
 APPLICATION NOTE

R01AN0268EJ0110 Rev.1.10 Page 1 of 29
Nov 10, 2014

RX62N Group, RX621 Group
Communication with EEPROM
Using the Renesas I2C Bus Module (RIIC)

Introduction
This application note presents a sample program that communicates with an EEPROM (in single master mode) using
the Renesas MCU I2C bus interface module.

Target Device
The RX62N Group and RX621 Group products

Other members of the RX Family that have the same I/O registers (peripheral unit control registers) as the RX62N
Group and RX621 Group products can also use the code from this application note. Note, however, that since certain
aspects of the functions used may be changed in other devices due to function additions or other differences, the
documentation for the device used must be checked carefully before using this code. When using this code in an end
product or other application, its operation must be tested and evaluated thoroughly.

Contents

1. Specifications .. 2

2. Operation Confirmation Environment .. 3

3. Operation ... 4

4. Software .. 6

5. Reference Documents... 28

R01AN0268EJ0110
Rev.1.10

Nov 10, 2014

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 2 of 29
Nov 10, 2014

1. Specifications
This sample program communicates with the EEPROM to write 8 bytes of data and then read the written data back.
Between the write and read operations, it uses acknowledge polling to verify that the EEPROM write has completed.

1.1 Connection Diagram
Figure 1 shows the connections in the application example presented in this application note.

RSK
(R0K5562N0S000BE)

P12/SCL0

P13/SDA0

SCL

SDA

4.
7

k

EEPROM
(AT24C16A)

3.3 V

12 MHz

Slave address: 1010xxxx
(Bits 1 to 3 specify the page in
memory, bit 0 is the R/W bit)

RX62N
(R5F562N8BDBG)

WP

4.
7

k

J9

Figure 1 Connection Diagram

1.2 RIIC Settings
Table 1 lists the RIIC settings described in this application note.

Table 1 RIIC Settings

Item Settings
Operating frequencies • Input clock (EXTAL): 12 MHz

• System clock (ICLK): 96 MHz
• Peripheral module clock (PCLK): 48 MHz
• External bus clock (BCLK): 48 MHz
• Internal reference clock (IICφ): 12 MHz

Master/slave Single master
Address format 7-bit address format
Transfer speed 400 Kbps
Timeout detection • The detection function counts while the SCLn line is low.

• Long mode (16-bit counter (IICφ): about 5.461 ms)

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 3 of 29
Nov 10, 2014

1.3 EEPROM
Table 2 lists the specifications of the EEPROM used in the application example described in this application note.

Table 2 EEROM Specifications

Item Description
Catalog number AT24C16AN-10SU-2.7
Capacity 16 K (2048 × 8)
Slave address Slave address: 1010xxxx

Bit 0 is the R/W bit, bits 1 to 3 indicate the page in EEPROM.
Refer to the EEPROM specifications for details.

Write protection Always released.
• WP pin: low

2. Operation Confirmation Environment
Table 3 lists the environment used for confirming the operation of this application example.

Table 3 Operation Confirmation Environment

Item Description
Device RX62N (R5F562N8BDBG)
Board Renesas Starter Kit (R0K5562N0S000BE)
Power supply voltage 3.3 V (Supplied from E1)
Input clock 12 MHz (ICLK = 96 MHz, PCLK = 48 MHz, BCLK = 48 MHz)
Operating temperature Room temperature
HEW Version 4.09.01.007
Toolchain RX Standard Toolchain (V.1.2.1.0)
Debugger/Emulator E1 emulator
Debugger component RX E1/E20 SYSTEM V.1.03.00

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 4 of 29
Nov 10, 2014

3. Operation

3.1 Writing to the EEPROM
This sample program uses master transmission for writing to an external EEPROM device. The RIIC module issues a
start condition (S) and then sends the EEPROM’s slave address. Since the eighth bit at this time is the R/W bit, a 0 must
be sent at write time (master transmission). After that, the memory address is sent as two 8-bit bytes, and then the data
to be written is sent to the EEPROM in order. The 2-byte memory address transmitted at this time indicates the address
for the write operation in EEPROM. After the transmission of all the data has completed, the RIIC module issues a stop
condition (P) and releases the bus. Note that the write address in memory used in this application note is 0000h.

Figure 2 shows an example of the signals used when writing the EEPROM.

S 1 2 3 4 5 6 7 8

A
C
K 1 2 3 4 5 6 7 8

A
C
K 1 2 3 4 5 6 7 8

A
C
K 1 2 3 4 5 6 7 8

A
C
K P

SCLn

SDAn

Slave address
(A6h)

A
C
K

1st Memory
address

2nd Memory
address

A
C
K

A
C
K

Write Data A
C
K

Start

1 2 7 8

A
C
K

Write Data (n)
A
C
K

Stop

Figure 2 Signals when Writing to EEPROM

3.2 Reading from EEPROM
A compound format consisting of master transmission and master reception is used for reading data from EEPROM.
First, the RIIC module issues a start condition (S) and then it transmits the EEPROM slave address and then a two byte
(2 × 8 bits) memory address. At this time, the RIIC module sends 0 as the R/W bit in the EEPROM slave address
transmission (master transmission). After that, it issues a restart condition (Sr) and sends the EEPROM slave address
again. At this time, it transmits 1 as the R/W bit in the transmission to the EEPROM (master reception). After the
EEPROM slave address has been sent, the data is read out from the EEPROM by the generation of the next clock cycle.
During the read operation, the RIIC module transmits an ACK each time it receives a single byte. For the last data,
however, it returns a NACK. After that, it generates a stop condition (P). Note that the memory address read by this
sample program is 0000h.

Figure 3 shows an example of the signals used when reading the EEPROM.

S 1 2 3 4 5 6 7 8

A
C
K 1 2 3 4 5 6 7 8

A
C
K 1 2 3 4 5 6 7 8

A
C
K 1 2 3 4 5 6 7 8

A
C
K

SCLn

SDAn

Slave address
(A6h)

A
C
K

1st Memory
address

2nd Memory
address

A
C
K

A
C
K

Read Data (n) N
A
C
K

Start Stop

Sr

Re
Start

1 2 3 4 5 6 7 8

A
C
K

Slave address
(A7h)

A
C
K

P

Master transmission Master reception

Figure 3 Signals when Reading from EEPROM

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 5 of 29
Nov 10, 2014

3.3 Acknowledge Polling
Acknowledge polling is used as the method for determining whether or not the EEPROM is in the write in progress
state. To perform acknowledge polling, the sample program issues a start condition and then sends the EEPROM slave
address and then a stop condition. At this time, if the EEPROM is writing, it will return a 1 on the ACK clock (NACK).
Inversely, if the write has completed, it will return 0 (ACK). This allows the sample program to determine whether or
not a write is in progress.

Figure 4 shows the acknowledge polling signals.

S 1 2 3 4 5 6 7 8 ACK

SCLn

SDAn

Slave address
(A6h)

ACK/
NACK

Start Stop

P

Figure 4 Acknowledge Polling Signals

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 6 of 29
Nov 10, 2014

4. Software

4.1 Functions
Tables 4 and 5 list the functions in this sample program. The functions that are not in bold are static functions.

Table 4 Functions in File main.c

Function Name Operation Notes
main Main processing Figure 7
SampleEepromWrite EEPROM write processing example Figure 11
SampleEepromRead EEPROM read processing example Figure 12
IICAckPolling Acknowledge polling Figure 13
CpuCreate CPU initialization Figure 8
CpuIntCreate CPU interrupt setting Figure 9
IICPortCreate IIC port settings Figure 10

Table 5 Functions in File iic.c

Function Name Operation Notes
IIC_Create IIC initialization Figure 14
IIC_Destroy IIC termination processing Figure 15
IIC_EepWrite EEPROM write start processing Figure 16
IIC_RandomRead EEPROM read start processing Figure 17
IIC_GetStatus IIC status check Figure 18
IIC_EEI_Int Communication error or event interrupt Figure 19
IIC_EEI_IntTimeOut Timeout detection interrupt

Called from within IIC_EEI_Int()
Figure 20

IIC_EEI_IntAL Arbitration lost detected interrupt
Called from within IIC_EEI_Int()

Figure 21

IIC_EEI_IntSP Stop condition detected interrupt
Called from within IIC_EEI_Int()

Figure 22

IIC_EEI_IntST Start condition detected interrupt
Called from within IIC_EEI_Int()

Figure 23

IIC_EEI_IntNack NACK detected interrupt
Called from within IIC_EEI_Int()

Figure 24

IIC_RXI_Int Receive data full interrupt Figure 25
IIC_RXI_IntEepRead EEPROM read processing (master reception section)

Called from within IIC_RXI_Int()
Figure 26

IIC_TXI_Int Transmit data empty interrupt Figure 27
IIC_TXI_IntEepWrite EEPROM write processing

Called from within IIC_TXI_Int()
Figure 28

IIC_TXI_IntEepRead EEPROM read processing (master transmission section)
Called from within IIC_TXI_Int()

Figure 29

IIC_TEI_Int Transmission complete interrupt Figure 30
IIC_TEI_IntEepWrite Transmission end processing used after an EEPROM write

Called from within IIC_TEI_Int()
Figure 31

IIC_TEI_IntEepRead Transmission end processing used after an EEPROM read
Called from within IIC_TEI_Int()

Figure 32

IIC_GenClkSP Stop condition generation used when an error occurs
Called from within IIC_EEI_IntTimeOut() and IIC_EEI_IntAL()

Figure 33

IIC_Error Error handling Figure 34

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 7 of 29
Nov 10, 2014

4.2 Variables
4.2.1 Structures
Figure 5 shows the structure used as the argument to the functions IIC_EepWrite() and IIC_RandomRead(). Also, table
6 lists the members of this structure.

struct str_IIC_API_T
{
 uint8_t SlvAdr; /* Slave Address, Don’t set bit0. It’s a Read/Write bit */
 uint16_t PreCnt; /* Number of Predata */
 uint8_t *pPreData; /* Pointer for PreData (Memory Addr of EEPROM) */
 uint32_t RWCnt; /* Number of Data */
 uint8_t *pRWData; /* Pointer for Data buffer */
};
typedef struct str_IIC_API_T IIC_API_T;

Figure 5 Structure Uses as an Argument to IIC_EepWrite() and IIC_RandomRead()

Table 6 Members of the Structure IIC_API_T

Structure Member Range of Values Description
SlvAdr 00h to FEh Slave address

Since the low-order bit is the R/W bit, it should always be
set to 0.

PreCnt 00h to FFh Memory address counter
This is always set to 2 in this sample program.

*pPreData  Memory address storage buffer pointer
On write: The address in EEPROM to write data to (write

destination)
On read: The address in EEPROM to read data from (write

source)
RWCnt 0000 0000h to

FFFF FFFFh
Data counter
On write: Number of data items to write to EEPROM
On read: Number of data items to read from EEPROM

*pRWData  Data storage buffer pointer
On write: Storage source for data to write to EEPROM.
On read: Storage destination for data read from EEPROM.

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 8 of 29
Nov 10, 2014

4.2.2 Functions
Tables 7 and 8 list the functions in this sample program.

Table 7 Functions in the File main.c

Function Description
uint8_t trm_buff[256] Transmit data buffer
uint8_t rcv_buff[256] Receive data buffer
uint8_t trm_eeprom_adr[2] EEPROM slave address storage buffer (for write)
uint8_t rcv_eeprom_adr[2] EEPROM slave address storage buffer (for read)
IIC_API_T iic_buff_prm[2] Structure used as the argument to the functions IIC_EepWrite() and

IIC_RandomRead()

Table 8 Functions in the File iic.c

Function Description
static IIC_API_T iic_buff Structure used as the argument to the functions IIC_EepWrite() and

IIC_RandomRead()
(Used by both IIC_EepWrite() and IIC_RandomRead())

static int8_t iic_mode Internal mode
static int8_t iic_status IIC status
static uint32_t iic_trm_cnt Internal IIC transmit counter
static uint32_t iic_rcv_cnt Internal IIC receive counter

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 9 of 29
Nov 10, 2014

4.2.3 Enumerations
The IIC status, the IIC bus status, the internal mode, and the return value from the functions IIC_EepWrite() and
IIC_RandomRead() are all declared as enumerations. The IIC status values are listed in table 9 and their state transition
diagram are shown in figure 6. Also, table 10 lists the IIC bus status values, table 11 lists the internal modes, and table
12 lists the return values of the functions IIC_EepWrite() and IIC_RandomRead().

The IIC status is stored at the address given by its first argument when the function IIC_GetStatus() is called. The
internal mode is only used in the IIC-related functions in this sample program.

Table 9 IIC Status Values (enum RiicStatus_t)

Defined Name Description
RIIC_STATUS_IDLE The idle state

The status transitions to this state after initialization in the
function IIC_Create(). The status also transitions to this state
after either an EEPROM write or an EEPROM read completes
normally (after a stop condition is detected).

RIIC_STATUS_ON_COMMUNICATION Communication in progress
The status transitions to this state when communication is
initiated by either IIC_EepWrite() or IIC_RandomRead().

RIIC_STATUS_NACK NACK received
The status transitions to this state when a NACK is received.

RIIC_STATUS_FAILED Communication failure
The status transitions to this state when a stop condition is
detected before either an EEPROM write or an EEPROM read
completes.
In this sample program, since a stop condition is generated on
either a timeout or an arbitration lost, the status will transition to
this state on either of those events as well.

Idle state Communication
in progress

NACK
received

Communication
failure

Initialization
NACK received

Normal completion
of communication

Communication start

Communication start

Stop condition
abnormality detected

After reset is
cleared

Initialization: IIC_Create()
Start of communication: Either IIC_EepWrite() or IIC_RandomRead()

Start of
communication

Figure 6 IIC Status State Transition Diagram

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 10 of 29
Nov 10, 2014

Table 10 IIC Bus Status (enum RiicBusStatus_t)

Defined Name Description
RIIC_BUS_STATUS_FREE IIC bus free
RIIC_BUS_STATUS_BBSY IIC bus busy

Table 11 Internal Modes (enum RiicInternalMode_t)

Defined Name Description
IIC_MODE_IDLE Idle mode

The internal mode transitions to idle mode on initialization by
IIC_Create() or when a stop condition is detected.

IIC_MODE_EEP_READ EEPROM read mode
The internal mode transitions to this mode at the start of
communication due to IIC_RandomRead().

IIC_MODE_EEP_WRITE EEPROM write mode
The internal mode transitions to this mode at the start of
communication due to IIC_EepWrite().

Table 12 IIC_EepWrite() and IIC_RandomRead() Return Value (enum RiicEepFnc_t)

Defined Name Description
RIIC_OK This value is returned when communication starts up normally.
RIIC_BUS_BUSY This value is returned when the I2C bus is busy.
RIIC_MODE_ERROR This value is returned when the RIIC module has a

communication operation in progress.
RIIC_PRM_ERROR This value is returned when an illegal argument value is

passed.
(Only the function IIC_RandomRead() uses this value.)

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 11 of 29
Nov 10, 2014

4.3 Function Specifications
This section presents the specifications of the sample code functions that control the RIIC module.

IIC_Create
Outline Initializes the RIIC module.
Header r_apn_iic.h
Declaration void IIC_Create(void)
Description Performs the following settings.

• Transfer speed setting: 400 kbps
• Interrupt settings
• Timeout settings

Arguments None
Return Value None

IIC_Destroy
Outline Stops the RIIC module.
Header r_apn_iic.h
Declaration void IIC_Destroy(void)
Description Stops the RIIC module and clears all the RIIC module related registers.
Arguments None
Return Value None
Notes If this function is called during a communication operation, it forcibly stops the RIIC

module.

IIC_EepWrite
Outline Starts a write to the EEPROM.
Header r_apn_iic.h
Declaration int8_t IIC_EepWrite(IIC_API_T)
Description Uses master transmission to write to the EEPROM. If the I2C bus is busy or if the

RIIC module is in the communication in progress state, it does not start master
transmission.

Arguments IIC_API_T data1
Return Value If communication starts up normally: RIIC_OK

If the I2C bus is busy: RIIC_BUS_BUSY
If the RIIC module is communicating: RIIC_MODE_ERROR

Notes See section 4.2.1, Structures, for details on the argument IIC_API_T data1.
See section 4.2.3, Enumerations, for details on the return value.
Bit 0 in the slave address (SlvAdr), which is a member of the argument structure,
must be set to 0.

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 12 of 29
Nov 10, 2014

IIC_RandomRead
Outline Starts a read from the EEPROM.
Header r_apn_iic.h
Declaration int8_t IIC_RandomRead(IIC_API_T);
Description This function reads data from the EEPROM using both master transmission and

master reception. If the I2C bus is busy or the RIIC is already communicating, it does
not start a master transmission.

Arguments IIC_API_T data1
Return Value If communication starts up normally: RIIC_OK

If the I2C bus is busy: RIIC_BUS_BUSY
If the RIIC module is communicating: RIIC_MODE_ERROR
If the argument value is illegal: RIIC_PRM_ERROR

Notes See section 4.2.1, Structures, for details on the argument IIC_API_T data1.
See section 4.2.3, Enumerations, for details on the return value.
The argument is recognized as illegal if both the memory address counter and the
data counter are 0.
Bit 0 in the slave address (SlvAdr), which is a member of the argument structure,
must be set to 0.

IIC_GetStatus
Outline Acquires the status of the RIIC module.
Header r_apn_iic.h
Declaration void IIC_GetStatus(enum RiicStatus_t*, enum RiicBusStatus_t*);
Description This function stores the IIC status in the area indicated by the first argument. It also

stores the IIC bus state in the area indicated by the second argument.
Arguments enum RiicStatus_t *data1

enum RiicBusStatus_t *data2
Return Value None
Notes See section 4.2.3, Enumerations, for details on the arguments.

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 13 of 29
Nov 10, 2014

4.4 Flowchart
This section presents the flowcharts for the functions in this sample program.

main

CpuCreate

IIC_Create

SampleEepromWrite

IICAckPolling

SampleEepromRead

IIC_Destroy

CPU initialization

IIC initialization

Example of EEPROM write processing

Acknowledge polling

Example of EEPROM read processing

IIC termination processing

Figure 7 Main Processing

CpuCreate

CpuIntCreate

IICPortCreate

ICLK = 100 MHz, BCLK = 25 MHz, PCLK = 50 MHz
(EXTAL = 12.5 MHz)

CPU interrupt settings

IIC port settings

Clears the module stop bit.

Clock settings

Clear the module stop bit

End

Figure 8 CPU Initialization

CpuIntCreate

Sets the interrupt event priority to 4.
(ICEEI0, ICRXI0, ICTXI0, and ICTEI0)

Clears the interrupt request flag.

Enables interrupts.
(Note, however, that it is also necessary to
set the interrupts enabled/disabled state
with the ICIER register.)

IPR settings

End

Clear the IR flag

IEN settings

Figure 9 CPU Interrupt Settings

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 14 of 29
Nov 10, 2014

IICPortCreate

Sets the data direction register to the input direction.

Enables the input buffer.

 Set the data direction register

End

Set the input buffer control register

Figure 10 IIC Port Settings

SampleEepromWrite

Sets up the sample transmit data (0x00, 0x01, 0x02, ...).

Sets the EEPROM write address (0x0000).

Transmit data settings

End

Set the EEPROM memory address

Set up the IIC_EepWrite()
argument buffer

IIC_EepWrite

Has
 IIC communication

 completed?

Yes

No

IIC_GetStatus

IIC_GetStatus

IIC bus free?
No

Yes

Sets up the argument data for IIC_EepWrite().
(EEPROM slave address, memory address length,
memory address storage buffer pointer, transmit data
count, and transmit data storage buffer pointer)

Starts the write to EEPROM.

Waits for the completion of data transmission to
EEPROM.

Waits for the IIC bus free state.

Figure 11 Sample EEPROM Write Processing

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 15 of 29
Nov 10, 2014

SampleEepromRead

Clears the receive data buffer.

Sets the address data for reading from EEPROM
(0x0000)

Clear the receive data buffer

End

Set the EEPROM memory address

Set up the IIC_RandomRead()
argument buffer

IIC_RandomRead

Has
IIC communication

 completed?

Yes

No

IIC_GetStatus

IIC_GetStatus

IIC bus free?
No

Yes

Sets up the argument data for IIC_RandomRead().
(EEPROM slave address, memory address length,
memory address storage buffer pointer, receive data
count, and receive data storage buffer pointer)

Starts the read from EEPROM.

Waits for the completion of data reception from
EEPROM.

Waits for the IIC bus free state.

Figure 12 Sample EEPROM Read Processing

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 16 of 29
Nov 10, 2014

IICAckPolling

Sets the EEPROM write address (0x0000).

End

Set the EEPROM memory address

Set up the IIC_EepWrite()
argument buffer

Has
IIC communication

completed?

Yes

No

IIC_GetStatus

Have the
 specified number of iterations

completed?

No

Yes

Sets up the argument data for IIC_EepWrite().
(EEPROM slave address)

Waits for IIC communication to complete.

Iterates acknowledge polling either until an
ACK response is received or until the specified
iteration count completes.

During each iteration, the function waits for the
interval specified in the argument.

Wait for the interval required
 for the next acknowledge

 polling operation

NACK response?

Yes

No

ACK response?

No

Yes

IIC_EepWrite Starts acknowledge polling.

Figure 13 Acknowledge Polling

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 17 of 29
Nov 10, 2014

IIC_Create

Reset all RIIC registers and its internal state by
setting ICCR1.ICE to 0 and ICCR1.IICRST to 1.

End

RIIC reset

Transfer speed setting Sets the transfer speed to 400 kbps.

Disables slave address detection.

Timeout setting

Invalidate slave address

Clear ACKBT protection

Interrupt settings

Initialize RAM used in the RIIC module

Enable IIC transfer operations

Sets up timeout operation.
(Only count when SCL is high and use long mode.)

Enables writing to ACKBT.
(To enable NACK responses from EEPROM during
read processing.)

Interrupt settings
• Enable the timeout interrupt
• Enable the arbitration lost interrupt
• Disable the start condition detection interrupt
• Enable the stop condition detection interrupt
• Enable the NACK received interrupt
• Enable the receive data full interrupt
• Disable the transmission complete interrupt
• Enable the transmitted empty interrupt

Initializes the RIIC internal RAM.

Enables RIIC transfer operations.

Figure 14 IIC Initialization

IIC_Destroy

Reset all RIIC registers and its internal state by
setting ICCR1.ICE to 0 and ICCR1.IICRST to 1.

End

RIIC reset

Figure 15 IIC Termination Processing

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 18 of 29
Nov 10, 2014

IIC_EepWrite

Checks the internal mode.
Cancels the write if a communication
operation is in progress.

return
RIIC_OK

Is this device
communicating?

Yes

Is the bus free?

No

Store the argument in the IIC buffer

No

Yes

Set internal RAM mode and
the counter

Generate a start condition

Stores the argument in the IIC buffer.

Checks the IIC bus state.
Cancels the write if the bus is busy.

Sets up internal RAM mode.
Sets the internal mode and the counter.

Generates a start condition.

return
RIIC_BUS_BUSY

return
RIIC_MODE_ERROR

Figure 16 EEPROM Write Start Processing

IIC_RandomRead

Checks the internal mode.
Cancels the read if a communication
operation is in progress.

Is this device
communicating?

Yes

Is the bus free?

No

Store the argument in the IIC buffer

No

Yes

Set internal RAM to internal mode
and set the counter

Generate a start condition

Stores the argument in the IIC buffer.

Checks the IIC bus state.
Cancels the read if the bus is busy.

Sets up internal RAM mode.
Sets the internal mode and the counter.

Generates a start condition.

Is the argument legal?

Yes

No
Checks the argument value.
Cancels the read if the value is illegal.

return
RIIC_OK

return
RIIC_BUS_BUSY

return
RIIC_MODE_ERROR

return
RIIC_PRM_ERROR

Figure 17 EEPROM Read Start Processing

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 19 of 29
Nov 10, 2014

IIC_GetStatus

Stores the IIC status in the buffer
indicated by the argument.

End

Check the IIC status

Check the IIC bus state
Stores the IIC bus state (bus busy
or bus free) in the buffer indicated
by the argument.

Figure 18 IIC State Verification Processing

IIC_EEI_Int

Enables the timeout detection interrupt and
furthermore, if a timeout detection interrupt
has occurred, handles the timeout detection
interrupt.

End

Timeout interrupt
handling?

Yes

No

IIC_EEI_IntTimeOut

Enables the arbitration lost interrupt and
furthermore, if an arbitration lost interrupt has
occurred, handles the arbitration lost interrupt.

Arbitration lost
interrupt handling?

Yes

No

IIC_EEI_IntAL

Stop
condition detected interrupt

handling?

Yes

No

IIC_EEI_IntSP

NACK
 detected interrupt

 handling?

Yes

No

IIC_EEI_IntNack

Start
condition detected interrupt

handling?

Yes

No

IIC_EEI_IntST

Enables the stop condition detection interrupt
and furthermore, if a stop condition detection
interrupt has occurred, handles the stop
condition detection interrupt.

Enables the NACK detection interrupt and
furthermore, if a NACK detection interrupt has
occurred, handles the NACK detection
interrupt.

Enables the start condition detection interrupt
and furthermore, if a start condition detection
interrupt has occurred, handles the start
condition detection interrupt.

Figure 19 Communication Error and Event Interrupts

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 20 of 29
Nov 10, 2014

IIC_EEI_IntTimeOut

Stop condition generation processing used
when an abnormality occurs

End

IIC_GenClkSP

Figure 20 Timeout Detection Interrupt

IIC_EEI_IntAL

Stop condition generation processing used
when an abnormality occurs

End

IIC_GenClkSP

Figure 21 Arbitration Lost Detection Interrupt

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 21 of 29
Nov 10, 2014

IIC_EEI_IntSP

End

What is the internal mode?

EEPROM write processing

Set the internal mode to idle
Clear the internal counter

Clear NACKF here when NACK detected.Clear ICSR2.NACKF

Clear ICSR2.STOP

Interrupt settings

Interrupt settings
• Enable the timeout interrupt
• Enable the arbitration lost interrupt
• Disable the start condition detection interrupt
• Enable the stop condition detection interrupt
• Enable the NACK received interrupt
• Enable the receive data full interrupt
• Disable the transmission complete interrupt
• Enable the transmitted empty interrupt

EEPROM read processing

Is the unsent
data empty?

Idle state Other state

IIC_Error

Is the IIC status other
than NACK received?

Yes

No

Set the IIC status to idle state

Yes

No Set the IIC status to
communication failure

Is the not received
data empty?

Yes

No

Set the IIC status to
idle state

Set the IIC status to
communication failure

Clear the stop flag.

Figure 22 Stop Condition Detection Interrupt

IIC_EEI_IntST

Clear the start condition detected flag.

End

Clear ICSR2.START

Disable the start condition
detection interrupt

Transmit the EEPROM slave
address

Disable the start condition detection interrupt.

This transmits the EEPROM slave address.
Here, bit 8 in the transmitted data must be
set to 1 (master reception).

Figure 23 Start Condition Detected Interrupt

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 22 of 29
Nov 10, 2014

IIC_EEI_IntNack

Set the internal status to NACK received.

End

Set the internal status to NACK
received

Disable the NACK detection
interrupt

Clear ICSR2.STOP

Disable the NACK detection interrupt.

Transmit the EEPROM device
address

Clears the stop condition detected flag.

Generates a stop condition.

Figure 24 NACK Detection Interrupt

IIC_RXI_Int

End

What is the internal mode?

EEPROM write processingEEPROM read processing Other state

IIC_ErrorIIC_RXI_IntEepRead IIC_Error

Figure 25 Receive Data Full Interrupt

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 23 of 29
Nov 10, 2014

IIC_RXI_IntEepRead

End

Interrupt after slave
address reception?

Yes

No

2 bytes or less of
remaining read data?

Yes

Set SCL to be held low after
 the 9th clock generated

Set up NACK transmission
 when the next data is received

Dummy ICDRR read

Yes

Set SCL to be held low after the
9th clock generated

Set up NACK transmission
 when the next data is received

Clear ICSR2.STOP

No

Prepare to generate a stop condition

Read the last receive data
(and generate a stop condition)

Cancel setting to hold
SCL low after 9th clock pulse

Read receive data

No

Increment internal counter

1 byte or less of
remaining read data?

Yes

No

3 bytes of remaining
 read data?

2 bytes of remaining
 read data?

Yes

No

1 byte of remaining
 read data?

Yes

No

Decrement counter reading

Decrement counter reading

Figure 26 EEPROM Read Processing (Master Reception Section)

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 24 of 29
Nov 10, 2014

IIC_TXI_Int

End

What is the internal mode?

EEPROM write processing EEPROM read processing Other state

IIC_ErrorIIC_TXI_IntEepWrite IIC_TXI_IntEepRead

Figure 27 Transmit Data Empty Interrupt

IIC_TXI_IntEepWrite

This counter counts the number of transmitted data items.

End

Slave address
transmission?

Increment internal counter

Transmit the slave address

Yes

No

Memory address
transmission?

Transmit the memory
address

Write data transmission?
Yes

No

Transmit the data

Yes Enable the transmission
complete interrupt

No

Figure 28 EEPROM Write Processing

IIC_TXI_IntEepRead

This counter counts the number of transmitted data items.

End

Slave address
transmission?

Increment internal counter

Transmit the slave
address

Yes

No

Memory address
transmission?

Transmit the memory
address

Yes

No

Enable the transmission
complete interrupt

Figure 29 EEPROM Read Processing (Master Transmission Section)

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 25 of 29
Nov 10, 2014

IIC_TEI_Int

End

What is the internal
mode?

EEPROM write processing EEPROM read processing Other state

IIC_ErrorIIC_TEI_IntEepWrite IIC_TEI_IntEepRead

Figure 30 Transmission Complete Interrupt

IIC_TEI_IntEepWrite

Disable the transmission
complete interrupt

End

Disable the transmission complete
interrupt

Clear ICSR2.STOP

Generate a stop condition

Clear ICSR2.STOP

Generate a stop condition

Figure 31 Transmission Complete Processing after EEPROM Write Processing

IIC_TEI_IntEepRead

Enable start condition
detection interrupt

End

Enable start condition detection
interrupt

Disable the transmission complete
interrupt

Generate a restart condition

Clear ICSR2.START

Generate a restart condition

Clear ICSR2.START

Disable the transmission
complete interrupt

Figure 32 Transmission Complete Processing after EEPROM Read Processing

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 26 of 29
Nov 10, 2014

IIC_GenClkSP

Generates timeouts on SCL = high or SCL = low.

End

Set up timeout operation

Wait for a fixed period

Enable timeouts

Stops output to SCL and SDA and resets the
internal state.

Enables timeouts.

Internal reset

Waits for the SCL and SDA release times
due to the internal reset.

SCL = High?

IIC_ErrorYes

No

Set up master mode

SDA = Low?

Yes

Loop
Cnt = 0; cnt < 10; cnt++

SDA = Low?

Generate 1 clock cycle

Yes

Has
 the one clock cycle

 completed?

Did a timeout occur?
Yes

No

No

Have 9 clock
 cycles been generated and is

SDA low?

Yes

No IIC_Error

No

No

Is the bus busy?

Yes

No

IIC internal reset Generate a stop condition

Enables MST/TRS protection.Enable MST/TRS protection

Generates timeouts when SCL is high.Set up timeout operation

Clears MST/TRS protection and sets up master
transmission mode.

Even though an internal reset was performed, SCL
was set high while another device was holding it low.

Processing when the remote device is holding SDA low.

One possibility is that a bit displacement occurred
between the RIIC module and the remote device.
In that case, it may be possible to release SCL by
generating a few clock cycles.

Use the ICCR1.CLO bit and generate one clock cycle at
a time. Each time, check whether SDA is high or nine
iterations have been performed.

If the bus is busy, generates a stop condition.
In all other cases, performs an internal reset and
switches from master transmission mode to slave
reception mode (idle mode).

Loop

Figure 33 Stop Condition Generation Processing when an Abnormal State Occurs

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 27 of 29
Nov 10, 2014

IIC_Error

Figure 34 Error Handling

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 28 of 29
Nov 10, 2014

5. Reference Documents
• Hardware Manual

RX62N Group, RX621 Group User’s Manual: Hardware
(The latest version can be downloaded from the Renesas Electronics Web site.)

• Software Manual

RX Family User’s Manual: Software
(The latest version can be downloaded from the Renesas Electronics Web site.)

• Development Environment Manual

RX Family C/C++ Compiler Package User’s Manual
(The latest version can be downloaded from the Renesas Electronics Web site.)

• Technical Updates

(The latest information can be downloaded from the Renesas Electronics Web site.)

RX62N Group, RX621 Group Communication with EEPROM Using the Renesas I2C Bus Module (RIIC)

R01AN0268EJ0110 Rev.1.10 Page 29 of 29
Nov 10, 2014

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date
Description
Page Summary

1.00 Feb. 14, 2011 — First edition issued
1.01 Sep. 27, 2011 3 Table 3 amended
 10 Table 10 amended
 23 Figure 26 amended (to reflect technical update TN-RX*-

A005A)*1
1.10 Nov. 10, 2014 3 Table 3 amended
 23 Figure 26 amended
 Sample code amended
Note: 1. This application note does not reflect the contents of technical updates TN-RX*-A012A and TN-

RX*-A013A.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different type number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	Introduction
	Target Device
	Contents
	1. Specifications
	1.1 Connection Diagram
	1.2 RIIC Settings
	1.3 EEPROM

	2. Operation Confirmation Environment
	3. Operation
	3.1 Writing to the EEPROM
	3.2 Reading from EEPROM
	3.3 Acknowledge Polling

	4. Software
	4.1 Functions
	4.2 Variables
	4.2.1 Structures
	4.2.2 Functions
	4.2.3 Enumerations

	4.3 Function Specifications
	4.4 Flowchart

	5. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice
	Sales Offices

