

RX63N

Renesas Starter Kit Sample Code for Hi-performance

R01AN1395EG0100 Rev.1.00 October 29, 2012

Embedded Workshop

Introduction

Renesas Starter Kits (RSK) are supplied as complete development systems for the selected microcontroller. The kit includes an evaluation board, portable On-Chip Debugger and a set of peripheral sample code.

Target Device

RX63N

Contents

1.	Opening the sample code workspace	. 2
2.	Loading the selected sample code project	. 2
3.	Opening sample code source files	. 3
4.	Source code functionality	. 3
5.	Appendix	. 4
6.	Website, Inquiries and Support	. 5
7.	Revision Record	. 6

1. Opening the sample code workspace

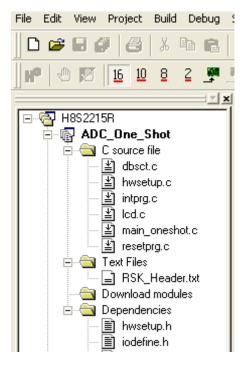
The RSK sample code is supplied as a Hi-performance Embedded Workshop (HEW) workspace. This workspace should be copied to a suitable folder on your PC. The default location that HEW will look for workspace files is c:\workspace.

Once copied to a suitable location the workspace can be opened by double clicking the file "RSKRX63N.hws" or within HEW from the File | Open Workspace menu item.

2. Loading the selected sample code project

Within the workspace there are a number of separate projects. Each project contains the source files for the specific peripheral sample code.

Once the workspace is loaded into HEW the required sample project must be loaded before you can be open the source files. From the Project | Set current project menu item select the required project name.


File Edit View	Project Build Debug Setup Tools Tes	st Window Help
🛛 🗅 🚅 🖬 🖉	Set Current Project	ADC_One_Shot
	Insert Project	ADC_Repeat_Mode
IP 🕀 🕅	Dependent Projects	DMA PC
	Edit Project Configuration	ртс 🗾
E 🚭 H8S221		TPU_Event_Counter
ADC	Create Froject Type	TPU_Input_Capture
		TPU_Pulse_Output
- 🔂 DTC		TPU_Waveform_Gen
TPL	j — Filo Extensions	UART
TPL		USB
TPL	Components	Watchdog
	orial	

Example

3. Opening sample code source files

Once the project is loaded the source code and all dependant files can be opened in the editor by double clicking the file in the workspace window.

Example

Each source file listed in Workspace window in HEW can be expanded to reveal its dependant files; as well as the output files.

4. Source code functionality

Each source code project is specifically written to run on the appropriate RSK. However this source code can be useful as an example of peripheral initialization even without the RSK.

Each sample project will contain a C source file that includes "main" in the name, for example "main_adc12_oneshot.c". This source file will include the C function main() as well as a comment block that describes the function of the sample code.

5. Appendix

Example of comment block with code functionality

/**************************************							
* File Name	: main_adc12_oneshot.c						
* Version	: 1.00						
* Device	: R5F563NB						
* Tool-Chain	: Renesas RX Toolchain 1.2.0.0						
* H/W Platform	: RSK+RX63N						
* Description	: Demonstration of the S12AD ADC module, in single shot mode.						
*	The program configures the ADC to perform oneshot AD conversions						
*	and display the results on the LCD.						
* Operation	: 1. Compile and download the sample code to the target.						
*	Click 'Reset Go' icon on the 'Debug Run' toolbar to						
*	start the software.						
*							
*	2. Adjust the potentiometer, press SW3 to carry out a						
*	12-bit A/D conversion of the ADC channel AN000 and						
*	observe the change in the value being displayed on the						
*	LCD.						
*							
*	3. The user may also examine the ADC conversion result in						
*	the global variable gADC_Result.						
*	Repeat Step 2 to carry out further ADC readings.						

6. Website, Inquiries and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

Support

http://www.renesas.com/rskrx63n

All trademarks and registered trademarks are the property of their respective owners.

7. Revision Record

		Description		
Rev.	Date	Page	Summary	
1.00	Oct 29, 2012	—	First edition issued	

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
 - are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milload Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-116503-1327 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-6577-1818, Fax: +86-21-08235-7679 Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-27-577-1818, Fax: +86-22-0887-7858 Renesas Electronics Thong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-2-817-5890, Fax: +865-2886-9022/9044 Renesas Electronics Simpapore Pte. Ltd. 80 Bendemeer Road, Unit #06-621 Hyliux Innovation Centre Singapore 339949 Tel: +66-21-759-9300, Fax: +665-26133-0300 Renesas Electronics Simpapore Pte. Ltd. 80 Bendemeer Road, Unit #06-621 Hyliux Innovation Centre Singapore 339949 Tel: +65-213-0200, Fax: +665-2613-0300 Renesas Electronics Kingayai Sch.Bhd. Unit 90, Block B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petalling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-375-9390, Fax: +685-2637, Fax: +62-2-2865-9310, Fax: +685-2637, Fax: +60-375-955-9510