
 APPLICATION NOTE

R01AN0331EU0103 Rev.1.03 Page 1 of 18

Sep 24, 2012

RX600 Series
Direct Drive LCD Demonstration

Introduction

The purpose of the LCD Direct Drive demonstration is to show how to create an interactive TFT-LCD panel application
using the Renesas DirectLCD API (application program interface) in a real-time environment. The accompanying
workspace and software are provided as sample code that will execute on a Renesas LCD Direct Drive demonstration
platform. This document will explain in detail the program structure of this sample code.

The user of this document should also refer to the “Direct Drive LCD Design Guide.pdf” and “GAPI User Manual.pdf”
(contained within the sample code workspace) for more details on the operation of the API’s used in the sample code.

This sample code utilizes the FreeRTOS as the real-time operating system. The technical documents of FreeRTOS can
be accessed at www.freertos.org.

Target Device

RX62N, RX63N

Target LCD Panels

LCD panels with a standard TTL RGB, HSynch, VSynch, PixClk, and Data Enable interface.

The Direct Drive LCD solution is highly configurable, and capable of producing many different timing
configurations which drive the input signals of TFT-LCD panels from various panel manufacturers. The signal
timing generated from the Direct Drive LCD solution depends on your choice panel resolution, frame buffer
memory, and desired panel refresh and animation rates.

Although Renesas provides guidelines and examples for configuring the signal timing, Renesas is not
responsible for meeting the AC timing specifications of your specific choice of TFT-LCD panel. Please contact
your TFT-LCD panel manufacturer to ensure the Direct Drive LCD solution complies with the panel timing
limitations.

R01AN0331EU0103
Rev.1.03

Sep 24, 2012

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 2 of 18

Sep 24, 2012

Contents

1. Background ... 3

1.1 What is LCD Direct Drive? .. 3

2. Demonstration Application .. 3

2.1 Installation ... 3

2.2 Compile ... 3

2.3 Running the application ... 5

3. Code Structure .. 11

3.1 File Descriptions .. 11

4. Program Operation .. 13

4.1 RTOS .. 14

4.2 Interrupts ... 14

4.3 Tasks ... 14

4.4 Memory Usage .. 15

5. Resource Storage Access ... 16

Website and Support ... 18

Revision Record .. 19

General Precautions in the Handling of MPU/MCU Products ... 20

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 3 of 18

Sep 24, 2012

1. Background

1.1 What is LCD Direct Drive?
LCD Direct Drive is the ability to control a TFT LCD panel via the on chip peripherals of Renesas microcontrollers.
These peripherals include the external bus controller (BSC), External DMA controller (ExDMAC) and timer units (TPU
or MTU). The LCD Direct Drive API will transparently transfer the contents of a RAM frame buffer to an LCD panel
using less than 2% of the available processor bandwidth (WQVGA panel at 60Hz on RX62N running at 100Mhz).

At any time, the MCU can be executing code and accessing data from internal flash and RAM. The contents of the
external RAM frame buffer can be updated by the MCU during the vertical blanking portion of the LCD update cycle.
The coordination of external bus access by the MCU is handled by the API to ensure there is no contention.

2. Demonstration Application

The following instructions assume a reasonable familiarity with the Renesas development tools.

2.1 Installation
To install the demonstration application, run the installation program that accompanies this application note appropriate
for your target platform (DirectLCD_RX62N_RSK.exe for example). Ensure that the required HEW, compiler and
debugger components are previously installed (the DirectLCD installer will note which versions are expected). The
install will ask for a location to unpack the workspace. Use the default location if acceptable.

2.2 Compile
Open the demonstration workspace by double clicking on “DirectLCD.hws”.

2.2.1 r_Packages.lib
To facilitate simple reuse of the provided components in customer projects, the LCD direct drive API, Graphics API
and RTOS are separated into the library project “r_Packages.lib”. This library is then easily included in the user

EDREQ

External
DMA

Controller

USB

Ethernet

CAN

Analog

GPIO
Timer

V sync

16.6 msec (60Hz refresh rate)

CPU cannot access
frame buffer (ExDMA

moving data from
SRAM to LCD)

50% of Period

Flash &
SRAM

Pixel CLK

Vsync, Hsync, Enable

Address bus

RD/

WR/

16 bit Data Bus

RGB (5:6:5) RGB (5:6:5)

Processing

CPU can access frame buffer
(ExDMA finished moving from

data SRAM to LCD)

50% of Period

CPU

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 4 of 18

Sep 24, 2012

application project (and the DirectLCD demo project). All source code is provided for this library, and can be debugged
as part of the customer project.

To build the “r_Packages.lib”, set the current project to “r_Packages” by right clicking on project and selecting “Set as
Current Project”.

Special one-time procedure for 64-bit windows. To address issues associated with paths in 64-bit Windows OS, we
must provide an alternate path to the HEW program directory.

From the command shell, create an alternate path to the HEW program directory. Bold text is required command
entries.

C:\Users\jbrabend01>cd \
C:\>md Renesas (This directory may already exist on your computer so ignore any “already exists” message.)
C:\>cd Renesas
C:\Renesas>mklink /D Hew "c:\Program Files (x86)\Renesas\Hew"
symbolic link created for Hew <<===>> c:\Program Files (x86)\Renesas\Hew
C:\>exit

Within the HEW IDE, select: Build->Build Phases

Click on “make” and select “Modify”, select “Environment” tab.

Click on “HEW_INSTALL” and select “Modify”

Change the “Value” to the newly created alternate path to the HEW program directory.
Select “OK” to exit all dialogs.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 5 of 18

Sep 24, 2012

Build the “HWP” configuration of r_Packages.lib by pressing <F7>. This will build a browsable tree under the HEW
project window in addition to the library. It is normal to receive the following message when building the “HWP”
configuration (as the HEW project file is built). Simply select “Yes” to continue.

After the library has been built once, future builds can be run using the “New” configuration (HWP configuration is
only necessary to build the browsable project the first time). The “r_Packages.lib” library only needs to be re-built when
its configuration files change.

2.2.2 DirectLCD.abs
Select the demonstration application project by right clicking on the “DirectLCD” project and selecting “Set as Current
Project”. Build the project by pressing <F7>.

2.3 Running the application
Connect your debugger (E1) to your target hardware platform (RX62N RSK LCD Direct Drive) and establish a
debugging session.

Download the previously built “DirectLCD.abs” to the target.

In addition to building the “DirectLCD.abs” executable, the build process also creates a “Resources.bin” file containing
all of the graphical resources contained within the workspace’s “Resources” directory. This file is stored in external
serial flash in the demonstration application. Whenever the contents of this file change, it must be saved to the targets
PCB’s serial flash. This is accomplished by executing a HEW script file “ResourceLoad.hdc” located in the DirectLCD
project directory. In this demonstration workspace, this script file is preloaded in the “Command line” “Console”, and it

can be executed by simply pressing the “play” button on the console. Ensure a debugger connection has been
established and the DirectLCD.abs file has been downloaded prior to running this script.

This script only needs to run when the contents of the “Resources.bin” have changed.

Once the “DirectLCD.abs” and “Resources.bin” files have downloaded to the target, running the project will display the
demonstration screens.

2.3.1 Resource Loading Screen
On power on, the resource contents of the serial flash are transferred to external RAM for runtime access. This screen
indicates the status of resource reading and writing (when programming script is executed). The “Resources.bin” file
has embedded CRC values to allow verification of the file transfer. This screen is generated prior to starting normal
screen handling in “eventmgr.c”. The font used for this screen is stored internally to the MCU and loaded with the
application. All other screen resources are accessed from the loaded “Resources.bin”.

2.3.2 Splash Screen

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 6 of 18

Sep 24, 2012

The demonstration loads the file “_SplashScreen.bmp” and displays this for four seconds prior to transitioning to the
home screen. This screen can be bypassed by touching the display. This screen is generated prior to starting normal
screen handling in “eventmgr.c”.

2.3.3 Home Screen
Once the framework has loaded the resources, it will start processing the screen defined by the “ScreenHomeData”
structure. In this demonstration, that structure is defined in “ScreenHome.c”. This structure refers to a list of screen
objects that are located in the _SCR_HM memory section. The objects in this memory section are defined in various
files and collected by the linker at build time to create the complete object list. This behavior allows for simple
inclusion/exclusion of objects by linking/not linking files into the project.

Here you can see objects that are defined in four different screen files. Pressing any of these objects causes their
associated callback function to be executed. In the case of the objects on this screen, the callback sends a new screen
event that causes the framework to transition to processing the data structure associated with that screen file.

2.3.4 Thermostat Screen
This screen is defined in the file “ScreenThermo.c”. It shows many aspects of the graphics API including anti-aliased
fonts, UTF-8 decoding, alpha blending and animation. Notable on this screen is how the buttons on the bottom of screen
are run-time composed by combining the screen shape, the forecast icon, the forecast text and the day- of-the-week text
(see source code function “DayButtonDraw”). These components can be dynamically selected to create the necessary
graphics as the conditions change.

Pressing the “Home” button in the upper right corner of the screen will trigger an event to switch to the previous screen,
this is true for all sub-screens.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 7 of 18

Sep 24, 2012

2.3.5 Medical Screen
This screen is defined in the file “ScreenMed.c”. Notable on this screen is the graph being displayed. If the slider is not
touched, it displays a repeating waveform. If the “heart slider” is pressed, the graph will reflect the slider value (see
source code function “drawGraph”). Additionally, this code demonstrates the usage of the slider. Sliders, buttons and
several other behaviors are collected in the “SliderHandler” and “ButtonHandler” functions in the file “ScreenObjs.c”.
These functions process event behavior and appropriately draw objects on the screen and maintain state about the object.
These functions are not part of the Graphics API, but use the API for their screen drawing needs.

2.3.6 Refrigerator Screen
This screen is defined in the file “ScreenRefrig.c”. On this screen, two data boxes are being maintained with the
temperature values via the “DataBoxHandler” and the “lock” and “light” buttons are drawn using the
“SliderSwitchHandler”. Both of these handlers are supplied in the “ScreenObjs.c” file. As user objects are created, often
they readily lend themselves to creating common handlers that can easily be reused. Examining these supplied handlers
provides insight into how you can create your own.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 8 of 18

Sep 24, 2012

2.3.7 Classic Home Screen
This screen is defined in the file “ScreenHomeClassic.c”. The objects on this screen are collected by the linker from
files allocating objects in the _SCR_HM_CLASSIC section. This allows for their simple inclusion/exclusion of objects
similar to the home screen. The objects on this screen demonstrate basic behavior of buttons and capabilities as
described below.

2.3.8 Countdown Screen
This screen is defined in the file “ScreenCountdown.c”. This screen demonstrates how to cleanly display transparent
text by compositing on work frame and transferring to the display frame. Also, with the large text the anti-aliasing of
the fonts can be clearly seen. Another technique shown is the usage of a single callback to handle a multi-button object
(the numeric keypad). This screen also uses a “screen task” thread to update the timer value while running (showing
GAPI running under multiple threads).

2.3.9 Animate Screen
This screen is defined in the file “ScreenAnimate.c”. This screen shows how the GAPI can be used to animate an object.
Here two screen tasks are used to update the two images (one for the sun and one for the scrolling Renesas banner).
Also note that the sun image has a transparency (alpha) channel that is used during rendering to blend the image into the
background as it moves.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 9 of 18

Sep 24, 2012

2.3.10 GAPI_T Use Screen
This screen is defined in the file “ScreenSlider.c”. This screen shows usage of multiple instances of the slider object., as
well as illustrates the behavior of the GAPI copy modes. The slider values control the color of the R_GAPI_CopySub
“transparency” attribute.

The first icon in the top row, selects the background area under the output area for the R_GAPI_CopySub source to
demonstrate dimming/fading/shading.

The remaining top row icons select corresponding source images for the R_GAPI_CopySub source. The rendered
output area shows the processing of the various modes as labeled.

2.3.11 Writing Screen
This screen is defined in the file “ScreenWrites.c”. This screen measures the amount of time that it takes to display a
screen of data based on the source image format. The amount of time required depends on the image size, the image
type, and the available vertical blanking time. Here, you can see the difference between writing a 16bpp image that is
basically just copying data (49mS for 4 images to fill screen) and a 32bpp image with an alpha channel that requires
much more processing (369mS for 15 images to fill screen). In both cases the data was written with a 60Hz refresh and
44% vertical blanking.

2.3.12 Frame Rate Screen
This screen is defined in the file “ScreenIO.c”. This screen allows the screen frame refresh rate and vertical blanking
percentage to be adjusted. The Direct Drive API allows this attribute to be dynamically adjusted. Using this screen you
can see the affect on the LCD panel characteristics and how the vertical blanking percentage affects performance using
the write test screen.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 10 of 18

Sep 24, 2012

2.3.13 UTF-8 Screen
This screen is defined in the file “ScreenUTF.c”. This screen shows an example of usage of the UTF8 string processing
capability of GAPI..

2.3.14 QWERTY Screen
This screen is defined in the file “ScreenQWERTY.c”. This screen shows an example of a virtual keyboard.

2.3.15 Calibration Screen
This screen is defined in the file “ScreenCalibrate.c”. This screen allows the adjustment of the calibration points used
by the touchscreen driver. The values determined in this screen are entered into the “TouchCalibration” data structure;
additionally these values can be saved to internal or external flash as part of a calibration procedure. In the
demonstration code, predetermined values are loaded into this data structure. In the case of the LCD panel supplied with
the kit, the consistency of the supplied touch-screen overlay has not required individual calibration.

Once this screen has been entered, it cannot be exited without completing the calibration procedure. When the
calibration is completed, all touches to the screen are shown with their corresponding x,y coordinates. To evaluate the
effectiveness of the procedure, the user can select non-requested touch points and observe the resulting behavior. For
example, touching the left side instead of right side during calibration will invert touch locations on this axis. As the
initial calibration points are pre-determined, simply resetting the MCU will return to appropriate behavior.

To facilitate use with an unknown panel with incorrect calibration constants, pressing SW1 on the PCB will start the
calibration process.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 11 of 18

Sep 24, 2012

3. Code Structure

The source code directory is shown on the left and the HEW workspace is shown on the right in Figure 1. For clarity in
reading this application note, it is recommended that the project is opened and referred to.

3.1 File Descriptions
This subdirectory contains all the common source files shared by the Direct Drive platforms. The descriptions of those
files are listed in following tables.

3.1.1 Initialization Code, project, object and other files

File Name Category File Description Location

resetprg.c Standard C Reset vector initialization /DirectLCD

hwsetup_platform.c Standard C Initial MCU hardware configuration /DirectLCD

*.hwp, *.hsf, *.h HEW HEW project files /DirectLCD

. HEW Generated object files and libraries /DirectLCD/RX62N_RSK

DDLCD_Demo
├─CommonSource
│ └─SerialFlash
├─DirectLCD
│ └─RX62N_RSK
├─Documents
├─Resources
├─r_Packages
│ ├─config
│ ├─include
│ ├─mak
│ ├─r_DDLCD
│ ├─r_FreeRtos
│ ├─r_GAPI
│ └─TargetMCU
│ └─RX62N
└─Utility

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 12 of 18

Sep 24, 2012

. Documents PDF files with project documents, APIs and
schematics.

/Documents

. Resources Resource files (graphic, font, audio, etc),
that are used within the demonstration
project. The contents of this directory are
packaged into a single “resources.bin” file
by the project build process. This file can
then be written to the serial flash for runtime
usage.

/Resources

. Utility Windows applications that are used to create
files used by the demonstration.

/Utility

3.1.2 Application Demo Code

File Name Category File Description Location

main.c Standard C Main program /CommonSource

Global.h Demo Header Global definitions and macros /CommonSource

LCD_Demo.h Demo Header Graphics application definitions and macros
for LCD Direct Drive demo

/CommonSource

EventMgr.c Framework Framework tasks for controlling the touch
screen and screen manager functions.

/CommonSource

Frames.c/ Frames.h Framework Routines and API to manage the memory
rasters allocated by the demo.

/CommonSource

ScreenMgr.c
/ScreenMgr.h

Framework Routines and API to control the running and
switching of screens.

/CommonSource

ScreenObjs.c/
ScreenObjs.h

Framework Routines and API to provide common screen
object behavior such as buttons and sliders.

/CommonSource

Screen*.c Screens Files that contain graphics demo screen
code.

Each screen is contained in a corresponding
file

/CommonSource

crc.c Utility Routines to generate CRC values. /CommonSource

FindFile.c/ FindFile.h Utility Routines and API to access the contents of
the resource files

/CommonSource

FlashSerial.h Utility API for the serial flash access routines /CommonSource

FlashSerial.c Utility Serial flash memory access routines. /CommonSource/SerialFlash

iResources.h Utility Resource image file that is always located in
internal flash memory, thus allowing use
during boot process.

/CommonSource

Resources.c Utility Routines to load, store and verify resource
files in serial flash memory.

/CommonSource

Simple_printf.c Utility Simplified (small memory, reentrant) Printf
routines

/CommonSource

SPI_via<port>.c Utility Serial flash memory access routines specific
to a serial peripheral.

/CommonSource/SerialFlash

Timer_RTC.c/ Utility Routines and API to provide common screen /CommonSource

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 13 of 18

Sep 24, 2012

Timer_RTC.h object behavior such as buttons and sliders.

TouchScreen.c/
TouchScreen.h

Utility Routines and API for touch screen driver /CommonSource

3.1.3 r_Packages
The “r_Packages.lib” file is included in the DirectLCD project. The contents of this library are described below.

File Name Category File Description Location

*.h Configuration The files in this directory are used to
configure the packages during the build
process. Please refer to the relevant package
document for details. The r_Pacakges.lib
needs to be rebuilt after any changes to these
files.

The files in this directory are the only
r_Packages files to be modified by the
user.

/r_Packages/config

*.h API The files in this directory provide access to
the package’s APIs. Note that the files in this
directory are created during the
r_Pacakges.lib build process.

This is the only r_Packages include path
the user needs to include in their project.

All supported API calls are accessed
through the include files in this directory.
Access to the library is only supported
through these public APIs.

/r_Packages/include

. Build The r_Packages library build environment.
This “make” based build environment is
invoked by “building” the r_Packages
project.

/r_Packages/mak

. DDLCD The Renesas Direct Drive LCD library
package

Please refer to the provided Direct Drive user
manual for details and API.

/r_Packages/r_DDLCD

. GAPI The Renesas GAPI graphics library package

Please refer to the provided GAPI user
manual for details and API.

/r_Packages/r_GAPI

. RTOS The FreeRTOS library package

Please refer to the FreeRTOS website for
details and API.

/r_Packages/r_FreeRTOS

4. Program Operation

The following figure illustrates the interrupt service routines (ISRs) and tasks that are running in the LCD Direct Drive
demonstration project.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 14 of 18

Sep 24, 2012

4.1 RTOS
The LCD Direct Drive demonstration requires an RTOS to manage the tasks and access to the external bus. FreeRTOS
has been chosen for this purpose. However, most RTOS’s are equally suited to the needs of the system. To aid in
porting to another RTOS, all usages of the RTOS are documented in the code with the comment “RTOS_USAGE”.

4.2 Interrupts
The LCD Direct Drive API executes two “R_DDLCD_DD isrs” once the driver is initialized. These ISRs control the
ExDMA and timer channels that transfer data from the external frame RAM to the LCD panel. For optimized
performance, one ISR is active during the vertical blanking time, and the other ISR is active during the data transfer
portion of the refresh cycle. These ISRs are triggered once per horizontal period (line) of the refresh cycle.

Twice per vertical period (frame) (once before the data transfer starts and once after it ends), the
R_DDLCD_ExMemory_isr is triggered to activate the “ExMemoryMonitor” task. This task is responsible for
coordinating software’s access to the external bus. Tasks that use the external bus (typically to update the frame RAM)
are required to call the “R_DDLCD_ExMemoryAcquire” function to notify the framework. Multiple tasks can be
simultaneously registered to access the external bus (up to the configurable
DD_EXMEMORY_MANAGER_MAX_TASKS limit). The “ExMemoryMonitor” task suspends all registered tasks at
the beginning of the vertical data transfer and resumes these tasks at the beginning of the vertical blanking period. Tasks
no longer using external RAM for a period of time can unregister itself by calling “R_DDLCD_ExMemoryRelease”.

The consequence of accessing the external bus without registering is contention for the external bus. If this occurs, the
MCU core will be held in a wait state until the ExDMA peripheral has completed its current block transfer; also visible
screen artifacts may be seen if the MCU core access delays the start of the ExDMA transfer.

The last ISR shown in the diagram is the “vTickISR” which causes the FreeRTOS scheduler to pre-empt the currently
running task and evaluate which task should run next. If multiple tasks at the same task priority level are ready to run,
they will be run in turn after each “vTickISR” in a “round robin” fashion.

4.3 Tasks
The “TouchScreenCapture” task is responsible for acquiring events from the touchscreen overlay. When a touch event
is judged to have occurred by this task, the information is added to the EventQueue.

The EventQueue is also used to accept events from other sources such as push buttons, timers or application source
code.

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 15 of 18

Sep 24, 2012

The “EventManager” task determines how events on the current screen should be processed. Every event received is
passed to the callback function associated with each object on the current screen. It is the responsibility of the object
callback functions to determine if and how to process the event. The supplied demonstration code shows numerous
examples of event processing.

The next figure shows the interaction of the ISRs in relation to the LCD panel Vsynch signal. It also shows how tasks
that have been registered as currently accessing the external bus are suspended during the “vertical data” portion of the
period.

LCD_DD_BLANK_isr

Panel Data

Vsynch

LCD_DD_DATA_isr

TASK_DD_isr

vTickISR

Ext. Memory Task

Level 1 RTOS Tasks

Level 0 RTOS Tasks

V
e

rt
ic

al
B

la
nk

in
g

V
e

rt
ic

al
D

at
a

V
e

rt
ic

al
B

la
nk

in
g

V
e

rt
ic

al
D

at
a

Tasks currently using
external memory

Tasks not using
external memory S

us
pe

nd

ta
sk

s
us

in
g

ex
te

rn
al

m

em
or

y

4.4 Memory Usage
The LCD Direct Drive demonstration code uses both external RAM memory (for frame buffers, resource storage and
pools) and internal RAM and Flash memory (for program storage, stack, variables and constants). The location of these
resources in memory is determined by the toolchain linker options.

In the RX600 family, internal RAM is mapped to the bottom of the memory space, internal flash in mapped to the top
of the memory space, and external SDRAM is located at 0x0800 0000.

4.4.1 Sections

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 16 of 18

Sep 24, 2012

Section Name Type Description

B_* RAM BSS memory that is zero filled by startup code. The heap is allocated within this
section, and because the RTOS makes extensive use of the heap, significant memory
is allocated by the HEAPSIZE macro in “sbrk.h”.

R_* RAM Initialized RAM memory. This area is initialized by startup code with data contained
in the D_* sections.

BDTC_TABLE RAM Data storage structures used by the DTC unit.

SU RAM User stack space. As the RTOS allocates individual stacks from the heap for each
task, minimal space is required in this section.

SI RAM Interrupt stack space. This memory is used during the processing of interrupts for
stack usage. As interrupts can be nested, care must be taken to ensure adequate space
is allocated.

BDD_RASTERS External
RAM

Space allocated by the Direct Drive API for the display raster. The demonstration
uses 3 frames, background, work and display.

BGAPI_POOL* External
RAM

Space allocated by the GAPI for dynamic memory pools.

BResources External
RAM

Memory used for runtime access of the Resources.bin file. Note that because this file
is of variable size, the demonstration code is allocating 2Mb for this use in
“ScreenMgr.c” (this is the size of the serial flash on the demonstration PCB).

CDTC_VECT* Flash These sections allocate the vector table used by the DTC peripheral. Because this
table must be aligned to a 4Kbyte boundary, it is located in the start of flash.

PResetPrg Flash Program section for reset code.

C* Flash Sections allocated for constant variables in the demonstration code.

C$VECT Flash The MCU’s relocatable vector table.

D* Flash Initialization data for the R* sections.

P Flash Program memory associated with the application. Noteworthy is that the entire
demonstration application only requires ~40Kb of code space.

W Flash Constant memory allocated for use in switch tables.

C_SCR_HM* Flash Constant structures that define the contents of the home screen.

C_SCR_HM_CLASSIC* Flash Constant structures that define the contents of the classic home screen.

FIXEDVECT Flash The MCUs fixed vector table including the reset vector.

5. Resource Storage Access

Resources (BMP’s, Fonts, Audio files, etc) are accessed from a resource image file located in the linear memory of the
MCU. These resource image files can be located in internal flash or external RAM. When external RAM is used, the
resource file is transferred at power on from non-linear memory (such as serial flash or SD card) by the application code.
Prior to the resource image being written from external RAM to serial flash, and also after it is read from serial flash to
external RAM, the CRC value in the resource image is verified.

The resource image file is created by a custom utility “ResourceGen.exe”. This command line application takes option
arguments as follows:

Option Description
-D <subdirectory> Process all files in <subdirectory>.
-e Include file extension in record name.
-q Run in quiet mode (minimal output).

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 17 of 18

Sep 24, 2012

-b Generate binary data file.
-c Generate 'c' source array (comma delimited by array).
-f Suppress records containing only 0xFF for -i/-m options).
-i[aaaaaaaa] Generate Intel hex record format. [aaaaaaaa] optional hex address relocation
-m[aaaaaaaa] Generate Motorola hex record format. [aaaaaaaa] optional hex address relocation

The demonstration application code runs this utility during every build via the HEW custom build phase capability. The
options in this build phase are “-b -q -D Resources Resources.bin”; this will take the contents of the Resources directory
and include them in the Resources.bin file.

The following table illustrates the format of the file header resource image file. Each entry is 32 bytes long. The first
record provides CRC and size information for the resource file. Unless the –e option is used, the record name does not
include the extension (File_1.bmp would become “File_1”)

 Record Name (max 24 characters) Location (4 Bytes) Size (4 Bytes)
0x000000 “BFS_Header” CRC Resource File Size
0x000020 “File_1” File_1 offset location File_1 size
0x000040 “File_2” File_2 offset location File_2 size
0x000060 …
0x0xxxx0 0xFFFFFFFFFFFF

(termination record)
0xFFFFFFFF 0xFFFFFFFF

The application code accesses information in an image file by resource name using the “FileFind()” function.

The Direct Drive application demonstration workspace provides HEW build phases (ResourceBuild), utility
(Bin_to_mot.exe) and scripts (ResourceLoad.hdc) that manage the creation and loading of this resource file
(Resources.bin).
This custom build phase is executed whenever the project is built. All contents of the “Resources” directory are
included in the Resources.bin file.
If the resource file is located in internal flash, typically you would include it into the project by generating a comma
delimited array using the “-c” option. Refer to the “iResources.h” file in the demonstration code. The resource file than
become part of your project download as a constant array.
If the resource file is located in serial flash, it can be loaded manually by running the “ResourceLoad.hdc” script for the
platform from the “Command Line” window of HEW. The programming of the serial flash only needs to occur when
the resources have been changed (no application code is contained in the resource file).

RX600 Series Direct Drive LCD Demonstration

R01AN0331EU0103 Rev.1.03 Page 18 of 18

Sep 24, 2012

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record

Rev.

Date

Description

Page Summary
1.00 Oct.8.10 — First edition issued

1.01 Nov.18.10 — Clarifications and typographic corrections

1.02 Jul.18.12 8,9,10 Update screen descriptions

1.03 Sep.24.12 4 Add 64-bit Windows procedure

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

