-order halfwords
MULWHI Multiply word and high-order halfword
MULWLO Multiply word and low-order halfword
MVFACHI Move from accumulator high-order word
MVFACLO Move from accumulator low-order word
MVFACMI Move from accumulator middle-order word
MVTACHI Move to accumulator high-order word
MVTACLO Move to accumulator low-order word
RAC Round accumulator
RACH Round accumulator halfword



M32R family Software Manual

INSTRUCTION SET

2-9

2.1 Instruction set overview

Fig. 2.1.2 DSP function instruction operation 1 (multiply, multiply and accumulate)

Rsrc1
0 15 16 31

H

ACC

0 63

L

0 15 16 31

H L

x

x

MULLO instructionMULHI instruction

Rsrc2

Rsrc1
0 31

ACC

0 63

0 15 16 31

H L

x

x
MULWLO instructionMULWHI instruction

Rsrc2

32 bits

Rsrc1
0 15 16 31

H L

0 15 16 31

H L

x

x

MACLO instructionMACHI instruction

Rsrc2

ACC

0 63

+

+

0 63

Rsrc1
0 31

32 bits

0 15 16 31

H L

x

x

MACWLO instructionMACWHI instruction

Rsrc2

ACC

0 63

+

+

0 63

ACC

ACC

Note. The location in the accumulator of the result and the appropriate sign extension are performed 
          in the execution of the DSP function instruction. Refer to Chapter 3 for details.



M32R family Software Manual2-10

INSTRUCTION SET
2.1 Instruction set overview

ACC

0 63

sign 0

RAC instruction

ACC

0 63

sign 0

RACH instruction

< word size round off > < halfword size round off >

datadata

0 63 0 63

Note. The actual operation is processed in two steps. 
          Refer to Chapter 3 for details.

Fig. 2.1.3 DSP function instruction operation 2 (round off)

Rdest

0 31

ACC

0 6315 16 31 32 47 48

MVFACHI
 instruction

Rsrc

0 31

ACC

0 6331 32

MVFACLO 
instruction

MVFACMI instruction

MVTACLO 
instruction

MVTACHI 
instruction

Fig. 2.1.4 DSP function instruction operation 3 (transfer between accumulator and register)



M32R family Software Manual

INSTRUCTION SET

2-11

2.2 Instruction format

2.2 Instruction format
There are two major instruction formats: two 16-bit instructions packed together within a word boundary, and
a single 32-bit instruction (see Fig. 2.2.1).  Figure 2.2.2 shows the instruction format of M32R family.

 16-bit instruction A

+ 0 + 1 + 2 + 3

1 word

32-bit instruction

address

1 word

+ 0 + 1 + 2 + 3address

 16-bit instruction B

Fig. 2.2.1 16-bit instruction and 32-bit instruction

< 16-bit instruction >

op1 R1 R2op2

op1 R1 c

op1 cond c

op1 R1 R2op2 c

op1 R1 R2op2 c

op1 R1 c

op1 cond c

< 32-bit instruction >

R1 = R1   op   R2

R1 = R1   op   c

Branch (Short Displacement)

R1 = R1   op   c

Branch

Compare and Branch

R1 = R2   op   c

Fig. 2.2.2 Instruction format of M32R family



M32R family Software Manual2-12

INSTRUCTION SET
2.2 Instruction format

The MSB (Most Significant Bit) of a 32-bit instruction is always "1".
The MSB of a 16-bit instruction in the high-order halfword is always "0" (instruction A in Figure 2.2.3),
however the processing of the following 16-bit instruction depends on the MSB of the instruction.
In Figure 2.2.3, if the MSB of the instruction B is "0", instructions A and B are executed sequentially; B is
executed after A. If the MSB of the instruction B is "1", instructions A and B are executed in parallel.
The current implementation allows only the NOP instruction as instruction B for parallel execution. The MSB
of the NOP instruction used for word arraignment adjustment is changed to "1" automatically by a standard
Mitsubishi assembler, then the M32R can execute this instruction without requiring any clock cycles.

16-bit instruction A 16-bit instruction B

32-bit instruction

0

16-bit instruction A 16-bit instruction B0 1

0 [instruction A] --> [instruction B] sequential

< instruction execution sequence >MSB

1

1111 0000 0000 000016-bit instruction A0

0111 0000 0000 0000
inserted by assembler

32-bit instruction1

MSB

NOP instruction whose MSB is changed to "1"

NOP instruction

[instruction A] & [instruction B] parallel

[instruction A] & [NOP] parallel

Fig. 2.2.3 Processing of 16-bit instructions



CHAPTER 3 
INSTRUCTIONS

3.1 Conventions for instruction description
3.2 Instruction description



M32R family Software Manual3-2

INSTRUCTIONS

Table 3.1.2 Operation expression (operator)

operator meaning

+ addition (binomial operator)

– subtraction (binomial operator)

✽ multiplication (binomial operator)

3.1 Conventions for instruction description
Conventions for instruction description are summarized below.

[Mnemonic]
Shows the mnemonic and possible operands (operation target) using assembly language notation.

Table 3.1.1 Operand list

symbol addressing mode operation target

(see note)

R register direct general-purpose registers (R0 - R15)

CR control register control registers (CR0 = PSW, CR1 = CBR, CR2 = SPI,

CR3 = SPU, CR6 = BPC)

@R register indirect memory specified by register contents as address

@(disp, R) register relative indirect memory specified by (register contents) + (sign-extended value of

16-bit displacement) as address

@R+ register indirect and 4 is added to register contents (memory specified by register

register update contents before update as address)

@+R register indirect and 4 is added to register contents (memory specified by register contents

register update after update as address)

@–R register indirect and 4 is subtracted from register contents (memory specified by register

register update contents after update as address)

#imm immediate immediate value (refer to each instruction description)

pcdisp PC relative memory specified by (PC contents) + (8, 16, or 24-bit displacement

which is sign-extended to 32 bits and 2 bits left-shifted) as address

Note. When expressing Rsrc or Rdest as an operand, a general-purpose register numbers (0 - 15) should
be substituted for src or dest. When expressing CRsrc or CRdest, control register numbers (0 - 3, 6)
should be substituted for src or dest.

[Function]
Indicates the operation performed by one instruction. Notation is in accordance with  C language notation.

3.1 Conventions for instruction description



M32R family Software Manual

INSTRUCTIONS

3-3

Table 3.1.3 Operation expression (operator) (cont.)

operator meaning

/ division (binomial operator)

% remainder operation (binomial operator)

++ increment (monomial operator)

– – decrement (monomial operator)

– sign invert (monomial operator)

= substitute right side into left side (substitute operator)

+= adds right and left variables and substitute into left side (substitute operator)

–= subtract right variable from left variable and substitute into left side (substitute operator)

> greater than (relational operator)

< less than (relational operator)

>= greater than or equal to (relational operator)

<= less than or equal to (relational operator)

== equal (relational operator)

!= not equal (relational operator)

&& AND (logical operator)

|| OR (logical operator)

! NOT (logical operator)

?: execute a conditional expression (conditional operator)

Table 3.1.4  Operation expression (bit operator)

operator meaning

<< bits are left-shifted

>> bits are right-shifted

& bit product (AND)

| bit sum (OR)

^ bit exclusive or (EXOR)

~ bit  invert

Table 3.1.5 Data type

expression type sign bit length range

char integer yes 8 –128 to +127

short integer yes 16 –32,768 to +32,767

int integer yes 32 –2,147,483,648 to +2,147,483,647

unsigned char integer no 8 0 to 255

unsigned short integer no 16 0 to 655,535

unsigned int integer no 32 0 to 4,294,967,295

signed64bit integer yes 64 signed 64-bit integer (with accumulator)

3.1 Conventions for instruction description



M32R family Software Manual3-4

INSTRUCTIONS

[Description]
Describes the operation performed by the instruction and any condition bit change.

[EIT occurrence]
Shows possible EIT events (Exception, Interrupt, Trap) which may occur as the result of the instruction's
execution. Only address exception (AE) and trap (TRAP) may result from an instruction execution.

[Instruction format]
Shows the bit level instruction pattern (16 bits or 32 bits). Source and/or destination register numbers are
put in the src and dest fields as appropriate. Any immediate or displacement value is put in the imm or
disp field,  its maximum size being determined by the width of the field provided for the particular instruction.
Refer to 2.2 Instruction format for detail.

3.1 Conventions for instruction description



M32R family Software Manual

INSTRUCTIONS

3-5

3.2 Instruction description

3.2 Instruction description
This section lists M32R family instructions in alphabetical order. Each page is laid out as shown below.

3

ADD arithmetic oper

Add

[Mnemonic]

[Function]

[Description]

[EIT occurrence]

[Instruction format]

Add  Rdest,Rsrc

Add
  Rdest =  Rdest  + Rsrc;

None

Add  Rde0000 dest 1010 src

instruction function
(expression corresponds to 
 C language method)

instruction description 
and effect on condition bit (C)

EIT events which may 
occur when this 
instruction is executed

16- or 32-bit instruction format

instruction mnemonic

instruction name
(instruction type and 
  full name are in center)

ADD adds Rsrc to Rdest and puts the result in

The condition bit (C) is unchanged.



M32R family Software Manual3-6

INSTRUCTIONS
3.2 Instruction description

ADD arithmetic/logic operation
Add ADD

[Mnemonic]

ADD  Rdest,Rsrc

[Function]

Add
Rdest = Rdest + Rsrc;

[Description]

ADD adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 1010 src ADD Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-7

3.2 Instruction description

ADD3 arithmetic operation instruction
Add 3-operand ADD3

[Mnemonic]

ADD3  Rdest,Rsrc,#imm16

[Function]

Add
Rdest = Rsrc + ( signed short ) imm16;

[Description]

ADD3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate
value is sign-extended to 32 bits before the operation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1010dest1000 src imm16

ADD3 Rdest,Rsrc,#imm16



M32R family Software Manual3-8

INSTRUCTIONS
3.2 Instruction description

ADDI arithmetic operation instruction
Add immediate ADDI

[Mnemonic]

ADDI  Rdest,#imm8

[Function]

Add
Rdest = Rdest + ( signed char ) imm8;

[Description]

ADDI adds the 8-bit immediate value to Rdest and puts the result in Rdest.
The immediate value is sign-extended to 32 bits before the operation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

imm8dest0100 ADDI Rdest,#imm8



M32R family Software Manual

INSTRUCTIONS

3-9

3.2 Instruction description

ADDV arithmetic operation instruction
Add with overflow checking ADDV

[Mnemonic]

ADDV   Rdest,Rsrc

[Function]

Add
Rdest = ( signed ) Rdest + ( signed ) Rsrc;
C = overflow  ?  1 : 0;

[Description]

ADDV adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

dest0000 1000 src ADDV Rdest,Rsrc



M32R family Software Manual3-10

INSTRUCTIONS
3.2 Instruction description

ADDV3 ADDV3arithmetic operation instruction
Add 3-operand with overflow checking

[Mnemonic]

ADDV3  Rdest,Rsrc,#imm16

[Function]

Add
Rdest = ( signed ) Rsrc + ( signed ) ( ( signed short ) imm16 );
C = overflow  ?  1 : 0;

[Description]

ADDV3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate
value is sign-extended to 32 bits before it is added to Rsrc.
The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

dest1000 imm16src1000

ADDV3 Rdest,Rsrc,#imm16



M32R family Software Manual

INSTRUCTIONS

3-11

3.2 Instruction description

ADDX arithmetic operation instruction
Add with carry ADDX

[Mnemonic]

ADDX  Rdest,Rsrc

[Function]

Add
Rdest = ( unsigned ) Rdest + ( unsigned ) Rsrc + C;
C = carry_out  ?  1 : 0;

[Description]

ADDX adds Rsrc and C to Rdest, and puts the result in Rdest.
The condition bit (C) is set when the addition result cannot be represented by a 32-bit unsigned
integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

1001dest0000 src ADDX Rdest,Rsrc



M32R family Software Manual3-12

INSTRUCTIONS
3.2 Instruction description

logic operation instruction
ANDAND AND

[Mnemonic]

AND  Rdest,Rsrc

[Function]

Logical AND
Rdest = Rdest & Rsrc;

[Description]

AND computes the logical AND of the corresponding bits of Rdest and Rsrc and puts the result
in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11000000 srcdest AND Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-13

3.2 Instruction description

AND3AND3
[Mnemonic]

AND3  Rdest,Rsrc,#imm16

[Function]

Logical AND
Rdest = Rsrc & ( unsigned short ) imm16;

[Description]

AND3 computes the logical AND of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

logic operation instruction
AND 3-operand

dest1000 src1100 imm16

AND3  Rdest,Rsrc,#imm16



M32R family Software Manual3-14

INSTRUCTIONS
3.2 Instruction description

BC BCbranch instruction
Branch on C-bit

[Mnemonic]

➀   BC  pcdisp8

➁   BC  pcdisp24

[Function]

Branch
➀   if ( C==1 )  PC = ( PC & 0xfffffffc ) + ( ( ( signed char ) pcdisp8 ) << 2 );
➁   if ( C==1 )  PC = ( PC & 0xfffffffc ) + ( sign_extend ( pcdisp24 ) << 2 );

where
#define  sign_extend(x)    ( ( ( signed ) ( (x)<< 8 ) ) >>8 )

[Description]

BC causes a branch to the specified label when the condition bit (C) is 1.
There are two instruction formats; which allows software, such as an assembler, to decide on
the better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11001111

11000111 pcdisp8

pcdisp24

BC  pcdisp8

BC  pcdisp24



M32R family Software Manual

INSTRUCTIONS

3-15

3.2 Instruction description

BEQ BEQbranch instruction
Branch on equal

[Mnemonic]

BEQ  Rsrc1,Rsrc2,pcdisp16

[Function]

Branch
if ( Rsrc1 == Rsrc2 )   PC = ( PC & 0xfffffffc ) + ( ( ( signed short ) pcdisp16 ) << 2);

[Description]

BEQ causes a branch to the specified label when Rsrc1 is equal to Rsrc2.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 src1 0000 src2 pcdisp16

BEQ  Rsrc1,Rsrc2,pcdisp16



M32R family Software Manual3-16

INSTRUCTIONS
3.2 Instruction description

BEQZ BEQZbranch instruction
Branch on equal zero

[Mnemonic]

BEQZ  Rsrc,pcdisp16

[Function]

Branch
if ( Rsrc == 0 )   PC = ( PC & 0xfffffffc ) + ( ( ( signed short ) pcdisp16 ) << 2);

[Description]

BEQZ causes a branch to the specified label when Rsrc is equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 1000 src pcdisp16

BEQZ  Rsrc,pcdisp16



M32R family Software Manual

INSTRUCTIONS

3-17

3.2 Instruction description

BGEZ BGEZbranch instruction
Branch on greater than or equal zero

[Mnemonic]

BGEZ  Rsrc,pcdisp16

[Function]

Branch
if ( (signed) Rsrc >= 0 )   PC = ( PC & 0xfffffffc ) + ( ( ( signed short ) pcdisp16 ) << 2);

[Description]

BGEZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is
greater than or equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 1011 src pcdisp16

BGEZ  Rsrc,pcdisp16



M32R family Software Manual3-18

INSTRUCTIONS
3.2 Instruction description

BGTZ BGTZbranch instruction
Branch on greater than zero

[Mnemonic]

BGTZ  Rsrc,pcdisp16

[Function]

Branch
if ((signed) Rsrc > 0) PC = (PC & 0xfffffffc) + ( ( (signed short) pcdisp16 ) << 2);

[Description]

BGTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is
greater than zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 1101 src pcdisp16

BGTZ  Rsrc,pcdisp16



M32R family Software Manual

INSTRUCTIONS

3-19

3.2 Instruction description

BL BLbranch instruction
Branch and link

[Mnemonic]

➀   BL  pcdisp8

➁   BL  pcdisp24

[Function]

Subroutine call (PC relative)
➀   R14 = ( PC & 0xfffffffc ) + 4;

PC = ( PC & 0xfffffffc ) + ( ( ( signed char ) pcdisp8 ) << 2 );
➁   R14 = ( PC & 0xfffffffc ) + 4;

PC = ( PC & 0xfffffffc ) + ( sign_extend ( pcdisp24 ) << 2 );
where
#define  sign_extend(x) ( ( ( signed ) ( (x)<< 8 ) ) >>8 )

[Description]

BL causes an unconditional branch to the address specified by the label and puts the return
address in R14.
There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11101111

11100111 pcdisp8

pcdisp24

BL  pcdisp8

BL  pcdisp24



M32R family Software Manual3-20

INSTRUCTIONS
3.2 Instruction description

BLEZ BLEZbranch instruction
Branch on less than or equal zero

[Mnemonic]

BLEZ  Rsrc,pcdisp16

[Function]

Branch
if ((signed) Rsrc <= 0)   PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLEZ causes a branch to the specified label when the contents of Rsrc treated as a signed 32-
bit value, is less than or equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 1100 src pcdisp16

BLEZ  Rsrc,pcdisp16



M32R family Software Manual

INSTRUCTIONS

3-21

3.2 Instruction description

BLTZ BLTZbranch instruction
Branch on less than zero

[Mnemonic]

BLTZ  Rsrc,pcdisp16

[Function]

Branch
if ((signed) Rsrc < 0)   PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is less
than zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 1010 src pcdisp16

BLTZ  Rsrc,pcdisp16



M32R family Software Manual3-22

INSTRUCTIONS
3.2 Instruction description

BNC BNCbranch instruction
Branch on not C-bit

[Mnemonic]

➀   BNC  pcdisp8

➁   BNC  pcdisp24

[Function]

Branch
➀   if (C==0)  PC = ( PC & 0xfffffffc ) + ( ( ( signed char ) pcdisp8 ) << 2 );
➁   if (C==0)  PC = ( PC & 0xfffffffc ) + ( sign_extend ( pcdisp24 ) << 2 );

where
#define  sign_extend(x) ( ( ( signed ) ( (x)<< 8 ) ) >>8 )

[Description]

BNC branches to the specified label when the condition bit (C) is 0.
There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11011111

11010111 pcdisp8

pcdisp24

BNC  pcdisp8

BNC  pcdisp24



M32R family Software Manual

INSTRUCTIONS

3-23

3.2 Instruction description

BNE BNEbranch instruction
Branch on not equal

[Mnemonic]

BNE  Rsrc1,Rsrc2,pcdisp16

[Function]

Branch
if ( Rsrc1 != Rsrc2 ) PC = ( PC & 0xfffffffc ) + ((( signed short ) pcdisp16) << 2);

[Description]

BNE causes a branch to the specified label when Rsrc1 is not equal to Rsrc2.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 src1 0001 src2 pcdisp16

BNE  Rsrc1,Rsrc2,pcdisp16



M32R family Software Manual3-24

INSTRUCTIONS
3.2 Instruction description

BNEZ branch instruction
Branch on not equal zero BNEZ

[Mnemonic]

BNEZ  Rsrc,pcdisp16

[Function]

Branch
if ( Rsrc != 0 )   PC = ( PC & 0xfffffffc ) + ( ( ( signed short ) pcdisp16 ) << 2);

[Description]

BNEZ causes a branch to the specified label when Rsrc is not equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 1001 src pcdisp16

BNEZ Rsrc,pcdisp16



M32R family Software Manual

INSTRUCTIONS

3-25

3.2 Instruction description

BRA BRAbranch instruction
Branch

[Mnemonic]

➀   BRA  pcdisp8

➁   BRA  pcdisp24

[Function]

Branch
➀   PC = ( PC & 0xfffffffc ) + ( ( ( signed char ) pcdisp8 ) << 2 );
➁   PC = ( PC & 0xfffffffc ) + ( sign_extend ( pcdisp24 ) << 2 );

where
#define  sign_extend(x) ( ( ( signed ) ( (x)<< 8 ) ) >>8 )

[Description]

BRA causes an unconditional branch to the address specified by the label.
There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11111111

11110111

BRA  pcdisp24

pcdisp8

pcdisp24

BRA  pcdisp8



M32R family Software Manual3-26

INSTRUCTIONS
3.2 Instruction description

CMP compare instruction
Compare CMP

[Mnemonic]

CMP  Rsrc1,Rsrc2

[Function]

Compare
C = ( ( signed ) Rsrc1  <  ( signed ) Rsrc2 )  ?  1:0;

[Description]

The condition bit (C) is set to 1 when Rsrc1 is less than Rsrc2.  The operands are treated as
signed 32-bit values.

[EIT occurrence]

None

[Encoding]

src10000 0100 src2 CMP  Rsrc1,Rsrc2



M32R family Software Manual

INSTRUCTIONS

3-27

3.2 Instruction description

CMPICMPI compare instruction
Compare immediate

[Mnemonic]

CMPI  Rsrc,#imm16

[Function]

Compare
C = ( ( signed ) Rsrc  <  ( signed short ) imm16 )  ?  1:0;

[Description]

The condition bit (C) is set when Rsrc is less than 16-bit immediate value.  The operands are
treated as signed 32-bit values. The immediate value is sign-extended to 32-bit before the
operation.

[EIT occurrence]

None

[Encoding]

1000 0000 0100 src imm16

CMPI  Rsrc,#imm16



M32R family Software Manual3-28

INSTRUCTIONS
3.2 Instruction description

compare instruction
Compare unsignedCMPU CMPU

[Mnemonic]

CMPU  Rsrc1,Rsrc2

[Function]

Compare
C = ( ( unsigned ) Rsrc1  <  ( unsigned ) Rsrc2 )  ?  1:0;

[Description]

The condition bit (C) is set when Rsrc1 is less than Rsrc2. The operands are treated as unsigned
32-bit values.

[EIT occurrence]

None

[Encoding]

src10000 0101 src2 CMPU  Rsrc1,Rsrc2



M32R family Software Manual

INSTRUCTIONS

3-29

3.2 Instruction description

compare instruction
Compare unsigned immediate CMPUICMPUI

[Mnemonic]

CMPUI  Rsrc,#imm16

[Function]

Compare
C = ( ( unsigned ) Rsrc  <  ( unsigned ) ( ( signed short ) imm16 ) )  ?  1:0;

[Description]

The condition bit (C) is set when Rsrc is less than the 16-bit immediate value. The operands are treated
as unsigned 32-bit values.  The immediate value is sign-extended to 32-bit before the operation.

[EIT occurrence]

None

[Encoding]

1000 0000 0101 src imm16

CMPUI Rsrc,#imm16



M32R family Software Manual3-30

INSTRUCTIONS
3.2 Instruction description

DIV multiply and divide instruction
Divide DIV

[Mnemonic]

DIV  Rdest,Rsrc

[Function]

Signed division
Rdest = ( signed ) Rdest  /  ( signed ) Rsrc;

[Description]

DIV divides Rdest by Rsrc and puts the quotient in Rdest.
The operands are treated as signed 32-bit values and the result is rounded toward zero.
The condition bit (C) is unchanged.
When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src0000 00000000 00000000

DIV  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-31

3.2 Instruction description

DIVU DIVUmultiply and divide instruction
Divide unsigned

[Mnemonic]

DIVU  Rdest,Rsrc

[Function]

Unsigned division
Rdest = ( unsigned ) Rdest  /  ( unsigned ) Rsrc;

[Description]

DIVU divides Rdest by Rsrc and puts the quotient in Rdest.
The operands are treated as unsigned 32-bit values and the result is rounded toward zero.
The condition bit (C) is unchanged.
When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src0001 00000000 00000000

DIVU  Rdest,Rsrc



M32R family Software Manual3-32

INSTRUCTIONS
3.2 Instruction description

JL JLbranch instruction
Jump and link

[Mnemonic]

JL  Rsrc

[Function]

Subroutine call (register direct)
R14 = ( PC & 0xfffffffc ) + 4;
PC = Rsrc  & 0xfffffffc;

[Description]

JL causes an unconditional jump to the address specified by Rsrc and puts the return address
in R14.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11100001 src1100 JL  Rsrc



M32R family Software Manual

INSTRUCTIONS

3-33

3.2 Instruction description

JMP JMPbranch instruction
Jump

[Mnemonic]

JMP  Rsrc

[Function]

Jump
PC = Rsrc  & 0xfffffffc;

[Description]

JMP causes an unconditional jump to the address specified by Rsrc.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11110001 1100 src JMP  Rsrc



M32R family Software Manual3-34

INSTRUCTIONS
3.2 Instruction description

LD load/store instruction
Load LD

[Mnemonic]

➀   LD  Rdest,@Rsrc

➁   LD  Rdest,@Rsrc+
➂   LD  Rdest,@(disp16,Rsrc)

[Function]

Load
➀   Rdest = *( int *) Rsrc;
➁   Rdest = *( int *) Rsrc,  Rsrc += 4;
➂   Rdest = *( int *) ( Rsrc + ( signed short ) disp16 );

[Description]

➀ The contents of the memory at the address specified by Rsrc are loaded into Rdest.
➁ The contents of the memory at the address specified by Rsrc are loaded into Rdest.

Rsrc is post incremented by 4.
➂ The contents of the memory at the address specified by Rsrc combined with the 16-

bit displacement are loaded into Rdest.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest0010

dest1010

dest0010

1100 src

1110 src

1100 src disp16

LD  Rdest,@Rsrc

LD  Rdest,@Rsrc+

LD  Rdest,@(disp16,Rsrc)



M32R family Software Manual

INSTRUCTIONS

3-35

3.2 Instruction description

LD24 load/store instruction
Load 24-bit immediate LD24

[Mnemonic]

LD24  Rdest,#imm24

[Function]

Load
Rdest = imm24 & 0x00ffffff;

[Description]

LD24 loads the 24-bit immediate value into Rdest. The immediate value is zero-extended to 32
bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1110 imm24

LD24  Rdest,#imm24



M32R family Software Manual3-36

INSTRUCTIONS
3.2 Instruction description

load/store instruction
Load byte LDB

[Mnemonic]

➀   LDB  Rdest,@Rsrc

➁   LDB  Rdest,@(disp16,Rsrc)

[Function]

Load
➀   Rdest = *( signed char *) Rsrc;
➁   Rdest = *( signed char *) ( Rsrc + ( signed short ) disp16 );

[Description]

➀ LDB sign-extends the byte data of the memory at the address specified by Rsrc and loads
it into Rdest.

➁ LDB sign-extends the byte data of the memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

LDB

dest1010

dest0010 1000 src

1000 src disp16

LDB  Rdest,@Rsrc

LDB  Rdest,@(disp16,Rsrc)



M32R family Software Manual

INSTRUCTIONS

3-37

3.2 Instruction description

LDH LDHload/store instruction
Load halfword

[Mnemonic]

➀   LDH  Rdest,@Rsrc

➁   LDH  Rdest,@(disp16,Rsrc)

[Function]

Load
➀   Rdest = *( signed short *) Rsrc;
➁   Rdest = *( signed short *) ( Rsrc + ( signed short ) disp16 );

[Description]

➀ LDH sign-extends the halfword data of the memory at the address specified by Rsrc and
loads it into Rdest.

➁ LDH sign-extends the halfword data of the memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest1010

dest0010 1010 src

1010 src disp16

LDH  Rdest,@Rsrc

LDH  Rdest,@(disp16,Rsrc)



M32R family Software Manual3-38

INSTRUCTIONS
3.2 Instruction description

LDI transfer instruction
Load immediate LDI

[Mnemonic]

➀   LDI  Rdest,#imm8

➁   LDI  Rdest,#imm16

[Function]

Load
➀   Rdest = ( signed char ) imm8;
➁   Rdest = ( signed short ) imm16;

[Description]

➀ LDI loads the 8-bit immediate value into Rdest.
The immediate value is sign-extended to 32 bits.

➁ LDI loads the 16-bit immediate value into Rdest.
The immediate value is sign-extended to 32 bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001

dest0110

1111 0000

imm8

imm16

LDI  Rdest,#imm8

LDI  Rdest,#imm16



M32R family Software Manual

INSTRUCTIONS

3-39

3.2 Instruction description

LDUBLDUB
[Mnemonic]

➀   LDUB  Rdest,@Rsrc

➁   LDUB  Rdest,@(disp16,Rsrc)

[Function]

Load
➀   Rdest = *( unsigned char *) Rsrc;
➁   Rdest = *( unsigned char *) ( Rsrc + ( signed short ) disp16 );

[Description]

➀ LDUB zero-extends the byte data from the memory at the address specified by Rsrc and loads
it into Rdest.

➁ LDUB zero-extends the byte data of the memory at the address specified  by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

load/store instruction
Load unsigned byte

dest1010

dest0010 1001 src

1001 src disp16

LDUB  Rdest,@Rsrc

LDUB  Rdest,@(disp16,Rsrc)



M32R family Software Manual3-40

INSTRUCTIONS
3.2 Instruction description

LDUH LDUHload/store instruction
Load unsigned halfword

[Mnemonic]

➀   LDUH  Rdest,@Rsrc

➁   LDUH  Rdest,@(disp16,Rsrc)

[Function]

Load
➀   Rdest = *( unsigned short *) Rsrc;
➁   Rdest = *( unsigned short *) ( Rsrc + ( signed short ) disp16 );

[Description]

➀ LDUH zero-extends the halfword data from the memory at the address specified by Rsrc and
loads it into Rdest.

➁ LDUH zero-extends the halfword data in memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest1010

dest0010 1011 src

1011 src disp16

LDUH  Rdest,@Rsrc

LDUH  Rdest,@(disp16,Rsrc)



M32R family Software Manual

INSTRUCTIONS

3-41

3.2 Instruction description

LOCK LOCKload/store instruction
Load locked

[Mnemonic]

LOCK  Rdest,@Rsrc

[Function]

Load locked
LOCK = 1,  Rdest = *( int *) Rsrc;

[Description]

The contents of the word at the memory location specified by Rsrc are loaded into Rdest. The
condition bit (C) is unchanged.
This instruction sets the LOCK bit in addition to simple loading.
When the LOCK bit is 1, external bus master access is not accepted.
The LOCK bit is cleared by executing the UNLOCK  instruction.
The LOCK bit is internal to the CPU and cannot be accessed directly except by using the LOCK
or UNLOCK  instructions.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest0010 src1101 LOCK  Rdest,@Rsrc



M32R family Software Manual3-42

INSTRUCTIONS
3.2 Instruction description

[Mnemonic]

MACHI  Rsrc1,Rsrc2

[Function]

Multiply and add
accumulator += (( signed) (Rsrc1 & 0xffff0000) * (signed short) (Rsrc2 >> 16));

[Description]

MACHI multiplies the high-order 16 bits of Rsrc1 and the high-order 16 bits of Rsrc2, then adds
the result to the low-order 56 bits in the accumulator.
The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The
result of the addition is stored in the accumulator. The high-order 16 bits of Rsrc1 and Rsrc2
are treated as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MACHIMACHI DSP function instruction
Multiply-accumulate
high-order halfword

src10011 src20100 MACHI  Rsrc1,Rsrc2

Rsrc1high-order 16 bits

Rsrc2high-order 16 bitsx

0 15 16 31

0 Result of the multiplication

Value in accumulator before the
execution of the MACHI instruction

Value in accumulator after the
execution of the MACHI instruction

Sign extension

Sign extension

+

0 15 16 31 32 47 48 637 8



M32R family Software Manual

INSTRUCTIONS

3-43

3.2 Instruction description

[Mnemonic]

MACLO  Rsrc1,Rsrc2

[Function]

Multiply and add
accumulator +=  (  ( signed ) ( Rsrc1 << 16 ) * ( signed short ) Rsrc2  ) ;

[Description]

MACLO multiplies the low-order 16 bits of Rsrc1 and the low-order 16 bits of Rsrc2, then adds
the result to the low order 56 bits in the accumulator.
The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The
result of the addition is stored in the accumulator.  The low-order 16 bits of Rsrc1 and Rsrc2
are treated as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MACLO MACLODSP function instruction
Multiply-accumulate
low-order halfword

Rsrc1low-order 16 bits

Rsrc2low-order 16 bitsx

0 15 16 31

0

+

0 15 16 31 32 47 48 637 8

Result of the multiplication

Value in accumulator before the
execution of the MACLO instruction

Value in accumulator after the
execution of the MACLO instruction

Sign extension

Sign extension

src10011 src20101 MACLO  Rsrc1,Rsrc2



M32R family Software Manual3-44

INSTRUCTIONS
3.2 Instruction description

[Mnemonic]

MACWHI  Rsrc1,Rsrc2

[Function]

Multiply and add
accumulator += ( ( signed )  Rsrc1 * ( signed short ) ( Rsrc2 >> 16 ) );

[Description]

MACWHI multiplies the 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2, then adds the result
to the low-order 56 bits in the accumulator.
The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign extended before addition.  The
result of addition is stored in the accumulator. The 32 bits of Rsrc1 and the high-order 16 bits
of Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MACWHI MACWHIDSP function instruction
Multiply-accumulate word
and high-order halfword

high-order 16 bits

Rsrc132 bits

Rsrc2x

0 15 16 31

+

0 15 16 31 32 47 48 637 8

Result of the multiplication

Value in accumulator before the
execution of the MACWHI instruction

Value in accumulator after the
execution of the MACWHI instruction

Sign extension

Sign extension

src10011 src20110 MACWHI  Rsrc1,Rsrc2



M32R family Software Manual

INSTRUCTIONS

3-45

3.2 Instruction description

[Mnemonic]

MACWLO  Rsrc1,Rsrc2

[Function]

Multiply and add
accumulator +=  (  ( signed ) Rsrc1 * ( signed short ) Rsrc2  ) ;

[Description]

MACWLO multiplies the 32 bits of Rsrc1 and the low-order 16 bits of Rsrc2, then adds the result
to the low-order 56 bits in the accumulator.
The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before the addition.  The
result of the addition is stored in the accumulator. The 32 bits Rsrc1 and the low-order 16 bits
of Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MACWLO MACWLODSP function instruction
Multiply-accumulate

word and low-order halfword

Rsrc132 bits

Rsrc2low-order 16 bitsx

0 15 16 31

+

0 15 16 31 32 47 48 637 8

Result of the multiplication

Value in accumulator before the
execution of the MACWLO instruction

Value in accumulator after the
execution of the MACWLO instruction

Sign extension

Sign extension

src10011 src20111 MACWLO  Rsrc1,Rsrc2



M32R family Software Manual3-46

INSTRUCTIONS
3.2 Instruction description

MUL MULmultiply and divide instruction
Multiply

[Mnemonic]

MUL  Rdest,Rsrc

[Function]

Multiply
{  signed64bit tmp;
tmp = ( signed64bit ) Rdest * ( signed64bit ) Rsrc;
Rdest = ( int ) tmp;}

[Description]

MUL multiplies Rdest by Rsrc and puts the result in Rdest.
The operands are treated as signed values.
The condition bit (C) is unchanged.  The contents of the accumulator are destroyed by this
instruction.

[EIT occurrence]

None

[Encoding]

dest0001 src0110 MUL  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-47

3.2 Instruction description

[Mnemonic]

MULHI  Rsrc1,Rsrc2

[Function]

Multiply
accumulator = (( signed) (Rsrc1 & 0xffff000 ) * (signed short) (Rsrc2 >> 16));

[Description]

MULHI multiplies the high-order 16 bits of Rsrc1 and the high-order 16 bits of Rsrc2, and stores
the result in the accumulator.
However, the LSB of the multiplication result is aligned with bit 47 in the accumulator, and the
portion corresponding to bits 0 through 15 of the accumulator is sign-extended.  Bits 48 through
63 of the accumulator are cleared to 0.  The high-order 16 bits of Rsrc1 and Rsrc2 are treated
as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MULHI MULHIDSP function instruction
Multiply high-order halfwords

Rsrc1high-order 16 bits

Rsrc2high-order 16 bitsx

0 15 16 31

0

0 15 16 31 32 47 48 63

Value in accumulator after the
execution of the MALHI instruction

Sign extension

src10011 src20000 MULHI  Rsrc1,Rsrc2



M32R family Software Manual3-48

INSTRUCTIONS
3.2 Instruction description

[Mnemonic]

MULLO  Rsrc1,Rsrc2

[Function]

Multiply
accumulator = (  ( signed ) ( Rsrc1 << 16 ) * ( signed short )  Rsrc2  );

[Description]

MULLO multiplies the low-order 16 bits of Rsrc1 and the low-order 16 bits of Rsrc2, and stores
the result in the accumulator.
The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign extended.  Bits 48 through 63 of
the accumulator are cleared to 0.  The low-order 16 bits of Rsrc1 and Rsrc2 are treated as
signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MULLO DSP function instruction
Multiply low-order halfwords MULLO

src10011 src20001 MULLO  Rsrc1,Rsrc2

Rsrc1

Rsrc2x

0 15 16 31

low-order 16 bits

0

0 15 16 31 32 47 48 63

low-order 16 bits

Value in accumulator after the
execution of the MULLO instruction

Sign extension



M32R family Software Manual

INSTRUCTIONS

3-49

3.2 Instruction description

[Mnemonic]

MULWHI  Rsrc1,Rsrc2

[Function]

Multiply
accumulator = ( ( signed )  Rsrc1 * ( signed short ) ( Rsrc2 >> 16 ) );

[Description]

MULWHI multiplies the 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2, and stores the result
in the accumulator.
The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign-extended.  The 32 bits of Rsrc1
and high-order 16 bits of Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MULWHI MULWHIDSP  function instruction
Multiply word

and high-order halfword

Rsrc132 bits

Rsrc2x

0 15 16 31

0 15 16 31 32 47 48 63

high-order 16 bits

Value in accumulator after the
execution of the MULWHI instruction

Sign extension

src10011 src20010 MULWHI  Rsrc1,Rsrc2



M32R family Software Manual3-50

INSTRUCTIONS
3.2 Instruction description

[Mnemonic]

MULWLO  Rsrc1,Rsrc2

[Function]

Multiply
accumulator = ( ( signed )  Rsrc1 * ( signed short )  Rsrc2  );

[Description]

MULWLO multiplies the 32 bits of Rsrc1 and the low-order 16 bits of Rsrc2, and stores the result
in the accumulator.
The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign extended. The 32 bits of Rsrc1
and low-order 16 bits of Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MULWLO MULWLODSP fucntion instruction
Multiply word and
low-order halfword

Rsrc1

Rsrc2x

0 15 16 31

0 15 16 31 32 47 48 63

Value in accumulator after the
execution of the MULWLO instruction

Sign extension

low-order 16 bits

32 bits

src10011 src20011 MULWLO  Rsrc1,Rsrc2



M32R family Software Manual

INSTRUCTIONS

3-51

3.2 Instruction description

MV MVtransfer instruction
Move register

[Mnemonic]

MV  Rdest,Rsrc

[Function]

Transfer
Rdest = Rsrc;

[Description]

MV moves Rsrc to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src1000 MV  Rdest,Rsrc



M32R family Software Manual3-52

INSTRUCTIONS
3.2 Instruction description

MVFACHI MVFACHIDSP function instruction
Move from accumulator

high-order word

[Mnemonic]

MVFACHI  Rdest

[Function]

Transfer from accumulator to register
Rdest = ( int ) ( accumulator >> 32 ) ;

[Description]

MVFACHI moves the high-order 32 bits of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 00001111 MVFACHI  Rdest



M32R family Software Manual

INSTRUCTIONS

3-53

3.2 Instruction description

MVFACLO MVFACLODSP function instruction
Move from accumulator

low-order word

[Mnemonic]

MVFACLO  Rdest

[Function]

Transfer from accumulator to register
Rdest = ( int )  accumulator ;

[Description]

MVFACLO moves the low-order 32 bits of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 00011111 MVFACLO  Rdest



M32R family Software Manual3-54

INSTRUCTIONS
3.2 Instruction description

MVFACMI MVFACMIDSP  function instruction
Move from accumulator

middle-order word

[Mnemonic]

MVFACMI  Rdest

[Function]

Transfer from accumulator to register
Rdest = ( int ) ( accumulator >> 16 ) ;

[Description]

MVFACMI moves bits16 through 47 of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 00101111 MVFACMI  Rdest



M32R family Software Manual

INSTRUCTIONS

3-55

3.2 Instruction description

MVFC MVFCtransfer instruction
Move from control register

[Mnemonic]

MVFC  Rdest,CRsrc

[Function]

Transfer from control register to register
Rdest = CRsrc ;

[Description]

MVFC moves CRsrc to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src1001 MVFC  Rdest,CRsrc



M32R family Software Manual3-56

INSTRUCTIONS
3.2 Instruction description

MVTACHI MVTACHIDSP function instruction
Move to accumulator

high-order word

[Mnemonic]

MVTACHI  Rsrc

[Function]

Transfer from register to accumulator
accumulator [ 0 : 31 ] = Rsrc ;

[Description]

MVTACHI moves Rsrc to the high-order 32 bits of the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src0101 00000111 MVTACHI  Rsrc



M32R family Software Manual

INSTRUCTIONS

3-57

3.2 Instruction description

MVTACLO MVTACLODSP function instruction
Move to accumulator

low-order word

[Mnemonic]

MVTACLO  Rsrc

[Function]

Transfer from register to accumulator
accumulator [ 32 : 63 ] = Rsrc ;

[Description]

MVTACLO moves Rsrc to the low-order 32 bits of the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src0101 00010111 MVTACLO  Rsrc



M32R family Software Manual3-58

INSTRUCTIONS
3.2 Instruction description

MVTC MVTCtransfer instruction
Move to control register

[Mnemonic]

MVTC  Rsrc,CRdest

[Function]

Transfer from register to control register
CRdest = Rsrc ;

[Description]

MVTC moves Rsrc to CRdest.
If PSW(CR0) is specified as CRdest, the condition bit (C) is changed; otherwise it is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src1010 MVTC  Rsrc,CRdest



M32R family Software Manual

INSTRUCTIONS

3-59

3.2 Instruction description

NEG NEGarithmetic operation instruction
Negate

[Mnemonic]

NEG  Rdest,Rsrc

[Function]

Negate
Rdest = 0 – Rsrc ;

[Description]

NEG negates (changes the sign of) Rsrc treated as a signed 32-bit value, and puts the result
in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 src0011 NEG  Rdest,Rsrc



M32R family Software Manual3-60

INSTRUCTIONS
3.2 Instruction description

NOPNOP branch instruction
No operation

[Mnemonic]

NOP

[Function]

No operation
/*   */

[Description]

NOP performs no operation. The subsequent instruction then processed.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

00000111 00000000 NOP



M32R family Software Manual

INSTRUCTIONS

3-61

3.2 Instruction description

NOT NOTlogic operation instruction
Logical NOT

[Mnemonic]

NOT  Rdest,Rsrc

[Function]

Logical NOT
Rdest = ~ Rsrc ;

[Description]

NOT inverts each of the bits of Rsrc and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 src1011 NOT  Rdest,Rsrc



M32R family Software Manual3-62

INSTRUCTIONS
3.2 Instruction description

OR ORlogic operation instruction
OR

[Mnemonic]

OR  Rdest,Rsrc

[Function]

Logical OR
Rdest = Rdest  |  Rsrc ;

[Description]

OR computes the logical OR of the corresponding bits of Rdest and Rsrc, and puts the result
in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 OR  Rdest,Rsrcsrc1110



M32R family Software Manual

INSTRUCTIONS

3-63

3.2 Instruction description

OR3 OR3logic operation instruction
OR 3-operand

[Mnemonic]

OR3  Rdest,Rsrc,#imm16

[Function]

Logical OR
Rdest = Rsrc  |  ( unsigned short ) imm16 ;

[Description]

OR3 computes the logical OR of the corresponding bits of Rsrc and the 16-bit immediate value,
which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1000 src1110 imm16

OR3  Rdest,Rsrc,#imm16



M32R family Software Manual3-64

INSTRUCTIONS
3.2 Instruction description

RAC RACDSP function instruction
Round accumulator

[Mnemonic]

RAC

[Function]

{ signed64bit tmp;
if( 0x0000 3fff ffff 8000 =< accumulator )
    tmp = 0x0000 3fff ffff 8000;
else if( accumulator =< 0xffff c000 0000 0000 )
    tmp = 0xffff c000 0000 0000;
else {
    tmp = accumulator + 0x0000 0000 0000 4000;
    tmp = tmp & 0xffff ffff ffff 8000;}
accumulator = tmp << 1;}

[Description]

RAC rounds the contents in the accumulator to word size and stores the result in the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

00000101 00001001 RAC



M32R family Software Manual

INSTRUCTIONS

3-65

3.2 Instruction description

[Supplement]

This instruction is executed in two steps as shown below:

<step 1>

<step 2>

The value in the accumulator is altered depending on the value of bits 8 through 63.

if bit 49 is 0 , there is no carry.
if bit 49 is 1 , the bit is carried.
Bits 49 to 63 are cleared (zero).

7F FFFF FFFF FFFF

00 3FFF FFFF 8000positive
value

negative
value

00 3FFF FFFF 7FFF

00 0000 0000 0000

FF BFFF FFFF FFFF
FF C000 0000 0000

80 0000 0000 0000

0Sign extension

1-bit shift to the left

Value in the accumulator after the
execution of the RAC instruction

8 6316 32 48

00 3FFF FFFF 8000
8 63

FF C000 0000 0000
8 63

48 49
8 63

0

48
8 63

0

••••••

••••••

••••

••••

16 32 488 63

16 32 488 6347



M32R family Software Manual3-66

INSTRUCTIONS
3.2 Instruction description

RACH RACHDSP function instruction
Round accumulator halfword

[Mnemonic]

RACH

[Function]

{ signed64bit tmp;
if( 0x0000 3fff 8000 0000 =< accumulator )
    tmp = 0x0000 3fff 8000 0000;
else if( accumulator =< 0xffff c000 0000 0000 )
    tmp = 0xffff c000 0000 0000;
else {
    tmp = accumulator + 0x0000 0000 4000 0000;
    tmp = tmp & 0xffff ffff 8000 0000;}
accumulator = tmp << 1;}

[Description]

RACH rounds the contents in the accumulator to halfword size and stores the result in the
accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

00000101 00001000 RACH



M32R family Software Manual

INSTRUCTIONS

3-67

3.2 Instruction description

[Supplement]

This instruction is executed in two steps, as shown below.

<step 1>

<step 2>

7F FFFF FFFF FFFF

00 3FFF FFFF 8000
00 3FFF FFFF 7FFF

00 0000 0000 0000

FF BFFF FFFF FFFF
FF C000 0000 0000

80 0000 0000 0000

0

8 6316 32 48

00 3FFF 0000
8 63

FF C000 0000 0000
8 63

32 33
8 63

32
8 63

••••••

••••••

••••

••••

16 32 488 63

16 32 488 6347

8000

0000

00000000

31

00

0

Value in the accumulator is altered depending on the value of bits 8 through 63.

if bit 33 is 0 , there is no carry.
if bit 33 is 1 , the bit is carried.
Bits 33 to 63 are cleared (zero).

positive
value

negative
value

Sign extension

1-bit shift to the left

Value in the accumulator after the
execution of the RACH instruction



M32R family Software Manual3-68

INSTRUCTIONS
3.2 Instruction description

REM REMmultiply and divide instruction
Remainder

[Mnemonic]

REM  Rdest,Rsrc

[Function]

Signed division
Rdest =  ( signed ) Rdest  %  ( signed ) Rsrc ;

[Description]

REM divides Rdest by Rsrc and puts the quotient in Rdest. The operands are treated as signed
32-bit values.
The quotient is rounded toward zero and the quotient takes the same sign as the dividend.
The condition bit (C) is unchanged.
When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src0010 00000000 00000000

REM  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-69

3.2 Instruction description

REMU REMUmultiply and divide instruction
Remainder unsigned

[Mnemonic]

REMU  Rdest,Rsrc

[Function]

Unsigned division
Rdest =  ( unsigned ) Rdest  %  ( unsigned ) Rsrc ;

[Description]

REMU divides Rdest by Rsrc and puts the quotient in Rdest.
The operands are treated as unsigned 32-bit values.
The condition bit (C) is unchanged.
When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src0011 00000000 00000000

REMU  Rdest,Rsrc



M32R family Software Manual3-70

INSTRUCTIONS
3.2 Instruction description

RTE RTEEIT-related instruction
Return from EIT

[Mnemonic]

RTE

[Function]

Return from EIT
SM = BSM ;
IE = BIE ;
C = BC ;
PC = BPC & 0xfffffffc ;

[Description]

RTE restores the SM, IE and C bits of the PSW from the BSM, BIE and BC bits, and jumps to
the address specified by BPC.

[EIT occurrence]

None

[Encoding]

00000001 01101101 RTE



M32R family Software Manual

INSTRUCTIONS

3-71

3.2 Instruction description

SETH SETHtransfer instruction
Set high-order 16-bit

[Mnemonic]

SETH  Rdest,#imm16

[Function]

Transfer instructions
Rdest = ( short ) imm16 << 16 ;

[Description]

SETH loads the immediate value into the 16 most significant bits of Rdest.
The 16 least significant bits become zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1101 00001100

SETH  Rdest,#imm16

imm16



M32R family Software Manual3-72

INSTRUCTIONS
3.2 Instruction description

SLL SLLshift instruction
Shift left logical

[Mnemonic]

SLL  Rdest,Rsrc

[Function]

Logical left shift
Rdest = Rdest  <<  ( Rsrc & 31 ) ;

[Description]

SLL left logical-shifts the contents of Rdest by the number specified by Rsrc, shifting zeroes into
the least significant bits.
Only the five least significant bits of Rsrc are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src0100 SLL  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-73

3.2 Instruction description

SLL3 SLL3shift instruction
Shift left logical 3-operand

[Mnemonic]

SLL3  Rdest,Rsrc,#imm16

[Function]

Logical left shift
Rdest = Rsrc  <<  ( imm16 & 31 ) ;

[Description]

SLL3 left logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit
immediate value, shifting zeroes into the least significant bits.
Only the five least significant bits of the 16-bit immediate value are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src1100 imm16

SLL3  Rdest,Rsrc,#imm16



M32R family Software Manual3-74

INSTRUCTIONS
3.2 Instruction description

SLLI SLLIshift instruction
Shift left logical immediate

[Mnemonic]

SLLI  Rdest,#imm5

[Function]

Logical left shift
Rdest = Rdest  <<  imm5 ;

[Description]

SLLI left logical-shifts the contents of Rdest by the number specified by the 5-bit immediate
value, shifting zeroes into the least significant bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 imm5010 SLLI  Rdest,#imm5



M32R family Software Manual

INSTRUCTIONS

3-75

3.2 Instruction description

SRA SRAshift instruction
Shift right arithmetic

[Mnemonic]

SRA  Rdest,Rsrc

[Function]

Arithmetic right shift
Rdest = ( signed ) Rdest  >>  ( Rsrc & 31 ) ;

[Description]

SRA right arithmetic-shifts the contents of Rdest by the number specified by Rsrc, replicates the
sign bit in the MSB of Rdest and puts the result in Rdest.
Only the five least significant bits are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src0010 SRA  Rdest,Rsrc



M32R family Software Manual3-76

INSTRUCTIONS
3.2 Instruction description

SRA3 SRA3shift instruction
Shift right arithmetic 3-operand

[Mnemonic]

SRA3  Rdest,Rsrc,#imm16

[Function]

Arithmetic right shift
Rdest = ( signed ) Rsrc  >>  ( imm16 & 31 ) ;

[Description]

SRA3 right arithmetic-shifts the contents of Rsrc into Rdest by the number specified by the 16-
bit immediate value, replicates the sign bit in Rsrc and puts the result in Rdest.
Only the five least significant bits are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src1010 imm16

SRA3  Rdest,Rsrc,#imm16



M32R family Software Manual

INSTRUCTIONS

3-77

3.2 Instruction description

SRAI SRAIshift instruction
Shift right arithmetic immediate

[Mnemonic]

SRAI  Rdest,#imm5

[Function]

Arithmetic right shift
Rdest = ( signed ) Rdest  >> imm5 ;

[Description]

SRAI right arithmetic-shifts the contents of Rdest by the number specified by the 5-bit immediate
value, replicates the sign bit in MSB of Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 imm5001 SRAI  Rdest,#imm5



M32R family Software Manual3-78

INSTRUCTIONS
3.2 Instruction description

SRL SRLshift instruction
Shift right logical

[Mnemonic]

SRL  Rdest,Rsrc

[Function]

Logical right shift
Rdest = ( unsigned ) Rdest  >>  ( Rsrc & 31 ) ;

[Description]

SRL right logical-shifts the contents of Rdest by the number specified by Rsrc, shifts zeroes into
the most significant bits and puts the result in Rdest.
Only the five least significant bits of Rsrc are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src0000 SRL  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-79

3.2 Instruction description

SRL3 SRL3shift instruction
Shift right logical 3-operand

[Mnemonic]

SRL3  Rdest,Rsrc,#imm16

[Function]

Logical right shift
Rdest = ( unsigned ) Rsrc  >>  ( imm16 & 31 ) ;

[Description]

SRL3 right logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-
bit immediate value, shifts zeroes into the most significant bits. Only the five least significant
bits of the immediate value are valid.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src1000 imm16

SRL3  Rdest,Rsrc,#imm16



M32R family Software Manual3-80

INSTRUCTIONS
3.2 Instruction description

SRLI SRLIshift instruction
Shift right logical immediate

[Mnemonic]

SRLI  Rdest,#imm5

[Function]

Logical right shift
Rdest = ( unsigned ) Rdest  >>  ( imm5 & 31 ) ;

[Description]

SRLI right arithmetic-shifts Rdest by the number specified by the 5-bit immediate value, shifting
zeroes into the most significant bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 imm5000 SRLI  Rdest,#imm5



M32R family Software Manual

INSTRUCTIONS

3-81

3.2 Instruction description

ST STload/store instruction
Store

[Mnemonic]

➀   ST  Rsrc1,@Rsrc2

➁   ST  Rsrc1,@+Rsrc2
➂   ST  Rsrc1,@-Rsrc2

➃    ST  Rsrc1,@(disp16,Rsrc2)

[Function]

Store
➀   * ( int *) Rsrc2 = Rsrc1;
➁   Rsrc2 += 4,   * ( int *) Rsrc2 = Rsrc1;
➂   Rsrc2 -= 4,   * ( int *) Rsrc2 = Rsrc1;

   * ( int *) ( Rsrc2 + ( signed short ) disp16 ) = Rsrc1;

[Description]

➀ ST stores Rsrc1 in the memory at the address specified by Rsrc2.
➁ ST increments Rsrc2 by 4 and stores Rsrc1 in the memory at the address specified by the

resultant Rsrc2.
➂ ST decrements Rsrc2 by 4 and stores the contents of Rsrc1 in the memory at the address

specified by the resultant Rsrc2.
 ST stores Rsrc1 in the memory at the address specified by Rsrc combined with the 16-bit

displacement. The displacement value is sign-extended before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

➃

➃



M32R family Software Manual3-82

INSTRUCTIONS
3.2 Instruction description

[Encoding]

src11010

src10010 0111 src2

0100 src2 disp16

src10010 0110 src2

src10010 0100 src2 ST  Rsrc1,@Rsrc2

ST  Rsrc1,@+Rsrc2

ST  Rsrc1,@-Rsrc2

ST  Rsrc1,@(disp16,Rsrc2)



M32R family Software Manual

INSTRUCTIONS

3-83

3.2 Instruction description

STB STBload/store instruction
Store byte

[Mnemonic]

➀   STB  Rsrc1,@Rsrc2

➁   STB  Rsrc1,@(disp16,Rsrc2)

[Function]

Store
➀   * ( char *) Rsrc2 = Rsrc1;
➁   * ( char *) ( Rsrc2 + ( signed short ) disp16 ) = Rsrc1;

[Description]

➀ STB stores the least significant byte of Rsrc1 in the memory at the address specified by
Rsrc2.

➁ STB stores the least significant byte of Rsrc1 in the memory at the address specified by Rsrc
combined with the 16-bit displacement.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src11010

src10010 0000 src2

0000 src2 disp16

STB  Rsrc1,@Rsrc2

STB  Rsrc1,@(disp16,Rsrc2)



M32R family Software Manual3-84

INSTRUCTIONS
3.2 Instruction description

STH STHload/store instruction
Store halfword

[Mnemonic]

➀   STH  Rsrc1,@Rsrc2

➁   STH  Rsrc1,@(disp16,Rsrc2)

[Function]

Store
➀   * ( short *) Rsrc2 = Rsrc1;
➁   * ( short *) ( Rsrc2 + ( signed short ) disp16 ) = Rsrc1;

[Description]

➀ STH stores the least significant halfword of Rsrc1 in the memory at the address
specified by Rsrc2.

➁ STH stores the least significant halfword of Rsrc1 in the memory at the address specified by
Rsrc combined with the 16-bit displacement. The displacement  value is sign-extended to 32
bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

src11010

src10010 0010 src2

0010 src2 disp16

STH  Rsrc1,@Rsrc2

STH  Rsrc1,@(disp16,Rsrc2)



M32R family Software Manual

INSTRUCTIONS

3-85

3.2 Instruction description

SUB SUBarithmetic operation instruction
Subtract

[Mnemonic]

SUB  Rdest,Rsrc

[Function]

Subtract
Rdest = Rdest - Rsrc;

[Description]

SUB subtracts Rsrc from Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 0010 src SUB  Rdest,Rsrc



M32R family Software Manual3-86

INSTRUCTIONS
3.2 Instruction description

SUBV SUBVarithmetic operation instruction
Subtract with overflow checking

[Mnemonic]

SUBV  Rdest,Rsrc

[Function]

Subtract
Rdest = Rdest - Rsrc;
C = overflow  ?  1 : 0;

[Description]

SUBV subtracts Rsrc from Rdest and puts the result in Rdest.
The condition bit (C) is set when the subtraction results in overflow; otherwise, it is cleared.

[EIT occurrence]

None

[Encoding]

dest0000 0000 src SUBV  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-87

3.2 Instruction description

SUBX SUBXarithmetic operation instruction
Subtract with borrow

[Mnemonic]

SUBX  Rdest,Rsrc

[Function]

Subtract
Rdest = ( unsigned ) Rdest - ( unsigned ) Rsrc - C;
C = borrow  ?  1 : 0;

[Description]

SUBX subtracts Rsrc and C from Rdest and puts the result in Rdest.
The condition bit (C) is set when the subtraction result cannot be represented by a 32-bit
unsigned integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

dest0000 0001 src SUBX  Rdest,Rsrc



M32R family Software Manual3-88

INSTRUCTIONS
3.2 Instruction description

TRAP TRAPEIT-related instruction
Trap

[Mnemonic]

TRAP  #imm4

[Function]

Trap occurrence
BPC = PC + 4;
BSM = SM;
BIE = IE;
BC = C ;
IE = 0;
C = 0;
call_trap_handler( imm4 );

[Description]

TRAP generates a trap with the trap number specified by the 4-bit immediate value.
IE and C bits are cleared to "0".

[EIT occurrence]

Trap (TRAP)

[Encoding]

0001 0000 1111 imm4 TRAP  #imm4;



M32R family Software Manual

INSTRUCTIONS

3-89

3.2 Instruction description

UNLOCK UNLOCKload/store instruction
Store unlocked

[Mnemonic]

UNLOCK  Rsrc1,@Rsrc2

[Function]

Store unlocked
if ( LOCK == 1 ) { * ( int *) Rsrc2 = Rsrc1; }
LOCK = 0;

[Description]

When the LOCK bit is 1, the contents of Rsrc1 are stored at the memory location specified by
Rsrc2. When the LOCK bit is 0, store operation is not executed. The condition bit (C) is unchanged.
This instruction clears the LOCK bit to 0 in addition to the simple storage operation.
The LOCK bit is internal to the CPU and cannot be accessed except by using the LOCK and
UNLOCK instructions.

[EIT occurrence]

Address exception (AE)

[Encoding]

src10010 src20101 UNLOCK  Rsrc1,@Rsrc2



M32R family Software Manual3-90

INSTRUCTIONS
3.2 Instruction description

XOR XORlogic operation instruction
Exclusive OR

[Mnemonic]

XOR  Rdest,Rsrc

[Function]

Exclusive OR
Rdest = ( unsigned ) Rdest ^ ( unsigned ) Rsrc;

[Description]

XOR computes the logical XOR of the corresponding bits of Rdest and Rsrc, and puts the result
in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 src1101 XOR  Rdest,Rsrc



M32R family Software Manual

INSTRUCTIONS

3-91

3.2 Instruction description

XOR3 XOR3logic operation instruction
Exclusive OR 3-operand

[Mnemonic]

XOR3  Rdest,Rsrc,#imm16

[Function]

Exclusive OR
Rdest = ( unsigned ) Rsrc ^ ( unsigned short ) imm16;

[Description]

XOR3 computes the logical XOR of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1000 1101 src imm16

XOR3  Rdest,Rsrc,#imm16



APPENDICES

Appendix A Instruction list
Appendix B Pipeline stages
Appendix C Instruction execution time



M32R family Software ManualA-2

APPENDICES
Appendix A Instruction list

Appendix A   Instruction list
The M32R family instruction list is shown below (in alphabetical order).

mnemonic function condition bit (C)

ADD Rdest,Rsrc Rdest = Rdest + Rsrc –

ADD3 Rdest,Rsrc,#imm16 Rdest = Rsrc + (sh)imm16 –

ADDI Rdest,#imm8 Rdest = Rdest + (sb)imm8 –

ADDV Rdest,Rsrc Rdest = Rdest + Rsrc change

ADDV3 Rdest,Rsrc,#imm16 Rdest = Rsrc + (sh)imm16 change

ADDX Rdest,Rsrc Rdest = Rdest + Rsrc + C change

AND Rdest,Rsrc Rdest = Rdest & Rsrc –

AND3 Rdest,Rsrc,#imm16 Rdest = Rsrc & (uh)imm16 –

BC pcdisp8 if(C) PC=PC+((sb)pcdisp8<<2) –

BC pcdisp24 if(C) PC=PC+((s24)pcdisp24<<2) –

BEQ Rsrc1,Rsrc2,pcdisp16 if(Rsrc1 == Rsrc2) PC=PC+((sh)pcdisp16<<2) –

BEQZ Rsrc,pcdisp16 if(Rsrc == 0) PC=PC+((sh)pcdisp16<<2) –

BGEZ Rsrc,pcdisp16 if(Rsrc >= 0) PC=PC+((sh)pcdisp16<<2) –

BGTZ Rsrc,pcdisp16 if(Rsrc > 0) PC=PC+((sh)pcdisp16<<2) –

BL pcdisp8 R14=PC+4,PC=PC+((sb)pcdisp8<<2) –

BL pcdisp24 R14=PC+4,PC=PC+((s24)pcdisp24<<2) –

BLEZ Rsrc,pcdisp16 if(Rsrc <= 0) PC=PC+((sh)pcdisp16<<2) –

BLTZ Rsrc,pcdisp16 if(Rsrc < 0) PC=PC+((sh)pcdisp16<<2) –

BNC pcdisp8 if(!C) PC=PC+((sb)pcdisp8<<2) –

BNC pcdisp24 if(!C) PC=PC+((s24)pcdisp24<<2) –

BNE Rsrc1,Rsrc2,pcdisp16 if(Rsrc1 != Rsrc2) PC=PC+((sh)pcdisp16<<2) –

BNEZ Rsrc,pcdisp16 if(Rsrc != 0) PC=PC+((sh)pcdisp16<<2) –

BRA pcdisp8 PC=PC+((sb)pcdisp8<<2) –

BRA pcdisp24 PC=PC+((s24)pcdisp24<<2) –

CMP Rsrc1,Rsrc2 (s)Rsrc1 < (s)Rsrc2 change

CMPI Rsrc,#imm16 (s)Rsrc < (sh)imm16 change

CMPU Rsrc1,Rsrc2 (u)Rsrc1 < (u)Rsrc2 change

CMPUI Rsrc,#imm16 (u)Rsrc < (u)((sh)imm16) change

DIV Rdest,Rsrc Rdest = (s)Rdest / (s)Rsrc –

DIVU Rdest,Rsrc Rdest = (u)Rdest / (u)Rsrc –

JL Rsrc R14 = PC+4, PC = Rsrc –

JMP Rsrc PC = Rsrc –

LD Rdest,@(disp16,Rsrc) Rdest = *(s *)(Rsrc+(sh)disp16) –

LD Rdest,@Rsrc Rdest = *(s *)Rsrc –

LD Rdest,@Rsrc+ Rdest = *(s *)Rsrc, Rsrc += 4 –



M32R family Software Manual

APPENDICES

A-3

Appendix A Instruction list

mnemonic function condition bit (C)

LD24 Rdest,#imm24 Rdest = imm24 & 0x00ffffff –

LDB Rdest,@(disp16,Rsrc) Rdest = *(sb *)(Rsrc+(sh)disp16) –

LDB Rdest,@Rsrc Rdest = *(sb *)Rsrc –

LDH Rdest,@(disp16,Rsrc) Rdest = *(sh *)(Rsrc+(sh)disp16) –

LDH Rdest,@Rsrc Rdest = *(sh *)Rsrc –

LDI Rdest,#imm16 Rdest = (sh)imm16 –

LDI Rdest,#imm8 Rdest = (sb)imm8 –

LDUB Rdest,@(disp16,Rsrc) Rdest = *(ub *)(Rsrc+(sh)disp16) –

LDUB Rdest,@Rsrc Rdest = *(ub *)Rsrc –

LDUH Rdest,@(disp16,Rsrc) Rdest = *(uh *)(Rsrc+(sh)disp16) –

LDUH Rdest,@Rsrc Rdest = *(ub *)Rsrc –

LOCK Rdest,@Rsrc LOCK = 1, Rdest = *(s *)Rsrc –

MACHI Rsrc1,Rsrc2 accumulator += (s)(Rsrc1 & 0xffff0000) –

               * (s)((s)Rsrc2>>16)

MACLO Rsrc1,Rsrc2 accumulator += (s)(Rsrc1<<16) * (sh)Rsrc2 –

MACWHI Rsrc1,Rsrc2 accumulator += (s)Rsrc1 * (s)((s)Rsrc2>>16) –

MACWLO Rsrc1,Rsrc2 accumulator += (s)Rsrc1 * (sh)Rsrc2 –

MUL Rdest,Rsrc Rdest = (s)Rdest * (s)Rsrc –

MULHI Rsrc1,Rsrc2 accumulator = (s)(Rsrc1 & 0xffff0000) –

              * (s)((s)Rsrc2>>16)

MULLO Rsrc1,Rsrc2 accumulator = (s)(Rsrc1<<16) * (sh)Rsrc2 –

MULWHI Rsrc1,Rsrc2 accumulator = (s)Rsrc1 * (s)((s)Rsrc2>>16) –

MULWLO Rsrc1,Rsrc2 accumulator = (s)Rsrc1 * (sh)Rsrc2 –

MV Rdest,Rsrc Rdest = Rsrc –

MVFACHI Rdest Rdest = accumulater >> 32 –

MVFACLO Rdest Rdest = accumulator –

MVFACMI Rdest Rdest = accumulator >> 16 –

MVFC Rdest,CRsrc Rdest = CRsrc –

MVTACHI Rsrc accumulator[0:31] = Rsrc –

MVTACLO Rsrc accumulator[32:63] = Rsrc –

MVTC Rsrc,CRdest CRdest = Rsrc change

NEG Rdest,Rsrc Rdest = 0 - Rsrc –

NOP /*no-operation*/ –

NOT Rdest,Rsrc Rdest = ~Rsrc –

OR Rdest,Rsrc Rdest = Rdest | Rsrc –

OR3 Rdest,Rsrc,#imm16 Rdest = Rsrc | (uh)imm16 –

RAC Round the 32-bit value in the accumulator –

RACH Round the 16-bit value in the accumulator –

REM Rdest,Rsrc Rdest = (s)Rdest % (s)Rsrc –

REMU Rdest,Rsrc Rdest = (u)Rdest % (u)Rsrc –

RTE PC = BPC & 0xfffffffc, change

PSW[SM,IE,C] = PSW[BSM,BIE,BC]



M32R family Software ManualA-4

APPENDICES
Appnedix A Instruction list

mneminic function condition bit (C)

SETH Rdest,#imm16 Rdest = imm16 << 16 –

SLL Rdest,Rsrc Rdest = Rdest << (Rsrc & 31) –

SLL3 Rdest,Rsrc,#imm16 Rdest = Rsrc << (imm16 & 31) –

SLLI Rdest,#imm5 Rdest = Rdest << imm5 –

SRA Rdest,Rsrc Rdest = (s)Rdest >> (Rsrc & 31) –

SRA3 Rdest,Rsrc,#imm16 Rdest = (s)Rsrc >> (imm16 & 31) –

SRAI Rdest,#imm5 Rdest = (s)Rdest >> imm5 –

SRL Rdest,Rsrc Rdest = (u)Rdest >> (Rsrc & 31) –

SRL3 Rdest,Rsrc,#imm16 Rdest = (u)Rsrc >> (imm16 & 31) –

SRLI Rdest,#imm5 Rdest = (u)Rdest >> imm5 –

ST Rsrc1,@(disp16,Rsrc2) *(s *)(Rsrc2+(sh)disp16) = Rsrc1 –

ST Rsrc1,@+Rsrc2 Rsrc2 += 4, *(s *)Rsrc2 = Rsrc1 –

ST Rsrc1,@-Rsrc2 Rsrc2 -= 4, *(s *)Rsrc2 = Rsrc1 –

ST Rsrc1,@Rsrc2 *(s *)Rsrc2 = Rsrc1 –

STB Rsrc1,@(disp16,Rsrc2) *(sb *)(Rsrc2+(sh)disp16) = Rsrc1 –

STB Rsrc1,@Rsrc2 *(sb *)Rsrc2 = Rsrc1 –

STH Rsrc1,@(disp16,Rsrc2) *(sh *)(Rsrc2+(sh)disp16) = Rsrc1 –

STH Rsrc1,@Rsrc2 *(sh *)Rsrc2 = Rsrc1 –

SUB Rdest,Rsrc Rdest = Rdest - Rsrc –

SUBV Rdest,Rsrc Rdest = Rdest - Rsrc change

SUBX Rdest,Rsrc Rdest = Rdest - Rsrc - C change

TRAP #n PSW[BSM,BIE,BC] = PSW[SM,IE,C] change
PSW[SM,IE,C] = PSW[SM,0,0]

Call trap-handler number-n

UNLOCK Rsrc1,@Rsrc2 if(LOCK) { *(s *)Rsrc2 = Rsrc1; } LOCK=0 –

XOR Rdest,Rsrc Rdest = Rdest ^ Rsrc –

XOR3 Rdest,Rsrc,#imm16 Rdest = Rsrc ^ (uh)imm16 –

where:

typedef singed int      s;  /* 32 bit signed integer (word)*/

typedef unsigned int    u;  /* 32 bit unsigned integer (word)*/

typedef signed short    sh; /* 16 bit signed integer (halfword)*/

typedef unsigned short  uh; /* 16 bit unsigned integer (halfword)*/

typedef signed char     sb; /*  8 bit signed integer (byte)*/

typedef unsigned char   ub; /*  8 bit unsigned integer (byte)*/



M32R family Software Manual

APPENDICES

A-5

Appendix B Pipeline stages
B.1 Overview of pipeline processing
The M32R CPU has five pipeline stages.

(1) IF stage (instruction fetch stage)
The instruction fetch (IF) is processed in this stage. There is an instruction queue and instructions
are fetched until the queue is full regardless of the completion of decoding in the D stage.

(2) D stage (decode stage)
Instruction decoding is processed in the first half of the D stage (DEC1).
The subsequent instruction decoding (DEC2) and a register fetch (RF) is processed in the second
half of the stage.

(3) E stage (execution stage)
Operations and address calculations (OP) are processed in the E stage.

(4) MEM stage (memory access stage)
Operand accesses (OA) are processed in the MEM stage. This stage is used only when the load/
store instruction is executed.

(5) WB stage (write back stage)
The operation results and fetched data are written to the registers in the WB stage.

Fig. B.1 Pipeline structure and processing

IF stage D stage E stage MEM
stage

WB stage

IF DEC1
OA

DEC2
OP WB

pipeline
stage

execution 
process

1 cycle

RF

Appendix B Pipeline stages



M32R family Software ManualA-6

APPENDICES

B.2 Instructions and pipeline processing
The M32R pipeline has five stages. However, the MEM stage is used only when the load/store instruction
is executed, other instructions are processed in a 4-stage pipeline.

Appendix B Pipeline stages

Fig. B.2 Instructions and pipeline processing

AA
AA
AAA
AAA
AA
AA
AA
AA

AA
AAIF D E MEM WBpipeline stage

<load/store instructions>

• If the cache is hit, the MEM stage is executed in one cycle. 
  If missed, the MEM stage is executed in multiple cycles.

pipeline stage

AA
AA
AAA
AAA
AA
AA

AA
AA

IF D E MEM

AA
AA

WB

AA
AA

MEM••••••

AA
AA
AAA
AAA
AA
AA

AA
AAIF D E WBpipeline stage

• The E-stage is executed for multiple cycles in  multi-cycle 
   instructions such as multiplication or division.

AA
AA
AAA
AAA

AA
AA

IF D E

AA
AA

WB

AAA
AAA

E••••••

5 stages

4 stages

<other instructions>

pipeline stage



M32R family Software Manual

APPENDICES

A-7

Appendix B Pipeline stages

B.3 Pipeline processing
In perfect pipeline processing, each stage is executed in one cycle. However, the pipeline stall may be
caused at each stage of processing or by the execution of a branch instruction. Each case is described
in Figure B.3 and B.4.

< case 1  multiple cycles are required for the E-stage execution >

AA
AA
AA
AA

AA
AA

AA
AAIF D E WBDIV R1,R2

AA
AAE
AA
AAE

AA
AA

AA
AA

AA
AAIF D stall WBADD R3,R4

AA
AAEstall

AA
AA
AA
AA

AA
AAIF D WB

AA
AAEstallstall

AA
AA
AAA
AAA

AA
AAIF Dstall WB

AA
AAEstall

ADD R5,R6

ADD R7,R8

< case 2  operand access is not complete in one cycle >

AA
AA
AA
AA

AA
AA

AA
AA

IF D E WBLD R1,@R2

AA
AA

MEMAA
AA

AAAAIF D WBAAE stall

AAAAIF D stall WBAAE

AAAAAAAIF D WBAAEstall

ADD R5,R6

ADD R7,R8

MEM

AAMEMLD R3,@R4

AA
AA

MEM••••

stall••••

stall••••

stall••••

except cache hit

••••

••••

••••

••••

stall: pipeline stall

Fig. B.3 Pipeline stall 1



M32R family Software ManualA-8

APPENDICES
Appendix B Pipeline stages

Fig. B.4 Pipeline stall 2

< case 3  branch instruction is executed >
                (except for the case where no branch occurs at a conditional branch instruction) 

AA
AA
AA
AA

AA
AAIF D E WBbranch  instruction

AA
AA

AA
AA

AA
AAIF D WB

AA
AAE

AA
AA
AA
AA

AA
AA

IF D WB

AA
AA

Estall

AA
AA
AA
AA

AA
AAIF D WB

AA
AAEstall

AA
AAIF D

branch instruction is executed

stall

< case 4  the subsequent instruction uses an operand read from memory  >

AAAAIF D E WBLD R1,@R2

AAAAIF D WBAAE

AAMEM

ADD R3,R1 stall stall

< case 5  R15 is read after the SM bit in the PSW is written by an MVTC instruction 
                                                            and the subsequent instruction reads R15 >

AAAAIF D E WBMVTC R1,PSW

AAAAIF D WBAAESUB R3,R15 stall

AA
AA

IF

stall: pipleline stall



M32R family Software Manual

APPENDICES

A-9

The cases shown in Figure B.5 are special and pipeline stall does not occur.

Appendix B Pipeline stages

<when the WB stages of load and another instruction occur simultaneously>
    (pipeline processing is not stalled because the values can be written simultaneously)

AA
AA
AA
AA

AA
AAIF D E MEMLD R1,@R2

can be written 
simultaneouslyAA

AAWB

AA
AA
AA
AAIF D EADD R5,R6

AA
AAWB

AA
AA
AA
AAIF D EADD R7,R8

AA
AAWB

AA
AA
AA
AAIF D EADD R1,R2 WB

AAIF D EAAWBSUB R3,R1

bypass process

AAAA
IF D ELD R1,@R2 WB

AA
AA

IF D E WB

••••MEM MEM

AA
AA

IF D E WB

AA
AA

IF D E WB

WB stage is canceled 
if either is the same

<when the register written by the one instruction is used by the subsequent instruction>
   (the pipeline processing is not stalled because of the bypass process due to operation between registers)

<a subsequent instruction writes to a register before a load instruction is completed>
   (the WB stage of the load instruction is canceled)

Fig. B.5 Special case (pipeline stall does not occur)



M32R family Software ManualA-10

APPENDICES
Appendix C Instruction execution time

Appendix C   Instruction execution time
Normally, the E stage is considered as representing as the instruction execution time, however, because of
the pipeline processing the execution time for other stages may effect the total instruction execution time.
In particular, the IF, D, and E stages of the subsequent instruction must be considered after a branch has
occurred.
The following shows the number of the instruction execution cycles for each pipeline stage.
The execution time of the IF and MEM stages depends on the implementation of each product of the M32R
family.
Refer to the user's manual of each product for the execution time of these stages.

Table C.1 Instruction execution cycles in each stage

the number of execution cycles in each stage

instruction IF D E MEM WB

load instruction (LD, LDB, LDUB, LDH, LDUH, LOCK) R (note 1) 1 1 R (note 1) 1

store instruction (ST, STB, STH, UNLOCK) R (note 1) 1 1 W (note 1) (1) (note 2)

multiply instruction (MUL) R (note 1) 1 3 – 1

divide/reminder instruction (DIV, DIVU, REM, REMU) R (note 1) 1 37 – 1

other instructions R (note 1) 1 1 – 1

Notes 1 R, W: Refer to the user's manual prepared for each product.

  2 If the addressing mode of the store instructions is register indirect and register update, 1 cycle needs for WB stage.



Rev. Rev.

No. date

1.0 First edition 970331

1.1 • "Only a word-aligned (word boundary) address can be specified for the branch address.  If an 971031

 unaligned address is specified, an address exception occurs." an underlined part eliminated.

(line 18, page 2-6)

• [Encoding]

 "OR3  Rdest,Rsrc,#imm16"  revised. (line 13, page 3-63)

1.2 • "ADDV3 Add 3-operand with overflow checking" revised (line 21, page 2-4) 980701

• "ADDV3 Add 3-operand with overflow checking" revised (line 2, page 3-10)

• Logical right shift

  "Rdest = (unsigned) Rsrc >> (imm16 & 31);" revised (line 7, page 3-79)

• "Trap occurrence
BPC = PC + 4;
BSM = SM;
BIE = IE;
BC = C ;
IE = 0;
C = 0;
call_trap_handler( imm4 );" revised (line 7, page 3-88)

• "BL pcdisp24 R14=PC+4,PC=PC+((s24)pcdisp24<<2) " revised (line 19, page A-2)

• "BNC pcdisp24 if(!C) PC=PC+((s24)pcdisp24<<2) " revised (line 23, page A-2)

• "TRAP #n PSW[BSM,BIE,BC] = PSW[SM,IE,C] change

PSW[SM,IE,C] = PSW[SM,0,0]

Call trap-handler number-n "  revised (line 23, page A-4)

REVISION DESCRIPTION LIST M32R family software manual

(1/1)

Revision Description



MITSUBISHI 32-BIT SINGLE-CHIP MICROCOMPUTER

M32R Family Software Manual

July 1998 : Revised edition

Copyright (C) 1998 MITSUBISHI ELECTRIC CORPORATION

Notice:

This book, or parts thereof, may not be reproduced in any form

without permission of MITSUBISHI ELECTRIC CORPORATION.



1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,  Kanagawa 211-8668 Japan

M32R family
Software Manual


	REVISION DESCRIPTION LIST
	Table of contents
	1 CPU PROGRAMMING MODEL
	1.1 CPU register
	1.2 General-purpose registers
	1.3 Control registers
	1.3.1 Processor status word register: PSW (CR0)
	1.3.2 Condition bit register: CBR (CR1)
	1.3.3 Interrupt stack pointer: SPI (CR2) User stack pointer: SPU (CR3)
	1.3.4 Backup PC: BPC (CR6)

	1.4 Accumulator
	1.5 Program counter
	1.6 Data format
	1.6.1 Data types
	1.6.2 Data formats

	1.7 Addressing mode

	2 INSTRUCTION SET
	2.1 Instruction set overview
	2.1.1 Load/store instructions
	2.1.2 Transfer instructions
	2.1.3 Operation instructions
	2.1.4 Branch instructions
	2.1.5 EIT-related instructions
	2.1.6 DSP function instructions

	2.2 Instruction format

	3 INSTRUCTIONS
	3.1 Conventions for instruction description
	3.2 Instruction description
	ADD
	ADD3
	ADDI
	ADDV
	ADDV3
	ADDX
	AND
	AND3
	BC
	BEQ
	BEQZ
	BGEZ
	BGTZ
	BL
	BLEZ
	BLTZ
	BNC
	BNE
	BNEZ
	BRA
	CMP
	CMPI
	CMPU
	CMPUI
	DIV
	DIVU
	JL
	JMP
	LD
	LD24
	LDB
	LDH
	LDI
	LDUB
	LDUH
	LOCK
	MACHI
	MACLO
	MACWHI
	MACWLO
	MUL
	MULHI
	MULLO
	MULWHI
	MULWLO
	MV
	MVFACHI
	MVFACLO
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	NEG
	NOP
	NOT
	OR
	OR3
	RAC
	RACH
	REM
	REMU
	RTE
	SETH
	SLL
	SLL3
	SLLI
	SRA
	SRA3
	SRAI
	SRL
	SRL3
	SRLI
	ST
	STB
	STH
	SUB
	SUBV
	SUBX
	TRAP
	UNLOCK
	XOR
	XOR3


	APPENDICES
	Appendix A Instruction list
	Appendix B Pipeline stages
	B.1 Overview of pipeline processing
	B.2 Instructions and pipeline processing
	B.3 Pipeline processing

	Appendix C Instruction execution time


