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Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
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RX Family C/C++ Compiler Package 
Application Notes: Compiler Usage Guide, Option Edition 

This document explains the options for C/C++ Compiler V.1 for the RX family. 
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1. Optimization options 
The optimization options for compilers include two basic options that optimize on speed or size, and detailed options that set 

further details for each optimization item. 1.1 explains the basic options and related detailed options, and 1.2 explains detailed 
options that can increase performance in particular. 

 
Note that the expansion code in assembly code as used in this document can be obtained by specifying “output=src” and 

“cpu=rx600”. 
When the “cpu” option is different, the expansion code in assembly language may also differ. Also, the expansion code in 

assembly language may change due to subsequent compiler improvements, so use this as a reference. 
 

1.1 Basic options (optimizing on speed/size) 
The compiler optimizations include those that reduce object size, and those that speed up execution. 

To optimize on execution speed, specify the “speed” option. To optimize on size, specify the “size” option (default). The following 
optimizations are performed when each option is specified: 

• When “speed” is specified 
      Optimizations effective for size and execution speed, and optimizations that increase execution speed but may increase size 

• When “size” is specified 
      Optimizations effective for size and execution speed, and optimizations that decrease size but may decrease execution speed 

 
Ideally, functions that demand execution speed and functions that demand size can be split into separate files, with size 

optimizations and speed optimizations selected for each file. 
 
Format 

speed 
size : Default 

 
[How to specify this option in High-Performance Embedded Workshop (herein as the Renesas IDE)]  

 

speed: 
  Optimize on speed
size: 
  Optimize on size

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure1-1 
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Note 1: 

The execution speed on production machines may change depending on causes unrelated to code generated by the compiler, such 
as memory architecture and interrupts. Therefore, specifying “speed” does not necessarily result in the fastest code. Confirm the 
effects of the various options presented in this document on the production machines. 
 
Note 2: 

The detailed options for setting details for the items optimized by the compiler include items for which the default values change 
depending on how the basic options are set. Table 1-1 shows the options for which the default values change. 

 

Table 1-1 List of defaults 
Function Size Speed No 

 optimize max 2 0 or 1 max 2 0 or 1 

Reference

1 Automatic inline expansion
 

inline=0 noinline noinline inline=500 inline=100 noinline 1.1.1

2 Loop expansion optimization
 

loop=1 loop=1 loop=1 loop=32 loop=2 loop=1 1.1.2

 
The following explains each option. 

 
1.1.1 Automatic inline expansion 

An option can be used to specify whether automatic inline expansion is performed for functions. 
When the “inline” option is specified, automatic inline expansion is performed. “inline=<number>” can be used to specify that 

inline expansion is to be performed until the program size grows by a given percentage. For example, if “inline=50” is specified, 
inline expansion is performed until the program size grows by 50% (reaching 1.5 times its original size). If ”inline=0” is specified, 
inline expansion is performed. 

Automatic inline expansion prioritizes called functions by the smallest first. 
Note that functions for which #pragma inline is specified are expanded inline regardless of the specification for automatic inline 

expansion. However, keep in mind that the size increase from inline expansion due to #pragma inline is included when the maximum 
size for automatic inline expansion is determined. 

When the “noinline” option is specified, automatic inline expansion is not performed. 
Keep in mind that inline expansion is not performed for functions if one of the following conditions is satisfied 

(1) The function has variable parameters. 
(2) The function is called using the address of the expanded function. 

 
For details about inline expansion, see 1.1 Specifying inline function expansion in C/C++ Compiler Package for the RX Family 

Application Notes: Compiler Usage Guide, Extended Functionality Edition. 
 

Format 

inline [= <number>] : Default when speed is specified, with a default number of 100 
noinline  : Default when size is specified 
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[How to specify this option in the Renesas IDE]  
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Figure1-2 

 

                             

Automatic inline expansion: custom 
Specify the inline expansion size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1-3 
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Inline expansion requires that the definitions of functions expanded at compile time be able to be referenced. Therefore, the 
function without the function definition that can be referred from the file to be compiled cannot be singled out for normal inline 
expansion. To progress the function that there is a definition in another file, specify the inter-file inline expansion 
(file_inline=<file-name>[,...]) option. Note that operation is not guaranteed if an extern function of the same name is defined in 
multiple files specified inline, across the files (a single chosen function definition is used). 

Note that if the same file as the source file is specified for the inline expansion files, the following warning is output by the 
compiler. 

C1315 (W) File_inline "file name" ignored by same file as source file 
 
[How to specify this option in the Renesas IDE] 

Select the “Compiler” tab, select “Optimization” for Category, choose Details (Figure1-2), and then perform the following 
settings in the displayed dialog box. 

 

Specify the inline 
expansion file 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure1-4 

 

Example: 
Source code 
<a.c> 
void func(void) 
{ 

g(); 
} 
<b.c> 
#pragma inline (g) 
void g(void) 
{ 

h(); 
} 
 
a.c expansion when file_inline=b.c is specified 
void func(void) 
{ 
    h(); 
} 
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When an inter-file inline expansion file outside the current folder is specified, the inter-file inline expansion folder can be 
specified (file_inline_path=<path-name>[,...]) so that the path name for inter-file inline expansion files can be omitted. 

Files subject to inter-file inline expansion are first searched for in the folder specified by the “file_inline_path” option, and then in 
the current folder. 
 
[How to specify this option in the Renesas IDE] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1-5 

 
 

REJ06J0081-0100 /Rev.1.00 2009.10 Page 6 of 22 



 
Application Notes 

1.1.2 Loop expansion optimization 
An option can be used to specify whether loop expansion is performed. 

When the “loop” option is specified, loop expansion is performed. 
The maximum expansion count during loop expansion can be specified using “loop=<number-from-1-to-32>”. 
 
Format 

loop[=<number>] : Default when speed is specified is 2 
  : Default when size is specified is 1 

 
[How to specify this option in the Renesas IDE]  

To specify the maximum expansion count during loop expansion, select the “Compiler” tab, select “Optimization” for Category, 
choose Details (Figure1-2), and then perform the following settings in the displayed dialog box. 

 

When this is custom, 
the maximum expansion 
count during loop 
expansion can be set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure1-6 

1.2 Detailed options to improve performance 
This chapter explains the options that can improve performance in particular, of the detailed operations used to set details for each 

optimization item. 

Table 1-2 Detailed options to improve performance 
No Functionality Option Size Execution speed Reference
1 External variable access 

optimization
map/smap Improves significantly Improves significantly 1.2.1

2 Optimization range splitting scope/noscope May improve or worsen May improve or worsen 1.2.2
3 Enumeration type size auto_enum Improves Worsens 1.2.3
4 Switch statement expansion case May improve or worsen May improve or worsen 1.2.4
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1.2.1 External variable access optimization 
When the “map” option and “smap” option are used, access to external variables is performed relatively from the base external 

variable. This removes the need for load processing for external variable addresses, which improves execution speed. Also, since 
address value load processing can be omitted, the program size can be reduced. External variable access optimization can improve 
both speed and size. 

The “map” optimizations are performed using the external symbol allocation information generated by the optimization linkage 
editor. Therefore, compilation needs to be performed twice. (In the HEW environment, it is executed automatically.) 

The “smap” optimizations perform external variable optimization only for external variables defined in compiled files. Since the 
external symbol allocation information generated by the linkage editor is not used, optimization can be performed with only one 
compilation. 

The “map” optimizations are more effective at optimizing than the “smap” optimization, but since they require compilation twice, 
they increase the build time. “smap” optimizations are limited to external variables defined in files, but are performed in a single 
compilation, and can be performed when files such as library files are generated without address resolution. 

Table 1-3 Characteristics of map and smap 
Option Build 

time 
 External symbol allocation information file generated by the optimization 

linkage editor 
Optimization 

effect 
Address 

resolution 
map Long Required Better than smap Required 
smap Short Not required Worse than map Not required 

 
Format 

• Inter-module specification 
map [= <file-name>] 
 
Usage differs depending on the output option. 
 
[For output=abs or mot] 
  Specify only the “map” option. 
 
[For output=obj or src] 

Perform compilation once without specifying the “map” option, specify “map=<file-name>” during linkage, and 
create an external symbol allocation information file. When compiling the second time, specify the external symbol 
allocation information file (map=<file-name>). 

When the definition order of external variables or static variables changes, the external symbol allocation information 
file will need to be regenerated. 

Operation when a second compilation is performed is not guaranteed under the following conditions: 
− 

− 

When the specified option is anything other than the option specified for the first compilation and the “map” 
option 

When a source file different than that specified for the first compilation is specified 
 

• Intra-module specification 
smap 
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[How to specify this option in the Renesas IDE] 
When the setting for external variable access optimization is changed from [Inter-module] to anything else, or to [Inter-module] 

from anything else, a warning is displayed. This is because output of external symbol allocation information files by the linkage 
editor is automatically enabled/disabled.  

 

smap: 
  Intra-module 
map: 
  Inter-module 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure1-7 
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Example 1: 

The following shows how to perform relative access of consecutively allocated variables from the same register when the variable 
allocation order is considered. 
Source code 
int a,b;                                            
void f(void) 
{ 

a=0; 
b=0; 

} 

 
 
 
 
 
 

Assembly expansion code (without map/smap 
specified): Code size of 19 bytes 
_f:                                ; function: f 
            .STACK      _f=4 
L10: 
            MOV.L       #00000000H,R5 
            MOV.L       #_a,R4 
            MOV.L       R5,[R4] 
            MOV.L       #_b,R4 
            MOV.L       R5,[R4] 
            RTS 
            .SECTION    B,DATA,ALIGN=4 
            .glb        _a 
_a:                                ; static: a 
            .blkl       1 
            .glb        _b 
_b:                                ; static: b 
            .blkl       1 

Assembly expansion code (with map/smap specified): 
Code size of 18 bytes 
_f:                                ; function: f 
            .STACK      _f=4 
L10: 
            MOV.L       #00000000H,R5 
            MOV.L       #_a,R4 
            MOV.L       R5,[R4] 
            MOV.L       R5,04H[R4] 
            RTS 
            .SECTION    B,DATA,ALIGN=4 
            .glb        _a 
_a:                                ; static: a 
            .blkl       1 
            .glb        _b 
_b:                                ; static: b 
            .blkl       1 
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1.2.2 Optimization range splitting 
An option can be used to specify whether the function optimization range is split into multiple ranges and compiled or compiled 

without splitting. 
When “scope” is specified, large functions may be split into optimization ranges and then compiled. 
When “noscope” is specified and no optimization range splitting is performed, since optimization can be performed across the 

whole function, the size and execution speed will usually both improve. However, if the registers are not sufficient, performance 
may actually degrade. 

Since this option may cause program code efficiency to either improve or worsen, try both options when tuning performance. 
Keep in mind that when compilation is performed without splitting the optimization range, compilation will take longer. 

 
Format 

scope : Default when optimize=0|1|2 is specified 
noscope : Default when optimize=max is specified 
 

Whether the optimization range has been split can be checked using information level messages, which can be enabled by 
specifying the “message” option. 

If the optimization range is split, the following message is displayed. 
C0101 (I) Optimizing range divided in function "function-name" 

 
[How to specify this option in the Renesas IDE] 

Select the “Compiler” tab, select “Optimization” for Category, choose Details (Figure1-2), and then perform the following 
settings in the displayed dialog box. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1-8 
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1.2.3 Enumeration type size 
Enumeration type data declared using enum is handled using the minimum type in which the enumeration value will fit. 
If the “auto_enum” option is unspecified, the enumeration type size is processed as the signed int type. If the “auto_enum” option 

is specified, the type handled changed based on the values that can be assigned to the enumerator. Table 1-4 shows the values and 
types that can be assigned to the enumerator. 

Table 1-4 Relationship of values and types that can be assigned for enumeration types 
Enumerator 

Minimum 
value 

Maximum 
value 

Type 

-128 127 signed char 
0 255 unsigned char

-32768 32767 signed short 
0 65535 unsigned short
None of the above signed int 

 
Because of the reduced size of data, size performance is improved. This is especially effective when used for many enum type 

variables or structure members. 
 

Format 

auto_enum 

 
[How to specify this option in the Renesas IDE] 
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Figure1-9 
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Figure1-10 

 

Example: 
Source code 
 
enum En {A_000 =0,A_001,A_002,A_003,A_END=255};
enum En x[3] = {A_000, A_001, A_END}; 

 
 
 
 

Assembly expansion code (when auto_enum is 
unspecified) 
_x:                                ; static: x 
            .lword       00000000H, 00000001H, 
000000FFH 

Assembly expansion code (when auto_enum is 
specified) 
_x:                                ; static: x 
            .byte        00H, 01H,0FFH 
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1.2.4 Switch statement expansion method 
Processing to evaluate switch statements can be performed by selecting the “if-then method”, which performs case value 

comparison, or the “Table method”, which references a data table created from relative values of each case value. Sometimes, such 
as when there are few cases or the case value maximum and minimum are far apart, the “if-then method” is used even if “Table” 
method is selected to the “case” optional. 

If the “case” option is not specified, the compiler will automatically select one of the following expansion methods: 
(1) If there are few cases or the case value maximum and minimum are far apart, the “if-then method” is used. 
(2) If (1) does not apply and the “case” option is specified, and “case” option specification is used. 
(3) If (1) and (2) do not apply, the “speed” option is specified, and around 10 or more case labels exist, the “Table method” is 

used. 
 
During program execution, if a certain case value occurs often, execution speed is best when the corresponding case is coded first 

and the “if-then method” is specified. When execution does not skip to a given case value, execution speed is best when the “Table 
method” is specified. 

 
Format 

case = { ifthen | table | auto} 
 

 [How to specify this option in the Renesas IDE] 
Select the “Compiler” tab, select “Optimization” for Category, choose Details (Figure1-2), and then perform the following 

settings in the displayed dialog box. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1-11 
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2. Convenient options 
This chapter explains convenient options other than those to improve performance. 

Table 2-1 List of convenient options 
No Functionality Option Reference 
1 Debugging information output mode optimize 2.1
2 Pre-processor expansion preprocessor/noline 2.2
3 External variable volatilization volatile 2.3
4 Specifying bit field order bit_order 2.4
5 Specifying structure, shared structure, and 

class alignment count
pack 2.5

 

2.1 Debugging information output mode 
When the “optimize=0” option is specified, information about local variables is always available to be referenced during 

debugging. Also, since optimizations related to per-statement deletion is completely suppressed, break points can be set for all each 
statements in the C source code. When this option is used to generate objects, object performance may suffer. We recommend using 
this temporarily during debugging. 

 
 
 
 
 

[optimize=2] [optimize=0] 
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Figure2-1 

 
Format 

optimize = { 0 | 1 | 2 | max } 
 



 
Application Notes 

[How to specify this option in the Renesas IDE]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2-2 
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2.2 Pre-processor expansion 
This outputs the source program after pre-processor expansion. The code after pre-processor expansion is that after #include and 

#define are replaced. Since header file and other information has already been expanded in this file, it can be compiled on its own. 
If <file-name> is not specified, a file with the extension p (when the input source file is a C program) or pp (when the input source 

program is a C++ program) is created, with the same name as the source file. 
When “noline” is specified, #line output is suppressed during pre-processor expansion. 

 
Format 

output=prep [= <file-name>] 

noline 
 

[How to specify this option in the Renesas IDE] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2-3 

Example: 
Source code 
#define NUM 1 
#define MESSAGE(num, name) {num, __DATE__, #name} 
 
struct { 
    int   num   ; 
    char* date  ; 
    char* string; 
} data[] = { 
        MESSAGE(NUM, aaaa), 
}; 
Pre-processor expansion 
#line 1 "C:¥¥Workspace_Evaluation_RX¥¥test1¥¥test1¥¥a.c" 
 
 
 
struct { 
    int   num   ; 
    char* date  ; 
    char* string; 
} data[] = { 
        {1, "Jul 22 2009", "aaaa"}, 
}; 
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2.3 External variable volatilization 
When C source code is statically analyzed during compiler optimization processing, variable access order and count may be 

optimized as long as the result is not changed. However, when this optimization is performed on variables used in access to the I/O 
register or interrupt processing, operation may not be performed as intended. In this case, volatile declaration needs to be performed 
for such variables. When volatile declaration is performed, the access order and access count is performed as specified in the C 
source code. 

The volatile declaration should be specified for variables deemed necessary, but sometimes it is difficult to check individual 
variables due to the misuse of past assets. In this case, try specifying “volatile”. “volatile” can be specified to treat all external 
variables as having the volatile declaration. 

 
 
Format 

volatile 
novolatile 

 
[How to specify this option in the Renesas IDE]  

Select the “Compiler” tab, select “Optimization” for Category, choose Details (Figure1-2), and then perform the following 
settings in the displayed dialog box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2-4 
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Example: 
Source code 
int   var; 
void func(void) 
{ 
    var = 1; 
    var = 0; 
} 

 

Optimization (when novolatile is specified) 
 
int   var; 
void func(void) 
{ 

var = 0; 
} 

Optimization (when volatile is specified) 
 
int   var; 
void func(void) 
{ 
    var = 1; 
    var = 0; 
} 

Assembly expansion code (when novolatile is 
specified) 
_func:                             ; function: func
            .STACK      _func=4 
L10: 
            MOV.L       #_var,R4 
            MOV.L       #00000000H,[R4] 
            RTS 
            .SECTION    B,DATA,ALIGN=4 
            .glb        _var 
_var:                              ; static: var 
            .blkl       1 

Assembly expansion code (when volatile is specified)
_func:                             ; function: func 
            .STACK      _func=4 
L10: 
            MOV.L       #_var,R4 
            MOV.L       #00000001H,[R4] 
            MOV.L       #00000000H,[R4] 
            RTS 
            .SECTION    B,DATA,ALIGN=4 
            .glb        _var 
_var:                              ; static: var 
            .blkl       1 
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2.4 Specifying bit field order 
The sort order for bit fields can be changed. The ordering rules for bit fields may differ depending on the microcomputer. This 

functionality can be used to increase the portability for programs running on other microcomputers. 
If “bit_order=left” is specified, members are allocated from the higher-order bits. 
If “bit_order=right” is specified, members are allocated from the lower-order bits. 
 
The bit field order can be specified even when #pragma bit_order is specified. When both the option and #pragma are specified at 

the same time, the #pragma specification takes precedence. 
For details about this functionality, see 2.2 Specifying bit field order in C/C++ Compiler Package for the RX Family Application 

Notes: Compiler Usage Guide, Extended Functionality Edition. 
 
Format 

bit_order ＝ { left ｜ right } 
 

[How to specify this option in the Renesas IDE] 

Select the “CPU” tab, choose Details (Figure1-9), and then perform the following settings in the displayed dialog box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure2-5 
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Application Notes 

2.5 Specifying structure, shared structure, and class alignment count 
Sometimes, the creation of free space needs to be avoided in structures (including shared structures or classes) used for 

communication programs. In such cases, “pack” can be specified as an option to set the alignment count of structure members to 1. 
This prevents free space from being created in structures with an alignment count of 1.  

 
#pragma pack can also be used to set the structure alignment count to 1. When both this option and #pragma are specified at the 

same time, the #pragma specification takes precedence. 
For details about this functionality, see 2.3 Specifying structure, shared structure, and class alignment count C/C++ Compiler 

Package for the RX Family Application Notes: Compiler Usage Guide, Extended Functionality Edition.  
 
Format 

pack 
unpack 
 

[How to specify this option in the Renesas IDE] 

 Select the “CPU” tab, choose Details (Figure1-9), and then perform the following settings in the displayed dialog box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure2-6 
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Application Notes 
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Web site for Renesas Technology 

http://japan.renesas.com/
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