

REJ06J0078-0200 Rev.2.00 Page 1 of 19
Nov. 30, 2016

RX Development Environment Migration Guide
Migration from M16C Family to RX Family (Compiler ed.)
(High-performance Embedded Workshop and NC30WA to CS+ and CC-RX)

Introduction
In this application notes, it explains the software migration method when C program made by M16C-family compiler is
transplanted to RX-family compiler.

In Renesas RX-family compiler, the function to absorb the difference between the option and the language specification
is supported inconsideration of the migration from and M16C-family to RX-family. As a result, the application part of
the embedded software can be smoothly transplanted.

Please use this application notes when you transplanted to RX-family from M16C-family.

Contents

1. Options .. 2
1.1 Specifying changes to enumeration type size ... 2
1.2 Specifying the size of double type .. 3
1.3 Specifying the size of int type ... 4

2. Language specifications ... 5
2.1 Size of int type ... 5
2.2 Size of the double type ... 6
2.3 Integer promotion for the char type .. 7
2.4 Placement of structure members .. 8
2.5 inline keywords ... 9
2.6 #pragma STRUCT .. 11
2.7 #pragma BITADDRESS ... 13
2.8 #pragma ROM .. 14
2.9 #pragma PARAMETER ... 15
2.10 asm function .. 16

3. Optimization option setting for migration from M16C-family 17

Exsample: Sample source .. 18

REJ06J0078-0200
Rev.2.00

Nov. 30, 2016

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 2 of 19
Nov. 30, 2016

1. Options
Some specifications differ for the default options between M16C-family compilers and RX-family compilers. The
following explains options that will likely require handling during migration from M16C to RX.

Table 1-1 List of options

No Functionality M16C option RX option Reference
1 Specifying changes to enumeration type size fchar_enumerator auto_enum 1.1
2 Specifying the size of double type fdouble_32 dbl_size 1.2
3 Specifying the size of int type - int_to_short 1.3

1.1 Specifying changes to enumeration type size
When the “fchar_enumerator” option is specified for M16C-family compilers, the enumerator type is treated as an
unsigned char type, not an int type.

To obtain the same results as those on RX-family compilers, specify the “auto_enum” option. Note that the unsigned
char type is only used for the enumerator type when the minimum enumerator value is 0, and the maximum value is 255.
For all other cases, another type is used.

For details about correspondences between possible enumeration values and data types, see Compiler User’s Manual.

Format

 auto_enum

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-1

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 3 of 19
Nov. 30, 2016

1.2 Specifying the size of double type
If the “fdouble_32” option is not specified for an M16C-family compiler, the size of the double type is treated as 8
bytes (double precision).

For the same interpretation as RX-family compilers, specify the “dbl_size=8” option.

Format

 dbl_size={4|8} : 4by default

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-2

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 4 of 19
Nov. 30, 2016

1.3 Specifying the size of int type
For M16C-family compilers, the size of the int type is treated as 2 bytes, whereas for RX-family compilers, the size of
the int type is treated as 4 bytes.

When migrating M16C programs created based on the requirement that the size of the int type is 2 bytes to RX, specify
the “int_to_short” option.

Format

 int_to_short

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 1-3

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 5 of 19
Nov. 30, 2016

2. Language specifications
This chapter explains the language specification most likely to require changes during RX migration.

Table 2-1 List of language specifications

2.1 Size of int type
On M16C-family compilers, the size of the int type is 2 bytes, whereas on RX-family compilers the size of the int type
is 4 bytes in default. When M16C programs created based on the requirement that the size of the int type is 2 bytes are
migrated to RX, they may not operate properly.

Example: Code for which operation is different due to variance in int type size

Source code

typedef union{

 long data;

 struct {

 int dataH;

 int dataL;

 } s;

} UN;

void main(void)

{

 UN u;

 u.s.dataH = 0;

 u.s.dataL = 1;

 if (u.data == 0) {

 // When the size of the int type is 4 bytes(RX)

 } else {

 // When the size of the int type is 2 bytes(M16C)

 }

}

When migrating programs created based on the requirement that the size of the int type is 2 bytes to RX, specify the
“int_to_short” option. For details about specifying this option, see 1.3 Specifying the size of int type.

No Functionality Reference
1 Size of int type 2.1
2 Size of the double type 2.2
3 Integer promotion for the char type 2.3
4 Placement of structure members 2.4
5 inline keywords 2.5
6 #pragma STRUCT 2.6
7 #pragma BITADDRESS 2.7
8 #pragma ROM 2.8
9 #pragma PARAMETER 2.9
10 asm function 2.10

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 6 of 19
Nov. 30, 2016

2.2 Size of the double type
With M16C-family compilers, the size of the double type is 8 bytes, whereas with RX-family compilers, the size of the
double type is 4 bytes in default. When M16C programs created based on the requirement that the size of the double
type is 8 bytes are migrated to RX, they may not operate properly.

Example: Code for which operation is different due to variance in double type size

Source code

double d1 = 1E30;

double d2 = 1E20;

void main(void)

{

 d1 = d1 * d1;

 d2 = d2 * d2;

 if (d1 > d2) {

 // When the size of the double type is 8 bytes(M16C)

 } else {

 // When the size of the double type is 4 bytes(RX)

 }

}

When migrating programs created based on the requirement that the size of the double type is 8 bytes to RX, specify the
“dbl_size=8” option. For details about specifying this option, see 1.2 Specifying the size of double type.

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 7 of 19
Nov. 30, 2016

2.3 Integer promotion for the char type
With M16C-family compilers, when char type data (including unsigned char, signed char types) is evaluated, it is not
promoted to the int type, whereas with RX-family compilers, char type data is always promoted to the int type when
evaluated. When migrating to MX programs created based on this condition in M16C, operation may not be performed
the same as M16C.

Example: Code for which operation is different due to variance in integer promotion specifications for char type
calculations

Source code

char c1;

char c2 = 200;

char c3 = 200;

void main(void)

{

 c1 = (c2 + c3) / 2; // Unexpected results occur on M16C, because the maximum

 // value that can be expressed for the calculation of

 // c2 + c3 causes an overflow

 if (c1 == 200) {

 // When the char type is promoted to the int type and evaluated (RX)

 } else {

 // When the char type is evaluated without being promoted to the int type (M16C)

 }

}

Notes

Options exist for promotion to the int type when M16C-family compilers evaluate char type data (including unsigned
char types and signed char types). If one of the following options is specified, no problems will occur for the integer
promotion specification explained here.

• fansi
• fextend_to_int

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 8 of 19
Nov. 30, 2016

2.4 Placement of structure members
M16C-family compilers place structure members in the order of appearance for member data with alignment value 1,
whereas RX-family compilers place structure members in the order of appearance for member data, according to the
maximum alignment value for members. When M16C programs created based on the requirement that M16C structure
placement is used are migrated to RX, they may not operate properly. In this case, the “pack” option can be specified to
set the alignment value for structure members to 1. Free space will no longer be able to be created for structures with
alignment value of 1.

In addition, structure alignment value can also be specified using #pragma pack too. If both the option and #pragma are
specified at the same time, the #pragma specification takes precedence.

For details about this functionality, see Compiler User’s Manual.

Format

 pack : unpack by default

 unpack

[How to specify this option in CS+]

Perform the following settings in the [Common Options] page of CC-RX (build tool) properties.

Figure 2-1

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 9 of 19
Nov. 30, 2016

2.5 inline keywords
M16C-family compilers support inline keywords, whereas RX-family compilers do not support inline keywords for
ANSI-standard C89. Thus, a program using inline keywords cause compilation errors. This can be resolved by either of
the following:

• Convert inline keywords to #pragma inline.
• Perform builds using ANSI-standard C99.

Example:

M16C program with inline keyword and program migrated to #pragma inline of RX.

Source code (using inline keywords)

inline static int func(int a, int b)

{

 return (a + b) / 2;

}

int x;

void main(void)

{

 x = func(10, 20);

}

Source code (using #pragma inline)

#pragma inline(func)
static int func(int a, int b)

{

 return (a + b) / 2;

}

int x;

void main(void)

{

 x = func(10, 20);

}

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 10 of 19
Nov. 30, 2016

When building on ANSI-standard C99, specify the “lang=c99” option.

Format

lang={c|cpp|ecpp|c99}

[How to specify this option in CS+]

Perform the following settings in the [Compile Options] page of CC-RX (build tool) properties.

Figure 2-2

Precautions

1. The inline keywords of ANSI-standard C99, C++, and #pragma inline specifications differ as follows.

Table 2-2 inline specifications

 Default linkage Linkage when inline
expansion is not possible

Impact on declarative
linkage

C99
inline keyword

Internal linkage Internal linkage When extern is specified:
External linkage

C++
inline keyword

Internal linkage Internal linkage When extern is specified:
Compilation error

#pragma inline External linkage External linkage When static is specified:
Internal linkage

2. Expansion of #pragma inline is different from inline keyword. #pragma inline is forced directive.

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 11 of 19
Nov. 30, 2016

2.6 #pragma STRUCT
M16C-family compilers can prohibit structure packing using #pragma STRUCT, and perform sorting for structure
members. Since RX-family compilers lack the corresponding functionality, programs using #pragma STRUCT need
special handling when migrated to RX.

(1) Prohibiting structure packing

By default, M16C-family compilers place structure members with alignment value 1. This means that the structure size
may be an odd number of bytes. To make the structure size an even number of bytes, specify #pragma STRUCT unpack.
If this specification causes the structure size to be an odd number of bytes, 1 byte of padding is inserted to bring the
structure size to an even number of bytes. One of the following needs to be performed to achieve the same effect for
RX-family compilers.

• Specify #pragma pack to set the structure alignment value to 1.
• If setting the alignment value to 1 causes the structure size to be an odd number of bytes, have users enter a

1-byte dummy member for adjustment.

In addition to specifying #pragma pack, specifying the “pack” option is another way to set structure alignment value to
1 on RX-family compilers. For details about this functionality, see 2.4 Placement of structure members.

Example:

M16C program with #pragma STRUCT unpack and program migrated to RX

Source code with #pragma STRUCT unpack

specified

#pragma STRUCT s unpack

struct s {

 short i;

 char c;

 short j;

} ss;

RX source code

#pragma pack

struct s {

 short i;

 char c;

 short j;

 char dmy; // To get a size with an even

 // number of bytes a 1-byte

 // dummy member is inserted

} ss;

Since the alignment
value is 1 due to
pack, there is no
free space. The
structure size is 6
bytes due to
explicitly inserted
members.

i

j

c

dmy

#pragma STRUCT
adds 1 byte of
padding.
The structure
size is 6
bytes.

i

 j

c

 free

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 12 of 19
Nov. 30, 2016

(2) Sorting structure members

RX-family compilers do not have any functionality to sort structure members. Programs need to be changed to perform
member sorting.

Example:

M16C program with #pragma STRUCT arrange and program migrated to RX

Source code with #pragma STRUCT arrange

specified

#pragma STRUCT s arrange

struct s {

 short i;

 char c;

 short j;

} ss;

RX source code

#pragma pack

struct s {

 short i;

 short j; // Placement of members

 char c; // ’j’ and ’c’ is changed

} ss;

Notes

Keep in mind that the meanings of #pragma STRUCT unpack for M16C and #pragma unpack for RX are different.

• #pragma STRUCT unpack (M16C)
Adjusts the size of the specified structure to an even number of bytes.

• #pragma unpack (RX)
Makes the alignment value of the specified structure the same as the maximum alignment value for members.

Since the alignment
value is 1 due to
pack, there is no
free space. The
structure members
are placed in order
of appearance.

#pragma STRUCT
places even-
byte members
before, and
odd-byte
members after.

i

c

j

i

c

j

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 13 of 19
Nov. 30, 2016

2.7 #pragma BITADDRESS
M16C-family compilers can allocate variables to a specified bit position for an absolute address specified by #pragma
BITADDRESS. Since RX-family compilers lack the corresponding functionality, programs using #pragma
BITADDRESS need special handling when migrated to RX.

The following gives an example where the absolute address bit position matches the structure bit-field.

Example:

M16C program with 100th position bit number 1 for #pragma BITADDRESS set to 1 and program migrated to RX

Source code with #pragma BITADDRESS

specified

#pragma BITADDRESS io 1, 100H

_Bool io;

void main(void)

{

 io = 1;

}

RX source code

struct bit_address {

 unsigned char b0:1;

 unsigned char b1:1;

 unsigned char b2:1;

 unsigned char b3:1;

 unsigned char b4:1;

 unsigned char b5:1;

 unsigned char b6:1;

 unsigned char b7:1;

};

#define io (((struct bit_address*)0x100)->b1)

void main(void)

{

 io = 1;

}

Notes

When a program using the _Bool keyword on an M16C-family compiler is built on a RX-family compiler with ANSI-
standard C89, an error occurs because the _Bool keyword is non-standard. RX-family compilers support the _Bool
keyword with ANSI-standard C99.

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 14 of 19
Nov. 30, 2016

2.8 #pragma ROM
M16C-family compilers place variables specified by #pragma ROM in the rom section. Since RX-family compilers lack
the corresponding functionality, when a program using #pragma ROM is migrated to RX, the const modifier needs to be
used to place variables in the rom section.

Example:

M16C program with variable ’i’ placed in the rom section using #pragma ROM, and program migrated to RX

Source code with #pragma ROM specified

#pragma ROM i

unsigned short i;

Assembler expansion code

 .SECTION rom_FE,ROMDATA,align

 .glb _i

_i:

 .byte 00H

 .byte 00H

RX source code

const unsigned short i; // const keyword added

Assembler expansion code

 .glb _i

 .SECTION C_2,ROMDATA,ALIGN=2

_i:

 .word 0000H

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 15 of 19
Nov. 30, 2016

2.9 #pragma PARAMETER
M16C-family compilers can use #pragma PARAMETER to store arguments in a register and declare passed assembler
functions. Since RX-family compilers lack the corresponding functionality, programs using #pragma PARAMETER
need special handling when migrated to RX.

RX-family compilers have no way to specify that arguments be stored in arbitrary registers. The argument interface for
function calls needs to follow compiler generation rules. Change the argument interface for assembler functions
specified by #pragma PARAMETER during RX migration to adhere to compiler generation rules.

For details about argument interfaces, see Compiler User’s Manual.

Example:

M16C program using #pragma PARAMETER, and program combining the assembler function and argument interface
in RX

Source code with #pragma PARAMETER specified

C source code

int asm_func(unsigned int, unsigned int);

#pragma PARAMETER asm_func(R0, R1)

void main(void)

{

 int i, j;

 i = 0x7FFD;

 j = 0x007F;

 // Assembler function call

 // ’i’ is stored in R1, ’j’ is stored in R0

 asm_func(i, j);

}

Assembler source code

_asm_func:

 Code requiring ‘i’ to be in R1,

 ’j’ to be in R0 for passage

 …

 RTS

Source code using RX assembly code functions

C source code

int asm_func(unsigned int, unsigned int);

void main(void)

{

 int i, j;

 i = 0x7FFD;

 j = 0x007F;

 // Assembler function call

 // As per the compiler argument interface,

 // ’i’ is stored in R1, ’j’ is stored in R2

 asm_func(i, j);

}

Assembler source code

_asm_func:

 Changing code requiring ‘i’ to be in R1,

 ’j’ to be in R2 for passage

 …

 RTS

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 16 of 19
Nov. 30, 2016

2.10 asm function
M16C-family compilers can code assembly language in C source programs with asm function. Since RX-family
compilers lack the corresponding functionality, programs using asm functions need special handling when migrated to
RX.

RX-family compilers have assembly code functions to code assembly language in C source programs. Assembly code
functions exist to code assembly language in a C source program in RX. The contents coded in the asm function can
sometimes be handled by being coded in the assembly code function.

For details about assembly code functions, see Compiler User’s Manual.

Example:

Program using the M16C asm function, and program using the RX assembly code function

(The code contents are not equivalent, but this can be used as an example of migration.)

Source code using the M16C asm function

C source code

void func(void)

{

 asm("FSET I");

}

Assembler source expansion code

_func:

 FSET I

 rts

Source code using the RX assembly code function

C source code

#pragma inline_asm interrupt_flag

static void interrupt_flag(void)

{

 MOV.L #00010000H,R5

 MVTC R5,PSW

}

void func(void)

{

 interrupt_flag();

}

Assembler source expansion code

_func:

 MOV.L #00010000H,R5

 MVTC R5,PSW

 RTS

Precautions

• M16C can code variables in the asm function, but RX cannot.
• M16C can use a dummy asm function as a step to partially suppress optimization, but RX cannot.

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 17 of 19
Nov. 30, 2016

3. Optimization option setting for migration from M16C-family
There is a difference in an optional setting method for optimization in the compiler of M16C-family and RX-family.

Please refer to the following optimization option setting when embedded software transplant from M16C-famiy to RX-
family and the performance is evaluated.

Optimization option setting of each compiler and comparison of ROM size

(The sample program for the measurement is described to the next page.)

M16C Optimize
OFF

Object Size
Precedence

Execution Speed
Precedence

O0 O3 OR OR_MAX O3 OS OS_MAX
main() 0xE6 0x99 0x98 0xB4 0x358
sort() 0xF6 0x92 0x91 0x94 0x94

* By M16C-family compiler V.6.00 Release 00

RX Optimize
OFF

Object Size
Precedence

Execution Speed
Precedence

optimize=0

optimize=1

optimize=2

optimize
=max

optimize=1

speed

optimize=2

speed

optimize
=max
speed

main() 0xAC 0x80 0x76 0x76 0x80 0x76 0x76
sort() 0x92 0x47 0x51 0x53 0x4A 0x5D 0x5F

* By RX-family compiler V2.05.00

Please refer to the compiler user's manual for details of the optimization level of the RX-family compiler.

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 18 of 19
Nov. 30, 2016

Exsample: Sample source
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

void main(void);

void sort(long *a);

void change(long *a);

void main(void)

{

 long a[10];

 long j;

 int i;

 printf("### Data Input ###¥n");

 for(i=0; i<10; i++){

 j = rand();

 if(j < 0){

 j = -j;

 }

 a[i] = j;

 printf("a[%d]=%ld¥n",i,a[i]);

 }

 sort(a);

 printf("*** Sorting results ***¥n");

 for(i=0; i<10; i++){

 printf("a[%d]=%ld¥n",i,a[i]);

 }

 change(a);

}

void sort(long *a)

{

 long t;

 int i, j, k, gap;

 gap = 5;

 while(gap > 0){

 for(k=0; k<gap; k++){

 for(i=k+gap; i<10; i=i+gap){

 for(j=i-gap; j>=k; j=j-gap){

 if(a[j]>a[j+gap]){

 t = a[j];

 a[j] = a[j+gap];

 a[j+gap] = t;

 }else{

 break;

 }

 }

 }

 }

 gap = gap/2;

 }

}

 void change(long *a)

{

 long tmp[10];

 int i;

 for(i=0; i<10; i++){

 tmp[i] = a[i];

 }

 for(i=0; i<10; i++){

 a[i] = tmp[9 - i];

 }

}

RX Development Environment Migration Guide Migration from M16C Family to RX Family (Compiler ed.)

REJ06J0078-0200 Rev.2.00 Page 19 of 19
Nov. 30, 2016

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Oct. 1, 2009 -- Initial edition
2.00 Nov. 30, 2016 -- Revised the destination to CS+ and CC-RX

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Options
	1.1 Specifying changes to enumeration type size
	1.2 Specifying the size of double type
	1.3 Specifying the size of int type

	2. Language specifications
	2.1 Size of int type
	2.2 Size of the double type
	2.3 Integer promotion for the char type
	2.4 Placement of structure members
	2.5 inline keywords
	2.6 #pragma STRUCT
	2.7 #pragma BITADDRESS
	2.8 #pragma ROM
	2.9 #pragma PARAMETER
	2.10 asm function

	3. Optimization option setting for migration from M16C-family
	Exsample: Sample source
	4.
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

