

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0046-0100/Rev.1.00 April 2008 Page 1 of 20

SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler use guide] Object usage guide

This document describes how to use objects.

Table of contents

1. Changing the Section of a Specific Symbol in a Library ... 2
1.1 Overview.. 2
1.2 Librarian Interface ... 3
1.3 Optimizing Linkage Editor ... 5

2. Filling Unused Areas with Dummy Data.. 7
2.1 Overview.. 7
2.2 Procedure.. 8

3. Calling a Symbol Fixed on ROM ... 10
3.1 Overview.. 10
3.2 Procedure.. 11

4. Library Files and Relocatable Files ... 12
4.1 Differences Between a Library File and a Relocatable File .. 12
4.2 Linking Only Functions That Will Be Used .. 13
4.3 Enabling All Object Modules in an Existing Library File to Be Linked... 13

5. Creating a Load Module with a Physical Address... 16
5.1 Overview.. 16
5.2 Procedure.. 17
Website and Support <website and support,ws> .. 19

APPLICATION NOTE

1. Changing the Section of a Specific Symbol in a Library

1.1 Overview
This chapter describes how to change the section of a specific symbol in a library. In the example used in this chapter, the
section for the _INITSCT() function in the standard library will be changed.

When a program is to be copied from ROM to RAM for execution, the _INITSCT() function is used. Note, however, that,
like user functions, standard library functions are placed in the P section. Accordingly, an attempt to copy the P section to
RAM will fail because the _INITSCT() function itself is located in the P section that is being copied. To perform the
copy successfully, the section for the _INITSCT() function must be changed to another section.

The section of a specific symbol can be changed by using either the librarian interface or the optimizing linkage editor.

Changed _INITSCT() section:

 PR section
• Standard library

functions (except
_INITSCT())

• User functions

RAM

ROM

RAM

ROM

 • _INITSCT()

PINIT section
• Standard library

functions (including
_INITSCT())

• User functions

P section

PR section

Processing fails because
_INITSCT() itself will be copied.

Unchanged _INITSCT() section:

 P section
• Standard library

functions (except
_INITSCT())

• User functions

Figure 1-1

REJ06J0046-0100/Rev.1.00 April 2008 Page 2 of 20

APPLICATION NOTE

1.2 Librarian Interface
The librarian interface can be used to change the section of a specific module in a library. This section (1.2) describes how
to use the librarian interface to change the section of a specific symbol in a library.

To change the section, start the librarian interface by choosing Renesas H Series Librarian Interface from the tools
menu of High-performance Embedded Workshop (Renesas IDE hereafter). Then select the target library by choosing
Open from the File menu of the librarian interface. Selecting the target library displays a list of the object modules in the
library. From the list, select the section containing the symbol whose section is to be changed, and then choose Rename
Section from the Action menu.

Figure 1-2

In the displayed Rename Section dialog box, click the After button to display the After dialog box. In the Section Name
After Renaming text box, enter the name of the new section, and click the OK button.

Figure 1-3

REJ06J0046-0100/Rev.1.00 April 2008 Page 3 of 20

APPLICATION NOTE

In the Rename Section dialog box, click the Rename button. The section is changed.

Figure 1-4

REJ06J0046-0100/Rev.1.00 April 2008 Page 4 of 20

APPLICATION NOTE

1.3 Optimizing Linkage Editor
This section describes how to use the optimizing linkage editor to change the section of a specific symbol in a library.

First, output the information about the object modules in the target library (library listing), including the information
about the sections and symbols. The library listing including the information about the sections and symbols can be
output by specifying both the list and show =symbol,section options. For example, to output the library listing for the
stdlib.lib standard library, execute the optimizing linkage editor as follows:

optlnk -list -show=symbol,section -library=stdlib.lib -form=library
-output=tmp_stdlib.lib

The library listing uses the following headings:

 ...
*** Library List ***

MODULE LAST UPDATE
 SECTION
 SYMBOL

MODULE: Name of an object module
LAST
UPDATE:

The date that the object module was registered. If a registered object
module has been updated, the date of the last update is output.

SECTION Name of a section in the object module
SYMBOL Names of symbols in the section

The following is an example of the tmp_stdlib.lib library listing output by the optimizing linkage editor. This library
listing shows that the _INITSCT() function is located in the P section of the __initsct object module.

 ...
*** Library List ***

MODULE LAST UPDATE
 SECTION
 SYMBOL

div
 30-Oct-2006 16:20:00
 P
 _div
 _ldiv
 ...
__initsct
 30-Oct-2006 16:20:00
 C$BSEC
 C$DSEC
 P
 __INITSCT
 ...

REJ06J0046-0100/Rev.1.00 April 2008 Page 5 of 20

APPLICATION NOTE

Next, specify the rename option to change the section of a specific module in the library. The format of the rename
option is as follows:

rename=<suboption>[,…]
<suboption> : [<object module>](<old section>=<new section>)

To change the section of the __initsct object module containing the _INITSCT() function from P to PINIT, execute the
optimizing linkage editor as follows. The new_stdlib.lib library is generated and contains the change.

optlnk -rename=__initsct(P=PINIT) -library=stdlib.lib -form=library
-output=new_stdlib.lib

The following shows the library listing for the generated new_stdlib.lib library.

 ...
*** Library List ***

MODULE LAST UPDATE
 SECTION
 SYMBOL

div
 30-Oct-2006 16:20:00
 P
 _div
 _ldiv
 ...
__initsct
 20-Feb-2008 15:35:14
 C$BSEC
 C$DSEC
 PINIT
 __INITSCT
 ...

REJ06J0046-0100/Rev.1.00 April 2008 Page 6 of 20

APPLICATION NOTE

2. Filling Unused Areas with Dummy Data

2.1 Overview
A ROM image file (a S-Type file, Intel HEX file, or binary file) generated with the default settings contains only
programs and ROM data. Therefore, if the ROM image file is written to memory, unused areas might exist. To generate a
ROM image file without any unused areas, execute the optimizing linkage editor with the space option specified.

P1

P2

Unused area

P2

P1

Unused areas are
filled with FF

Filled with FFFF…

Filled with FFFF…

Empty

Empty

S00E000073706163653120206D6F7424
S1092000000900090009BB
S10B20100009000900090009A0
S9030800F4

S-Type format file:

S00E000073706163653120206D6F7424
S1092000000900090009BB
S1052006FFFFD6
S10B20080009000900090009A8
S1132010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S9030800F4

S-Type format file:

Underlining indicates the data.

Underlining indicates the data.

ROM image file with unused areas: ROM image file with unused areas filled with dummy data:

Figure 2-1

REJ06J0046-0100/Rev.1.00 April 2008 Page 7 of 20

APPLICATION NOTE

2.2 Procedure
This section describes how to execute the optimizing linkage editor with the space option specified to generate a ROM
image file that does not have any unused areas. First, the output range for the ROM image must be specified to generate
the ROM image file. To specify the output range, specify the following settings on the Link/Library page in the SuperH
RISC engine Standard Toolchain dialog box of Renesas IDE:

Category: Select Output.
Type of output file: Select Hex via absolute, Stype via absolute, or binary via absolute.
Show entries for: Select Divided output files.
Divide output files: Select this check box.
Add: Click this button to display the Add output file dialog box, and specify the output range and output file
name.

Figure 2-2

REJ06J0046-0100/Rev.1.00 April 2008 Page 8 of 20

APPLICATION NOTE

Next, to use the space option to fill unused areas with dummy data, specify the following settings:

Show entries for: Select Specify value filled in unused area.
Output padding data: Select Custom or Random.
 If Custom is selected, specify a value.

Figure 2-3

REJ06J0046-0100/Rev.1.00 April 2008 Page 9 of 20

APPLICATION NOTE

3. Calling a Symbol Fixed on ROM

3.1 Overview
This chapter describes how to call a symbol that has already been fixed in ROM from a new load module. In the example
used in this chapter, a newly created load module is loaded into RAM, and the load module calls a load module function
that has been fixed in ROM.

Before a function fixed in ROM can be called, the function address of the ROM program must be known. When the ROM
program load module is generated, a symbol address file that contains symbol address information must be output. Since
this file is written with assembler instructions, it can be used as an assembly source file. Calling a function for the ROM
program from the RAM program is made possible by assembling and linking the symbol address file when the RAM
program load module is generated.

ROM

RAM

Address 0x1000:
func() ROM

RAM

Address 0x1000:
func()

func() is called.

RAM program

ROM program ROM program

RAM program

The program is
loaded into RAM.

Jump to address 0x1000

When the RAM program load module is generated, address 0x1000 must be linked
as the location of func().

ROM program

…
.export _func
_func: .equ h'00001000
…

RAM program

A symbol address file is output at link time.

RAM program source file

ROM program source file Optimizing
linkage editor

Optimizing
linkage editor

Figure 3-1

REJ06J0046-0100/Rev.1.00 April 2008 Page 10 of 20

APPLICATION NOTE

3.2 Procedure
This section describes how to generate the load module of the RAM program described in the previous section.

First, generate the symbol address file while generating the ROM program load module. To generate the symbol address
file, specify the following settings on the Link/Library page in the SuperH RISC engine Standard Toolchain dialog
box of Renesas IDE. When the load module is generated, the symbol address file for the specified section is output with
the extension fsy.

Category: Select Section.
Show entries for: Select Symbol file.
Add: Click this button, and specify the section for which the symbol address file is to be generated.

ROM program project

Figure 3-2

Next, bring the generated symbol address file into the project when creating the RAM program that generates the load
module.

RAM program project

The symbol address file for the ROM
program is brought into the project.

Figure 3-3

REJ06J0046-0100/Rev.1.00 April 2008 Page 11 of 20

APPLICATION NOTE

4. Library Files and Relocatable Files

4.1 Differences Between a Library File and a Relocatable File
This section describes the differences between a library file and a relocatable file. A library file can be linked only to
object modules that include referenced symbols. By contrast, a relocatable file can be linked to all object modules.

(1) Library file

A library file can be linked only to an object module that includes a symbol that will be referenced either directly or
indirectly. In the example shown in Figure 4-1, since func1_A() of library object module module1.obj is referenced by
Object 1, module1.obj is linked. In addition, since func3_A() of library object module module3.obj is referenced by
Object 3, module3.obj is also linked.

 module1.obj
func1_A() definition
 func3_A() definition
func1_B() definition
…

 module2.obj
func2_A() definition
func2_B() definition
…

 module3.obj
func3_A() definition
func3_B() definition
…

Library file Object 1

Not referenced

Referenced

Referenced

 Object 2

Load modules

Link

Link

Link

Not referenced

Not referenced

 module1.obj

module3.obj

 Object 1

 Object 2

Reference to func1_A()

Link

Figure 4-1

(2) Relocatable file

A relocatable file is linked to all object modules whether or not the modules include referenced symbols. In the example
shown in Figure 4-2, the relocatable file is linked to module2.obj, which is an object module for the relocatable file, even
though the module2.obj symbol is not referenced from anywhere.

 module1.obj

func1_A() definition
 func3_A() definition
func1_B() definition
…

 module2.obj
func2_A() definition
func2_B() definition
…

 Object 1

Not referenced

Referenced

Referenced

 Object 2

Load modules

Link

Link

Link

Not referenced

Not referenced

 module1.obj Object 1

 Object 2

Reference to func1_A()

Link

 module2.obj Link

 module3.obj

Relocatable file

 module3.obj
func3_A() definition
func3_B() definition
…

Figure 4-2

REJ06J0046-0100/Rev.1.00 April 2008 Page 12 of 20

APPLICATION NOTE

4.2 Linking Only Functions That Will Be Used
To link only functions that will be used, create a library file with source files, each of which defines only one function. By
using a library file, only the functions that will be used are linked. In the example shown in the following figure, the
library file is linked to only the module1A.obj module, which includes func1_A() directly referenced by Object 1, and to
the module3A.obj module, which includes the indirectly referenced func3_A().

 module1A.obj
func1_A() definition
 Reference to func3_A()

Library file Object 1

Referenced

 Object 2

Load modules
Link

Link

Not referenced
 module1B.obj
func1_B() definition

 module2A.obj
func2_A() definition

 module2B.obj
func2_B() definition

 module3A.obj
func3_A() definition

 module3B.obj
func3_B() definition

Not referenced

Not referenced

Not referenced

Referenced

Link

 Object 1

 Object 2

 module1A.obj

 module3A.obj

Reference to func1_A()

Link

Figure 4-3

4.3 Enabling All Object Modules in an Existing Library File to Be Linked
When, as described earlier, an application is provided as a library file, only the functions actually called are linked.
However, all functions in the library file, including those that are not currently called, might need to be linked for future
expansion. In cases such as this, convert the library file into a relocatable file before linkage.

There are several ways that a library file can be converted into a relocatable file. This section shows how to create a
relocatable file with one or more object files that have been extracted from a library file.

module1.obj
func1_A() definition
func1_B() definition
…

module2.obj
func2_A() definition
func2_B() definition
…

module3.obj
func3_A() definition
func3_B() definition
…

Library file

module1.obj
func1_A() definition
func1_B() definition
…

module2.obj
func2_A() definition
func2_B() definition
…

module3.obj
func3_A() definition
func3_B() definition
…

Object file is
extracted

Link

Link

Object file is
extracted

Object file is
extracted

Relocatable file

module2.obj

 module3.obj

 module1.obj Link

Figure 4-4

REJ06J0046-0100/Rev.1.00 April 2008 Page 13 of 20

APPLICATION NOTE

Object files can be extracted from a library file by using either the librarian interface or the optimizing linkage editor.

(1) Using the librarian interface to extract object files

The following describes how to use the librarian interface to extract object files.

From the module list of the librarian interface (Figure 1-2), select the object modules to be extracted. Then, from the
Action menu, choose Extract to display the Extract dialog box. In the dialog box, specify the following settings and
click the OK button.

The selected object modules will be extracted as object files.

Output file type: Select Object file.
Output folder: Specify the folder to which the extracted object files are to be output.

Figure 4-5

In Renesas IDE, bring the extracted object files into the project.

Figure 4-6

REJ06J0046-0100/Rev.1.00 April 2008 Page 14 of 20

APPLICATION NOTE

Specify the following settings on the Link/Library page in the SuperH RISC engine Standard Toolchain dialog box
to generate a relocatable file from the object files brought into the project:

Category: Select Output.
Type of output file: Select Relocatable.

Figure 4-7

(2) Using the optimizing linkage editor to extract object files

The following describes how to use the optimizing linkage editor to extract object files.

First, output a library listing to acquire information about the object modules in the library. For details about how to
output a library listing, see 1.3 Optimizing Linkage Editor. Next, use the extra option to specify object modules as
follows. The specified object modules are extracted as object files.

optlnk -extra=<object modules> -form=object -library=<library file>

Finally, use the form=relocate option to generate a relocatable file. For example, to generate a relocatable file from the
object files __i_addd.obj and __i_adds.obj, specify the following:

optlnk __i_addd.obj __i_adds.obj -form=relocate

REJ06J0046-0100/Rev.1.00 April 2008 Page 15 of 20

APPLICATION NOTE

5. Creating a Load Module with a Physical Address

5.1 Overview
When an object is to be generated for a CPU that has a logical address space, address resolution is based on the addresses
in the logical address space. For example, if a project for an SH7750 is generated in Renesas IDE, sections are allocated
as shown in Figure 5-1. For example, RSTHandler is allocated at 0xA0000000, which represents an address in the
physical address space. If this load module is downloaded to the logical address space in Renesas IDE, the first three bits
are automatically ignored. That is, RSTHandler is downloaded at address 0x0000000, not 0xA0000000. However, some
third-party flush writing tools might not have a function that ignores the first three bits. If such a tool is used to download
a load module generated in a logical address space, the load module is downloaded as is to the logical address. This means
that RSTHandler in this example is downloaded at address 0xA0000000. This problem is avoided by creating a load
module whose addresses are resolved by using logical addresses and whose data is allocated by using physical addresses.

Figure 5-1

Logical address
(linker section settings) Addresses of data allocated in ROM

0x00000000

REJ06J0046-0100/Rev.1.00 April 2008 Page 16 of 20

INTHandler,VECTTBL
INTTBL,IntPRG

0x00000800

PResetPRG 0x00001000

P,C,C$BSEC
D$DSEC,D

B,R

S

PResetPRG

INTHandler,VECTTBL
INTTBL,IntPRG

PResetPRG

P,C,C$BSEC
D$DSEC,D

RAM data is not
downloaded.

Data is downloaded at an
address whose first-three
bytes are ignored.

When data is downloaded in Renesas IDE

PResetPRG

0x00002000

0x00000800

0x00001000

0x00002000

0x70000000

0x73FFFBF0

0xA0000000

Figure 5-2

APPLICATION NOTE

5.2 Procedure
Use the ROM support function of the optimizing linkage editor when, for example, variables having initial values are
transferred from ROM to RAM. Employing this function allows a RAM address to be used to resolve the address of data
allocated at a ROM address.

To generate a load module allocated in a physical address space, use the ROM support function and assume that the
physical address space is ROM data and the logical address space is RAM. The following shows an example of specifying
settings when the CPU is an SH7750.

(1) Section settings

Before the ROM support function settings can be specified, section settings must be specified.

First, change the address of RSThandler from an address in the logical address space to an address in the physical address
space by replacing the first three bytes of the address with 0s. Next, secure a new section for address resolution at the
logical address where RSThandler was allocated. In the following example, V_RSTHandler is secured as the new
section for address resolution at address 0xA0000000.

Specify the following settings on the Link/Library page in the SuperH RISC engine Standard Toolchain dialog box:

Category: Select Section.
Show entries for: Select Section.
Modify: Click this button, and change the address of RSTHandler from 0xA0000000 to 0x00000000.
Add: Click this button, and secure V_RSTHandler at address 0xA0000000.

REJ06J0046-0100/Rev.1.00 April 2008 Page 17 of 20

Figure 5-3

APPLICATION NOTE

(2) ROM support function settings

Specify the following settings on the Link/Library page in the SuperH RISC engine Standard Toolchain dialog box:

Category: Select Output.
Show entries for: Select ROM to RAM mapped sections.
Add: Click this button to display the Modify Rom to Ram dialog box, and specify the following settings:
 ROM section: Select RSTHandler.
 RAM section: Select V_RSTHandler.

Figure 5-4

REJ06J0046-0100/Rev.1.00 April 2008 Page 18 of 20

APPLICATION NOTE

REJ06J0046-0100/Rev.1.00 April 2008 Page 19 of 20

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry

csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 April.01.08 -- First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008. Renesas Technology Corp., All rights reserved.

REJ06J0046-0100/Rev.1.00 April 2008 Page 20 of 20

	1. Changing the Section of a Specific Symbol in a Library
	1.1 Overview
	1.2 Librarian Interface
	1.3 Optimizing Linkage Editor

	2. Filling Unused Areas with Dummy Data
	2.1 Overview
	2.2 Procedure

	3. Calling a Symbol Fixed on ROM
	3.1 Overview
	3.2 Procedure

	4. Library Files and Relocatable Files
	4.1 Differences Between a Library File and a Relocatable File
	4.2 Linking Only Functions That Will Be Used
	4.3 Enabling All Object Modules in an Existing Library File to Be Linked

	5. Creating a Load Module with a Physical Address
	5.1 Overview
	5.2 Procedure

	 Website and Support <website and support,ws>

