
 APPLICATION NOTE

R01AN2634EJ0130 Rev.1.30 Page 1 of 52
Dec 07, 2017

RZ/T1 Group
USB Host Mass Storage Class Driver (HMSC)

Introduction
This application note describes USB Host Mass Storage Class Driver (HMSC). This module performs hardware control
of USB communication. It is referred to below as the USB-BASIC-F/W.
The sample program of this application note is created based on "RZ/T1 group Initial Settings Rev.1.30". Please refer to
"RZ/T1 group Initial Settings application note (R01AN2554EJ0130)" about operating environment.

Target Device
RZ/T1 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate

Related Documents
1. Universal Serial Bus Revision 2.0 specification
2. USB Class Definitions for Human Interface Devices Version 1.1
3. HID Usage Tables Version 1.1

http://www.usb.org/developers/docs/
4. RZ/T1 Group User’s Manual: Hardware (Document No.R01UH0483EJ0130)
5. RZ/T1 Group Initial Settings (Document No.R01AN2554EJ0130)
6. USB Host Basic Firmware (Document No.R01AN2633EJ0130)

Renesas Electronics Website
http://www.renesas.com/

USB Device Page
http://www.renesas.com/prod/usb/

 FatFs Website
http://elm-chan.org/fsw/ff/00index_e.html

Contents

1. Overview ... 2

2. Software Configuration .. 3

3. Host Mass Storage Class Driver (HMSC) ... 4

4. Sample Application.. 36

5. Importing procedure of FatFs .. 42

Appendix A. Changes of initial setting ... 43

R01AN2634EJ0130
Rev.1.30

Dec 07, 2017

http://www.renesas.com/
http://www.renesas.com/prod/usb/

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 2 of 52
Dec 07, 2017

1. Overview
The HMSC, when used in combination with the USB-BASIC-F/W, operates as a USB host mass storage class driver.
HMSC comprises a USB mass storage class bulk-only transport (BOT) protocol. When combined with a file system, it
enables communication with a BOT-compatible USB storage device. HMSC has created on the assumption that the use
of FatFs in the file system.

This module supports the following functions.
・ Checking of connected USB storage devices (to determine whether or not operation is supported).
・ Storage command communication using the BOT protocol.
・ Support for SFF-8070i (ATAPI) and SCSI USB mass storage subclass.
・ Multiple devices can be connected.

Limitations
 This module is subject to the following restrictions

1. Structures are composed of members of different types (Depending on the compiler, the address alignment of
the structure members may be shifted).

2. Only supported for Logical Unit Number 0 (LUN0).
3. USB storage devices with a sector size of 512 bytes can be connected.
4. A device that does not respond to the READ_CAPACITY command operates as a device with a sector size of

512 bytes.

Terms and Abbreviations
Terms and abbreviations used in this document are listed below.

APL : Application program
ATAPI : AT Attachment Packet Interface
BOT : Mass storage class Bulk Only Transport
CBW : Command Block Wrapper
CSW : Command Status Wrapper
FSI : File System Interface
HCD : Host Control Driver of USB-BASIC-F/W
HMSC : Host Mass Storage Class driver
HMSCD : Host Mass Storage Class Driver unit
HMSDD : Host Mass Storage Device Driver
HUBCD : Hub Class Smple Driver
LUN : Logical Unit Number
LBA : Logical Block Address
MGR : Peripheral device state manager of HCD
SCSI : Small Computer System Interface
Scheduler : Used to schedule functions, like a simplified OS.
Task : Processing unit
USB-BASIC-F/W : USB basic firmware for RZ/T1 Group (non-OS)
USB : Universal Serial Bus

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 3 of 52
Dec 07, 2017

2. Software Configuration
Figure 2-1 shows HMSC software block diagram. Table 2-1 describes each module.

User Application (APL)

FatFs

File System Interface (FSI)

Mass Storage Device driver (HMSDD)

Host Mass Storage Class Driver Unit （HMSCD）

USB Host Control Driver (HCD)

USB Host Controller (H/W)

HMSC

MGR / HUB
(USB Manager)

(HUB Driver)

Figure 2-1 Software Block Diagram

Table 2-1 Module

Module Description
APL User application program. (Please prepare for your system)
FatFs Generic FAT file system module. (Refer to 5. Importing procedure of FatFs)
HMSC Host Mass Storage Class Driver

Consists in the FSI and HMSDD and HMSCD.
FSI File System Interface. (Provice a sample corresponding to the FatFs)
HMSDD Host Mass Storage Device Driver

- Searching USB storage device
- Accessing USB storage device

HMSCD Host Mass Storage Class Driver Unit
- check MSC device
- HCD communication required by BOT protocol
- Management of BOT sequence

MGR/HUB USB Manager / HUB class driver. (USB-BASIC-F/W)
Enumerates the connected devices and starts HMSC.
Performs device state management.

HCD USB host Hardware Control Driver. (USB-BASIC-F/W)

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 4 of 52
Dec 07, 2017

3. Host Mass Storage Class Driver (HMSC)
HMSC has combined with the USB-BASIC-F/W and constitutes in FSI and HMSDD and HMSCD.
This chapter explains the functions of HMSC.

3.1 Class Request
Table 3-1 shows the class request HMSC supports.

Table 3-1 Class Request

Request Description
GetMaxLun Gets the maximum number of units that are supported.
MassStrageReset Cancels a protocol error.

3.2 Storage Command
Table 3-2 shows the storage command HMSC supports.

Table 3-2 Storage Command

Command Code Description Supported
TEST_UNIT_READY 0x00 Verify state of peripheral device YES
REQUEST_SENSE 0x03 Obtain peripheral device state YES
FORMAT_UNIT 0x04 Format logic unit NO
INQUIRY 0x12 Obtain logic unit parameter information YES
MODE_SELECT6 0x15 Set parameters YES
MODE_SENSE6 0x1A Obtain logic unit parameters NO
START_STOP_UNIT 0x1B Enable/disable logic unit access NO
PREVENT_ALLOW 0x1E Enable/disable media removal YES
READ_FORMAT_CAPACITY 0x23 Obtain format capacity YES
READ_CAPACITY 0x25 Obtain logic unit capacity information YES
READ10 0x28 Read data YES
WRITE10 0x2A Write data YES
SEEK 0x2B Move to logic block address NO
WRITE_AND_VERIFY 0x2E Write and verify data NO
VERIFY10 0x2F Verify data NO
MODE_SELECT10 0x55 Set parameters NO
MODE_SENSE10 0x5A Obtain logic unit parameters YES

3.3 Checking USB storage devices
USB-BASIC-F/W notify HMSC the information whch obtained from GET_DESCRIPTOR request at the time of
enumeration by the callback function. HMSCD offers API function R_usb_hmsc_ClassCheck() for registration as this
callback function. R_usb_hmsc_ClassCheck() analyzes the descriptor information, and notifies the collation result by
the API function R_usb_hstd_ReturnEnuMGR() of USB-BASIC-F/W. If there is no problem in the result, USB-
BASIC-F/W complete the enumeration.

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 5 of 52
Dec 07, 2017

3.4 Searching USB Storage Devices
After the enumeration is completed, HMSC is able to make the search process of USB storage devices by calling the
API function R_usb_hmsc_StrgDriveSearch() of HMSDD. Completion of this process is notified by the callback
function which registered at the time of R_usb_hmsc_StrgDriveSearch() call.
HMSC operate as a unit number 0 regardless of the response result of GetMaxLUN. Therefore, HMSC support LUN0
only.
Figure 3-1 shows the USB storage device search sequence.

APL FarFs FSI HMSDD HMSCD HCD

R_usb_hmsc_StrgDriveSearch()

R_usb_hmsc_GetMaxUnit()

TransferEnd callback

R_usb_hstd_TransferStart()

Check result

R_usb_hmsc_Inquiry()

CBW

TransferEnd callback

R_usb_hstd_TransferStart()

Control

Data IN

TransferEnd callback

R_usb_hstd_TransferStart()

CSW

TransferEnd callback

R_usb_hstd_TransferStart()

Report result

Check result

Create CBW

Check result

Check result

Wait 100[ms]

Check result

R_usb_hmsc_ReadFor
matCapacity()

Report result
Check result

R_usb_hmsc_ReadCap
acity()

Report result
Check result

StrgDriveSearch End Callback

Figure 3-1 USB Storage Device Search Sequence

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 6 of 52
Dec 07, 2017

3.5 Accessing USB Storage device
After the information acquisition is complete, be able to access the USB storage devices in the API function of FatFs.
When call the API function of FatFs, FSI is called in the file system processing.
HMSDD calls the API function of HMSCD in accordance with the processing.
HMSDC issue a class request and create a USB packet in accordance with BOT protocol.
Under the BOT specification, information is read and written according to logical block addresses. The data size is
specified as the number of bytes of information that are read or written.
Figure 3-2 shows the USB storage device access sequence.

APL FatFs FSI HMSDD HMSCD HCD

R_usb_hmsc_Read10()

CBW

TransferEnd callback

R_usb_hstd_TransferStart()

Data IN

TransferEnd callback

R_usb_hstd_TransferStart()

CSW

TransferEnd callback

R_usb_hstd_TransferStart()

message

Check result

Create CBW

Check result

Check result

Check result

f_read()

disk_read()

R_usb_hmsc_
StrgReadSector()

return

return

message

R_usb_hmsc_Write10()

f_write()

disk_write()
R_usb_hmsc_

StrgWriteSector()

Data OUT

Wait write or read sector
complete message while

scheduler processing
TransferEnd

interrupt

TransferEnd
interrupt

TransferEnd
interrupt

Figure 3-2 USB Storage Device Access Sequence

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 7 of 52
Dec 07, 2017

3.6 API functions of HMSCD
API functions of HMSCD are provided primarily for HMSDD.
Normally, the function to be used in the application are three below.

R_usb_hmsc_Task ()
R_usb_hmsc_driver_start ()
R_usb_hmsc_Class_Check ().

Table 3-3 lists the function of HMSCD.

Table 3-3 HMSCD Functions

Function Name Description
R_usb_hmsc_Task() Host Mass Storage Class Task
R_usb_hmsc_driver_start() HMSC driver start processing.
R_usb_hmsc_ClassCheck() Checks the descriptor table of the connected device to

determine whether or not HMSCD can operate.
R_usb_hmsc_GetDevSts() Returns HMSCD operation state.
R_usb_hmsc_Read10() Issues the READ10 command.
R_usb_hmsc_Write10() Issues the WRITE10 command.
R_usb_hmsc_GetMaxUnit() GetMaxLUN request execution.
R_usb_hmsc_MassStorageReset() MassStorageReset request execution.
R_usb_hmsc_alloc_drvno() Allocates the drive number
R_usb_hmsc_free_drvno() Frees the drive number
R_usb_hmsc_ref_drvno() Refers the drive number

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 8 of 52
Dec 07, 2017

3.6.1 R_usb_hmsc_Task

Host Mass Storage Class task

Format
void R_usb_hmsc_Task(void)

Argument

－ －

Return Value

－ －

Description
This function is a task for HMSCD.
This function controls BOT.

Note
Please call this function from a loop that executes the scheduler processing.

Example
void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Scheduler processing */
 R_usb_cstd_Scheduler();
 /* Checking flag */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 R_usb_hstd_MgrTask();
 R_usb_hhub_Task();
 R_usb_hmsc_Task();
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 9 of 52
Dec 07, 2017

3.6.2 R_usb_hmsc_driver_start

HMSC driver start

Format
void R_usb_hmsc_driver_start(void)

Argument

－ －

Return Value

－ －

Description
This function sets the priority of HMSC driver task.

Note
Call this function from the user application program during initialization.

Example
void usb_hstd_task_start(void)
{
 R_usb_hmsc_driver_start(); /* Host Class Driver Task Start Setting */
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 10 of 52
Dec 07, 2017

3.6.3 R_usb_hmsc_ClassCheck

Check descriptor

Format
void R_usb_hmsc_ClassCheck(uint16_t **table)

Argument
**table Device information table

[0] : Device Descriptor
 [1] : Configuration Descriptor
 [2] : Interface Descriptor
 [3] : Descriptor Check Result
 [4] : HUB Classification
 [5] : Port Number
 [6] : Transmission Speed
 [7] : Device Address

Return Value

－ －

Description
This is a class driver registration function. It is registered to the driver registration structure member classcheck, as
a callback function during HMSC registration at startup and called when a configuration descriptor is received
during enumeration.
This function references the endpoint descriptor in the peripheral device configuration descriptor, then edits the
pipe information table and checks the pipe information of the pipes to be used.

Note

－

Example
void usb_hapl_registration(USB_UTR_t *ptr)
{
 USB_HCDREG_t driver;

 /* Driver check */
 driver.classcheck = &R_usb_hmsc_ClassCheck;
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 11 of 52
Dec 07, 2017

3.6.4 R_usb_hmsc_GetDevSts

Returns HMSCD operation state

Format
uint16_t R_usb_hmsc_GetDevSts(uint16_t side)

Argument
side Drive number

Return Value

usb_ghmsc_AttSts USB_HMSC_DEV_ATT（Attach）
 USB_HMSC_DEV_DET（Detach）

Description
Returns HMSCD operation state.

Note
The argument side, specify the drive number assigned by R_usb_hmsc_alloc_drvno().

Example
void usb_smp_task(void)
{
 /* Checking the device state */
 if(R_usb_hmsc_GetDevSts(drvno) == USB_HMSC_DEV_DET)
 {
 /* Detach processing */

 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 12 of 52
Dec 07, 2017

3.6.5 R_usb_hmsc_Read10

Issue READ10 command

Format
uint16_t R_usb_hmsc_Read10(uint16_t side, uint8_t *buff, uint32_t secno,
 uint16_t seccnt, uint32_t trans_byte)

Argument
side Drive number
*buff Read data area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value

－ Error code

Description
Creates and executes the READ10 command.
When a command error occurs, the REQUEST_SENSE command is executed to get error information.

Note

－

Example
void usb_smp_task(void)
{
 uint16_t result;

 /* Issuing READ10 */
 result = R_usb_hmsc_Read10(side, buff, secno, seccnt, trans_byte);
 if(result != USB_HMSC_OK)
 {
 /* Error Processing */
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 13 of 52
Dec 07, 2017

3.6.6 R_usb_hmsc_Write10

Issue WRITE10 command

Format
uint16_t R_usb_hmsc_Wead10(uint16_t side, const uint8_t *buff, uint32_t secno,
 uint16_t seccnt, uint32_t trans_byte)

Argument
side Drive number
*buff Write data area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value

－ Error code

Description
Creates and executes the WRITE10 command.
When a command error occurs, the REQUEST_SENSE command is executed to get error information.

Note

－

Example
void usb_smp_task(void)
{
 uint16_t result;

 /* Issuing WRITE10 */
 result = R_usb_hmsc_Write10(side, buff, secno, seccnt, trans_byte);
 if(result != USB_HMSC_OK)
 {
 /* Error processing */
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 14 of 52
Dec 07, 2017

3.6.7 R_usb_hmsc_GetMaxUnit

Issue GetMaxLUN request.

Format
USB_ER_t R_usb_hmsc_GetMaxUnit(uint16_t addr, USB_UTR_CB_t complete)

Argument
addr Device address
complete Callback function

Return Value
USB_OK GET_MAX_LUN issued
USB_ERROR GET_MAX_LUN not issued

Description
This function issues the GET_MAX_LUN request and gets the maximum storage unit count. The callback function
which is specified in the argument (complete) is called when completing this request.

Note

－

Example

void usb_smp_task(void)
{
 USB_ER_t err;

 /* Getting Max unit number */
 err = R_usb_hmsc_GetMaxUnit(devadr, usb_hmsc_StrgCheckResult);
 if(err == USB_ERROR)
 {
 /* Error processing */
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 15 of 52
Dec 07, 2017

3.6.8 R_usb_hmsc_MassStorageReset

Issue Mass Storage Reset request.

Format
USB_ER_t R_usb_hmsc_MassStorageReset(uint16_t addr, USB_UTR_CB_t complete)

Argument
addr Drive address
complete Callback function

Return Value
USB_OK MASS_STORAGE_RESET issued
USB_ERROR MASS_STORAGE_RESET not issued

Description
This function issues the MASS_STORAGE_RESET request and cancels the protocol error. The callback function
which is specified in the argument (complete) is called when completing this request.

Note

－

Example

void usb_smp_task(void)
{
 USB_ER_t err;

 /* Cansel the protocol error */
 err = R_usb_hmsc_MassStorageReset(devadr, usb_hmsc_CheckResult);
 if(err == USB_ERROR)
 {
 /* Error processing */
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 16 of 52
Dec 07, 2017

3.6.9 R_usb_hmsc_alloc_drvno

Allocates the drive number

Format
uint16_t R_usb_hmsc_alloc_drvno(uint16_t *side, uint16_t devadr)

Argument
*side Drive number pointer
devadr Device address of MSC device

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
This function allocate the drive number to the connected MSC device, and store in the argument (*side).
Drive number is assigned from 0 in the order.

Note

－

Example

void usb_smp_task(void)
{

/* Allocates the drive number */
R_usb_hmsc_alloc_drvno(&drvno, devadr);

}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 17 of 52
Dec 07, 2017

3.6.10 R_usb_hmsc_free_drvno

Frees the drive number

Format
uint16_t R_usb_hmsc_free_drvno(uint16_t side)

Argument
side Drive number

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
This function frees the drive number which is specified by the argument.

Note

－

Example

void usb_smp_task(void)
{

/* Frees the drive number */
R_usb_hmsc_free_drvno(drvno);

}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 18 of 52
Dec 07, 2017

3.6.11 R_usb_hmsc_ref_drvno

Refers the drive number

Format
uint16_t R_usb_hmsc_ref_drvno(uint16_t *side, uint16_t devadr)

Argument
devadr Device address

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
This function refers the drive numer based on the device address which are specified by the argument (devadr),
and stores in the argument (*side).

Note

－

Example

void usb_smp_task(void)
{

/* refers the drive number */
R_usb_hmsc_ref_drvno(&drvno, devadr);

}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 19 of 52
Dec 07, 2017

3.7 API fucntions of HMSDD
Table 3-4 lists the function of HMSDD.

Table 3-4 HMSDD functions

Function Name Description
R_usb_hmsc_StrgDriveTask() Storage drive task
R_usb_hmsc_StrgDriveSearch() Search drive
R_usb_hmsc_StrgDriveOpen() Open drive
R_usb_hmsc_StrgDriveClose() Close drive
R_usb_hmsc_StrgReadSector() Read data
R_usb_hmsc_StrgWriteSector() Write data
R_usb_hmsc_StrgCheckEnd() Check Read/Write end
R_usb_hmsc_StrgUserCommand() Issue storage command

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 20 of 52
Dec 07, 2017

3.7.1 R_usb_hmsc_StrgDriveTask

Storage drive task

Format
void R_usb_hmsc_StrgDriveTask(void)

Argument

－ －

Return Value

－ －

Description
This API does the processing to get the storage device information by sending storage command to the storage
device.

Notes
Please call this function from a loop that executes the scheduler processing.

Example
void usb_hapl_mainloop(void)
{
while(1)
{
R_usb_cstd_Scheduler();

if(USB_FLGSET == R_usb_cstd_CheckSchedule())
{

R_usb_hstd_MgrTask();
R_usb_hhub_Task();
R_usb_hmsc_Task();
R_usb_hmsc_StrgDriveTask();

}
}

}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 21 of 52
Dec 07, 2017

3.7.2 R_usb_hmsc_StrgDriveSearch

Search drive

Format
uint16_t R_usb_hmsc_StrgDriveSearch(uint16_t addr, USB_UTR_CB_t complete)

Argument
addr USB address
complete Callback function

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
This API checks the follows by sending command to USB device which is specified in the argument (addr).
The callback function which is specified in the argument (complete) is called whencompleting the drive searching.
Refer to section 3.4.

Notes
Continue to operate the "Scheduler" from call this API until the callback function is called and do not the other
USB processing.

Example
/* Callback function */
void usb_hmsc_StrgCommandResult(USB_UTR_t *mess)
{
 :
}

void usb_hmsc_SampleAplTask(void)
{
 R_usb_hmsc_StrgDriveSearch(addr, &usb_hmsc_StrgCommandResult);
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 22 of 52
Dec 07, 2017

3.7.3 R_usb_hmsc_StrgDriveOpen

Open drive

Format
uint16_t R_usb_hmsc_StrgDriveOpen(uint16_t *side, uint16_t addr)

Argument
*side Drive number pointer
addr USB address

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
Open the address specified in the argument.
Call after the enumeration is complete.

Notes
1. Use the R_usb_hmsc_alloc_drvno () in this function inside to assign the drive number.
2. Use the R_usb_hstd_GetPipeID() in this function inside to set the pipe number.

Example
void msc_configured(uint16_t devadr)
{
 R_usb_hmsc_StrgDriveOpen(&drvno, devadr);
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 23 of 52
Dec 07, 2017

3.7.4 R_usb_hmsc_StrgDriveClose

Close drive

Format
uint16_t R_usb_hmsc_StrgDriveClose(uint16_t side)

Argument
side Drive Number

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
Open the address specified in the argument.
Call after the enumeration is complete.

Notes
1. Use the R_usb_hmsc_free_drvno() in this function inside to open the drive number.
2. Use the R_usb_hstd_ClearPipe() in this function inside to clear the pipe information.

Example
void msc_detach(uint16_t devadr)
{
 R_usb_hmsc_StrgDriveClose(drv_no);
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 24 of 52
Dec 07, 2017

3.7.5 R_usb_hmsc_StrgReadSector

Read Sector

Format
uint16_t R_usb_hmsc_StrgReadSector(uint16_t side, uint8_t *buff, uint32_t secno, uint16_t seccnt,

uint32_t trans_byte))

Argument
side Drive number
*buff Pointer to read data storage area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
Reads the sector information of the drive specified by the argument.
An error response occurs in the following cases.

1. When the sector information could not be read successfully from the storage device.

Notes
1. Please call this function from FAT library I/F function.
2. Use the R_usb_hmsc_Read10 () in this function inside to read sector information.
3. Use the R_usb_hmsc_GetDevSts () in this function inside, it has confirmed the connection status.If in a

disconnected state, and terminates with an error before writing.

Example
DRESULT disk_read(BYTE pdrv, BYTE* buff, DWORD sector, UINT count)
{
 uint32_t err;
 uint32_t tran_byte;

 /* set transfer length */
 tran_byte = count * _MIN_SS;

 /* read function */
 err = R_usb_hmsc_StrgReadSector(pdrv, buff, sector, (uint16_t)count,
tran_byte);
 if (err != USB_OK)
 {
 return RES_ERROR;
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 25 of 52
Dec 07, 2017

3.7.6 R_usb_hmsc_StrgWriteSector

Write Sector Information

Format
uint16_t R_usb_hmsc_StrgWriteSector(uint16_t side, const uint8_t *buff, uint32_t secno, uint16_t

seccnt, uint32_t trans_byte))

Argument
side Drive number
*buff Pointer to write data storage area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value
USB_DONE Normal end
USB_ERROR Error end

Description
Writes the sector information of the drive specified by the argument.
An error response occurs in the following cases.
1. When the sector information could not be read successfully from the storage device.

Notes
1. Please call this function from FAT library I/F function.
2. Use the R_usb_hmsc_Write10 () in this function inside to write sector information.
3. Use the R_usb_hmsc_GetDevSts () in this function inside, it has confirmed the connection status.If in a

disconnected state, and terminates with an error before writing.

Example
DRESULT disk_write(BYTE pdrv, const BYTE* buff, DWORD sector, UINT count)
{
 uint32_t err;
 uint32_t tran_byte;

 /* set transfer length */
 tran_byte = count * _MIN_SS;

 /* write function */
 err = R_usb_hmsc_StrgWriteSector(pdrv, buff, sector, (uint16_t)count,
tran_byte);
 if (err != USB_OK)
 {
 return RES_ERROR;
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 26 of 52
Dec 07, 2017

3.7.7 R_usb_hmsc_StrgCheckEnd

Check Read/Write end

Format
uint16_t R_usb_hmsc_StrgCheckEnd(void)

Argument

－

Return Value
USB_FALSE
USB_TRUE Normal end
USB_ERROR Error end

Description

Notes
disconnected state, and terminates with an error before writing.

Example
DRESULT disk_write(BYTE pdrv, const BYTE* buff, DWORD sector, UINT count)
{
 uint32_t err;

 /* write function */
 R_usb_hmsc_StrgWriteSector(pdrv, buff, sector, (uint16_t)count, tran_byte);

 /* Wait USB write sequence(WRITE10) */
 do
 {
 R_usb_cstd_Scheduler();
 if (R_usb_cstd_CheckSchedule() == USB_FLGSET)
 {
 R_usb_hstd_MgrTask(); /* MGR task */
 R_usb_hhub_Task(); /* HUB task */
 R_usb_hmsc_task(); /* HMSC Task */
 R_usb_hmsc_StrgDriveTask(); /* HSTRG Task */
 }
 err = R_usb_hmsc_StrgCheckEnd();
 }
 while (err == USB_FALSE);

 /* Set transfer result */
 if (err != USB_TRUE)
 {
 return RES_ERROR;
 }
 else
 {
 return RES_OK;
 }
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 27 of 52
Dec 07, 2017

3.7.8 R_usb_hmsc_StrgUserCommand

Issue Storage Command

Format
uint16_t R_usb_hmsc_StrgUserCommand(uint16_t side, uint16_t command ,
 uint8_t *buff, USB_CB_t complete)

Argument
side Drive number
command Command to be issued
*buff Data pointer
complete Callback function

Return Value
USB_OK Normal end
USB_ERROR Error end

Description
This function issues the storage command specified by the given argument, to HMSC driver. The callback
function which is specified in the argument (complete) is called when completing the issued storage command.
Here are the storage commands supported:

Storage commands Description
USB_ATAPI_TEST_UNIT_READY Check status of peripheral device
USB_ATAPI_REQUEST_SENCE Get status of peripheral device
USB_ATAPI_INQUIRY Get parameter information of logical unit
USB_ATAPI_MODE_SELECT6 Specify parameters
USB_ATAPI_PREVENT_ALLOW Enable/disable media removal
USB_ATAPI_READ_FORMAT_CAPACITY Get formattable capacity
USB_ATAPI_READ_CAPACITY Get capacity information of logical unit
USB_ATAPI_MODE_SENSE10 Get parameters of logical unit

Notes
1. Use the API function of HMSCD in this function inside to isuue the storage command.
2. Use the R_usb_hmsc_GetDevSts () in this function inside, it has confirmed the connection status.If in a

disconnected state, and terminates with an error before writing.

Example
/* Callback function */
void strgcommand_complete(USB_UTR_t *mess)
{

 :
}
void usb_smp_task(void)
{
 ：
 /* Issuing TEST_UNIT_READY */
 R_usb_hmsc_StrgUserCommand(side, USB_ATAPI_TEST_UNIT_READY, buf, complete);
 ：
}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 28 of 52
Dec 07, 2017

3.8 API functions of FSI
Since the FatFs module is a file system layer, it is completely separated from the storage devices.
FatFs requests the interface to the lower layer. Therefore, need to provide a control function corresponding the

platforms and storage devices.
HMSC offers a sample of this control functions (FSI fucntions).
Check the specifications of FatFs, change to fit the system if necessary.
Table 3-5 lists the functions of the sample FSI.

Table 3-5 FSI Functions

Function Name Description
disk_status Get device status
disk_initialize Initialize device
disk_read Read sector(s)
disk_write Write sector(s)
disk_ioctl Control device dependent features
get_fattime Get current time

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 29 of 52
Dec 07, 2017

3.8.1 disk_status

Get device status

Format
DSTATUS disk_status(BYTE pdrv)

Argument
pdrv [IN] Physical drive number

Return Value
The current drive status is returned in combination of status flags described below.
STA_NOINIT Indicates that the device is not initialized
STA_NODISK Indicates that no medium in the drive.
STA_PROTECT Indicates that the medium is write protected. (not use in sample)

Description
This function return the value of the R_usb_disk_status [pdrv].
If more than 10 is set to pdrv, return (STA_NOINIT | STA_NODISK).

Notes
-

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 30 of 52
Dec 07, 2017

3.8.2 disk_initialize

Initialize device

Format
DSTATUS disk_initialize(BYTE pdrv)

Argument
pdrv [IN] Physical drive number

Return Value
The current drive status is returned in combination of status flags described below.
STA_NOINIT Indicates that the device is not initialized
STA_NODISK Indicates that no medium in the drive.
STA_PROTECT Indicates that the medium is write protected. (not use in sample)

Description
This function return the value of the R_usb_disk_status [pdrv].

Notes
This function is under control of FatFs module. Application program MUST NOT call this function, or FAT
structure on the volume can be broken. To re-initialize the file system, use f_mount function instead.

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 31 of 52
Dec 07, 2017

3.8.3 disk_read

Read Sector(s)

Format
DRESULT disk_read(BYTE pdrv, BYTE* buff, DWORD sector, UINT count)

Argument
pdrv [IN] Physical drive number
*buff [OUT] Pointer to the read data buffer
sector [IN] Start sector number
count [IN] Number of sectros to read

Return Value
RES_OK The function succeeded.
RES_ERROR Any hard error occured during the read operation.
RES_PARERR Invalid parameter. (not use in sample)
RES_NOTRDY The device has not been initialized. (not use in sample)

Description
This function call the API function R_usb_hmsc_StrgReadSector() of HMSDD.
Arguments setting of R_usb_hmsc_StrgReadSector() is as follows.

Argument value
uint16_t side pdrv
uint8_t *buff buff
uint32_t secno sector
uint16_t seccnt (uint16_t)count
uint32_t trans_byte count * _MIN_SS

This function works the scheduler loops in this function until the USB read sequence is completed.
If it detects a USB disconnect in the middle, and then return the RES_ERROR.

Notes
-

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 32 of 52
Dec 07, 2017

3.8.4 disk_write

Write Sector(s)

Format
DRESULT disk_write(BYTE pdrv,const BYTE* buff, DWORD sector, UINT count)

Argument
pdrv [IN] Physical drive number
*buff [IN] Pointer to the data to be written
sector [IN] Start sector number
count [IN] Number of sectros to write

Return Value
RES_OK The function succeeded.
RES_ERROR Any hard error occured during the write operation.
RES_PARERR Invalid parameter. (not use in sample)
RES_NOTRDY The device has not been initialized. (not use in sample)

Description
This function call the API function R_usb_hmsc_StrgWriteSector() of HMSDD.
Arguments setting of R_usb_hmsc_StrgWriteSector() is as follows.

Argument value
uint16_t side pdrv
const uint8_t *buff buff
uint32_t secno sector
uint16_t seccnt (uint16_t)count
uint32_t trans_byte count * _MIN_SS

This function works the scheduler loops in this function until the USB write sequence is completed.
If it detects a USB disconnect in the middle, and then return the RES_ERROR.

Notes
-

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 33 of 52
Dec 07, 2017

3.8.5 disk_ioctl

Control device dependent features

Format
DRESULT disk_ioctl(BYTE pdrv, BYTE cmd, void* buff)

Argument
pdrv [IN] Physical drive number
cmd [IN] Control command code
*buff [I/O] Parameter and data buffer

Return Value
RES_OK The function succeeded.
RES_ERROR An error occured. (not use in sample)
RES_PARERR The command code or parameter is invalid. (not use in sample)
RES_NOTRDY The device has not been initialized. (not use in sample)

Description
This function return RES_OK without the processing for all of the command.

Notes
-

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 34 of 52
Dec 07, 2017

3.8.6 get_fattime

Get current time

Format
DWORD get_fattime(void)

Argument
-

Return Value
Currnet local time is returned with packed into a DWORD value. The bit field is as follows:
bit31:25 Year origin from the 1980 (0..127)
bit24:21 Month (1..12)
bit20:16 Day of the month(1..31)
bit15:11 Hour (0..23)
bit10:5 Minute (0..59)
bit4:0 Second / 2 (0..29)

Description
This function return 0x00000000 without setting the date and time information.

Notes
-

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 35 of 52
Dec 07, 2017

3.9 Scheduler settings
Table 3-6 lists the scheduler settings of HMSC.

Table 3-6 Scheduler settings

Function name Task ID Priority Mailbox ID Memory Pool ID Desctiption

R_usb_hmsc_StrgDriveTask USB_HSTRG_TSK USB_PRI_3 USB_HSTRG_MBX USB_HSTRG_MPL HSTRG
Task

R_usb_hmsc_task USB_HMSC_TSK USB_PRI_3 USB_HMSC_MBX USB_HMSC_MPL HMSC
Task

R_usb_hub_task USB_HUB_TSK USB_PRI_3 USB_HUB_MBX USB_HUB_MPL HUB Task
R_usb_hstd_MgrTask USB_MGR_TSK USB_PRI_2 USB_MGR_MBX USB_MGR_MPL MGR Task
r_usb_hstd_HciTask USB_HCI_TSK USB_PRI_1 USB_HCI_MBX USB_HCI_MPL HCD Task

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 36 of 52
Dec 07, 2017

4. Sample Application
This section describes the initial settings necessary for using HMSC and USB-BASIC-F/W in combination as a USB
driver and presents an example of data transfer by means of processing by the main routine and the use of API
functions.

4.1 Example Operating Environment
Figure 4-1 shows an example operating environment for HMSC.

Emulator

Host PC for
Emulator

Emulator CableUser
Cable

Evaluation
Board

USB Mass Storage
Device

Host Mass Storage Device Class
Driver (HMSC)

+
USB Basic Host Driver

Enumeration and
Class Request

(Control Transfer)

Data Transfer
(Bulk Transfer)

USB
Port

USB
Port

USB Cable

USB Storage
Device

（USB Memory
etc)

Figure 4-1 Example Operating Environment

4.2 Application Specifications
The main functions of HMSC sample application are as follows:

1. Processes the enumeration when the MSC device is connected.

2. Processes drive search when the enumeration of the MSC device is complete.

3. Writes a file with the 512 bytes of size to the MSC device.

4. Reads the file written in a MSC device.

5. Lights the LED that corresponds to the drive number if matched by comparing the file contents.

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 37 of 52
Dec 07, 2017

4.3 Initial Settings
Sample settings are shown below.

void usb_hmsc_apl(void)
{

/* MCU Pin Setting (Refer to “4.3.1”) */
usb_mcu_setting();

/* USB Driver Setting (Refer to “4.3.2”) */
R_usb_hstd_MgrOpen();
R_usb_cstd_SetTaskPri(USB_HUB_TSK, USB_PRI_3); // Note
R_usb_hhub_Registration(USB_NULL); // Note
msc_registration();
R_usb_hmsc_driver_start();

/* Main routine (Refer to “4.4”) */
usb_hapl_mainloop();

}

[Note]
It is only necessary to call this function when the HUB will be used.

4.3.1 MCU Settings
Set the USB module according to the initial setting sequence of the hardware manual, the USB interrupt handler
registration and USB interrupt enable setting.

4.3.2 USB Driver Settings
The USB driver settings consist of registering a task with the scheduler and registering class driver information for the
USB-BASIC-F/W. The procedure is described below.

1. Call the USB-BASIC-F/W’s API function (R_usb_hstd_MgrOpen() to register the MGR task and the HCD task
with the scheduler.

2. Call the class driver API function (R_usb_hhub_Registration()) to register the HUB task with the scheduler.
3. After specifying the necessary information in the members of the class driver registration structure

(USB_HCDREG_t), call the USB-BASIC-F/W’s API function (R_usb_hstd_DriverRegistration() to register the
class driver information.

4. Call the class driver HMSC’s API function (R_usb_hmsc_driver_start()) to register HMSC task and the HSTRG
task with the scheduler.

A sample of information specified in the structure declared by USB_HCDREG_t is shown below.
void usb_hapl_registration(void)
{

/* Structure for the class driver registration */
USB_HCDREG_t driver;

/* Class Code which is defined in the USB specification setting*/
driver.ifclass = (uint16_t)USB_IFCLS_MSCC;
/* TPL setting */
driver.tpl = (uint16_t*)&usb_gapl_devicetpl; // Note 1
/* Set the class check function which is called in the enumeration. */
driver.classcheck = &R_usb_hmsc_class_check;
/* Set the function which is called when completing the enumeration */
driver.devconfig = &msc_configured;
/* Set the function which is called when disconnecting USB device */
driver.devdetach = &msc_detach;
/* Set the function which is called when changing the suspend state */
driver.devsuspend = &msc_suspend;
/* Set the function which is called when resuming from the suspend state */
driver.devresume = &msc_resume;

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 38 of 52
Dec 07, 2017

/* Register the class driver information to HCD */
R_usb_hstd_DriverRegistration(&driver);

}

[Note]

1. TPL(Target Peripheral List) need to be defined in the application program. Refer to USB Basic Firmware
application note (Document No.R01AN2633EJ) about TPL.

4.4 Processing by Main Routine
After the USB driver initial settings, call the scheduler (R_usb_cstd_Scheduler()) from the main routine of the
application. Calling R_usb_cstd_Scheduler() from the main routine causes a check for events. If there is an event, a flag
is set to inform the scheduler that an event has occurred. After calling R_usb_cstd_Scheduler(), call
R_usb_cstd_CheckSchedule() to check for events. Also, it is necessary to run processing at regular intervals to get
events and perform the appropriate processing.

void usb_hapl_mainloop(void)
{
while(1) // Main routine
{
// Confirming the event and getting (Note 1)
R_usb_cstd_Scheduler();

// Judgment whether the event is or not
if(USB_FLGSET == R_usb_cstd_CheckSchedule())
{

R_usb_hstd_HcdTask((USB_VP_INT)0); // HCD task
R_usb_hstd_MgrTask((USB_VP_INT)0); // MGR task
R_usb_hhub_Task((USB_VP_INT)0); // HUB task (Note 3)
R_usb_hmsc_task((USB_VP_INT)0); // MSC task
R_usb_hmsc_StrgDriveTask(); // STRG driver task

}
hmsc_application(); // User application program

}
}

[Note]

1. If, after getting an event with R_usb_cstd_Scheduler() and before running the corresponding processing,
R_usb_cstd_Scheduler() is called again and gets another event, the first event is discarded. After getting an event,
always call the corresponding task to perform the appropriate processing.

2. Be sure to describe these processes in the main loop for the application program.

3. It is only necessary to call this function when the HUB will be used.

(Note
2)

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 39 of 52
Dec 07, 2017

4.4.1 APL
APL is managed by the state transition.
Table 4-1 shows list of states.

Table 4-1 List of States

State Description
STATE_ATTACH Wait attach
STATE_DRIVE Search drive
STATE_READY Mount drive
STATE_WRITE FIle Write
STATE_READ File Read
STATE_COMPLETE Processing completion
STATE_ERROR Error occurred

Figure 4-2 shows the process flowchart of APL.

HMSC APL
(usb_main)

Initialize

STATE_WAIT ?

STATE_READY ?

STATE_COMPLETE ?

Y

Y

Y

N

N

N

STATE_DRIVE ?

N

Y

STATE_WRITE ?

Mount drive
Change to STATE_WRITE

Write to file
Change to STATE_READ

STATE_READ ?
Read from file

Change to
STATE_COMPLETE

Search drive

Y

N

Y

N

devconfig callback
(msc_configured)

Change to
STATE_DRIVE

detach callback
(msc_detach)

Change to
STATE_WAIT

DriveSearch callback
(msc_drive_complete)

Change to
STATE_READY

STATE_ERROR ? Y

Error occured

Change to
STATE_ERROR

Figure 4-2 Main Loop flowchart

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 40 of 52
Dec 07, 2017

4.4.2 State Management
An overview of the processing associated with each state is provided below.

1) Wait Attach (STATE_WAIT)
== Outline ==

In this state, wait for the MSC device attach. When the enumeration is complete, then changes the state to
STATE_DRIVE.

== Description ==

1. Initialization function sets the state to STATE_WAIT.

2. Continue to STATE_WAIT until the MSC device is connected.

3. When the MSC device is connected to enumeration is complete, The callback function msc_configured() is
specified in the member devconfig of structure USB_HCDREG_t is called from the USB driver.

4. Changes the state to STATE_DRIVE.

2) Search drive (STATE_DRIVE)
== Outline ==

In this state, make the drive search process of the connected MSC device and change the state to STATE_READY.

== Description ==

1. Check the drive recognition flag variable drive_search_lock. Start the process if it’s off.

2. Turn on the drive_search_lock.

3. Call R_usb_hmsc_StrgDriveSearch(), transmit class request GetMaxLUN and storage command to MSC device,
and make the drive search process.

4. When completion of drive search process, R_usb_hmsc_StrgDriveSearch() callback function was registerd in
msc_drive_complete() is called.

5. Change the state to STATE_READY.

3) Mount drive (STATE_READY)
== Outline ==

In this state, mount the recognized drive and change the state to STATE_WRITE.

== Description ==

1. Call f_mount(), mount in the recognized drive number.

2. Changes the state to STATE_WRITE.

4) File Write (STATE_WRITE)
== Outline ==

In this state, write the file to the connected MSC device and change the state to STATE_READ.

== Description ==

1. Call f_open(), Open the file in create and write mode.

2. Call f_write(), create the file of 512bytes of all ‘a’ (hmscdemX.txt). X in the file name corresponds to the drive
number. For example, in the case of drive 1, file name is hmscdem1.txt.

3. Call f_close(), close the file.

4. Changes the state to STATE_READ.

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 41 of 52
Dec 07, 2017

5) File Read (STATE_READ)
== Outline ==

In this state, read the file from the connected MSC device and change the state to STATE_COMPLETE.

== Description ==

1. Call f_open(), open the file in read mode.

2. Call f_read(), read the file (hmscdemX.txt).

3. Check whether 512 bytes of data of all ‘a’

4. Call f_close(), close the file.

5. Lights the LED that corresponds to the drive number.

6. Changes the state to STATE_COMPLETE.

6) Processing completion (STATE_COMPLETE)
== Outline ==

When the processing of the sample application is normally finished, will be in this state.

== Description ==

None processing.

7) Error occured (STATE_ERROR)
== Outline ==

When the processing of the sample application is abnormally terminated, will be in this state.

== Description ==

None processing.

8) Detach processing (STATE_DETACH)
When the connected MSC device is disconnected, the USB driver calls the callback function msc_detach(). This
callback function perform to initialize variables and unmount drive and change the state to STATE_WAIT. The
callback function msc_detach() is the function set in the member devdetach of the structure USB_HCDREG_t.

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 42 of 52
Dec 07, 2017

5. Importing procedure of FatFs
To build the sample program, the users need to import the FatFs.
The procedure to import FatFs is described below.

5.1 Obtains FatFs from the web site
FatFs is distributed at the following URL.
 http://elm-chan.org/fsw/ff/00index_e.html

1. Scroll down the web page, then the download link will appear in "Resources" section.
2. To download "FatFs", click on the link "FatFs R0.13" and save it in arbitrary folder.

The sample program is created for the version R0.13. If FatFs has been updated, find this version from the link
" Previous release".

5.2 Extracts FatFs at proper folder
Extracts the ZIP file (ff13.zip) of the downloaded FatFs, and move it into the workspace of the sample program as
shown in the Figure 5-1.
Note that the sample program does not work without this folder structure.

Figure 5-1 The position to place "FatFs" folder.

5.3 Opens the workspace and builds the project
Open the workspace of the sample program, and build the sample project.
The sample program is set to link FatFs, but if the development environment is e2 studio or DS-5, please exclude the
documents folder right under the ff13 folder and the diskio.c file under source from the build target.

5.4 Notice
When embedding FatFs into user's products, check the licence of FatFs and do it as user's responsibility.

RZ_T1_USBh_HMSC/
|-- inc/
`-- src/
 |-- common/
 | |-- nor_boot/
 | ̀ -- serial_boot/
 |-- drv/
 | ̀ -- usbh/
 | |-- basic/
 | ̀ -- hmsc/
 | ̀ -- ff13/ <--- "FatFs" here!
 | |-- documents/
 | | |-- doc/
 | | ̀ -- res/
 | ̀ -- source/
 |
 ̀ -- sample/

http://elm-chan.org/fsw/ff/00index_e.html

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 43 of 52
Dec 07, 2017

Appendix A. Changes of initial setting
USB-BASIC-F/W has been changed to "RZ/T1 group initial setting Rev.1.30".
Sample program supports IAR embedded workbench for ARM (EWARM), DS-5 and e2 studio.
This chapter describes the changes.

Folders and files
In the "RZ/T1 group initial setting Rev.1.30", different folder structure by the development environment and the boot

method. Changes to each folder of all of the development environment and the boot method it is shown below.

・Add the following files in the “inc” folder.
r_usb_basic_config.h
r_usb_basic_if.h
r_usb_hatapi_define.h
r_usb_hmsc_config.h
r_usb_hmsc_if.h

・Add the following files in the “sample” folder.

r_usb_main.c
r_usb_hmsc_apl.c
r_usb_hmsc_apl.h

・Add the “usbh” folder and the following files “usbh” folder in the “drv” folder.

The following is the folder structure of EWARM.

inc

common

src

drv

sample

workspace

iccarm

RZ_T1_init_boot

RZ_T1_init_ram

inc

src

usbf

common

drv

sample

usbf

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 44 of 52
Dec 07, 2017

The following is the folder structure of e2 studio.

inc

drv

src

sample

common

workspace

kpitgcc

RZ_T_nor_sample

inc

drv

src

sample

common

RZ_T_ram_sample

RZ_T_sflash_sample

inc

drv

src

sample

common

usbh

usbh

usbh

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 45 of 52
Dec 07, 2017

The following is the folder structure of DS-5.

inc

drv

src

sample

common

workspace

armcc

RZ_T_nor_sample

inc

drv

src

sample

common

RZ_T_ram_sample

RZ_T_sflash_sample

inc

drv

src

sample

common

usbh

usbh

usbh

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

Add driver folder

Add header files

Add application files

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 46 of 52
Dec 07, 2017

Section
Modify the section size of the code area and a data area, and add the following section.

Section name Address variable file

EHCI_PFL 0x00020000 ehci_PeriodicFrameList

r_usb_hEhciMemory.c

EHCI_QTD 0x00020400 ehci_Qtd

EHCI_ITD 0x00030400 ehci_Itd

EHCI_QH 0x00038580 ehci_Qh

EHCI_SITD 0x00039080 ehci_Sitd

OHCI_HCCA 0x0003A000 ohci_hcca

r_usb_hOhciMemory.c OHCI_TD 0x0003A100 ohci_TdMemory

OHCI_ED 0x0003c100 ohci_EdMemory

e2 studio
 e2 studio sets the section in the configuration screen.

Changes are as follows:
・Fixed address of “.data” section from 0x0007F000 to 0x00040000
・Add section setting of EHCI and OHCI.

 Refer to [Project] → [Properties] → [C/C++ Build] → [Settings] → [Sections].

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 47 of 52
Dec 07, 2017

Variable definitions in the code are as follows.

r_usb_hEhciMemory.c

r_usb_hOhciMemory.c

#ifdef __GNUC__

static uint32_t ehci_PeriodicFrameList[USB_EHCI_PFL_SIZE]

 __attribute__ ((section ("EHCI_PFL")));

static USB_EHCI_QH ehci_Qh[USB_EHCI_NUM_QH]

 __attribute__ ((section ("EHCI_QH")));

static USB_EHCI_QTD ehci_Qtd[USB_EHCI_NUM_QTD]

 __attribute__ ((section ("EHCI_QTD")));

static USB_EHCI_ITD ehci_Itd[USB_EHCI_NUM_ITD]

 __attribute__ ((section ("EHCI_ITD")));

static USB_EHCI_SITD ehci_Sitd[USB_EHCI_NUM_SITD]

 __attribute__ ((section ("EHCI_SITD")));

#endif /* __GNUC__ */

#ifdef __GNUC__

static USB_OHCI_HCCA_BLOCK ohci_hcca

 __attribute__ ((section ("OHCI_HCCA")));

static USB_OHCI_HCD_TRANSFER_DESCRIPTOR ohci_TdMemory[USB_OHCI_NUM_TD]

 __attribute__ ((section ("OHCI_TD")));

static USB_OHCI_HCD_ENDPOINT_DESCRIPTOR ohci_EdMemory[USB_OHCI_NUM_ED]

 __attribute__ ((section ("OHCI_ED")));

#endif /* __GNUC__ */

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 48 of 52
Dec 07, 2017

EWARM
EWARM sets the section in the linker setting file (.icf file).

Changes are as follows:
・Start address of RAM region from 0x00070000 to 0x00040000.
・End address of USER_PRG region from 0x0006FFFF to 0x0001FFFF.

・To the EHCI and OHCI to fixed address, adds memory region definition.

Variable definitions in the code are as follows.

r_usb_hEhciMemory.c

r_usb_hOhciMemory.c

define symbol __ICFEDIT_region_RAM_start__ = 0x00040000;

define symbol __region_USER_PRG_end__ = 0x0001FFFF;

define region EHCI_MEM1_region = mem:[from 0x00020000 to 0x000203FF];

define region EHCI_MEM2_region = mem:[from 0x00020400 to 0x00039FFF];

define region OHCI_MEM1_region = mem:[from 0x0003A000 to 0x0003A0FF];

define region OHCI_MEM2_region = mem:[from 0x0003A100 to 0x0003FFFF];

do not initialize { section EHCI_PFL, section EHCI_QH, section EHCI_QTD, section EHCI_ITD, section

EHCI_SITD, section OHCI_HCCA, section OHCI_TD, section OHCI_ED };

place in EHCI_MEM1_region { section EHCI_PFL };

place in EHCI_MEM2_region { section EHCI_QH, section EHCI_QTD, section EHCI_ITD, section EHCI_SITD };

place in OHCI_MEM1_region { section OHCI_HCCA };

place in OHCI_MEM2_region { section OHCI_TD, section OHCI_ED };

#ifdef __ICCARM__

#pragma location="EHCI_PFL"

static uint32_t ehci_PeriodicFrameList[USB_EHCI_PFL_SIZE];

#pragma location="EHCI_QH"

static USB_EHCI_QH ehci_Qh[USB_EHCI_NUM_QH];

#pragma location="EHCI_QTD"

static USB_EHCI_QTD ehci_Qtd[USB_EHCI_NUM_QTD];

#pragma location="EHCI_ITD"

static USB_EHCI_ITD ehci_Itd[USB_EHCI_NUM_ITD];

#pragma location="EHCI_SITD"

static USB_EHCI_SITD ehci_Sitd[USB_EHCI_NUM_SITD];

#endif /* __ICCARM__ */

#ifdef __ICCARM__

#pragma location="OHCI_HCCA"

static USB_OHCI_HCCA_BLOCK ohci_hcca;

#pragma location="OHCI_TD"

static USB_OHCI_HCD_TRANSFER_DESCRIPTOR ohci_TdMemory[USB_OHCI_NUM_TD];

#pragma location="OHCI_ED"

static USB_OHCI_HCD_ENDPOINT_DESCRIPTOR ohci_EdMemory[USB_OHCI_NUM_ED];

#endif /* __ICCARM__ */

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 49 of 52
Dec 07, 2017

DS-5

DS-5 sets the section in the linker setting file (.icf file).

Changes are as follows:
・Start address of RAM region from 0x00040000and BSS region(0clear init memory region) follow RAM region.

・To the EHCI and OHCI to fixed address, adds memory region definition.

 DATA 0x00040000 UNINIT

 {

 * (+RW)

 }

 BSS +0

 {

 * (+ZI)

 }

 EHCI_PERIODIC_FRAMELIST 0x00020000 0x400
 {
 r_usb_hEhciMemory.o(EHCI_PFL)
 }
 EHCI_QTD +0
 {
 r_usb_hEhciMemory.o(ehci_Qtd)
 }
 EHCI_ITD +0
 {
 r_usb_hEhciMemory.o(ehci_Itd)
 }
 EHCI_QH +0
 {
 r_usb_hEhciMemory.o(ehci_Qh)
 }
 EHCI_SITd +0
 {
 r_usb_hEhciMemory.o(ehci_Sitd)
 }
 OHCI_HCCA 0x0003A000 0x100
 {
 r_usb_hOhciMemory.o(OHCI_HCCA)
 }
 OHCI_TDMEMORY +0
 {
 r_usb_hOhciMemory.o(OHCI_TD)
 }
 OHCI_EDMEMORY +0
 {
 r_usb_hOhciMemory.o(OHCI_ED)
 }

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 50 of 52
Dec 07, 2017

Variable definitions in the code are as follows.

r_usb_hEhciMemory.c

r_usb_hOhciMemory.c

#ifdef __CC_ARM

#pragma arm section zidata = "EHCI_PFL"

static uint32_t ehci_PeriodicFrameList[USB_EHCI_PFL_SIZE];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_QH"

static USB_EHCI_QH ehci_Qh[USB_EHCI_NUM_QH];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_QTD"

static USB_EHCI_QTD ehci_Qtd[USB_EHCI_NUM_QTD];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_ITD"

static USB_EHCI_ITD ehci_Itd[USB_EHCI_NUM_ITD];

#pragma arm section zidata

#pragma arm section zidata = "EHCI_SITD"

static USB_EHCI_SITD ehci_Sitd[USB_EHCI_NUM_SITD];

#pragma arm section zidata

#endif

#ifdef __CC_ARM

#pragma arm section zidata = "OHCI_HCCA"

static USB_OHCI_HCCA_BLOCK ohci_hcca;

#pragma arm section zidata

#pragma arm section zidata = "OHCI_TD"

static USB_OHCI_HCD_TRANSFER_DESCRIPTOR ohci_TdMemory[USB_OHCI_NUM_TD];

#pragma arm section zidata

#pragma arm section zidata = "OHCI_ED"

static USB_OHCI_HCD_ENDPOINT_DESCRIPTOR ohci_EdMemory[USB_OHCI_NUM_ED];

#pragma arm section zidata

#endif

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 51 of 52
Dec 07, 2017

Call the USB-BASIC-F/W function
 Adds the usbh_main() of USB-BASIC-F/W in the main() of “¥src¥sample¥int_main.c”.

extern void usbh_main(void);

int main (void)
{
 /* Initialize the port function */
 port_init();

 /* Initialize the ECM function */
 ecm_init();

 /* Initialize the ICU settings */
 icu_init();

 /* USBh main */
 usbh_main();

 while (1)
 {
 /* Toggle the PF7 output level(LED0) */
 PORTF.PODR.BIT.B7 ^= 1;

 soft_wait(); // Soft wait for blinking LED0

 }

}

RZ/T1 Group USB Host Mass Storage Class Driver (HMSC)

R01AN2634EJ0130 Rev.1.30 Page 52 of 52
Dec 07, 2017

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Rev. Date
Description

Page Summary
1.00 Aug 21, 2015 — First edition issued
1.10 Dec 25, 2015 43 Added Appendix A
1.20 Feb 29, 2016 45,49,50 Added DS-5 setting

1.30 Dec 07, 2017
— Corresponds to RZ / T1 initial setting Ver 1.30
42 Changed FatFs version and folder structure diagram

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Overview
	2. Software Configuration
	3. Host Mass Storage Class Driver (HMSC)
	3.1 Class Request
	3.2 Storage Command
	3.3 Checking USB storage devices
	3.4 Searching USB Storage Devices
	3.5 Accessing USB Storage device
	3.6 API functions of HMSCD
	3.7 API fucntions of HMSDD
	3.8 API functions of FSI
	3.9 Scheduler settings

	4. Sample Application
	4.1 Example Operating Environment
	4.2 Application Specifications
	4.3 Initial Settings
	4.3.1 MCU Settings
	4.3.2 USB Driver Settings

	4.4 Processing by Main Routine
	4.4.1 APL
	4.4.2 State Management

	5. Importing procedure of FatFs
	5.1 Obtains FatFs from the web site
	5.2 Extracts FatFs at proper folder
	5.3 Opens the workspace and builds the project
	5.4 Notice

	Appendix A. Changes of initial setting
	Folders and files
	Section
	e2 studio
	EWARM
	DS-5

	Call the USB-BASIC-F/W function

