

RL78/G1G

R01AN3736EJ0100 Rev.1.00 Feb.15.2017

Speed control of 120-degree conducting controlled permanent magnetic synchronous motor using hall sensors (Implementation)

Summary

This application note aims at explains sample programs driving a permanent magnetic synchronous motor using Hall sensors in the 120-degree conducting method using the RL78/G1G microcontroller.

These control programs are only to be used as reference and Renesas Electronics Corporation does not guarantee the operations. Please use them after carrying out a thorough evaluation in a suitable environment.

Operation checking device

Operations of the control programs have been checked by using the following device.

RL78/G1G (R5F11EBAAFP)

Target control programs

The target control programs of this application note are as follows.

- (1) RL78G1G MRSSK SPM HALL 120 CSP CA V100 (IDE: CS+ for CA, CX)
- (2) RL78G1G_MRSSK_SPM_HALL_120_CSP_CC_V100 (IDE: CS+ for CC)
- (3) RL78G1G_MRSSK_SPM_HALL_120_E2S_CC_V100 (IDE: e²studio)

RL78/G1G 120-degree conducting control using Hall sensors sample program for

RL78/G1G 24V Motor Control Evaluation System

Reference

- RL78/G1G Group User's Manual: Hardware (R01UH0499EJ0130)
- Application note: '120-degree conducting control of permanent magnetic synchronous motor: algorithm'
 (R01AN2657EJ0120)
- Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX23T User's Manual (R20UT3697EJ0100)

Contents

1.	Overview	3
2.	System overview	7
3	Descriptions of the control program	14

Overview 1.

This application note explains how to implement the 120-degree conducting control programs of permanent magnetic synchronous motor (PMSM) using Hall sensors based on the RL78/G1G microcontroller.

Note that these control programs use the algorithm described in the application note '120-degree conducting control of permanent magnetic synchronous motor: algorithm'.

Development environment 1.1

Table 1-1 and Table 1-2 show development environments of the control programs explained in this application note.

Table 1-1 Development Environment (H/W)

Microcontroller	Evaluation board	Motor	
RL78/G1G	24V inverter board (Note 1)	TSUKASA (Note 3)	
(R5F11EBAAFP)	and RL78/G1G CPU Card (Note 2)	TG-55L-KA-24V	

Table 1-2 Development Environment (S/W)

CS+ version	Build tool version
V4.00.00	CA78K0R V5.00.00.03
V5.00.00	CC-RL V1.04.00.00

e ² studio version	Build tool version
5.3.0.0023	CC-RL V1.04.00.00

For purchase and technical support contact, Sales representatives and dealers of Renesas Electronics Corporation.

Notes: 1. 24V inverter board (RTK0EM0001B0012BJ) is a product of Renesas Electronics Corporation.

- 2. RL78/G1G CPU Card (T5104) is a product of Desk Top Laboratories Inc. Desk Top Laboratories Inc. (http://desktoplab.co.jp/)
- 3. TG-55L-KA-24V is a product of TSUKASA ELECTRIC. TSUKASA ELECTRIC. (https://www.tsukasa-d.co.jp/en/)

R01AN3736EJ0100 Rev.1.00 Feb.15.2017

1.2 Modifying the Evaluation Board

To support the control programs in this application note, the 24V Inverter Board and RL78/G1G CPU Card should be modified per below explanations.

1.2.1 Modification of the VR1 input port

- (1) Remove R8, R15, and C9.
- (2) Connect CPU side of R7 and CPU side of R8.

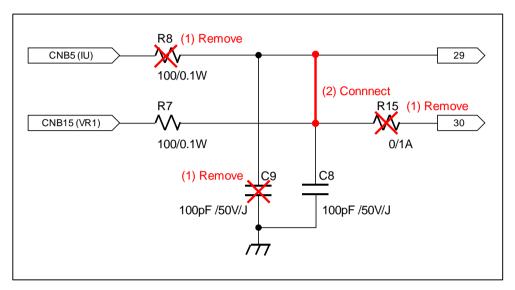


Figure 1-1 Modification of the CPU Card

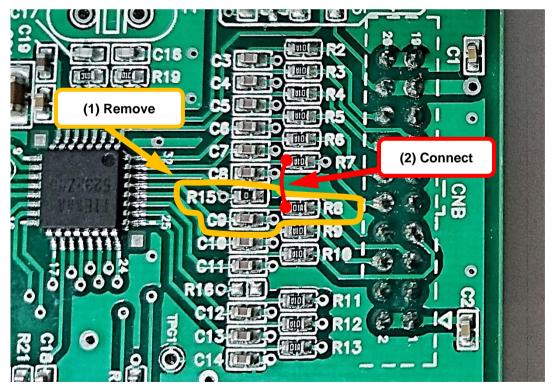


Figure 1-2 Modification example on the CPU card.

1.2.2 Modification when overcurrent detection method is changed

When the overcurrent detection method is changed to "PGA+CMP0, CMP1" from default (INTP0), the 24V Inverter Board and RL78/G1G CPU Card should be modified per below explanations.

(1) Modification of the 24V Inverter Board

Change 3-Shunt to 1-Shunt.

- (1) Connect TH1, TH2 and TH3.
- (2) Remove R72 and R97.

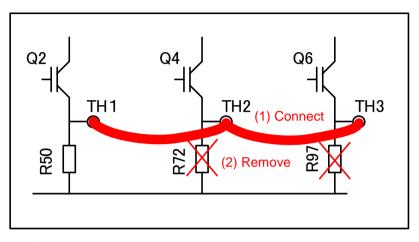


Figure 1-3 Change 3-shunt to 1-shunt

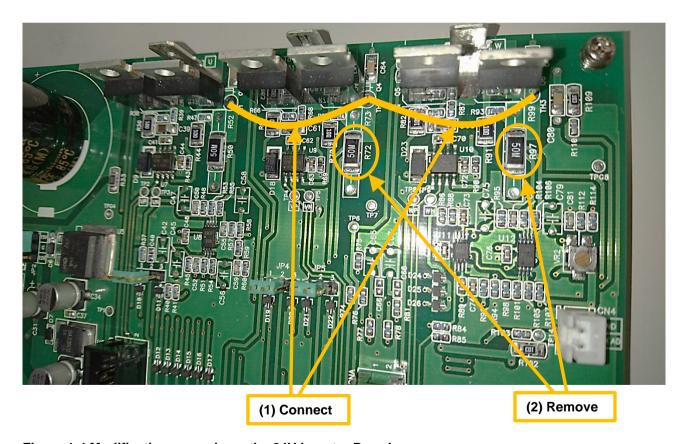


Figure 1-4 Modification example on the 24V Inverter Board

(2) Modification of the RL78/G1G CPU Card

Modification for the filter circuit of comparator input

- (1) Mount 0 Ohms on R16.
- (2) Change resister R10 from 100 Ohms to 1k Ohms
- (3) Change capacitor C11 from 100pF to 470pF.

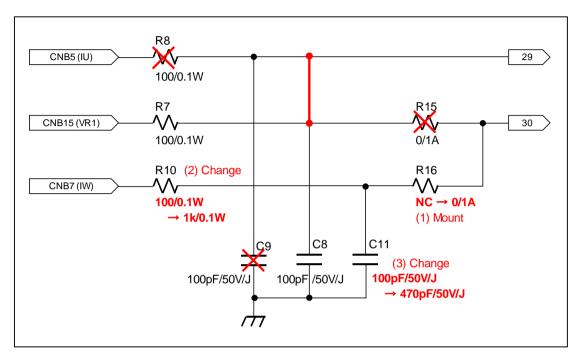


Figure 1-5 Modification of the CPU Card

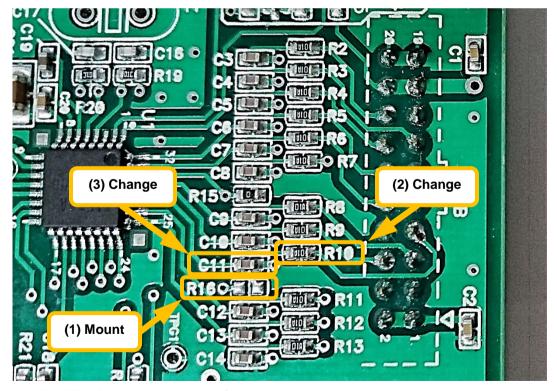


Figure 1-6 Modification example on the CPU card.

2. System overview

Overview of this system is explained below.

2.1 Hardware configuration

The hardware configuration is shown below.

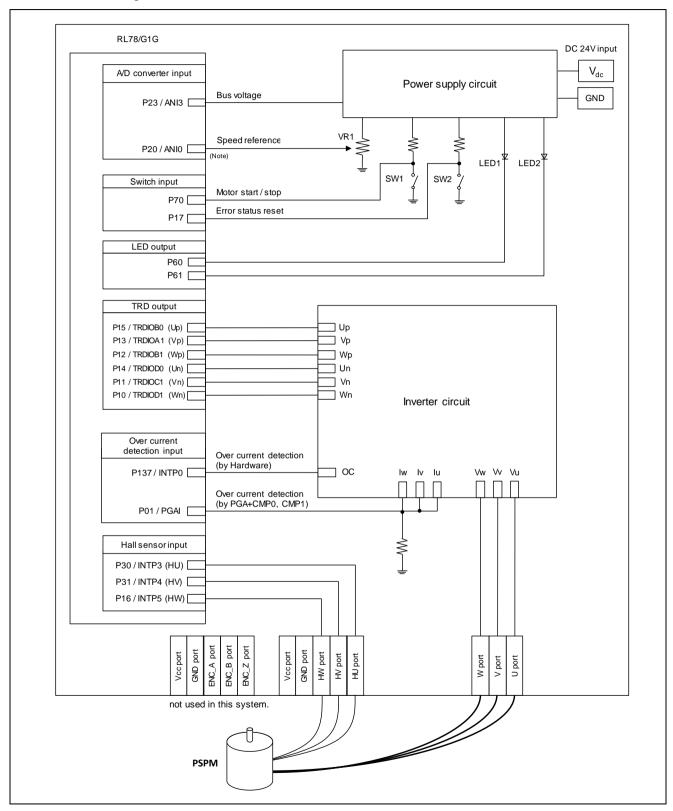


Figure 2-1 Hardware Configuration Diagram

Note: the VR1 signal is input to port 20 by modification on the CPU card. (See 1.2.1)

2.2 **Hardware specifications**

2.2.1 **User interface**

Table 2-1 is a list of user interfaces of this system.

Table 2-1 User Interface

Item	Interface component	Function
Rotational speed	Variable resistance (VR1)	Rotational speed command value input (analog values)
START / STOP	Toggle switch (SW1)	Motor rotation start / stop command
ERROR / RESET	Toggle switch (SW2)	Command of recovery from error status
LED1	Yellow green LED	- At the time of Motor rotation: ON - At the time of stop: OFF
LED2	Yellow green LED	- At the time of error detection: ON - At the time of normal operation: OFF
RESET	Push switch (RESET1)	System reset

Table 2-2 is a list of port interfaces of RL78/G1G microcontroller of this system.

Table 2-2 Port Interface

R5F11EBAAFP Port name	Function
P23 / ANI3	Inverter bus voltage measurement
P01 / PGAI	Shunt current input for over-current detection (use PGA+CMP0, CMP1) (Note1)
P20 / ANI0	For inputting rotational speed command values (analog values) (Note2)
P70	START / STOP toggle switch
P17	ERROR RESET toggle switch
P60	LED1 ON / OFF control
P61	LED2 ON / OFF control
P30 / INTP3	Hall sensor input (HU)
P31 / INTP4	Hall sensor input (HV)
P16 / INTP5	Hall sensor input (HW)
P10 / TRDIOD1	PORT output / PWM output (Wn)
P11 / TRDIOC1	PORT output / PWM output (V _n)
P12 / TRDIOB1	PORT output / PWM output (W _p)
P13 / TRDIOA1	PORT output / PWM output (V _p)
P14 / TRDIOD0	PORT output / PWM output (Un)
P15 / TRDIOB0	PORT output / PWM output (U _p)
P137 / INTP0	PWM emergency stop input at the time of overcurrent detection (use an external circuit) (Note1)

Note: 1. Selection of the external circuit or "PGA+CMP1, CMP0" for the detection of overcurrent is set by compile option.

2. For details on input port, see "1.2 Modifying the Evaluation Board".

2.2.2 Peripheral functions

Table 2-3 is a list of peripheral functions used in this system.

Table 2-3 Peripheral Functions List

Peripheral Function	Purpose
10-bit A/D converter	Rotational speed command value input Inverter bus voltage measurement
Timer Array Unit (TAU)	- 1 [ms] interval timer - Free-running timer for rotational speed measurement
Timer RD (TRD)	Complementary PWM output
External interrup (INTP3, INTP4, INTP5)	 Hall sensors' signal input (detection of rotor position) Edge detection for speed measurement and change of control signal (both edge)
Comparator0 (CMP0)	Overcurrent detection (Note)
Comparator1 (CMP1)	Overcurrent detection (Note)
Programmable Gain Amp (PGA)	Overcurrent detection (Note)
External interrupt (INTP0)	Overcurrent detection (Note)

Note: INTP0 and "PGA+CMP0, CMP1" are used exclusive. (These are selectable by compile option.)

(1) 10-bit A/D converter

The rotational speed command value input, and inverter bus voltage (Vdc) are measured by using the '10-bit A/D converter'.

The operation mode is set as below.

The channel selection mode: the select-mode.

The conversion operation mode: the one-shot conversion mode.

And software trigger is used.

(2) Timer Array Unit (TAU)

a. 1 [ms] interval timer

The channel 0 of Timer Array Unit (TAU) is used as 1 millisecond interval timer.

b. Free-running timer for measuring speed

The channel 1 of Timer Array Unit (TAU) is used as free-running timer for speed measurement. Note that interrupt is not used.

(3) Timer RD (TRD)

Three-phase PWM output of chopping at the first 60 degrees with dead time (complementary) or without dead time (non-complementary) is performed using the Complementary PWM Mode. When detecting an overcurrent, the PWM output ports are set to high impedance output using the pulse output forced cutoff function.

(4) External interrupt (INTP3, INTP4, INTP5)

The Hall sensors' signals are inputted for detection of rotor position. Both edge mode is used. When the interrupt occurs, measurement of rotational speed, changing conduction pattern, and reading Hall sensors' signals (detection of rotor position) are performed.

R01AN3736EJ0100 Rev.1.00 Page 9 of 42 Feb.15.2017

(5) Comparator (CMP0)

CMP0 is used to detect overcurrent with PGA (detect falling edge) (when selected).

(6) Comparator1 (CMP1)

CMP1 is used to detect overcurrent with PGA (detect rising edge) (when selected).

(7) Programmable Gain Amp (PGA)

PGA is used to detect overcurrent with CMP0, CMP1 (when selected).

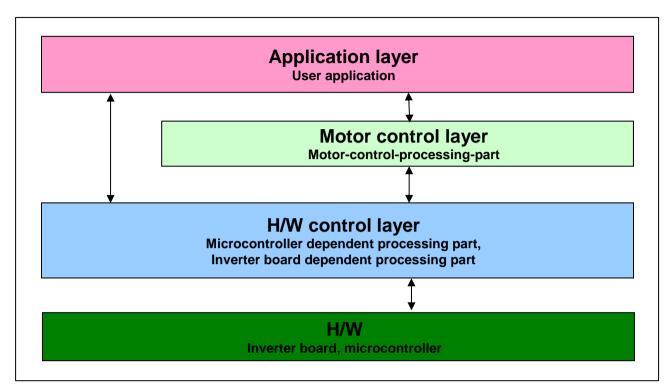
(8) External interrupt (INTP0)

An overcurrent is detected by an external circuit. (when selected).

2.3 Software structure

2.3.1 Software file structure

The folder and file configurations of the control programs are given below.


Table 2-4 Folder and File Configuration

Project	Folder	File	Content
(1) RL78G1G_MRSSK		main.h	Main function, user interface control header
_SPM_HALL_120_CSP		mtr_common.h	Common definition header
_CA_V100		mtr_ctrl_mrssk.h	Board dependent processing part header
(2) RL78G1G_MRSSK		mtr_ctrl_rl78g1g.h	RL78/G1G dependent processing part header
_SPM_HALL_120_CSP _CC_V100		mtr_spm_hall_120.h	120-degree conducting control using Hall sensors dependent part header
(3) RL78G1G_MRSSK	inc	control_parameter.h	Control characteristic dependent processing part header
_SPM_HALL_120_E2S_		motor_parameter.h	Motor characteristic dependent processing part header
CC_V100		mtr_ctrl_rl78g1g_mrssk.h	RL78/G1G and board dependent processing part header
		mtr_feedback.h	Feedback control processing part header
		mtr_gmc.h	General motor control function part header
		mtr_driver_access.h	Driver access function part header
		mtr_filter.h	Filters processing part header (not used)
	lib	R_dsp_rl78_CA.lib	Digital signal controller library for CA tool-chain (Note)
		R_dsp_rl78_CC.lib	Digital signal controller library for CC-RL tool-chain (Note)
	src	main.c	Main function, user interface control
		mtr_ctrl_mrssk.c	Board dependent processing part
		mtr_ctrl_rl78g1g.c	RL78/G1G dependent processing part
		mtr_interrupt.c	Interrupt handler
		mtr_spm_hall_120.c	120-degree conducting control using Hall sensors dependent part
		mtr_ctrl_rl78g1g_mrssk.c	RL78/G1G and board dependent processing part
		mtr_feedback.c	Feedback control processing
		mtr_gmc.c	General motor control function
		mtr_driver_access.c	Driver access function
		mtr_filter.c	Filters processing (not used)

Note: "R_dsp_rl78_CA.lib" is included in (1). "R_dsp_rl78_CC.lib" is included in (2), (3).

2.3.2 Module configuration

Figure 2-2 and Table 2-5 show the module configuration of the control programs.

Figure 2-2 Module Configuration

Table 2-5 Module Configuration

Layers	File name
Application layer	main.c
Motor control layer	mtr_spm_hall_120.c mtr_feedback.c mtr_gmc.c mtr_driver_access.c mtr_interrupt.c (Note) mtr_filter.c
H/W control layer	mtr_ctrl_rl78g1g_mrssk.c mtr_ctrl_rl78g1g.c mtr_ctrl_mrssk.c mtr_interrupt.c (Note)

Note: "mtr_interrupt.c" is belong to the motor control layer and H/W control layer.

2.4 Software specifications

Table 2-6 shows the basic specifications of target software of this application note. For details of 120-degree conducting control, refer to the application note '120-degree conducting control of permanent magnetic synchronous motor: algorithm'.

Table 2-6 Basic Specifications of Software

Item	Content		
Control method	120-degree conducting method (chopping at the first 60 degrees) (Complementary / Non-Complementary)		
Motor rotation start / stop	Determined depending on the level of SW1 (P70) ("Low": rotation start "High": stop)		
Position detection of rotor magnetic pole	Position detection by signals of Hall sensors (by each 60 degrees)		
Input voltage	DC24 [V]		
Main clock frequency	CPU clock: fclk 24 [MHz] TRD clock: fhoco 48 [MHz]		
Carrier frequency (PWM)	20 [kHz]		
Dead time	2 [µs]		
Control cycle	 The conduction pattern is changed at a Hall signal interrupt timing. A duty of PWM and a conduction pattern is determined at a pattern change. Speed PI control is performed every 1 [ms]. 		
Optimization	Default		
Rotational speed control range	550 [rpm] to 2650 [rpm] Both CW and CCW are supported		
	- Disables the motor control signal output (six outputs), under any of the following conditions.		
Processing stop for protection	 Inverter bus voltage exceeds 28 [V] (monitored per 1 [ms]) Inverter bus voltage is less than 15 [V] (monitored per 1 [ms]) Rotational speed exceeds 3500 [rpm] (monitored per 1 [ms]) When the motor rotates, the interrupt of Hall sensors' signals are not detected for 200 [ms]. Fault detection of Hall sensor pattern (position information) 		
	 The ports executing PWM output are set to high impedance state when an overcurrent is detected by external circuit (low level edge input occurs in INTP0 port) or by internal PGA+CMP0, CMP1. 		

3. Descriptions of the control program

The target control programs of this application note are explained here.

3.1 Contents of control

3.1.1 Motor start / stop

Starting and stopping of the motor are controlled by input from SW1 & VR1.

A general-purpose port is assigned to SW1. The port is read within the main loop. When the port is at a "Low" level, it is determined that the start switch is being pressed. Conversely, when the level is switched to "High", the program determines that the motor should be stopped.

Also, an analog input port is assigned to VR1. The input is A/D converted within the main loop to generate a rotational speed command value. When the command value is less than 550 [rpm], the program determines that the motor should be stopped.

3.1.2 A/D converter

(1) Motor rotational speed command value

The motor rotational speed command value can be set by A/D conversion of the VR1 output value (analog value). The A/D converted VR1 value is used as rotational speed command value, as shown below.

The maximum of the command value is set as the value from which maximum rotational speed is generated by the resolution of the A/D converter.

Table 3-1 Conversion Ratio of the Rotational Speed Command Value

Item	Conversion	ratio (Command value: A/D conversion value)	Channel
Rotational speed command value	CW	0 [rpm] ~ 3072 [rpm] : 0200H~03FFH	A NIIO (Note)
	CCW	-3072 [rpm] ~ 0 [rpm] : 0000H~01FFH	ANIO (Note)

Note: The input channel is ANIO because the CPU card which is modified as a VR1 signal is input to port 20.

(2) Inverter bus voltage

Inverter bus voltage is measured as given in Table 3-2. It is used for modulation factor calculation and over/under voltage detection. (When an error is detected, PWM is stopped.)

Table 3-2 Inverter Bus Voltage Conversion Ratio

Item	Conversion ratio (Inverter bus voltage: A/D conversion value)	Channel
Inverter bus voltage	0 [V] ~ 111[V]: 0000H ~ 03FFH	ANI3

For more details of A/D conversion characteristics, refer to RL78/G1G User's Manual: Hardware.

RENESAS Feb.15.2017

3.1.3 Speed control

In this system, the motor rotational speed is calculated from a difference of the current timer value and the timer value 2π [rad] before. The timer values are obtained when an external interrupt due to Hall sensor signals occur, while having the timer of Timer Array Unit (TAU) channel 1 performed free running.

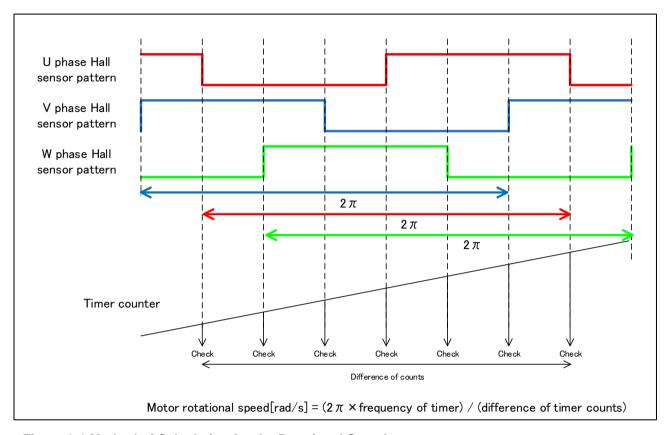


Figure 3-1 Method of Calculation for the Rotational Speed

The target sample software of this application note use PI control for speed control. A voltage command value is calculated by the following formula of speed PI control.

$$v^* = (K_{P\omega} + \frac{K_{I\omega}}{s})(\omega^* - \omega)$$

 v^* : Voltage command value, ω^* : Speed command value, ω : Rotational speed $Kp\omega$: Speed PI proportional gain, $KI\omega$: Speed PI integral gain, s: Laplace operator

For more details of PI control, please refer to specialized books.

3.1.4 Voltage control by PWM

PWM control is used for controlling output voltage. The PWM control is a control method that continuously adjusts the average voltage by varying the duty of pulse, as shown in Figure 3-2.

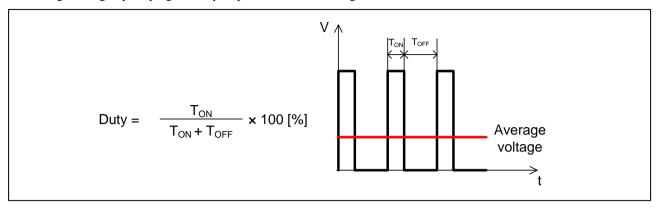


Figure 3-2 PWM Control

Here, modulation factor m is defined as follows.

$$m = \frac{V}{E}$$
 m : Modulation factor V : Command value voltage E : Inverter bus voltage

This modulation factor is reflected in the setting value of the register that determines the PWM duty.

In the target software of this application note, first-60-degree chopping is used to control the output voltage and speed. Figure 3-3 shows an example of motor control signal output waveforms at Non-complimentary first-60-degree chopping. Figure 3-4 shows an example of motor control signal output waveforms at Complimentary first-60-degree chopping.

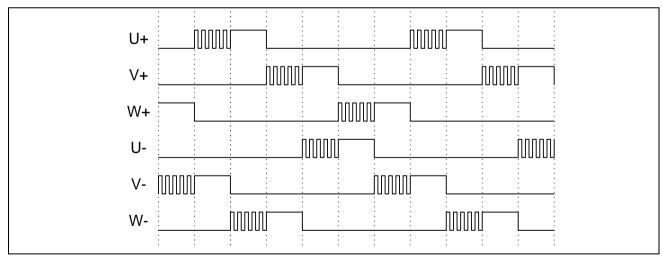


Figure 3-3 Non-complimentary first-60-degree Chopping

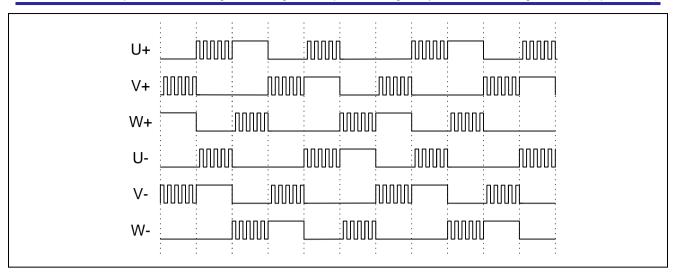


Figure 3-4 Complimentary first-60-degree Chopping

3.1.5 State transition

Figure 3-5 shows state transition diagrams of 120-degree conducting control using Hall sensors software.

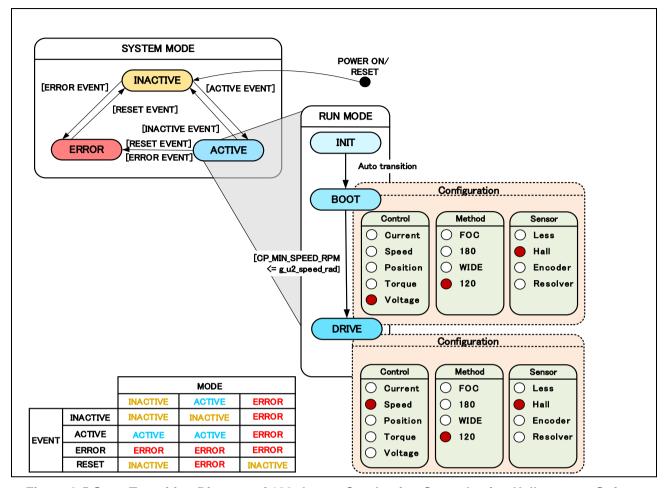


Figure 3-5 State Transition Diagram of 120-degree Conducting Control using Hall sensors Software

(1) SYSTEM MODE

"SYSTEM MODE" indicates the operating states of the system. The state transits on occurrence of each event (EVENT). "SYSTEM MODE" has 3 states that are motor drive stop (INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

(2) RUN MODE

"RUN MODE" indicates the condition of the motor control. "RUN MODE" transits sequentially as shown in Figure 3-5 when "SYSTEM MODE" is "ACTIVE".

(3) EVENT

When "EVENT" occurs in each "SYSTEM MODE", "SYSTEM MODE" changes as shown table in Figure 3-5, per that "EVENT".

Table 3-3 List of EVENT

EVENT name	Occurrence factor
INACTIVE	by user operation
ACTIVE	by user operation
ERROR	when the system detects an error
RESET	by user operation

RENESAS Feb.15.2017

3.1.6 Start-up method

In the case of 120-degree conducting control using Hall sensors, the rotor position can be determined by Hall sensors' signals. Therefore, the conduction pattern at start-up is also determined.

When the control will be changed to PI control, at least the speed data is necessary to reach 2π (refer to 3.1.3). In the sample softwares, at the start-up of rotation the motor is controlled in open loop with a constant voltage until the speed data reach 2π .

Figure 3-6 shows the start-up method in the sample softwares. In "MTR_MODE_BOOT", open loop with a constant voltage which is set by g_s2_start_ref_v is performed. The mode changes to "MTR_MODE_DRIVE" when the current speed reaches the defined minimum speed.

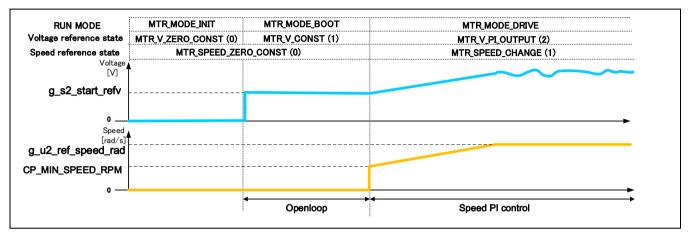


Figure 3-6 Start-up Method (Example)

3.1.7 System protection function

This system has the following types of error status and enables emergency stop functions in case of occurrence of respective error. Refer to Table 3-4, Table 3-5 for settings.

- Overcurrent error

The overcurrent is detected with the method using the external circuit or the method using the internal PGA+CMP0, CMP1. Using method is selectable by a compile option.

a. External hardware

High impedance output is made to the PWM output port in response to an emergency stop signal (overcurrent detection) from the hardware.

b. Internal PGA+CMP0, CMP1

High impedance output is made to the PWM output port in response to an emergency stop signal (overcurrent detection) from the internal PGA+CMP0, CMP1 detection.

The setting of PGA+CMP0, CMP1 are given below.

Table 3-4 Setting for overcurrent detection

Threshold value	Comparator internal reference setting	Channel	PGA Gain
CMP1: 2 [A]	CMP1: 120	PGA out	× 4 is selected
CMP0: -2 [A]	CMP0: 83	PGA out	x 4 is selected

- Overvoltage error

The inverter bus voltage is monitored at the overvoltage monitoring cycle. When an over voltage is detected (when the voltage exceeds the limit), CPU performs an emergency stop. The threshold value of the overvoltage is set in consideration of the error of resistance value of the detection circuit.

- Low voltage error

The inverter bus voltage is monitored at the low voltage monitoring cycle. When a low voltage is detected (when the voltage lowers the limit), CPU performs an emergency stop. The threshold value of the low voltage is set in consideration of the error of resistance value of the detection circuit.

- Rotational speed error

The rotational speed is monitored at the rotational speed monitoring cycle. When the speed exceeds the limit, CPU performs an emergency stop.

- Timeout error of Hall signal interrupt detection

When the interrupt by Hall sensors' signal doesn't occur during defined period, CPU performs an emergency stop.

- Hall sensor pattern (position information) error

When an error is detected in Hall sensor patterns (position information) generated at Hall signal interrupts, CPU performs an emergency stop.

R01AN3736EJ0100 Rev.1.00 Page 20 of 42 Feb.15.2017

Table 3-5 Setting Value of Each System Protection Function

Error name	Threshold	
Overcurrent error (Note)	Overcurrent limit [A]	±2.0
Overvoltage error	Overvoltage limit [V]	28
	Monitoring cycle [ms]	1
Low voltage error	Low voltage limit [V]	15
	Monitoring cycle [ms]	1
Rotational speed error	Speed limit [rpm]	3500
	Monitoring cycle [ms]	1
Timeout error of Hall signal interrupt detection	Timeout value [ms]	200

Note: The threshold when detecting an overcurrent by PGA+CMP0,1.

Feb.15.2017

3.2 Function specifications of 120-degree conducting control using Hall sensors software

Multiple control functions are used in this control program. However, functions which are not used in this system are undescribed.

Table 3-6 List of Functions "main.c"

File name	Function name	Process overview
main.c	main Input: None Output: None	 Hardware initialization function call User interface initialization function call Initialization function call of the variables used in the main process Waiting for stability of the bus voltage function call Status transition and event execution function call Main process ⇒ User interface call ⇒ Watchdog timer clear function call
	board_ui Input: None Output: None	Motor status changeDetermination of rotational speed command valueDetermination of rotation direction
	software_init Input: None Output: None	Initialization of variables used in the main process

Table 3-7 List of Functions "mtr_ctrl_mrssk.c"

File name	Function name	Process overview
mtr_ctrl_mrssk.c	R_MTR_ChargeCapacitor Input: None Output: None	Waiting for stability of the bus voltage
	get_vr1 Input: None Output: (uint16) u2_ad_data / A/D conversion result	VR1 status acquisition
	get_sw1 Input: None Output: (uint8) SW1 level	SW1 status acquisition
	get_sw2 Input: None Output: (uint8) SW2 level	SW2 status acquisition
	led1_on Input: None Output: None	Turning LED1 ON
	led2_on Input: None Output: None	Turning LED2 ON
	led1_off Input: None Output: None	Turning LED1 OFF
	led2_off Input: None Output: None	Turning LED2 OFF

Table 3-8 List of Functions "mtr_ctrl_rl78g1g.c"

File name	Function name	Process overview
mtr_ctrl_rl78g1g.c	R_MTR_InitHardware	Initialization of the clock and peripheral functions
	Input: None	
	Output: None	
	mtr_init_clock	Initialization of clock
	Input: None	
	Output: None	
	mtr_init_tau	Initialization of the Timer Array Unit (TAU)
	Input: None	
	Output: None	
	mtr_init_intp	Initialization of external interrupt
	Input: None	
	Output: None	
	mtr_init_cmp_pga	Initialization of Comparator0,1 and PGA
	Input: None	
	Output: None	
	clear_wdt	Clearing the watchdog timer (WDT)
	Input: None	
	Output: None	
	mtr_clear_oc_flag	Cancelation the forced cutoff of the pulse output
	Input: None	
	Output: None	
	mtr_clear_trd0_imfa	Clearing the Compare Match Timer A (IMFA)
	Input: None	
	Output: None	
	mtr_disable_hall_intr	Disable Hall interrupts
	Input: None	
	Output: None	

Table 3-9 List of Functions "mtr_interrupt.c"

File name	Function name	Process overview
mtr_interrupt.c	mtr_oc_intp0_interrupt Input: None Output: None	Overcurrent detection process (Hardware detection) - Disable INTP0 interrupt servicing - Event processing selection function call (Generate error event) - Changing the motor status (Set the flag of error about overcurrent)
	mtr_oc_cmp0_interrupt Input: None Output: None	Overcurrent detection process (CMP0 interrupt) - Disable CMP0, CMP1 interrupt servicing - Event processing selection function call (Generate error event) - Changing the motor status (Set the flag of error about overcurrent)
	mtr_oc_cmp1_interrupt Input: None Output: None	Overcurrent detection process (CMP1 interrupt) - Disable CMP0, CMP1 interrupt servicing - Event processing selection function call (Generate error event) - Changing the motor status (Set the flag of error about overcurrent)
	mtr_hall_u_interrupt Input: None Output: None	Hall U signal interrupt function (INTP3) - Call common function of Hall signal interrupt
	mtr_hall_v_interrupt Input: None Output: None	Hall V signal interrupt function (INTP4) - Call common function of Hall signal interrupt
	mtr_hall_w_interrupt Input: None Output: None	Hall W signal interrupt function (INTP5) - Call common function of Hall signal interrupt
	mtr_1ms_interrupt Input: None Output: None	Calling every 1 [ms] (INTTM00) - Run mode management ⇒Setting speed reference ⇒Setting voltage reference ⇒Setting PWM duty - Detection of Hall signals' timeout - Error check function call - Motor stop detection function call
	mtr_carrier_interrupt Input: None Output: None	Calling every 50 [µs] (INTTRD0) - Measure inverter bus voltage - Clear compare match flag A function call

Table 3-10 List of Functions "mtr_spm_hall_120.c"

File name	Function name	Process overview
mtr_spm_hall_120.c	R_MTR_InitSequence Input: None Output: None	Initialization of the sequence process
	R_MTR_ExecEvent Input: (uint8) u1_event / occurred event Output: None	Changing the status Call an appropriate process execution function for the occurred event
	mtr_act_active Input: (uint8) u1_state / motor status Output: (uint8) u1_state / motor status	- Call for initialize variables function - Enable Hall signal interrupts - Error check
	mtr_act_inactive Input: (uint8) u1_state / motor status Output: (uint8) u1_state / motor status	- Call Timer RD (TRD) and PWM sotp function - Reset mode and configurations
	mtr_act_none Input: (uint8) u1_state / motor status Output: (uint8) u1_state / motor status	No process is performed.
	mtr_act_reset Input: (uint8) u1_state / motor status Output: (uint8) u1_state / motor status	Global variables initialization Cancelation of the forced cutoff function call Cancel overcurrent state
	mtr_act_error Input: (uint8) u1_state / motor status Output: (uint8) u1_state / motor status	Call for motor control stop function
	mtr_pattern_set Input: None Output: None	- Set conduction pattern - Call speed measurement process
	mtr_speed_calc Input: None Output: None	Speed measurement & calculation processing
	mtr_start_init Input: None Output: None	Initializing only the variables required for motor startup
	mtr_error_check Input: None Output: None	Error monitoring
	mtr_wait_motorstop Input: None Output: None	Check motor stop Disable Hall signal interrupts
	mtr_set_voltage_ref Input: None Output: None	Set reference voltage
	mtr_set_speed_ref Input: None Output: None	Set reference speed
	mtr_hall_signal_process Input: None Output: None	Hall signal interrupt common function - Count interrupts for start of speed measurement - Clear counter for Hall timeout error - Motor stop wait - Conduction pattern set function call
	mtr_pattern_first60 Input: (uint8) u1_pattern / Conduction pattern Output: None	Set voltage pattern non-complementary first 60 degree PWM
	mtr_pattern_first60_comp Input: (uint8) u1_pattern / Conduction pattern Output: None	Set voltage pattern complementary first 60 degree PWM

Feb.15.2017

Table 3-11 List of Functions "mtr_ctrl_rl78g1g_mrssk"

File name	Function name	Process overview
mtr_ctrl_rl78g1g_mrssk	mtr_init_trd Input: None Output: None	Initial setting of TRD
	mtr_init_ad_converter Input: None Output: None	Initial setting of the A/D converter
	init_ui Input: None Output: None	Initialization of user interface
	mtr_ctrl_start Input: None Output: None	Motor start processing - Enable Hall signal interrupts
	mtr_ctrl_stop Input: None Output: None	Motor stop processing - Stop Timer RD (TRD) - Stop PWM
	mtr_change_pattern Input: (uint8) u1_pattern / Conduction pattern Output: None	- Change conduction pattern - Error check
	mtr_get_adc Input: (uint8) u1_ad_ch / A/D conversion channel Output: (int16) s2_temp / A/D conversion value	Get A/D conversion value

Table 3-12 List of Functions "mtr_feedback.c"

File name	Function name	Process overview
mtr_feedback.c	mtr_pi_ctrl	PI control
	Input: (MTR_PI_CTRL*) pi_ctrl / PI control structure	
	Output: (int16) s2_ref / PI control output value	

Page 26 of 42

Table 3-13 List of Functions "mtr_gmc.c"

File name	Function name	Process overview
mtr_gmc.c	mtr_get_vdc Input: None Output: (int16) s2_temp / vdc value	Obtaining the bus voltage
	mtr_check_over_voltage_error Input: (int16) s2_vdc / vdc value	Checking over voltage error
	mtr_check_under_voltage_error Input: (int16) s2_vdc / vdc value	Checking under voltage error
	mtr_check_over_speed_error Input: (uint16) u2_speed_rad / motor speed	Checking over speed error
	mtr_get_duty Input: (volatile int16) s2_v_ref / reference voltage	Calculate PWM duty
	mtr_check_timeout_error Input: (uint16) u2_cnt_timeout / counter of timeout	Checking time-out error

Table 3-14 List of Functions "mtr_driver_access.c"

File name	Function name	Process overview
mtr_driver_access.c	R_MTR_SetSpeed Input: (int16) s2_ref_speed / speed command value Output: None	Setting the speed command value
	R_MTR_SetDir Input: (uint8) u1_dir / rotation direction Output: None	Setting the rotation direction
	R_MTR_GetSpeed Input: None Output: (uint16) u2_speed_rpm / speed	Obtaining the calculated speed value
	R_MTR_GetDir Input: None Output: (uint8) g_u1_direction / rotation direction	Obtaining the rotation direction
	R_MTR_GetStatus Input: None Output: (uint8) g_u1_mode_system / motor status	Obtaining the motor status

3.3 List of variables of 120-degree conducting control using Hall sensors software

Lists of variables used in the control programs are given below. However, note that the local variables are not mentioned.

In the control programs in this application note use fixed-point calculation. Therefore, some variables are already established with fixed-point calculation. Bits number in fractional part of fixed-point number is expressed in the Q format. For example, a "Q3" number has 3 fractional bits. "Qn" number is indicated on "Scale" column in below table.

Table 3-15 List of variables [1/3]

Variable name	Туре	Scale	Content	Remarks
g_u2_max_speed_rpm	uint16	-	Maximum rotational speed	Mechanical angle [rpm]
g_u2_min_speed_rpm	uint16	-	Minimum rotational speed	Mechanical angle [rpm]
g_u2_margin_min_speed_rpm	uint16	-	Minimum rotational speed for motor stop	Mechanical angle [rpm]
g_s2_ref_speed_rpm	int16	-	User setting rotational speed	Mechanical angle [rpm]
g_u1_rot_dir	uint8	-	User setting rotation direction	0: CW 1: CCW
g_u1_motor_status	uint8	-	User motor status management	0: Stop 1: Rotating 2: Error
g_u1_reset_req	uint8	-	Reset request flag	0: Turning SW2 ON in error status 1: Turning SW2 OFF in error status
g_u1_sw1_cnt	uint8	-	SW1 determination counter	Chattering removal
g_u1_sw2_cnt	uint8	-	SW2 determination counter	Chattering removal
g_u1_stop_req	uint8	-	VR1 stop command flag	
g_s2_v_ref	int16	Q7	Voltage command value	Speed PI control output value [V]
g_s2_vdc_ad	int16	Q7	Inverter bus voltage A/D value	[V]
g_u2_pwm_duty	uint16		PWM duty	
g_u2_ref_speed_rad	uint16	Q3	Speed reference value	Electrical angle [rad/s]
g_u2_speed_rad	uint16	Q3	Measured speed value	Electrical angle [rad/s]
g_s2_speed_lpf_k	int16	Q14	Speed LPF parameter	
st_speed	MTR_PI_ CTRL	-	Structure for speed PI control	
g_u2_run_mode	uint16	-	Operation mode management	0x00: Initialize mode 0x01: Boot mode 0x02: Drive mode 0x03: Analysis mode 0x04: Tune mode
g_u2_error_status	uint16	-	Error status management	0x00: None error 0x01: Over current error 0x02: Over voltage error 0x04: Over speed error 0x08: Hall signal time out error 0x10: BEMF time out error 0x20: Hall pattern error 0x40: BEMF pattern error 0x80: Under voltage error 0xFF: Undefined error

Table 3-16 List of variables [2/3]

Variable name	Type	Scale	Content	Remarks
g_u1_mode_system	uint8	-	State management	0x00: Inactive mode 0x01: Active mode 0x02: Error mode
g_u2_state_voltage_ref	uint16	-	Voltage state	0: INIT mode (reference voltage 0) 1: BOOT mode 2: PI Control mode
g_u2_state_speed_ref	uint16	-	Speed state	O: BOOT mode (reference speed O) 1: Speed Control mode
g_u2_sensor_conf	uint16	-	Sensor configuration management	0x01: Sensorless 0x02: Hall sensor 0x04: Encoder 0x08: Resolver
g_u2_method_conf	uint16	-	Control method configuration management	0x00: FOC (Fields Oriented Control) 0x01:180 degree control 0x02: Wide angle electricity control 0x03: 120 degree control
g_u2_ctrl_conf	uint16	-	Control configuration management	0x01: Current control 0x02: Speed control 0x04: Position control 0x08: Torque control 0x10: Voltage control
g_u1_cnt_speed_pi	uint8	-	Speed PI control function call interval counter	
g_u1_flg_wait_stop	uint8	-	Motor rotation stop waiting flag	
g_u1_flag_charge_cap	uint8	-	Flag for capacitor charging completed	
g_u2_speed_calc_base	uint16	-	Base parameter to calculate speed	
g_u2_ref_speed_rad_crtl	uint16	Q3	Speed command value	Electrical angle [rad/s]
g_s2_kp_speed	int16	Q16	Speed PI proportional gain	
g_s2_ki_speed	int16	Q22	Speed PI integral gain	
g_s4_ilim_v	int32	Q25	Limit for integral part of speed PI control	[V]
g_s2_limit_speed_change	int16	Q3	Step to increase speed reference	Electrical angle [rad/s]
g_s2_start_ref_v	int16	Q7	Start voltage command value	[V]
g_u2_cnt_wait_stop	uint16	-	Motor rotation stop waiting counter	
g_u1_hall_signal	uint8	-	Hall signal capture buffer	
g_u1_hall_intr_cnt	uint8	-	Waiting counter of Hall signal interrupts for speed measurement	
g_u1_hall_wait_cnt	uint8	-	Waiting counts of Hall signal interrupts for speed measurement	
g_u1_v_pattern	uint8	-	Conduction pattern	
g_u2_cnt_timeout	uint16	-	Timeout detection counter	
g_u1_direction	uint8	-	Rotation direction	0 : CW 1 : CCW

Table 3-17 List of variables [3/3]

Variable name	Туре	Scale	Content	Remarks
g_u2_hall_timer_cnt	uint16	-	Free run timer count value	
g_u2_pre_hall_timer_cnt	uint16	-	Previous free run timer count value	
g_u2_timer_cnt_sum	uint16	-	Speed measurement timer count value of 2 π (erectrical angle)	
g_u2_timer_cnt_buf[6]	uint16	-	Speed measurement timer count buffer	
g_u1_timer_cnt_num	uint8	-	Speed measurement timer count buffer number	

3.4 List of structure of 120-degree conducting control using Hall sensors software

List of structure used in this control program are given below.

Table 3-18 List of structure

Structure	Member	Туре	Scale	Content	Remarks
MTR_PI_CTRL	s2_err	int16	Q3	Error	
	s2_kp	int16	Q16	Speed PI proportional gain	
	s2_ki	int16	Q22	Speed PI integral gain	
	s4_refi	int32	Q7	Integral part of speed PI control	
	s4_ilimit	int32	Q25	Limit for integral part of speed PI control	

3.5 Macro definitions of 120-degree conducting control using Hall sensors software

Lists of macro definitions used in the control program are given below.

Table 3-19 List of Macro definitions "main.h"

File name	Macro name	Definition value	Remarks
main.h	M_CW	0	Rotation direction: CW
	M_CCW	1	Rotation direction: CCW
	MAX_SPEED	CP_MAX_SPEED_RPM	Maximum rotational speed (mechanical angle) [rpm]
	MIN_SPEED	CP_MIN_SPEED_RPM	Minimum rotational speed (mechanical angle) [rpm]
	MARGIN_SPEED	50.0f	Rotational speed command minimum value creation constants for stop (mechanical angle) [rpm]
	MARGIN_MIN_SPEED	MIN_SPEED - MARGIN_SPEED	Rotational speed command minimum value for motor stop (mechanical angle) [rpm]
	SW_ON	0	Active in case of "Low"
	SW_OFF	1	Inactive in case of "High"
	CHATTERING_CNT	10	Chattering removal
	VR1_SCALING	(MAX_SPEED+422)/0x0200	Speed command value creation constant
	ADJUST_OFFSET	0x01FF	Speed command value offset adjustment constant
	REQ_CLR	0	Flag clearing
	REQ_SET	1	Flag setting

Table 3-20 List of Macro definitions "motor_parameter.h"

File name	Macro name	Definition value	Remarks
motor_parameter.h	MP_POLE_PAIRS	2	Motor pole pairs
	MP_RESISTANCE	6.447f	Resistance [Ω] (not used)
	MP_D_INDUCTANCE	0.0045f	d-axis Inductance [H] (not used)
	MP_Q_INDUCTANCE	0.0045f	q-axis Inductance [H] (not used)
	MP_MAGNETIC_FLUX	0.02159f	Magnetic flux [Wb] (not used)

Table 3-21 List of Macro definitions "control_parameter.h"

File name	Macro name	Definition value	Remarks
control_parameter.h	CP_MAX_SPEED_RPM	2650	Maximum rotational speed (mechanical angle) [rpm]
	CP_MIN_SPEED_RPM	550	Minimum rotational speed (mechanical angle) [rpm]
	CP_LIMIT_SPEED_CHANGE	0.30f * 0x08	Step to increase speed reference (electrical angle) [rad/s] (scale: Q3)
	CP_START_REF_V	5.0f * 0x80	Start voltage command value [V] (scale: Q7)
	CP_SPEED_PI_KP	0.0200f * 0x10000	Speed PI proportional gain (scale: Q16)
	CP_SPEED_PI_KI	0.0006f * 0x400000	Speed PI integral gain (scale: Q22)
	CP_SPEED_LPF_K	1.0f * 0x4000	Speed LPF parameter
	MTR_FIRST60	1	Non-Complementary First 60 degree PWM (default)
	MTR_FIRST60_COMP	0	Complementary First 60 degree PWM

Table 3-22 List of Macro definitions "mtr_ctrl_rl78g1g_mrssk.h" [1/2]

File name	Macro name	Defi	nition va	alue		Remarks
mtr_ctrl_rl78g	MTR_PWM_TIMER_FREQ	48.0f				PWM timer count frequency [MHz]
1g_mrssk.h	MTR_CARRIER_FREQ	20.0f				Carrier frequency [kHz]
	MTR_DEADTIME	2000				Dead time [ns]
	MTR_DEADTIME_SET	` '	(MTR_DE R_FREQ/1		E*MTR_PWM_	Dead time setting value
	MTR_CARRIER_SET	,	_PWM_TII		REQ*1000/MTR	Carrier setting value for non- complementary (selectable by a compile option)
		_CAR	(MTR_PWM_TIMER_FREQ*1000/MTR _CARRIER_FREQ/2)+MTR_DEADTIM E_SET-2			Carrier setting value for complementary (selectable by a compile option)
	MTR_HALF_CARRIER_SET	ER_SET MTR_CARRIER_SET / 2		Half of "MTR_CARRIER_SET"		
	MTR_NDT_CARRIER_SET MTR_CARRIED MTR_DEADT					
	MTR_PORT_HALL_U		P3.0		P3_bit.no0	Hall signal U input
	MTR_PORT_HALL_V		P3.1		P3_bit.no1	Hall signal V input
	MTR_PORT_HALL_W		P1.6		P1_bit.no6	Hall signal W input
	MTR_PORT_UP		P1.5		P1_bit.no5	U phase (positive phase) output port
	MTR_PORT_UN		P1.4		P1_bit.no4	U phase (negative phase) output port
	MTR_PORT_VP		P1.3		P1_bit.no3	V phase (positive phase) output port
	MTR_PORT_VN	CA	P1.1	CC- RL	P1_bit.no1	V phase (negative phase) output port
	MTR_PORT_WP		P1.2		P1_bit.no2	W phase (positive phase) output port
	MTR_PORT_WN		P1.0		P1_bit.no0	W phase (negative phase) output port
	MTR_PORT_SW1		P7.0		P7_bit.no0	SW1 input port
	MTR_PORT_SW2		P1.7		P1_bit.no7	SW2 input port
	MTR_PORT_LED1		P6.0		P6_bit.no0	LED1 output port
	MTR_PORT_LED2		P6.1		P6_bit.no1	LED2 output port

Table 3-23 List of Macro definitions "mtr_ctrl_rl78g1g_mrssk.h" [2/2]

File name	Macro name	Definition value	Remarks
mtr_ctrl_rl78g	MTR_LED_ON	0	LED active in case of "Low"
1g_mrssk.h	MTR_LED_OFF	1	
	MTR_INPUT_V	(int16) (24*0x80)	Input DC voltage [V] (scale: Q7)
	MTR_MCU_ON_V	(int16) (MTR_INPUT_V*0.8)	MCU power on voltage (scale: Q7)
	MTR_VDC_SCALING	3555	Inverter bus voltage A/D conversion value resolution
	MTR_RECIVDC_SCALING	64	Reciprocal value of MTR_VDC_SCALING
	MTR_OVERVOLTAGE_LIMIT	(int16) (28*0x80)	High voltage limit [V] (scale: Q7)
	MTR_UNDERVOLTAGE_LIMIT	(int16) (15*0x80)	Low voltage limit [V] (scale: Q7)
	MTR_TAU1_CNT	TCR01	Register of timer counter for speed measurement
	MTR_ADCCH_VR1	3	A/D Converter channel of VR1
	MTR_ADCCH_VDC	0	A/D Converter channel of VDC
	MTR_OC_HW_FLG	TRDSHUTS	Forced cutoff flag
	MTR_OC_INTR_MASK	PMK0	INTP0 interrupt mask flag
	MTR_OC_CMP0_MASK	СМРМКО	CMPMK0 interrupt mask flag
	MTR_OC_CMP1_MASK	CMPMK1	CMPMK1 interrupt mask flag
	MTR_DISABLE_OC_INTR	1	Disable INTP0 interrupt service

Table 3-24 List of Macro definitions "mtr_spm_hall_120.h" [1/3]

File name	Macro name	Definition value	Remarks
mtr_spm_hall_	MTR_POLE_PAIRS	MP_POLE_PAIRS	Motor pole pairs
120.h	MTR_TWOPI	2 * 3.14159265f	2π
	MTR_RPM_RAD	13726	[rpm] → [rad/s]
	MTR_RAD_RPM	4889	[rad/s] → [rpm]
	MTR_SPEED_LIMIT_RPM	3500	Speed limit (mechanical angle) [rpm]
	MTR_SPEED_LIMIT	MTR_SPEED_LIMIT_RPM * (MTR_TWOPI / 60)	Speed limit (electrical angle) [rad/s]
	MTR_SPEED_PI_DECIMATION	0	Number of interrupt decimation times for speed PI control
	MTR_SPEED_PI_KP	(int16) (CP_SPEED_PI_KP)	Speed PI proportional gain (scale: Q16)
	MTR_SPEED_PI_KI	(int16) (CP_SPEED_PI_KI)	Speed PI integral gain (scale: Q22)
	MTR_SPEED_PI_I_LIMIT_V	24 * 0x80 * 0x40000	Limit for integral part of speed PI control (scale: Q25)
	MTR_SPEED_CALC_BASE	576	Base parameter to calculate speed
	MTR_SPEED_LPF_K	(int16) (CP_SPEED_LPF_K)	Speed LPF parameter
	MTR_LIMIT_SPEED_CHANGE	(int16) (CP_LIMIT_SPEED_CHANGE)	Step to increase speed reference (electrical angle) [rad/s] (scale: Q3)
	MTR_MIN_SPEED_RAD	CP_MIN_SPEED_RPM*(MTR_ TWOPI/60)*0x08	Rotational speed command minimum value (electrical angle) [rad/s] (scale: Q3)
	MTR_MAX_DRIVE_V	(int16) (22*0x80)	Maximum command voltage [V] (scale: Q7)
	MTR_MIN_DRIVE_V	(int16) (0.1f*0x80)	Minimum command voltage [V] (scale: Q7)
	MTR_START_REF_V	CP_START_REF_V	Start voltage command value [V] (scale: Q7)
	MTR_TIMEOUT_CNT	200	Timeout count limit [ms]
	MTR_STOP_WAIT_CNT	200	Stop judge count [ms]
	MTR_WAIT_SPEED_CALC	24	Wait speed measurement still Hall signal interrupts become this counts
	MTR_PATTERN_CW_V_U	2	CW Hall sensor value
	MTR_PATTERN_CW_W_U	3	
	MTR_PATTERN_CW_W_V	1	
	MTR_PATTERN_CW_U_V	5	
	MTR_PATTERN_CW_U_W	4	
	MTR_PATTERN_CW_V_W	6	
	MTR_PATTERN_CCW_V_U	5	CCW Hall sensor value
	MTR_PATTERN_CCW_V_W	1	
	MTR_PATTERN_CCW_U_W	3	
	MTR_PATTERN_CCW_U_V	2	
	MTR_PATTERN_CCW_W_V	6	
	MTR_PATTERN_CCW_W_U	4	

Table 3-25 List of Macro definitions "mtr_spm_hall_120.h" [2/3]

File name	Macro name	Definition value	Remarks
mtr_spm_hall_	MTR_PATTERN_ERROR	0	Conduction pattern
120.h	MTR_UP_PWM_VN_ON	1	
	MTR_UP_PWM_WN_ON	2	
	MTR_VP_PWM_UN_ON	3	
	MTR_VP_PWM_WN_ON	4	
	MTR_WP_PWM_UN_ON	5	
	MTR_WP_PWM_VN_ON	6	
	MTR_UP_ON_VN_PWM	7	
	MTR_UP_ON_WN_PWM	8	
	MTR_VP_ON_UN_PWM	9	
	MTR_VP_ON_WN_PWM	10	
	MTR_WP_ON_UN_PWM	11	
	MTR_WP_ON_VN_PWM	12	
	MTR_U_PWM_VN_ON	13	
	MTR_U_PWM_WN_ON	14	
	MTR_V_PWM_UN_ON	15	
	MTR_V_PWM_WN_ON	16	
	MTR_W_PWM_UN_ON	17	
	MTR_W_PWM_VN_ON	18	
	MTR_UP_ON_V_PWM	19	
	MTR_UP_ON_W_PWM	20	
	MTR_VP_ON_U_PWM	21	
	MTR_VP_ON_W_PWM	22	
	MTR_WP_ON_U_PWM	23	
	MTR_WP_ON_V_PWM	24	
	MTR_CW	0	Rotation direction setting value
	MTR_CCW	1	
	MTR_FLG_CLR	0	Constant for flag management
	MTR_FLG_SET	1	
	MTR_MODE_INACTIVE	0x00	Inactive mode
	MTR_MODE_ACTIVE	0x01	Active mode
	MTR_MODE_ERROR	0x02	Error mode
	MTR_SIZE_STATE	3	State size
	MTR_EVENT_STOP	0x00	Stop event
	MTR_EVENT_RUN	0x01	Run event
	MTR_EVENT_ERROR	0x02	Error event
	MTR_EVENT_RESET	0x03	Reset event
	MTR_SIZE_EVENT	4	Event size

Table 3-26 List of Macro definitions "mtr_spm_hall_120.h" [3/3]

File name	Macro name	Definition value	Remarks
mtr_spm_hall_ 120.h	MTR_MODE_INIT	0x00	Initial mode
120.11	MTR_MODE_BOOT	0x01	Boot mode
	MTR_MODE_DRIVE	0x02	Drive mode
	MTR_MODE_ANALYSIS	0x03	Analysis mode
	MTR_MODE_TUNE	0x04	Tune mode
	MTR_SENSOR_LESS	0x01	Sensor less
	MTR_SENSOR_HALL	0x02	Hall sensor
	MTR_SENSOR_ENCD	0x04	Encoder
	MTR_SENSOR_RESO	0x08	Resolver
	MTR_METHOD_FOC	0x00	Fields Oriented Control
	MTR_METHOD_180	0x01	180 degree control
	MTR_METHOD_WIDE	0x02	Wide angle electricity control
	MTR_METHOD_120	0x03	120 degree control
	MTR_CONTROL_CURRENT	0x01	Current control
	MTR_CONTROL_SPEED	0x02	Speed control
	MTR_CONTROL_POSITION	0x04	Position control
	MTR_CONTROL_TORQUE	0x08	Torque control
	MTR_CONTROL_VOLTAGE	0x10	Voltage control
	MTR_ERROR_NONE	0x00	None error
	MTR_ERROR_OVER_CURRENT	0x01	Over current error
	MTR_ERROR_OVER_VOLTAGE	0x02	Over voltage error
	MTR_ERROR_OVER_SPEED	0x04	Over speed error
	MTR_ERROR_HALL_TIMEOUT	0x08	Hall timeout error
	MTR_ERROR_BEMF_TIMEOUT	0x10	BEMF timeout error
	MTR_ERROR_HALL_PATTERN	0x20	Hall pattern error
	MTR_ERROR_BEMF_PATTERN	0x40	BEMF pattern error
	MTR_ERROR_UNDER_VOLTAGE	0x80	Under voltage error
	MTR_ERROR_UNKNOWN	0xff	Unknown error
	MTR_V_ZERO_CONST	0	Zero voltage mode (for Inactive state)
	MTR_V_CONST	1	Start voltage mode
	MTR_V_PI_OUTPUT	2	PI control mode
	MTR_SPEED_ZERO_CONST	0	Init speed mode
	MTR_SPEED_CHANGE	1	Speed control mode

3.6 Set Control flows (flow charts)

3.6.1 Main process

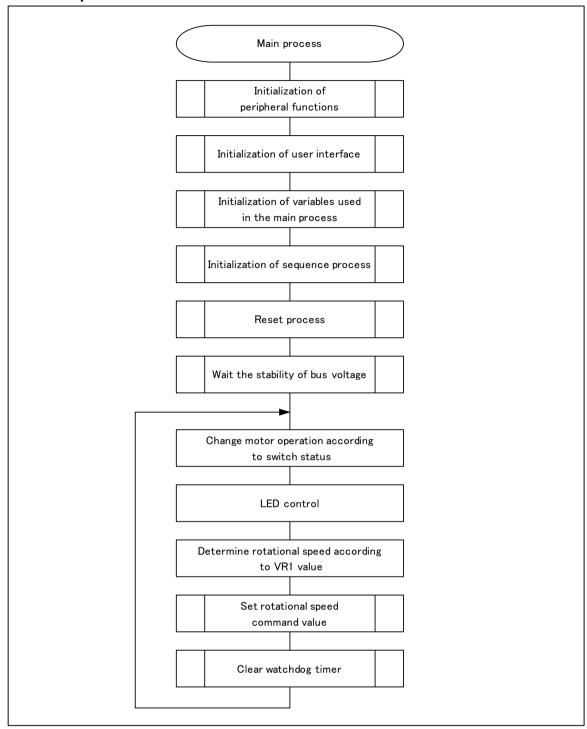


Figure 3-7 Main Process Flowchart

3.6.2 Carrier cycle interrupt handling

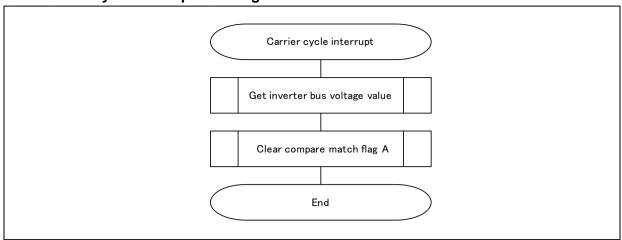


Figure 3-8 50[μs] Cycle Interrupt Handling (120-degree Control using Hall sensors)

3.6.3 1 [ms] interrupt handling

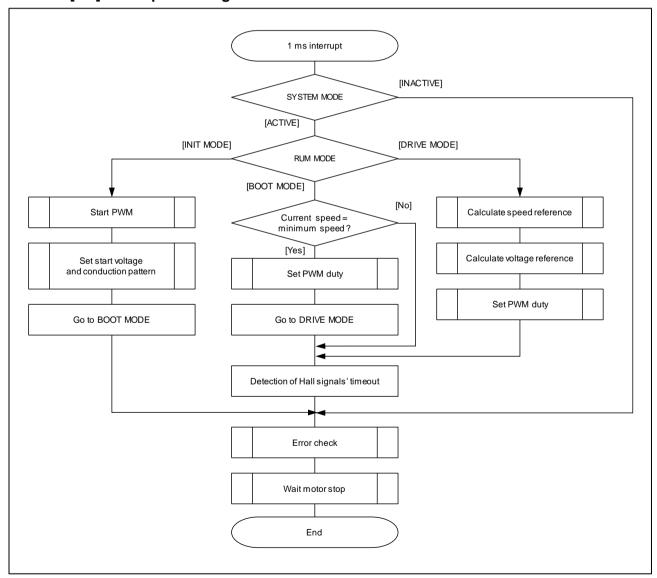


Figure 3-9 1 [ms] Interrupt Handling

3.6.4 Overcurrent interrupt handling

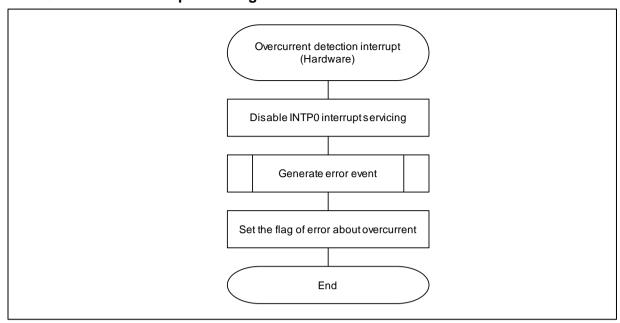


Figure 3-10 Over Current Detection Interrupt Handling (INTP0)

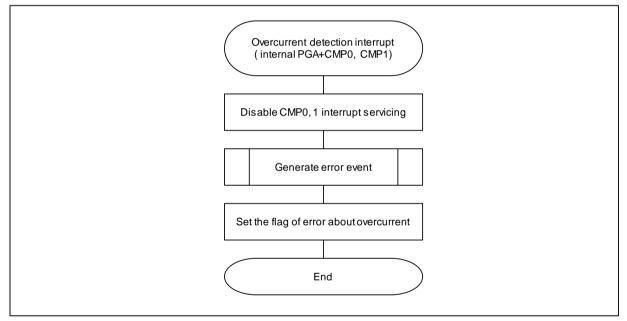


Figure 3-11 Over Current Detection Interrupt Handling (PGA+CMP0, CMP1)

3.6.5 Hall signal interrupt handling (common process)

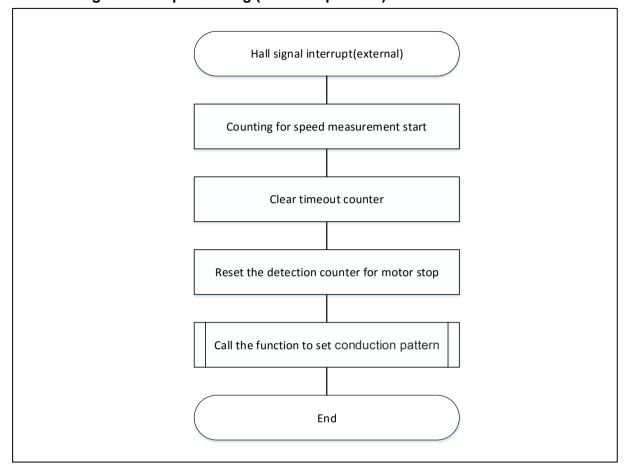


Figure 3-12 Hall signal Interrupt Handling (common process)

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owne

Revision History

Description

		2 000	
Rev.	Date	Page	Summary
1.00	Feb.15.2017	_	First edition issued
		·	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

'High Quality': Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Reneass Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-109, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Ini Tel: +65-6213-0200, Fax: +65-6213-0300 ux Innovation Centre, Singapore 339949

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207. Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9309, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141