
 APPLICATION NOTE

R01AN1074EJ0104 Rev.1.04 Page 1 of 87

Mar 31, 2016

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group

I²C Bus Single Master Control Software Using IICA Serial Interface

Introduction

This application note describes I
2
C bus single master control using the RL78/G14, RL78/G1C, RL76/L12, RL78/L13,

RL78/L1C Group IICA serial interface, sample code that implements that control, and use of the sample code.

In this application note, the software used to control the slave device is referred to as the upper layer and the software

that implements I
2
C single master basic protocol control as the lower layer. Slave devices are controlled by combining

the protocols provided by the upper and lower layers.

This sample code implements the lower layer used for I
2
C single master control. The user should acquire or implement

software corresponding to the upper level for slave device control.

Software in the upper-level layer for controlling the slave device is separately available, so please obtain this from the

following URL as well. When the slave device control software is added, update of this application note may not be in

time. Refer to the following URL for the combination information on the latest slave device control software.

 I
2
C Serial EEPROM Driver

 http://www.renesas.com/driver/i2c_serial_eeprom

Target Device

Microcontroller:

RL78/G1x series : RL78/G14, RL78/G1C group

RL78/L1x series : RL78/L12, RL78/L13, RL78/L1C group

Device used for verifying operation: Renesas Electronics R1EX24xxx Series I
2
C Serial EEPROM.

When using this application note with other Renesas microcontrollers, careful evaluation is recommended after making

modifications to comply with the alternate microcontroller.

Note that the term “RL78 Family microcontroller” is used in this document for ease of description since the target

devices come from multiple groups.

R01AN1074EJ0104
Rev.1.04

Mar 31, 2016

http://www.renesas.com/driver/i2c_serial_eeprom

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 2 of 87

Mar 31, 2016

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 6

3. Reference Application Note ... 12

4. Peripheral Functions .. 12

5. Hardware ... 13

5.1 Pins Used ... 13

5.2 Reference Circuit .. 13

5.3 Controlling Multiple Slave Devices ... 14

5.4 Maximum Transfer Speed .. 14

6. Software .. 15

6.1 Software Structure .. 15

6.2 Operation Overview .. 16

6.2.1 Master Transmission .. 16

6.2.2 Master Reception .. 18

6.2.3 Master Composite ... 19

6.3 Software Operation ... 20

6.4 Software Operating Sequence ... 21

6.5 Implementation of Slave Device Control .. 22

6.6 Communication Implementation ... 23

6.6.1 States During Control ... 23

6.6.2 Events During Control .. 23

6.6.3 Protocol State Transitions ... 24

6.6.4 Protocol State Transition Table ... 28

6.6.5 Protocol State Transition Registered Functions ... 28

6.6.6 Processing at Protocol State Transitions .. 29

6.7 Interrupt Generation Timing ... 30

6.7.1 Master Transmission .. 30

6.7.2 Master Reception .. 31

6.7.3 Master Composite ... 31

6.8 Callback Function ... 32

6.9 Relationship of Data Buffers and Transmit/Receive Data .. 32

6.10 Required Memory Sizes .. 33

6.11 File Structure ... 36

6.12 Constants ... 37

6.12.1 Definitions .. 37

6.13 Structures and Unions .. 39

6.13.1 I
2
C Communication Information Structure ... 39

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 3 of 87

Mar 31, 2016

6.13.2 Internal Information Management Structure .. 41

6.14 Enumerated Types .. 42

6.15 Variables .. 43

6.16 Functions ... 44

6.17 State Transition Diagram .. 45

6.17.1 Error State Definitions .. 46

6.17.2 Flag States at State Transitions .. 47

6.18 Function Specifications .. 48

6.18.1 Common Processing for These Functions .. 48

6.18.2 I²C Driver Initialization Function .. 53

6.18.3 Master Transmission Start Function .. 57

6.18.4 Master Reception Start Function... 61

6.18.5 Master Composite Start Function ... 65

6.18.6 Advance Function ... 69

6.18.7 SCL Pseudo Clock Generation Function .. 74

6.18.8 I
2
C Driver Reset Function ... 76

7. Application Example .. 78

7.1 r_iic_drv_api.h ... 78

7.2 r_iic_drv_sfr.h.. 80

7.3 r_iic_drv_int.c .. 82

7.3.1 Integrated Development Environment CS+ for CA,CX (formerly CubeSuite+) 82

7.3.2 Integrated Development Environment CS+ for CC .. 82

7.3.3 Integrated Development Environment IAR Embedded Workbench 82

7.4 r_iic_drv_sfr.c .. 83

7.5 r_iic_drv_os.c .. 83

7.6 Recovery Processing Example .. 84

8. Usage Notes ... 85

8.1 Notes on Embedding .. 85

8.2 Notes on Initialization ... 85

8.3 Notes on the Channel State Flag and Device State Flag .. 85

8.4 Control Methods for Multiple Slave Devices on the Same Channel 85

8.5 Performing Advance Function Processing from Within an Interrupt Under OS Control .. 85

8.6 Transfer Rate Setting .. 85

8.7 Notes On Setting The #define Definitions of IICAx_ENABLE and MAX_IIC_CH_NUM 86

8.8 Defining the Interrupt Function #pragma interrupt ... 86

8.9 Notes on User API Calls ... 86

8.10 About Warnings of Duplicate of Type Declaration .. 86

8.11 Considerations at Compile-time .. 86

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 4 of 87

Mar 31, 2016

1. Specifications

This sample code performs I
2
C bus single master control using the RL78 Family microcontroller’s IICA serial interface.

The user should acquire or implement software corresponding to the upper layer for slave device control.

The following table lists the used peripheral functions and their uses and Figure 1-1 shows a usage example.

The following provides an overview of the functions provided by this software.

 This sample code is an I
2
C bus single master device driver that uses the RL78 Family microcontroller as the master

device using its IICA serial interface.

 This sample code implements the protocols in the I
2
C-bus specification. It supports master transmission, master

reception, and master composite (master transmission master reception) operation.

 Four transmission patterns can be set up for master transmission. Table 1-1 lists the operating patterns.

 The sample code supports multiple channels. Simultaneous communication using multiple channels is possible.

 Multiple slave devices with different type name can be controlled on a channel bus. However, while communication

is in progress (the period from when the start condition occurs to when the stop condition occurs), communication

with other devices is not possible.

 Communication is implemented by functions (start functions) that start various protocol control operations and the

function (the advance function) that monitors communication and advances the processing. The communication

state can be determined from the return values from the advance function.

 The start functions perform the operations from start condition generation through slave address transmission. The

operations following that until the stop condition is generated are performed by calling the advance function to

perform the processing forward.

 Interrupts are generated on completion of slave address transmission, data transmission, data reception, and stop

condition generation.

 The communication rate can be set by the user. (Supported rates: up to 400 kHz (max)) However, if multiple devices

are connected on the same channel, the communication rate must be set to match that of the slowest device.

 If communication is stopped by the influence of noise or other issues (in cases where an interrupt is not generated),

an error can be returned from the advance function. If the number of advance function calls exceeds the limit, the

sample code determines that communication has stopped due to an abnormal situation and a “no response error” is

returned. This upper limit can be set by the user.

 If a NACK error occurs, a stop condition is occurred.

 The sample code provides SCL clock generation processing. If a synchronization discrepancy occurs between the

master and slave due to noise or other problem and the I
2
C bus goes to the SDA = low hold state, the SCL pseudo

clock generation function can be called to force the slave device internal state to normal and terminate.

 This sample code only supports communication between 7-bit address devices. Special addresses (e.g. general call

addresses) are not supported.

Table 1-1 Master Communication Operation Patterns

 ST Generation Slave Address

Transmission

First Data

Transmission

Second Data

Transmission

SP Generation

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Legend:

ST: Start condition

SP: Stop condition

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 5 of 87

Mar 31, 2016

Table 1-2 Peripheral Function and Its Application

Peripheral Function Application

IICA IICA Serial interface

One channel (required)

RL78/G14

Channel 0

IICA0

Channel 1

IICA1

Slave

device A

Slave

device B

Slave

device C

Serial data bus

Serial clock

Slave

device D

Slave

device E

Serial data bus

Serial clock

Figure 1-1 Usage Example

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 6 of 87

Mar 31, 2016

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)

Table 2-1 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/G14 group (program ROM: 256 KB, RAM: 24 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 32 MHz

Peripheral hardware clock: 32 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CS+ for CA,CX V3.01.00

C compiler Renesas Electronics

RL78,78K0R compiler CA78K0R V1.71

Compiler options:

The default settings (-qx2) for the integrated development environment are

used.

Sample code version Ver. 1.03

Software used RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM

Control Software (R01AN1075EJ), Ver. 1.01

Board used Renesas Starter Kit for RL78/G14

(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)

Table 2-2 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/G14 group (program ROM: 256 KB, RAM: 24 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 32 MHz

Peripheral hardware clock: 32 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CS+ for CC V3.03.00

C compiler Renesas Electronics

RL78 compiler CC-RL V1.02.00

Compiler options:

The default settings (Perform the default optimization(None)) for the

integrated development environment are used.

Sample code version Ver. 1.03

Software used RX Family, RL78 Family Renesas R1EX24xxx Series Serial EEPROM

Control Software (R01AN1075EJ), Ver. 1.01

Board used Renesas Starter Kit for RL78/G14

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 7 of 87

Mar 31, 2016

(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench

Table 2-3 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/G14 group (program ROM: 256 KB, RAM: 24 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 32 MHz

Peripheral hardware clock: 32 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.2)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (ver. 1.30.2.50666)

IAR C/C++ Compiler for Renesas RL78 (ver. 1.30.2.50666)

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.01

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.00

Board used Renesas Starter Kit for RL78/G14

(4) RL78/G1C IICA Integrated Development Environment CubeSuite+

Table 2-4 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/G1C group (program ROM: 32 KB, RAM: 5.5 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas RL78/G1C Target Board QB-R5F10JGC-TB

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 8 of 87

Mar 31, 2016

(5) RL78/G1C IICA Integrated Development Environment IAR Embedded Workbench

Table 2-5 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/G1C group (program ROM: 32 KB, RAM: 5.5 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (ver. 1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78 (ver. 1.30.5.50715)

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas RL78/G1C Target Board QB-R5F10JGC-TB

(6) RL78/L12 IICA Integrated Development Environment CubeSuite+

Table 2-6 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/L12 group (program ROM: 32 KB, RAM: 1.5 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RL78/L12

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 9 of 87

Mar 31, 2016

(7) RL78/L12 IICA Integrated Development Environment IAR Embedded Workbench

Table 2-7 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/L12 group (program ROM: 32 KB, RAM: 1.5 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (ver. 1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78 (ver. 1.30.5.50715)

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RL78/L12

(8) RL78/L13 IICA Integrated Development Environment CubeSuite+

Table 2-8 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/L13 group (program ROM: 128 KB, RAM: 8 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RL78/L13

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 10 of 87

Mar 31, 2016

(9) RL78/L12 IICA Integrated Development Environment IAR Embedded Workbench

Table 2-9 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/L12 group (program ROM:128 KB, RAM: 8 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (ver. 1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78 (ver. 1.30.5.50715)

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RL78/L13

(10) RL78/L1C IICA Integrated Development Environment CubeSuite+

Table 2-10 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/L1C group (program ROM: 256 KB, RAM: 16 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.01.00

C compiler Renesas Electronics

CubeSuite+ RL78, RL78K0R compiler CA78K0R, V1.70

Compile option

Default settings (-qx2) of integrated development environment used as

compile options.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RL78/L1C

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 11 of 87

Mar 31, 2016

(11) RL78/L1C IICA Integrated Development Environment IAR Embedded Workbench

Table 2-11 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RL78/L1C group (program ROM:256 KB, RAM: 16 KB)

Memory used for evaluation Renesas Electronics

R1EX24xxx/HN58X24xxx Series I
2
C Serial EEPROM

Operating frequency Main system clock: 24 MHz

Peripheral hardware clock: 24 MHz

Transfer clock: 400 kHz

Operating voltage 3.3 V

Integrated development

environment

IAR Systems

IAR Embedded Workbench for Renesas RL78 (ver. 1.30.5)

C compiler IAR Systems

IAR Assembler for Renesas RL78 (ver. 1.30.4.50715)

IAR C/C++ Compiler for Renesas RL78 (ver. 1.30.5.50715)

Compiler options:

The default settings ("level: low") for the integrated development

environment are used.

Sample code version Ver. 1.02

Software used Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RL78/L1C

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 12 of 87

Mar 31, 2016

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

 Renesas R1EX24xxx Series Serial EEPROM Control Software (R01AN1075EJ)

4. Peripheral Functions

The RL78 Family microcontrollers provide two I
2
C bus control peripheral functions: the IICA serial interface and the

serial array unit simplified I
2
C bus module.

This application note uses the IICA serial interface.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 13 of 87

Mar 31, 2016

5. Hardware

5.1 Pins Used

The following table lists the Pins Used and Their Functions.

Table 5-1 Pins Used and Their Functions

Pin Name I/O Description

SCLA

(SCL in Figure 5-1)

Output Serial clock output

SDAA

(SDA in Figure 5-1)

I/O Serial data I/O

5.2 Reference Circuit

The following figure is a connection diagram. Since the output is N-ch open drain, the serial clock line and serial data

bus line require external pull-up resistors. Select resistors that are appropriate for the system. Also consider adding

damping resistors to the signal lines to ensure matching circuit characteristics.

RL78

SCL

SDA

I
2
C device

Vcc

SCL

SDA

SCL: Serial clock output pin

SDA: Serial data I/O pin

Add external pull-up

resistors.

 The pins on the MCU used for serial I/O depend on the MCU model.

 These pins are designated as the SCL pin and SDA pin in this application note to match the notations

used in the sample code.

Figure 5-1 Connection Between RL78 IICA Serial Interface and I
2
C Slave Device

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 14 of 87

Mar 31, 2016

5.3 Controlling Multiple Slave Devices

The sample code supports use of multiple channels. In addition, multiple slave devices with different type name can be

connected to a channel bus and controlled. However, communication with other devices is not possible during the

period from when the start condition occurs to when the stop condition occurs.

Example: Devices A and B connected to channel 0 and device C connected to channel 1

Reference:ST: Start condition

SP: Stop condition

Channel 0 bus

Channel 1 bus

Slave device A

Communication in progress

Device A

ST generation successful

Device B

ST generation failed

Slave device B
Communication in progress

Device B

ST generation successful

Device B

SP generation finished

Slave device C

Communication in progress

Slave device C

Communication in progress

Device C

SP generation

finished

Device C

ST generation

successful

Time axis

Device A

SP generation finished

Device A

ST generation failed

Device C

ST generation

successful

Device C

SP generation

finished

Multiple devices on the same

channel cannot communicate

simultaneously.

Communication on channel 1

possible while channel 0

communication in progress.

Figure 5-2 Example of Control of Multiple Slave Devices

5.4 Maximum Transfer Speed

The maximum transfer speed setting is 400 kHz.

However, when both standard mode and fast mode devices are connected to the same channel, the standard mode

maximum setting of 100 kHz must be observed.

The maximum transfer speeds of mixed bus systems are listed below.

Table 5-2 Maximum Transfer Speeds of Mixed Bus Systems

Communication Device Mixed Devices

Fast Mode Standard Mode

Fast mode 0 to 400 kHz 0 to 100 kHz

Standard mode 0 to 100 kHz 0 to 100 kHz

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 15 of 87

Mar 31, 2016

6. Software

6.1 Software Structure

This sample code takes the software used to control slave devices as the upper layer and the software that implements

I
2
C bus single master basic protocol control to be the lower layer. The upper layer combines protocols provided by the

lower layer to control slave devices.

This sample code is positioned as lower layer used for I
2
C bus single master control.

Slave device control software

I
2
C single master driver: API

Upper

Lower

User application

Slave device

Sample code

I
2
C single master driver: SUB

I
2
C single master driver: INT

I
2
C single master driver: OS

I
2
C single master driver: SFR

Legend:

API: User interface function

SUB: Internal function

INT: Interrupt handler

OS: OS control

SFR: IP dependent processing

Figure 6-1 Software Structure

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 16 of 87

Mar 31, 2016

6.2 Operation Overview

This sample code implements I
2
C bus single master control using the RL78 microcontroller’s IICA serial interface.

In particular, it implements the following single master protocols.

Table 6-1 Control Protocols

No. Control Protocol Outline

1 Master transmission Transfers data from the master (microcontroller) to the slave device.

There are four transmission patterns that can be used.

2 Master reception The master (microcontroller) receives data from the slave device.

3 Master composite After master transmission, a master reception operation is performed.

6.2.1 Master Transmission

There are four transmission patterns that can be used for master transmission. The function can be selected by the

method used to set up the I
2
C communication information structure, which manages the communication information.

See section 6.13.1, Communication information structure, for details on setting up this structure.

(1) Pattern 1

Data is transferred from the master (microcontroller) to the slave device.

First, a start condition (ST) is generated and then the slave device address is transmitted. During this transmission, the

8th bit is the transfer direction specification bit and a 0 (write) is transmitted for data transmission. Next, the first data is

transmitted. The first data is used when there is data to be transmitted in advance before performing the data

transmission. For example, if the slave device is an EEPROM, the EEPROM internal address can be transmitted. Next,

the second data is transmitted. The second data is the data to be written to the slave device. When a data transmission

has been started and all data transmission has completed, a stop condition (SP) is generated, releasing the bus.

SCLAn

SDAAn

Start Stop

Legend:

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SP

ACKSlave address

(8th bit: “0”)

1st data 1st data (n) 2nd data

(Transmit data)

2nd data (n)

(Transmit data)

ACK ACK ACK ACK

Figure 6-2 Master Transmission (Pattern 1) Signals

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 17 of 87

Mar 31, 2016

(2) Pattern 2

Data is transferred from the master (microcontroller) to the slave device. However, the first data is not transferred.

Operation from start condition (ST) generation through slave device address transmission is the same as for pattern 1.

However, after that the second data is transferred without sending the first data. When all data transmission has

completed, a stop condition (SP) is generated, releasing the bus.

SCLAn

SDAAn

Legend:

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopACKSlave address

(8th bit: “0”)

2nd data

(Transmit data)

2nd data (n)

(Transmit data)

ACK ACK

Figure 6-3 Master Transmission (Pattern 2) Signals

(3) Pattern 3

Operation from start condition (ST) generation through slave device address transmission is the same as in normal

operation. In cases where neither the first data nor the second data are set up, however, a stop condition (SP) is

generated releasing the bus without transferring any data.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify the EEPROM

rewriting state.

SCLAn

SDAAn

ST 1 2 3 4 5 6 7 8 9 SP

Start StopSlave address

(8th bit: “0”)

ACK

Legend:

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge “0”

Figure 6-4 Master Transmission (Pattern 3) Signals

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 18 of 87

Mar 31, 2016

(4) Pattern 4

In this pattern, after a start condition (ST) is generated, a stop condition (SP) is generated and released the bus without

transmitting the slave address, first data, or second data when those data are not set up.

This pattern is useful for just releasing the bus.

ST

SCLAn

SDAAn

Start Stop

SP
Legend:

ST: Start condition generation

SP: Stop condition generation

Figure 6-5 Master Transmission (Pattern 4) Signals

6.2.2 Master Reception

In master reception, the master (microcontroller) receives data from a slave device.

Here a start condition (ST) is generated and then the slave device address is transmitted. Since the 8th bit at this time is

the transfer direction specification bit, a 1 (read) is transmitted when this data is transmitted. Next, data reception starts.

Although an ACK is transmitted after each single byte of data is received during reception, a NACK is transmitted only

after the last data to notify the slave device that reception processing has terminated. When all the data has been

received, a stop condition (SP) is generated, releasing the bus.

SCLAn

SDAAn

Legend:

ST: Start condition generation NACK: Acknowledge “1”

SP: Stop condition generation ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopACKSlave address

(8th bit: “0”)

2nd data

(Receive data)

2nd data

(Receive data (n))

ACK NACK

Figure 6-6 Master Reception Signals

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 19 of 87

Mar 31, 2016

6.2.3 Master Composite

In this mode, data is first transmitted from the master (microcontroller) to the slave device (master transmission). After

this transmission completes, a restart condition is generated, the transfer direction is changed to 1 (read) and the master

receives data from the slave device (master reception).

First, a start condition (ST) is generated and then the slave device address is transmitted. During this transmission, the

8th bit is the transfer direction specification bit and a 0 (write) is transmitted for data transmission. When the data

transmission completes, a restart condition (RST) is generated and the slave address is transmitted. At this time, a 1

(read) is transmitted as the transfer direction specification bit. Next, data reception starts. Although an ACK is

transmitted after each single byte of data is received during reception, a NACK is transmitted only after the last data to

notify the slave device that reception processing has terminated. When all the data has been received, a stop condition

(SP) is generated, releasing the bus.

SCLAn

SDAAn

ST 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SPRST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Start Stop

Legend:

ST: Start condition generation NACK: Acknowledge “1”

SP: Stop condition generation ACK: Acknowledge “0”

RST: Start condition generation

ACKSlave address

(8th bit: “0”)

1st data

(Transmit data (n))

Slave address

(8th bit: “1”)

2nd data

(Receive data (n))

2nd data

(Receive data (n))

ACK ACK ACK NACKRestart

Figure 6-7 Master Composite Signals

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 20 of 87

Mar 31, 2016

6.3 Software Operation

This sample code’s specifications take into consideration whether or not OS control*
1
 is used. This section describes the

processing in these two cases.

(1) Normal Control (No OS)

Here, communication is started by calling the start function. After that, I
2
C bus communication is moved forward by the

user calling the advance function. Whether or not the I
2
C bus communication should be moved forward is determined

by the advance function according to whether or not the I
2
C bus interrupts have occurred. The sample code’s

specifications also support multiple calls for I
2
C channels performed in the main() routine.

In this normal control (no OS), an event flag (g_iic_Event[]) is set when an interrupt occurs. The advance function

verifies those flags and performs the corresponding communication operation. See Table 6-20 for details on these flags.

Note that the states during communication can be verified by checking the return values from the advance function.

(2) Normal Control (OS present)

Since operation of this processing has not been included, modifying the code is required.

When on OS is used, OS system calls become the events in the place of the event flags.

Here, after the start function is called, when the advance function is called, the sample code goes to the system call wait

state until an event occurs. When an interrupt occurs, an OS system call is generated and a task (the I
2
C communication

advance processing) is executed by the advance function.

Advance function

Successful
completion or

error?

No

Yes

Interrupt handler

Interrupt

generation

Start function

(1) Communication start

(2) Interrupt handling

No OS: Sets event flag.

OS present: Generates system call.

(3) Executes communication

 processing when interrupt or

 system call is detected.

(4) Finished determination

Figure 6-8 Software Operation Outline (No OS/OS Present)

Note: 1. The OS control capabilities the sample code assume μITRON 4.0.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 21 of 87

Mar 31, 2016

6.4 Software Operating Sequence

(1) Normal Operation (No OS/OS present)

The following figure shows the operating sequence in normal operation (no OS/OS present).

User system Driver Interrupt Slave device

Start function

Advance function

I
2
C interrupt handler

Interrupt source

Write, read, etc.

Advance function

Interrupt source

Interrupt source

Advance function

Interrupt source

Advance function

Sets return value to finished determination result.

Checks finished

determination.

Communication

started

Communication

finished

Processing to proceed with I
2
C

communication does not take place

because I
2
C interrupt did not occur

immediately beforehand.

No OS: Sets event flag.

OS present: Generates system call.

I
2
C interrupt handler

I
2
C interrupt handler

I
2
C interrupt handler

Processing to proceed with I
2
C communication

Advance function

Start condition generation

Slave address transmission

Stop condition generation

Write, read, etc.

Processing to proceed with I
2
C communication

Figure 6-9 Normal Operation (No OS/OS Present) Sequence

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 22 of 87

Mar 31, 2016

6.5 Implementation of Slave Device Control

(1) Slave Device Management

Information such as the channels used and the communication data is managed in a structure. Communication between

multiple devices on a channel is implemented by setting up a structure for each slave device controlled.

See section 6.13, I
2
C Communication Information Structure for details on this structure.

(2) Channel Status Management

Exclusive control of multiple slave devices connected to a bus is implemented using the g_iic_ChStatus[] channel state

flag. See the g_iic_ChStatus[] entry in section 6.15, Variables, for details on the channel state flags.

One of these flags exists for each channel and they are managed in a global variable. These flags are set to the

R_IIC_IDLE/R_IIC_FINISH/R_IIC_NACK state (the idle state (communication possible)) if I
2
C driver initialization

completes and communication is not performed on the corresponding bus. The state of these flags is set to

R_IIC_COMMUNICATION (communication in progress) during communication. Since these flags are always checked

at the start of communication, communication with another device on the same channel will never be started during

communication. Simultaneous communication over multiple channels is implemented by managing these flags for each

channel.

(3) Device State Management

Control of multiple slave devices on the same channel is supported with the *pDevStatus device state flag member in

the I
2
C communication information structure. The communication state of the corresponding device is stored in the

device state flag. See section 8.4, Control Methods for Multiple Slave Devices on the Same Channel, for details on the

use of these flags.

MCU

I
2
C

Channel 0

Serial data bus

Serial clock

I
2
C

Channel 1

Slave

device A
 Slave

device B
 Slave

device C

Serial data bus

Serial clock

Slave

device D
 Slave

device E

Channel 0 channel state flag g_iic_ChStatus[0]

Slave A

device state

flag

Channel 1 channel state flag g_iic_ChStatus[1]

Slave B

device state

flag

Slave C

device state

flag

Slave D

device state

flag

Slave E

device state

flag

Figure 6-10 Slave Device Control

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 23 of 87

Mar 31, 2016

6.6 Communication Implementation

This sample code manages start conditions, slave device communication, and other processing as a single protocol, and

implements communication combinations with this protocol.

6.6.1 States During Control

The following states are defined to implement protocol control.

Table 6-2 States Used for Protocol Control (enum r_iic_drv_internal_status_t)

No. Constant Name Description

STS0 R_IIC_STS_NO_INIT Uninitialized state

STS1 R_IIC_STS_IDLE Idle state

STS2 R_IIC_STS_ST_COND_WAIT Start condition generation complete wait state

STS3 R_IIC_STS_SEND_SLVADR_W_WAIT Slave address [Write] transmission complete wait state

STS4 R_IIC_STS_SEND_SLVADR_R_WAIT Slave address [Read] transmission complete wait state

STS5 R_IIC_STS_SEND_DATA_WAIT Data transmission complete wait state

STS6 R_IIC_STS_RECEIVE_DATA_WAIT Data reception complete wait state

STS7 R_IIC_STS_SP_COND_WAIT Stop condition generation complete wait state

6.6.2 Events During Control

The following events generated during protocol control are defined.

Note that not only interrupts, but calls the interface functions provided by this sample code are defined as events.

Table 6-3 Events Used for Protocol Control (enum r_iic_drv_internal_event_t)

No. Event Event Definition

EV0 R_IIC_EV_INIT Call r_iic_drv_init()

EV1 R_IIC_EV_GEN_START_COND Call r_iic_drv_generate_start_cond()

EV2 R_IIC_EV_SEND_SLVADR Call r_iic_drv_send_slvadr()

EV3 R_IIC_EV_RE_SEND_SLVADR Call r_iic_drv_re_send_slvadr()

EV4 R_IIC_EV_INT_ADD Address transmission complete interrupt

EV5 R_IIC_EV_INT_SEND Data transmission complete interrupt

EV6 R_IIC_EV_INT_RECEIVE Data reception complete interrupt

EV7 R_IIC_EV_INT_STOP Stop condition detected interrupt

EV8 R_IIC_EV_INT_AL Arbitration lost detected interrupt

EV9 R_IIC_EV_INT_NACK NACK detected interrupt

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 24 of 87

Mar 31, 2016

6.6.3 Protocol State Transitions

In this sample code, the state transitions on calls the provided interface functions and when I
2
C interrupts occur. The

following figures show the protocol state transitions.

[R_IIC_STS_NO_INIT]

Uninitialized state

[R_IIC_STS_IDLE]

Idle state

(1) EV0(call r_iic_drv_init())/

• Initialization processing

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

Figure 6-11 Initialization State Transition Diagram

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 25 of 87

Mar 31, 2016

(1) EV1(call r_iic_drv_generate _start_cond())

• Start of start condition generation

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

(2) EV2(call r_iic_drv_send_slvadr())

[Slave address buffer pointer == NULL]

• Start of slave address transmission (transfer direction: write)

[R_IIC_STS_IDLE]

Idle state

[R_IIC_STS_ST_COND_WAIT]

Start condition generation

complete wait state

[R_IIC_STS_SEND_SLVADR

_W_WAIT]

Slave address [Write] transmission

complete wait state

[R_IIC_STS_SEND_DATA

_WAIT]

Data transmission complete

wait state

[R_IIC_STS_SP_COND

_WAIT]

Stop condition generation

complete wait state

Pattern 4 operation

(3) EV2(call r_iic_drv_send_slvadr())

[Slave address buffer pointer == NULL]

• Start of stop condition generation

Pattern 3 operation

(6) EV4(address transmission complete

 interrupt)

[First data buffer pointer == NULL && second

data buffer pointer == NULL]

• Start of stop condition generation

(10) EV5(data transmission complete interrupt)

[When second data write has completed]

• Start of stop condition generation

(11) EV7(stop condition detected interrupt)

• Termination processing

Pattern 1 operation

(4) EV4(address transmission complete

 interrupt)

[First data buffer pointer != NULL]

• Start of transmission of the first byte of

the 1st data

(7) EV5(data transmission complete interrupt)

[First data continuous write in progress]

• Start of transmission of the second or later

byte of the 1st data

(8) EV5(data transmission complete interrupt)

[When first data write has completed]

• Start of transmission of the first byte of the

2nd data

(9) EV5(data transmission complete interrupt)

[Second data continuous write in progress]

• Start of transmission of the second or later

byte of the 2nd data

Pattern 2 operation

(5) EV4(address transmission complete interrupt)

[First data buffer pointer == NULL && second data

buffer pointer != NULL]

• Start of transmission of the first byte of the 2nd data

Figure 6-12 Master Transmission State Transition Diagram

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 26 of 87

Mar 31, 2016

(2) EV3(call r_iic_drv_re_send_slvadr())

• Start of slave address transmission (transfer direction: read)

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right. [R_IIC_STS_IDLE]

Idle state

[R_IIC_STS_ST_COND_WAIT]

Start condition generation

complete wait state

[R_IIC_STS_SEND_SLVADR

_R_WAIT]

Slave address [Read] transmission

complete wait state

[R_IIC_STS_RECEIVE

_DATA_WAIT]

Data reception complete

wait state

[R_IIC_STS_SP_COND

_WAIT]

Stop condition generation

complete wait state

(1) EV1(call r_iic_drv_generate_start_cond())/

• Start of start condition generation

(3) EV4(address transmission complete interrupt)/

• Start of first data reception

(5) EV6(data reception complete interrupt)

[When read has completed]

• Start of stop condition generation

(6) EV7(stop condition detected interrupt)

• Termination processing

(4) EV6(data reception complete wait state)

[Continuous read in progress]

• Start of reception of the second or later data

Figure 6-13 Master Reception State Transition Diagram

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 27 of 87

Mar 31, 2016

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

[R_IIC_STS_IDLE]

Idle state

[R_IIC_STS_ST_COND_WAIT]

Start condition generation

complete wait state

[R_IIC_STS_SEND_SLVADR

_W_WAIT]

Slave address [Write] transmission

complete wait state

[R_IIC_STS_SP_COND

_WAIT]

Stop condition generation

complete wait state

[R_IIC_STS_RECEIVE

_DATA_WAIT]

Data reception complete

wait state

(1) EV1(call r_iic_drv_generate_start_cond())/

• Start of start condition generation

(2) EV2(call r_iic_drv_send_slvadr())

[The previous state was the idle state]/

• Start of slave address transmission

(transfer direction: write)

(3) EV4(address transmission complete interrupt)

• Start of the data transmission
(5) EV5(data transmission

complete wait state)

[When write has completed]/

• Start of restart condition

generation [R_IIC_STS_SEND

_SLVADR_R_WAIT]

Slave address [Read]

transmission complete wait

state

(7) EV4(address transmission complete interrupt)

• Start of the data reception

(9) EV6(data reception complete interrupt)

[When read has completed]

• Start of stop condition generation (10) EV7(stop condition detected interrupt)

• Termination processing

(4) EV5(data transmission complete

interrupt)

[Continuous write in progress]

• Start of transmission of the second or

later data

(8) EV6(data reception complete

interrupt)

[Continuous read in progress]

• Start of reception of the second or later

data

[R_IIC_STS_SEND_DATA

_WAIT]

Data transmission complete

wait state

(6) EV3 (call 2_iic_drv_re_send() when a

data transmission complete interrupt

occurs)

[The previous state was data transmission

complete wait]/

• Start of retransmission of slave address

 (transfer direction: read)

Figure 6-14 Master Composite State Transition Diagram

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 28 of 87

Mar 31, 2016

6.6.4 Protocol State Transition Table

The processing for the operations when the events in Table 6-3 occur in the states shown in Table 6-2 is defined in the

following state transition table.

For STS0 and following states, see the “No.” column in Table 6-2. For EV0 and other events, see the “No.” column in

Table 6-3. See Table 6-5 for Func0 and the following functions.

Table 6-4 Protocol State Transition Table (g_iic_mtx_tbl[][])

 Event

State EV0 EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9

STS0
Uninitialized state

[R_IIC_STS_NO_INIT]
Func0 ERR ERR ERR ERR ERR ERR ERR ERR ERR

STS1
Idle state

[R_IIC_STS_IDLE]
ERR Func1 ERR ERR ERR ERR ERR ERR ERR ERR

STS2

Start condition generation complete wait

state

[R_IIC_STS_ST_COND_WAIT]

ERR ERR Func2 Func3 ERR ERR ERR ERR ERR ERR

STS3

Slave address [Write] transmission

complete wait state

[R_IIC_STS_SEND_SLVADR_W_WAIT]

ERR ERR ERR ERR Func4 ERR ERR ERR Func8 Func9

STS4

Slave address [Read] transmission

complete wait state

[R_IIC_STS_SEND_SLVADR_R_WAIT]

ERR ERR ERR ERR Func4 ERR ERR ERR Func8 Func9

STS5
Data transmission complete wait state

[R_IIC_STS_SEND_DATA_WAIT]
ERR ERR ERR ERR ERR Func5 ERR ERR Func8 Func9

STS6
Data reception complete wait state

[R_IIC_STS_RECEIVE_DATA_WAIT]
ERR ERR ERR ERR ERR ERR Func6 ERR Func8 Func9

STS7

Stop condition generation complete wait

state

[R_IIC_STS_SP_COND_WAIT]

ERR ERR ERR ERR ERR ERR ERR Func7 Func8 Func9

Note: “ERR” indicates R_IIC_ERR_OTHER. Cases where an event that has no meaning in that state is

reported are all handled as errors.

6.6.5 Protocol State Transition Registered Functions

The functions registered in the state transition table are defined as follows.

Table 6-5 Protocol State Transition Registered Functions

Processing Function Overview

Func0 r_iic_drv_init() Initialization

Func1 r_iic_drv_generate_start_cond() Start condition generation

Func2 r_iic_drv_send_slvadr() Slave address transmission

Func3 r_iic_drv_re_send_slvadr() Slave address retransmission

Func4 r_iic_drv_after_send_slvadr() Post slave address transmission completion processing

Func5 r_iic_drv_write_data_sending() Data transmission

Func6 r_iic_drv_read_data_receiving() Data reception

Func7 r_iic_drv_release() Communication termination

Func8 r_iic_drv_arbitration_lost() Arbitration lost error handling

Func9 r_iic_drv_nack() NACK error handling

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 29 of 87

Mar 31, 2016

6.6.6 Processing at Protocol State Transitions

This section describes the processing performed by r_iic_drv_func_table() (referred to below as the processing that

advances communication) when a protocol state transition occurs.

Event: An API call or an interrupt

Action: Call r_iic_drv_func()

Acquire current state

Select corresponding function from the

protocol state transition table (g_iic_mtx_tbl[][])

Call selected function

END

Clear event flag in g_iic_Event[]

Calls the function registered in the protocol state

transition table for the current state and the current event.

Returns R_IIC_ERR_OTHER if the corresponding

protocol state transition table entry is NULL.

The channel state flag and the device state flag are

modified in this processing.

Figure 6-15 Communication Advance Processing Calling Mechanism

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 30 of 87

Mar 31, 2016

6.7 Interrupt Generation Timing

This section describes the interrupt timing in this driver.

Legend:

ST: Start condition

AD6-AD0: Slave address

/W: Transfer direction bit “0” (Write), R: Transfer direction bit “1” (Read)

/ACK: Acknowledge “0”, NACK: Acknowledge “1”

D7-D0: Data

RST: Restart condition

SP: Stop condition

6.7.1 Master Transmission

(1) Pattern 1

ST AD6-AD0 /W /ACK D7-D0 /ACK D7-D0 /ACK SP

▲1: Address transmission complete interrupt *
1

▲2: Data transmission complete interrupt (1st data) *
2

▲3: Data transmission complete interrupt (2nd data) *
2

▲4: Stop condition detected interrupt

(2) Pattern 2

ST AD6-AD0 /W /ACK D7-D0 /ACK SP

▲1: Address transmission complete interrupt *
1

▲2: Data transmission complete interrupt (2nd data) *
2

▲3: Stop condition detected interrupt

(3) Pattern 3

ST AD6-AD0 /W /ACK SP

▲1: Address transmission complete interrupt *
1

▲2: Stop condition detected interrupt

(4) Pattern 4

ST SP

▲1: Stop condition detected interrupt

▲1 ▲2 ▲3 ▲4

▲1 ▲2 ▲3

▲1 ▲2

▲1

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 31 of 87

Mar 31, 2016

6.7.2 Master Reception

ST AD6-AD0 R /ACK D7-D0 /ACK D7-D0 NACK SP

▲1: Address transmission complete interrupt *
1

▲2, ▲3: Data reception complete interrupt (2nd data) *
3

▲4: Data reception complete interrupt (2nd data) *
4

▲5: Stop condition detected interrupt

6.7.3 Master Composite

ST AD6-AD0 /W /ACK D7-D0 /ACK RST AD6-AD0 R

/ACK D7-D0 /ACK D7-D0 NACK SP

▲1: Address transmission complete interrupt (transfer direction: write) *
1

▲2: Data transmission complete interrupt (1st data) *
2

▲3: Address transmission complete interrupt (transfer direction: read) *
1

▲4, ▲5: Data reception complete interrupt (2nd data) *
3

▲6: Data reception complete interrupt (2nd data) *
4

▲7: Stop condition detected interrupt

Notes: 1. Generated on the fall of the ninth clock pulse during address transmission.

 2. Generated on the fall of the ninth clock pulse during data transmission.

 3. Generated on the fall of the eighth clock pulse during data reception.

 4. Generated on the fall of the ninth clock pulse during data reception.

▲1 ▲2 ▲3 ▲4 ▲5

▲1 ▲2

▲3 ▲4 ▲5 ▲6 ▲7

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 32 of 87

Mar 31, 2016

6.8 Callback Function

This function is called either if communication completes successfully or if it terminated with an error. To use this

functionality, specify a function name for the CallBackFunc member of the I
2
C communication information structure.

See section 6.13, I
2
C Communication Information Structure for details on this structure.

6.9 Relationship of Data Buffers and Transmit/Receive Data

The sample code is a block device driver, and transmit/receive data pointers are set as arguments. The relationship of

the data alignment of the data buffers in RAM and the transmit/receive order is described below. Regardless of the

endian mode or serial communication function used, data is transmitted in the transmit data buffer alignment order, and

data is written to the receive data buffer in the order received.

Master transmit

Transmit data buffer in RAM (numbers indicate bytes)

0 1 • • • 508 509 510 511

Data transmission order

0 1 • • • 508 509 510 511

Data reception order

Master receive

0 1 • • • 508 509 510 511

Data transmission order

0 1 • • • 508 509 510 511

Write to receive data buffer

Write to slave device (numbers indicate bytes)

Read from slave device (numbers indicate bytes)

Data buffer in RAM (numbers indicate bytes)

Figure 6-16 Storage of Transfer Data

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 33 of 87

Mar 31, 2016

6.10 Required Memory Sizes

(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)

The following table lists the required memory sizes.

Table 6-6 Required Memory Sizes

Memory Used Size Remarks

ROM 5,856 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 32 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 42 bytes

Maximum usable interrupt stack 6 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)

The following table lists the required memory sizes.

Table 6-7 Required Memory Sizes

Memory Used Size Remarks

ROM 4,035 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 30 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 30 bytes

Maximum usable interrupt stack 6 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 34 of 87

Mar 31, 2016

(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench

The following table lists the required memory sizes.

Table 6-8 Required Memory Sizes

Memory Used Size Remarks

ROM 9,230 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 48 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 272 bytes

Maximum usable interrupt stack 6 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

The maximum user stack size is the stack size for the entire project.

(4) RL78/L13 IICA Integrated Development Environment CubeSuite+

The following table lists the required memory sizes.

Table 6-9 Required Memory Sizes

Memory Used Size Remarks

ROM 5,835 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 50 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 30 bytes

Maximum usable interrupt stack 6 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 35 of 87

Mar 31, 2016

(5) RL78/L13 IICA Integrated Development Environment IAR Embedded Workbench

The following table lists the required memory sizes.

Table 6-10 Required Memory Sizes

Memory Used Size Remarks

ROM 9,633 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 48 bytes r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_os.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 146 bytes

Maximum usable interrupt stack 6 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

The maximum user stack size is the stack size for the entire project.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 36 of 87

Mar 31, 2016

6.11 File Structure

The following table lists the files used by the sample code. Note that files that are generated automatically by the

integrated development environment are not listed.

Table 6-11 File Structure

\an_r01an1074ej0104_rl78_iic <DIR> Sample code folder

 r01an1074ej0104_rl78.pdf Application note

 \ source <DIR> Program storage folder

 \ r_iic_drv_rl78 <DIR> I2C single master control software folder

 r_iic_drv_api.c API source file

 r_iic_drv_api.h API header file

 r_iic_drv_int.c Interrupt handler source file

 r_iic_drv_int.h Interrupt handler header file

 r_iic_drv_os.c OS processing source file

 r_iic_drv_os.h OS processing header file

 r_iic_drv_sfr.h.rl78g1c Common register definitions header file (for the RL78/G1C)

 r_iic_drv_sfr.h.rl78g14 Common register definitions header file (for the RL78/G14)

 r_iic_drv_sfr.h.rl78l1c Common register definitions header file (for the RL78/L1C)

 r_iic_drv_sfr.h.rl78l12 Common register definitions header file (for the RL78/L12)

 r_iic_drv_sfr.h.rl78l13 Common register definitions header file (for the RL78/L13)

 r_iic_drv_sfr_rl78g1c.c Common register definitions source file (for the RL78/G1C)

 r_iic_drv_sfr_rl78g14.c Common register definitions source file (for the RL78/G14)

 r_iic_drv_sfr_rl78l1c.c Common register definitions source file (for the RL78/L1C)

 r_iic_drv_sfr_rl78l12.c Common register definitions source file (for the RL78/L12)

 r_iic_drv_sfr_rl78l13.c Common register definitions source file (for the RL78/L13)

 r_iic_drv_sub.c Internal function source file

 r_iic_drv_sub.h Internal function header file

Note: A file with a filename of the form r_iic_drv_sfr.hXXX has been created for each microcontroller. One of

these must be renamed to r_iic_drv_sfr.h and used. If there is no such file for the microcontroller used,

the user must refer to these files and create an appropriate r_iic_drv_sfr.h file.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 37 of 87

Mar 31, 2016

6.12 Constants

6.12.1 Definitions

The definitions of the constants used in the sample code are shown below.

Table 6-12 Macro Definitions (Return values, channel state flag, and device state flag management

values)

Constant Name Setting Value Description

R_IIC_NO_INIT (error_t)(0) Uninitialized state

R_IIC_IDLE (error_t)(1) Idle state: ready for communication

R_IIC_FINISH (error_t)(2) Idle state: previous communication complete, ready for

communication

R_IIC_NACK (error_t)(3) Idle state: previous communication NACK complete,

ready for communication

R_IIC_COMMUNICATION (error_t)(4) Communication in progress

R_IIC_LOCK_FUNC (error_t)(5) API processing in progress

This state occurs in the following cases:

 When another API function is called during API

processing

R_IIC_BUS_BUSY (error_t)(6) Bus busy

This state occurs in the following cases:

 When, during communication, either the initialization

function or a start function has been called

 When another device is communicating over the

same channel and either a start function or the

advance function has been called

R_IIC_ERR_PARAM (error_t)(-1) Parameter error

R_IIC_ERR_AL (error_t)(-2) Arbitration lost error

R_IIC_ERR_NON_REPLY (error_t)(-3) No response error

R_IIC_ERR_SDA_LOW_HOLD (error_t)(-4) SDA held low error when SDL pseudo clock generate

function called

R_IIC_ERR_OTHER (error_t)(-5) Other error

Table 6-13 Macro Definitions (Must not be modified)

Constant Name Setting Value Description

W_CODE (uint8_t)(0x00) Setting value for when the slave address transfer

direction is write

R_CODE (uint8_t)(0x01) Setting value for when the slave address transfer

direction is read

R_IIC_TRUE (uint8_t)(0x01) Flag “ON”

R_IIC_FALSE (uint8_t)(0x00) Flag “OFF”

R_IIC_HI (uint8_t)(0x01) Port “H”

R_IIC_LOW (uint8_t)(0x00) Port “L”

R_IIC_OUT (uint8_t)(0x00) Port Output

R_IIC_IN (uint8_t)(0x01) Port Input

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 38 of 87

Mar 31, 2016

Table 6-14 Macro Definitions (User modifiable)

Constant Name Setting Value Description

MAX_IIC_CH_NUM (uint8_t)(2) One plus the maximum number of channels that can be used

at the same time.

Sets to 2 in this sample code.

R_IIC_CH0_LCLK (uint8_t)(20) Setting value for the IICA low-level setting register 0

(IICWL0)*
1

R_IIC_CH0_HCLK (uint8_t)(18) Setting value for the IICA high-level setting register 0

(IICWH0)*
1

R_IIC_CH1_LCLK (uint8_t)(20) Setting value for the IICA low-level setting register 1

(IICWL1)*
1

R_IIC_CH1_HCLK (uint8_t)(18) Setting value for the IICA high-level setting register 1

(IICWH1)*
1

REPLY_CNT (uint32_t)(10000) Advanced function counter value*2

START_COND_WAIT (uint16_t)(100) Start condition generation wait counter value*2

STOP_COND_WAIT (uint16_t)(100) Stop condition generation wait counter value*2

BUSCHK_CNT (uint16_t)(100) Bus busy check counter value*2

SDACHK_CNT (uint16_t)(100) SDA level check counter value*2

SCLCHK_CNT (uint16_t)(100) SCL level check counter value*2

SCL_L_WAIT (uint16_t)(100) SCL pseudo clock low-level width wait time*3

SCL_H_WAIT (uint16_t)(100) SCL pseudo clock high-level width wait time*3

Notes: 1. Transfer rate setting

The transfer rate must be set for each channel used. See the RL78 Family microcontroller User’s

Manual - Hardware for details on this setting.

Transfer rates up to a maximum of 400 kHz can be set. However, if standard mode devices and

fast mode devices are used together, the standard mode maximum rate of 100 kHz must be set.

 2. Counter value settings

These are counters for software loops. This means that the loop time will depend on the system

clock actually used. These values must be set according to the system clock used.

 3. Transfer rates for pseudo clock output

This sample code includes an SCL pseudo clock generation function for generating an SCL

pseudo clock to release SDA when a slave device is holding SDA at the low level.

This function implements the clock high and low levels using the microcontroller port functions. The

widths of the pseudo clock high and low level periods must be assured to be at least as long as the

minimum values given by the I
2
C-bus specification. (See the table below.)

The high and low-level width setting waits are implemented with software loops. This means that

the wait times will change with the system clock actually used.

The widths of the high and low level periods are set with the SCL_L_WAIT and SCL_H_WAIT

macro definitions. The user must manage these values so that they meet the specifications of the

I
2
C-bus specification according to the system clock actually used.

Table 6-15 Minimum Values for High and Low-Level Widths stipulated by the I2C-Bus Specification

 Fast Mode Standard Mode

Low-Level width (tLow) 1.3 s 4.7 s

High-Level width (tHigh) 0.6 s 4.0 s

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 39 of 87

Mar 31, 2016

6.13 Structures and Unions

6.13.1 I2C Communication Information Structure

The following figure shows the I
2
C communication information structure used in the sample code. An instance of this

structure must be set up for each slave device used.

typedef struct

{

 uint8_t *pSlvAdr; /* Pointer for Slave address buffer */

 uint8_t *pData1st; /* Pointer for 1st Data buffer */

 uint8_t *pData2nd; /* Pointer for 2nd Data buffer */

 error_t *pDevStatus; /* Device status flag */

 uint32_t Cnt1st; /* 1st Data counter */

 uint32_t Cnt2nd; /* 2nd Data counter */

 r_iic_callback CallBackFunc; /* Callback function */

 uint8_t ChNo; /* Channel No. */

 uint8_t rsv1;

 uint8_t rsv2;

 uint8_t rsv3;

} r_iic_drv_info_t;

Figure 6-17 I
2
C Communication Information Structure

(1) Structure Members

The following table lists the structure members. See Table 6-17 and Table 6-18 for details on setting the

r_iic_drv_info_t members.

Table 6-16 Structure r_iic_drv_info_t Members

Structure member Description

*pSlvAdr Slave address storage buffer pointer

Allocate one byte for this data.

*pData1st 1st data storage buffer pointer

*pData2nd 2nd data storage buffer pointer

*pDevStatus Device state flag pointer

Device states can be checked during communication, even when multiple

devices are connected to the same channel. Allocate one byte for this data.

See section 8.4 for a usage example.

Cnt1st 1st data counter (byte count)

Cnt2nd 2nd data counter (byte count)

CallBackFunc Callback function

ChNo Channel number of the used device

Set this to the channel number of the bus used.

rsv1

rsv2

rsv3

Alignment adjustment members

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 40 of 87

Mar 31, 2016

(2) Settings

Table 6-17 lists the allowable range of user settings for the structure r_iic_drv_info_t members for master transmission

and Table 6-18 lists those for master reception and master composite.

Table 6-17 User Setting Ranges for r_iic_drv_info_t Members: Master Transmission

Structure

Member

Allowable User Setting Range

Master Transmission

Pattern 1

Master Transmission

Pattern 2

Master Transmission

Pattern 3

Master Transmission

Pattern 4

*pSlvAdr Slave address storage

source address

Slave address storage

source address

Slave address storage

source address

NULL

*pData1st 1st data storage source

address

NULL NULL NULL

*pData2nd 2nd data (transmit

data) storage source

address

Second data (transmit

data) storage source

address

NULL NULL

*pDevStatus Device state storage

source address

Device state storage

source address

Device state storage

source address

Device state storage

source address

Cnt1st 0000 0001h*
1
 to

FFFF FFFFh

(Invalid setting) (Invalid setting) (Invalid setting)

Cnt2nd 0000 0001h*
1
 to

FFFF FFFFh

0000 0001h*
1
 to

FFFF FFFFh

(Invalid setting) (Invalid setting)

CallBackFunc If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

ChNo 00h to FFh 00h to FFh 00h to FFh 00h to FFh

rsv1, rsv2, rsv3 (Invalid setting) (Invalid setting) (Invalid setting) (Invalid setting)

Table 6-18 User Setting Ranges for r_iic_drv_info_t Members: Master Reception and Master

Composite

Structure

Member

Allowable User Setting Range

Master Reception Master Composite

*pSlvAdr Slave address storage

source address

Slave address storage

source address

*pData1st (Invalid setting) 1st data storage

source address

*pData2nd 2nd data (receive data)

storage destination

address

2nd data (receive data)

storage destination

address

*pDevStatus Device state storage

source address

Device state storage

source address

Cnt1st (Invalid setting) 0000 0001h*
1
 to

FFFF FFFFh

Cnt2nd 0000 0001h*
1
 to

FFFF FFFFh

0000 0001h*
1
 to

FFFF FFFFh

CallBackFunc If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

ChNo 00h to FFh 00h to FFh

rsv1, rsv2, rsv3 (Invalid setting) (Invalid setting)

Note: 1. The value 0 is illegal in both Table 6-17 and Table 6-18.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 41 of 87

Mar 31, 2016

(3) Callback Function

This function is called either if communication completes successfully or if it terminated with an error. To use this

functionality, specify a function name for the CallBackFunc member.

(4) Notes On Settings

During master transmission, the data stored in the members of this structure is referenced to determine what operation

to perform. This sample code may fail to operate correctly if any values other than those listed in Table 6-16 are used.

6.13.2 Internal Information Management Structure

The following figure shows the internal information management structure used by the sample code. Since this structure

is controlled by the sample code, there is no need for it to be set by the user.

typedef struct

{

 r_iic_drv_internal_mode_t Mode; /* Mode of Control Protocol */

 r_iic_drv_internal_status_t N_status; /* Internal Status of NOW */

 r_iic_drv_internal_status_t B_status; /* Internal Status of BEFORE */

} r_iic_drv_internal_info_t;

Figure 6-18 Internal information management structure

(1) Structure Members

The following table lists the structure members.

Table 6-19 Structure r_iic_drv_internal_info_t Members

Structure Member Description

Mode I2C protocol mode

See Table 6-19 for the definition of the data stored.

N_status The protocol control current state. Values defined in Table 6-2 are stored in this

member.

B_status The protocol control previous state. Values defined in Table 6-2 are stored in

this member.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 42 of 87

Mar 31, 2016

6.14 Enumerated Types

The enumerated type definitions used in the sample code are listed below.

Table 6-20 I
2
C Protocol Operating Modes (enum r_iic_drv_internal_mode_t)

 Description

R_IIC_MODE_NONE No communication state

This mode is transitioned to from the uninitialized state or from the idle

state.

R_IIC_MODE_WRITE Master transmission in progress

This mode is transitioned to by starting communication with the master

transmission start function R_IIC_Drv_MasterTx().

R_IIC_MODE_READ Master reception in progress

This mode is transitioned to by starting communication with the master

reception start function R_IIC_Drv_MasterRx().

R_IIC_MODE_COMBINED Master composite operation in progress

This mode is transitioned to by starting communication with the master

composite start function R_IIC_Drv_MasterTRx().

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 43 of 87

Mar 31, 2016

6.15 Variables

The following table lists the global variable.

Table 6-21 Global Variable

Type Valuable Description Function Used

uint8_t g_iic_ChStatus[MA

X_IIC_CH_NUM]

Channel state flag

The communication state defined in

Table 6-11 can be checked.

Set this variable to R_IIC_NO_INIT at

initialization.

After that, do not change the value of

this flag except if a forcible initialization

is performed.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

R_IIC_Drv_GenClk

R_IIC_Drv_Reset

r_iic_drv_intern

al_event_t

g_iic_Event[MAX_II

C_CH_NUM]

Event flag

This flag is set when an interrupt occurs

and is cleared by the advance function.

See Table 6-3.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

r_iic_drv_intern

al_info_t

g_iic_InternalInfo[M

AX_IIC_CH_NUM]

Internal information management

This variable is managed by the sample

code and must not be set by the user.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

uint32_t g_iic_ReplyCnt[MA

X_IIC_CH_NUM]

Advance function counter

This is the upper limit on the number of

calls the advance function. It is

decremented by the advance function

called by the user. It is initialized when

an event occurs. If it reaches 0, the

channel state flag and the device state

flag are set to

R_IIC_ERR_NON_REPLY.

The counter value can be modified with

the REPLY_CNT macro definition. This

macro should be set appropriately for

the actual user system.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

bool g_iic_Api[MAX_IIC_

CH_NUM]

API flag

This flag is used to prevent multiple calls

this sample code’s API.

It is set when API processing starts and

cleared after that processing completes.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

R_IIC_Drv_GenClk

R_IIC_Drv_Reset

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 44 of 87

Mar 31, 2016

6.16 Functions

The following table lists the Functions.

Table 6-22 Functions

Function Description

R_IIC_Drv_Init() I2C driver initialization function

R_IIC_Drv_MasterTx() Master transmission start function

R_IIC_Drv_MasterRx() Master reception start function

R_IIC_Drv_MasterTRx() Master composite start function

R_IIC_Drv_Advance() Advance function

R_IIC_Drv_GenClk() SCL pseudo clock generation function

R_IIC_Drv_Reset() I2C driver reset function

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 45 of 87

Mar 31, 2016

6.17 State Transition Diagram

The following figure is a diagram showing state transitions for each channel.

Uninitialized state

Idle state

Communication

in progress

Error state

Call R_IIC_Drv_Reset()/

• I
2
C driver reset processing

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

Call R_IIC_Drv_Init()

[Bus free state]/

• Initialization processing

Call R_IIC_Drv_MasterTx()

[Bus free state]/

• Master transmission start processing

Call R_IIC_Drv_MasterRx()

[Bus free state]/

• Master reception start processing

Call R_IIC_Drv_MasterTR()

[Bus free state]/

• Master composite start processing

Call R_IIC_Drv_Advance()

[Communication in progress]/

• Communication state monitoring

• Processing to proceed with I
2
C

 communication

Call R_IIC_Drv_Advance()

[Successful completion or NACK detected]/

• Communication termination processing

Call R_IIC_Drv_MasterTx()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_MasterRx()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_MasterTRx()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_Advance()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_Reset()

[Error generation]/

• I
2
C driver reset processing

Call R_IIC_Drv_MasterTx()

[After low-level hold of the SDA

and SCL lines is released and

initialization]/

• Master transmission pattern 4

 start processing

Call R_IIC_Drv_GenClk()

• SCL pseudo clock generation processing

Call R_IIC_Drv_Reset()

• I
2
C driver reset processing

Call R_IIC_Drv_Init()

[After SCL pseudo clock generation processing

called or after I
2
C driver reset processing called]/

• Initialization

Figure 6-19 State Transition Diagram

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 46 of 87

Mar 31, 2016

6.17.1 Error State Definitions

In this sample code, occurrences of the following phenomena are defined to be error states. Error occurrences can be

verified from the return values after return from the API functions. See the return values from each of the API functions

in section 6.18, Function Specifications, for methods for responding when an error occurs.

(1) Parameter Error

Return value: R_IIC_ERR_PARAM

If the arguments were not set appropriately when an API function was called.

(2) Arbitration Lost

Return value: R_IIC_ERR_AL

If arbitration was lost. See the RL78 Family microcontroller User’s Manual - Hardware for the conditions where this

occurs.

(3) No Response Error

Return value: R_IIC_NON_REPLY

The following cases result in a no response error.

 If the number of advance function calls exceeds the limit

 When a start function was called, if the bus was monitored for a fixed time but was not released

 If the start condition generation processing was performed but it was not detected after a fixed time had passed

 If the stop condition generation processing was performed when the advance function was called but it was not

detected after a fixed time had passed

Note that the start condition generation wait time is measured with a software loop. The counter value can be set by the

user. Set this value according to the system clock used. See Table 6-13 for the definition of this counter.

(4) SDA Held Low (Recovery not possible)

Return value: R_IIC_ERR_SDA_LOW_HOLD

If an SCL pseudo clock was generated but SDA remained held at the low level.

(5) Other Errors

Return value: R_IIC_ERR_OTHER

If an error other than (1) to (4) above occurred.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 47 of 87

Mar 31, 2016

6.17.2 Flag States at State Transitions

The following table lists the states of the flags when a state transition occurs.

Table 6-23 Flag States at State Transitions

State Channel State Flag Device State Flag

(Communicating Device)

I
2
C Protocol Operating

Mode

Current State of The Protocol

Control

 g_iic_ChStatus[] I
2
C Communication

Information Structure

*pDevStatus

Internal Communication

Information Structure

Mode

Internal Communication Information

Structure

N_status

Uninitialized state R_IIC_NO_INIT R_IIC_NO_INIT R_IIC_MODE_NONE R_IIC_STS_NO_INIT

Idle state R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

R_IIC_MODE_NONE R_IIC_STS_IDLE

Communication in

progress

(master

transmission)

R_IIC_COMMUNICATION R_IIC_COMMUNICATION R_IIC_MODE_WRITE R_IIC_STS_ST_COND_WAIT

 R_IIC_STS_SEND_SLVADR_W_WAIT

 R_IIC_STS_SEND_SLVADR_R_WAIT

 R_IIC_STS_SEND_DATA_WAIT

 R_IIC_STS_RECEIVE_DATA_WAIT

 R_IIC_STS_SP_COND_WAIT

Communication in

progress

(master reception)

R_IIC_COMMUNICATION R_IIC_COMMUNICATION R_IIC_MODE_READ R_IIC_STS_ST_COND_WAIT

 R_IIC_STS_SEND_SLVADR_W_WAIT

 R_IIC_STS_SEND_SLVADR_R_WAIT

 R_IIC_STS_SEND_DATA_WAIT

 R_IIC_STS_RECEIVE_DATA_WAIT

 R_IIC_STS_SP_COND_WAIT

Communication in

progress

(master

composite)

R_IIC_COMMUNICATION R_IIC_COMMUNICATION R_IIC_MODE_COMBINED R_IIC_STS_ST_COND_WAIT

 R_IIC_STS_SEND_SLVADR_W_WAIT

 R_IIC_STS_SEND_SLVADR_R_WAIT

 R_IIC_STS_SEND_DATA_WAIT

 R_IIC_STS_RECEIVE_DATA_WAIT

 R_IIC_STS_SP_COND_WAIT

Error state R_IIC_ERR_PARAM R_IIC_ERR_PARAM

 R_IIC_ERR_AL R_IIC_ERR_AL

 R_IIC_ERR_NON_REPLY R_IIC_ERR_NON_REPLY

 R_IIC_ERR_SCL_GENCLK R_IIC_ERR_SCL_GENCLK

 R_IIC_ERR_OTHER R_IIC_ERR_OTHER

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 48 of 87

Mar 31, 2016

6.18 Function Specifications

6.18.1 Common Processing for These Functions

This sample code has an API that can be operated once. If this sample code’s API is called during execution of this API

processing, the processing is not performed and the function terminates. The value R_IIC_LOCK_FUNC is returned in

this case.

An API flag is provided to prevent simultaneous calls the API. This flag is set while API processing is being performed.

This mechanism operates as follows: at the start of API processing the flag is checked and the processing is only

performed if the flag is not set. Figure 6-21 to Figure 6-24 present an overview of this processing as flowcharts.

This processing is performed for the functions defined in section 6.16. In section 6.18.2 and the following, we describe

the processing for the “API function processing” in the figures starting with Figure 6-21.

Also note that if the µITRON OS is used, task management is performed using semaphores at both I
2
C driver

initialization and at the start of communication. Figure 6-20 presents an example of semaphore operation.

In the I
2
C driver initialization function, a semaphore is acquired before initialization processing and then that semaphore

is released after the initialization processing. During communication, the semaphore is acquired before the processing

performed by the start function. When one of the start functions starts communication, it retains that semaphore, and the

semaphore is released when communication is completed by the advance function or it terminates with an error.

The operation of the µITRON OS control processing has not been included. An example of the µITRON OS control is

described in the flowchart of each function of the following. Refer to them and add the operation.

Time

Task

Communication

start

r_iic_drv_waisem():

Semaphore acquisition
r_iic_drv_sigsem():

Semaphore release

I
2
C driver

initialization

function

Individual

start function

Advance

function

Advance

function

Advance

function

: Period during which a semaphore is held

Communication in

progress

Communication in

progress

Communication

completes

r_iic_drv_sigsem():

Semaphore releaser_iic_drv_waisem():

Semaphore acquisition

Figure 6-20 Semaphore Operation

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 49 of 87

Mar 31, 2016

START

API function processing return value

Disable interrupts
Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

API flags

Lock API flags

Enable interrupts

R_IIC_LOCK_FUNC

API function processing

API flag unlock processing

OS Used?

Acquire semaphore

OS error?
Yes

No

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Enable interrupts

Disable interrupts

OS Used?

Release semaphore

OS error?
Yes

No

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Enable interrupts

Disable interrupts

OS used

No OS

Checks whether or not there is a function that is currently processing.

If not, sets the API flag.

Enables interrupts.

Function used state

No function used state

Performs the processing for the API function actually called.

Clears the API flag.

OS used

No OS

R_IIC_ERR_OTHER
Parameter error

Parameter check

Parameter confirmed

Figure 6-21 I
2
C Driver Initialization Function Multiple Call Prevention Flowchart

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 50 of 87

Mar 31, 2016

START

API function processing return value

Disable interrupts
Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

API flags

Lock API flags

Enable interrupts

R_IIC_LOCK_FUNC

API function processing

API flag unlock processing

OS Used?

Acquire semaphore

OS error?
Yes

No

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Enable interrupts

Disable interrupts

OS Used?

Release semaphore

OS error?
Yes

No

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Enable interrupts

Disable interrupts

OS used

No OS

Checks whether or not there is a function that is currently processing.

If not, sets the API flag.

Enables interrupts.

Function used state

No function used state

Performs the processing for the API function actually called.

Clears the API flag.

OS used

No OS Return value from

API processing

State other than communication in progress

Communication in progress

Releases the semaphore

if it was not possible to

start communication.

Parameter check
Parameter error

R_IIC_ERR_OTHER

Parameter confirmed

Figure 6-22 Individual Start Function Multiple Call Prevention Flowchart

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 51 of 87

Mar 31, 2016

START

API function processing return value

Disable interrupts

API flags

Lock API flags

Enable interrupts

R_IIC_LOCK_FUNC

 API function processing

API flag unlock processing

OS Used?

Release semaphore

OS error?

Yes

No

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Enable interrupts

Disable interrupts

Semaphore flag set?

 Yes

No

Clear semaphore flag

Function used state

No function used state

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Checks whether or not there is a function that is currently processing.

If not, sets the API flag.

Enables interrupts.

Performs the processing for the API function actually called.

Clears the API flag.

OS used

No OS

The semaphore flag is set either

on communication successful

termination or error termination.

Parameter check R_IIC_ERR_OTHER
Parameter error

Parameter confirmed

Figure 6-23 Advance Function Multiple Call Prevention Flowchart

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 52 of 87

Mar 31, 2016

START

API function processing return value

Disable interrupts

API flags

Lock API flags

Enable interrupts

R_IIC_LOCK_FUNC

API function processing

API flag unlock processing

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Checks whether or not there is a function that is currently processing.

If not, sets the API flag.

Enables interrupts.

Function used state

No function used state

Performs the processing for the API function actually called.

Clears the API flag.

Parameter check
Parameter error

R_IIC_ERR_OTHER

Parameter confirmed

Figure 6-24 SCL Pseudo Clock Generation Function and I2C Driver Reset Function Multiple Call

Prevention Flowchart

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 53 of 87

Mar 31, 2016

6.18.2 I²C Driver Initialization Function

R_IIC_Drv_Init

Outline I2C driver initialization function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_Init(r_iic_drv_info_t *pRIic_Info)

Description Initializes the corresponding channel.

 The following must be set up to use this function.

The ChNo member of the r_iic_drv_info_t structure; The channel number used

The channel state flag (g_iic_ChStatus[]); Sets R_IIC_NO_INIT*
1

The device state flag (*(pRIic_Info.pDevStatus)); Sets R_IIC_NO_INIT*
1

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

Return Value R_IIC_IDLE

In the channel uninitialized state, this function performs the initialization and transitions
to the idle state. The channel state flag and device state flag are set to R_IIC_IDLE.

In the already initialized state, initialization is not performed and the device state flag is
set to R_IIC_IDLE.

 Communication is now possible by calling the start function.

R_IIC_FINISH / R_IIC_NACK

This is the result of executing the preprocessing. Since the start function can be called,
initialization is not performed. The channel state flag and device state flag are not
changed.

 Communication is now possible by calling the start function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. Initialization is not possible. The channel state flag and
device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

A no replay error occurred. The channel state flag and device state flag are not
changed.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 54 of 87

Mar 31, 2016

 Check the following items.

 Check that the I
2
C communication information structure is set up correctly.

 Check if the error occurred under OS control.

Remarks This function checks the parameters.

 It checks the channel state flag.

 It then performs initialization, including the following.

Enables clock supply to the I
2
C peripheral hardware (I

2
C registers can be set)

Sets ports to input mode and output latch to 0.

Sets the transfer clock, local address, and start conditions

Disables I
2
C interrupts.

Initializes RAM.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

Note: 1. Before calling the initialization function, set R_IIC_NO_INIT. If the initialization

function is called without setting this, the initialization processing may not be

performed.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 55 of 87

Mar 31, 2016

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Disable interrupts

R_IIC_Drv_Init

State flag setting:

R_IIC_IDLE

Channel state

R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

Initialize RAM

Enable interrupts

Set up callback function

R_IIC_BUS_BUSY

A

Enable interrupts

Enable interrupts

Enable interrupts

Check channel state flag

Idle state

Communication in progress

Error state

Uninitialized state:

R_IIC_NO_INIT

Initialize internal

management state

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Check the channel state flag state.

Sets the channel state flag and the device state flag.

Cancels the disablement of interrupts.

Sets the current state of protocol control to the uninitialized state.

If a callback function is defined, specifies that function.

Figure 6-25 I
2
C Driver Initialization Function Overview Flowchart (1/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 56 of 87

Mar 31, 2016

R_IIC_IDLE

Set I
2
C interrupts

OS Used?

Clear OS event flag

Disables I
2
C related interrupts.

Sets interrupt priority levels.

OS error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Error?

No

Yes

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

A

Enable interrupts

Disable interrupts

Enable interrupts

No OS

Error

Successful processing

Processing for

communication Initializes I
2
C related registers.

OS used

Disable interrupts

Figure 6-26 I
2
C Driver Initialization Function Overview Flowchart (2/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 57 of 87

Mar 31, 2016

6.18.3 Master Transmission Start Function

R_IIC_Drv_MasterTx

Outline Master transmission start function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_MasterTx (r_iic_drv_info_t *pRIic_Info)

Description Starts master transmission.

 The r_iic_drv_info_t I
2
C communication information structure must be set up to

perform this operation. See Table 6-16 for details on that setup.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

Return Value R_IIC_COMMUNICATION

Master transmission started. The channel state flag and device state flag are set to
R_IIC_COMMUNICATION.

 Call the advance function to terminate communication.

R_IIC_NO_INIT

Initialization was not performed. The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. It was not possible to start master transmission. The
channel state flag and device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

Either the bus was not released or it was not possible to detect the start condition. The
channel state flag and device state flag are set to R_IIC_ERR_NON_REPLY.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I
2
C communication information structure is set up correctly.

 Check if the error occurred under OS control.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 58 of 87

Mar 31, 2016

Remarks This function checks the parameters.

 It checks the channel communication state. (Channel state flag: g_iic_ChStatus[])

 It checks the bus state (busy/released). (I
2
C bus state flag in the IICA register)

 It then sets the I
2
C protocol operating mode (g_iic_InternalInfo[].Mode) to

R_IIC_MODE_WRITE (master transmission).

 It enables I
2
C interrupts.

 It sets the ports to output mode.

 It generates a start condition.

 It transmits the slave address (transfer direction: write).

 It initializes the advance function counter.

 At the point this function returns, I
2
C communication has not completed. The advance

function must be called to terminate I
2
C communication.

 The communication state after calling the start function can be checked with the return

value from the advance function.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 59 of 87

Mar 31, 2016

Check bus state

R_IIC_Drv_MasterTx

R_IIC_ERR_NON_REPLY

IICA register value (bus in the communicating state)

I
2
C protocol mode setting:

R_IIC_MODE_WRITE

State flag setting:

R_IIC_ERR_NON_REPLY
Initialize RAM

Disable interrupts

Enable interrupts

A

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_BUS_BUSY

Enable interrupts

Enable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Uninitialized state

Communication in progress

Error state

Idle state

Communication possible state

Check channel state flag

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Check the channel state flag state.

Sets the channel state flag and the device state flag.

Cancels the disablement of interrupts.

State flag setting:

R_IIC_COMMUNICATION

Figure 6-27 Master Transmission Start Function Overview Flowchart (1/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 60 of 87

Mar 31, 2016

R_IIC_COMMUNICATION

Error?

R_IIC_ERR_NON_REPLY

Set state flag:

R_IIC_ERR_NON_REPLY

Initialize advance function counter

Error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

OS Used?

Clear OS event flag

OS used

OS error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

No OS

Successful processing

Error

Successful processing

Processing for

communication

Enables I
2
C interrupts.

Sets ports to the output state.

Generates a start condition.

Error

Successful processing

Error

Processing for

communication
Transmits slave address

(transfer direction: write)

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

A

Figure 6-28 Master Transmission Start Function Overview Flowchart (2/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 61 of 87

Mar 31, 2016

6.18.4 Master Reception Start Function

R_IIC_Drv_MasterRx

Outline Master reception start function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_MasterRx (r_iic_drv_info_t *pRIic_Info)

Description Starts master reception.

 The r_iic_drv_info_t I
2
C communication information structure must be set up to

perform this operation. See Table 6-17 for details on that setup.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

Return Value R_IIC_COMMUNICATION

Master reception started. The channel state flag and device state flag are set to
R_IIC_COMMUNICATION.

 Call the advance function to terminate communication.

R_IIC_NO_INIT

Initialization was not performed. The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. It was not possible to start master reception. The
channel state flag and device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

Either the bus was not released or it was not possible to detect the start condition. The
channel state flag and device state flag are set to R_IIC_ERR_NON_REPLY.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I
2
C communication information structure is set up correctly.

 Check if the error occurred under OS control.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 62 of 87

Mar 31, 2016

Remarks This function checks the parameters.

 It checks the channel communication state. (Channel state flag: g_iic_ChStatus[])

 It checks the bus state (busy/released). (I
2
C bus state flag in the IICA register)

 It then sets the I
2
C protocol operating mode (g_iic_InternalInfo[].Mode) to

R_IIC_MODE_READ (master reception).

 It enables I
2
C interrupts.

 It sets the ports to output mode.

 It generates a start condition.

 It transmits the slave address (transfer direction: read).

 It initializes the advance function counter.

 At the point this function returns, I
2
C communication has not completed. The advance

function must be called to terminate I
2
C communication.

 The communication state after calling the start function can be checked with the return

value from the advance function.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 63 of 87

Mar 31, 2016

Check bus state

R_IIC_Drv_MasterRx

R_IIC_ERR_NON_REPLY

IICA register value (bus in the communicating state)

I
2
C protocol mode setting:

R_IIC_MODE_READ

State flag setting:

R_IIC_ERR_NON_REPLY
Initialize RAM

Disable interrupts

Enable interrupts

A

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_BUS_BUSY

Enable interrupts

Enable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Uninitialized state

Communication in progress

Error state

Idle state

Communication possible state

Check channel state flag

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Check the channel state flag state.

Sets the channel state flag and the device state flag.

Cancels the disablement of interrupts.

State flag setting:

R_IIC_COMMUNICATION

Figure 6-29 Master Reception Start Function Overview Flowchart (1/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 64 of 87

Mar 31, 2016

R_IIC_COMMUNICATION

Error?

R_IIC_ERR_NON_REPLY

Set state flag:

R_IIC_ERR_NON_REPLY

Initialize advance function counter

Error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

OS Used?

Clear OS event flag

OS used

OS error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

No OS

Successful processing

Error

Successful processing

Processing for

communication

Enables I
2
C interrupts.

Sets ports to the output state.

Generates a start condition.

Error

Successful processing

Error

Processing for

communication
Transmits slave address

(transfer direction: read)

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

A

Figure 6-30 Master Reception Start Function Overview Flowchart (2/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 65 of 87

Mar 31, 2016

6.18.5 Master Composite Start Function

R_IIC_Drv_MasterTRx

Outline Master composite start function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_MasterTRx (r_iic_drv_info_t *pRIic_Info)

Description Starts master composite communication.

 The r_iic_drv_info_t I
2
C communication information structure must be set up to

perform this operation. See Table 6-17 for details on that setup.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

Return Value R_IIC_COMMUNICATION

Master composite communication was started. The channel state flag and device state
flag are set to R_IIC_COMMUNICATION.

 Call the advance function to terminate communication.

R_IIC_NO_INIT

Initialization was not performed. The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. It was not possible to start master composite
communication. The channel state flag and device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

Either the bus was not released or it was not possible to detect the start condition. The
channel state flag and device state flag are set to R_IIC_ERR_NON_REPLY.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I
2
C communication information structure is set up correctly.

 Check if the error occurred under OS control.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 66 of 87

Mar 31, 2016

Remarks This function checks the parameters.

 It checks the channel communication state. (Channel state flag: g_iic_ChStatus[])

 It checks the bus state (busy/released). (I
2
C bus state flag in the IICA register)

 It then sets the I
2
C protocol operating mode (g_iic_InternalInfo[].Mode) to

R_IIC_MODE_COMBINED (master composite).

 It enables I
2
C interrupts.

 It sets the ports to output mode.

 It generates a start condition.

 It transmits the slave address (transfer direction: write).

 It initializes the advance function counter.

 At the point this function returns, I
2
C communication has not completed. The advance

function must be called to terminate I
2
C communication.

 The communication state after calling the start function can be checked with the return

value from the advance function.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 67 of 87

Mar 31, 2016

Check bus state

R_IIC_Drv_MasterTRx

R_IIC_ERR_NON_REPLY

State flag setting:

R_IIC_COMMUNICATION

IICA register value (bus in the communicating state)

I
2
C protocol mode setting:

R_IIC_MODE_COMBINED

State flag setting:

R_IIC_ERR_NON_REPLY
Initialize RAM

Disable interrupts

Enable interrupts

A

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_BUS_BUSY

Enable interrupts

Enable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Uninitialized state

Communication in progress

Error state

Idle state

Communication possible state

Check channel state flag

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Check the channel state flag state.

Sets the channel state flag and the device state flag.

Cancels the disablement of interrupts.

Figure 6-31 Master Composite Start Function Overview Flowchart (1/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 68 of 87

Mar 31, 2016

R_IIC_COMMUNICATION

Error?

R_IIC_ERR_NON_REPLY

Set state flag:

R_IIC_ERR_NON_REPLY

Initialize advance function counter

Error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

OS Used?

Clear OS event flag

OS used

OS error?

R_IIC_ERR_OTHER

Set state flag:

R_IIC_ERR_OTHER

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

No OS

Successful processing

Error

Successful processing

Processing for

communication

Enables I
2
C interrupts.

Sets ports to the output state.

Generates a start condition.

Error

Successful processing

Error

Processing for

communication
Transmits slave address

(transfer direction: write)

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

A

Figure 6-32 Master Composite Start Function Overview Flowchart (2/2)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 69 of 87

Mar 31, 2016

6.18.6 Advance Function

R_IIC_Drv_Advance

Outline Advance function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_Advance (r_iic_drv_info_t *pRIic_Info)

Description Monitors the communication and performs processing to advance communication.

Returns the communication state in the return value.

 It is necessary to terminate communication with the advance function to start the next

communication.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

Return Value R_IIC_COMMUNICATION

Communication is in progress. The channel state flag and device state flag are not
changed.

 Call the advance function to terminate communication.

R_IIC_FINISH

All communication completed successfully. The channel state flag and device state
flag are set to R_IIC_FINISH.

Performs no processing if communication had already terminated. The channel state
flag and device state flag are not changed.

 Communication is now possible by calling the start function.

R_IIC_NACK

NACK was detected. A stop condition was generated and communication terminated.
The channel state flag and device state flag are set to R_IIC_NACK.

Performs no processing if communication had already terminated. The channel state
flag and device state flag are not changed.

 Communication is now possible by calling the start function.

R_IIC_NO_INIT

Initialization was not performed. The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_IDLE

The system is in the idle state. The channel state flag and device state flag are not
changed.

 Communication is now possible by calling the start function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

The requested processing was not performed because another device was
communicating on the same channel. The channel state flag and device state flag are
not changed.

 Terminate the communication with the other device.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are set to
R_IIC_ERR_AL.

If an error had already occurred, no processing is performed. The channel state flag

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 70 of 87

Mar 31, 2016

and device state flag are not changed.

 See section 7.6.Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

The following occurred. The channel state flag and device state flag are set to
R_IIC_ERR_NON_REPLY.

 The number of calling the advance function exceeded the limit.

 Although stop condition generation processing was performed, a stop condition

was not detected within a fixed period.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 SDA or SCL may have been held low due to noise or some other problem. See

section 7.6.Recovery Processing Example, and perform that recovery processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I
2
C communication information structure is set up correctly.

 Check if the error occurred under OS control.

Remarks This function checks the parameters.

 If the event flag is set (g_iic_Event[]), the following processing is performed.

The advance function counter (g_iic_ReplyCnt[]) is initialized.

Communication advance processing is performed.

If the processing proceeded successfully, the function checks whether all
communication completed. When all communication has completed, the channel state
flag is set to R_IIC_FINISH.

 If the event flag is no set (g_iic_Event[]), the following processing is performed.

The advance function counter (g_iic_ReplyCnt[]) is decremented.

If the advance function counter is 0, the return value is set to
R_IIC_ERR_NON_REPLY.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 71 of 87

Mar 31, 2016

A

R_IIC_Drv_Advance

Check events

No event occurred

OS Used?

Wait for event flag
No OS

OS error?

Set state flag:

R_IIC_ERR_OTHER

R_IIC_ERR_OTHER

Successful processing

Error

B

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

Communication in progress:

R_IIC_COMMUNICATION

Set semaphore flag

Disable interrupts

Enable interrupts

Uninitialized state

Idle state

Error state

An event occurred

Check channel state flag Check the channel state flag state.

OS used

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

When an OS is used.

Figure 6-33 Advanced Function Overview Flowchart (1/3)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 72 of 87

Mar 31, 2016

A

Check counter

Decrement advance function counter

R_IIC_COMMUNICATION R_IIC_ERR_NON_REPLY

Callback function

Processing for

communication

B

Initialize advance function counter

Return value

Set state flag:

R_IIC_FINISH

R_IIC_FINISH

R_IIC_COMMUNICATION

Callback function

Set semaphore flag

Successful processing, all communication complete

C

Disable interrupts

Enable interrupts

Counter == 0 (no response error)

Counter > 0

If a callback function was

set up.

Successful processing, not all communication

complete

Set state flag:

R_IIC_NON_REPLY

Set semaphore flag

Disable interrupts

Enable interrupts

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

When an OS is used.

One of the following is executed as communication

advance processing. The processing that

corresponds to the event that occurred is performed.

• Data transmission

• Data reception

• Restart condition generation

• Stop condition generation

• Communication termination processing

If a callback function was

set up.

When an OS is used.

Figure 6-34 Advanced Function Overview Flowchart (2/3)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 73 of 87

Mar 31, 2016

C

Error state

Set state flag:

R_IIC_ERR_AL

Ret

Set state flag:

R_IIC_ERR_OTHER

Wait for stop condition

generation completion

Callback function

Set semaphore flag

Set state flag:

R_IIC_NACK

Ret

Stop condition detected?

Set state flag:

R_IIC_ERR_NON_REPLY

Set Ret to R_IIC_NACK
Set Ret to

R_IIC_ERR_NON_REPLY

Callback function

Set semaphore flag

Not detected

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

NACK detected

Other error

Arbitration lost occurred

Other

Detected

If a callback function was set up.

When an OS is used.

If a callback function was set up.

When an OS is used.

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

Communication stop

processing after error

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information

management.

Figure 6-35 Advanced Function Overview Flowchart (3/3)

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 74 of 87

Mar 31, 2016

6.18.7 SCL Pseudo Clock Generation Function

R_IIC_Drv_GenClk

Outline SCL pseudo clock generation function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_GenClk (r_iic_drv_info_t *pRIic_Info, uint8_t ClkCnt)

Description This function generates an SCL pseudo clock. If a synchronization discrepancy occurs

between the master and slave due to noise or other problem and SDA is held at the

low level, this function can correct the internal state of the slave.

 Do not use this function in normal states. Use of this function during normal operation

can result in communication problems.

 The following must be set up to use this function.

The ChNo member of the r_iic_drv_info_t structure; The channel number used

The clock count ClkCnt; 01h to FFh

The clock high and low-level width; See note 1.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

uint8_t ClkCnt ; SCL clock count

Return Value R_IIC_NO_INIT

The SDA line has gone to the high level, correction of the internal state of the slave
device completed, and the system is in the uninitialized state. The channel state flag
and device state flag are set to R_IIC_NO_INIT.

 Perform the following operations to restart communication.

(1) Call the initialization function

(2) Call master transmission with pattern 4

(3) Terminate communication by calling the advance function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_SDA_LOW_HOLD

Although an SCL pseudo clock was generated, SDA remains in the low hold state.
The channel state flag and device state flag are set to R_IIC_ERR_SDA_LOW_HOLD.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

Remarks If SDA is at the low level when SDA is set to the high-impedance state, the bus will be

seen as not having been released.

 When SDA is low, the SCL pin is switched to port output, and a clock (low->high) is

input to the bus until SDA goes high.

 An error is returned if SDA remains low when the set number of clock cycles have

been generated.

 Since it is common for communication units to consist of 9 clock cycles, we

recommend setting the number of clock cycles to at least 9 cycles.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

Note: 1. Notes on the pseudo clock output transfer rate

The width of the high and low periods in the pseudo clock output must meet or

exceed the minimum value as stipulated in the I
2
C-bus specification. (See the

following table.)

 The high and low-level width set wait times are implemented by software

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 75 of 87

Mar 31, 2016

looping. Thus the wait time will differ depending on the system clock used.

 The high and low-level width set wait times are set with the definitions of the

SCL_L_WAIT and SCL_H_WAIT macros. The user must manage the values of

these values to meet the I
2
C-bus specification according to the system clock

used. (See Table 6-13 in section 6.12.1 for the macro definitions.)

Table High and Low-Level Width Minimum Values Stipulated in the I2C-Bus Specification

 Fast mode Standard mode

Low-level width (tLow) 1.3 s 4.7 s

High-level width (tLow) 0.6 s 4.0 s

Check SDA

Clock count == 0?

Channel state flag setting:

R_IIC_ERR_SDA_LOW_HOLD

No

Yes

SDA = High

SDA = Low

R_IIC_NO_INIT

Clock count == 0?

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_Drv_GenClk

Channel state flag setting:

R_IIC_NO_INIT

Decrement clock count

Set SCL pin to

port input (Hi-z)

Set SCL pin to

port output (low)

Set up ports

Disable interrupts

Enable interrupts

Disable interrupts

Enable interrupts

Sets SCL to be an input port.

Sets SDA to be an input port.

Counter == 0 (SDA = Low)

Counter > 0 (SDA = High)

Low-level output is set by setting SCL to be

an output port with the output latch set to 0.

The high-impedance state is output by

setting the pin to be an input port.

Figure 6-36 SCL Pseudo-Clock Generation Function Overview Flowchart

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 76 of 87

Mar 31, 2016

6.18.8 I2C Driver Reset Function

R_IIC_Drv_Reset

Outline I
2
C driver reset function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h, r_iic_drv_os.h

Declaration error_t R_IIC_Drv_Reset(r_iic_drv_info_t *pRIic_Info)

Description Resets the I
2
C driver for the corresponding channel.

 Stops IICA by setting IICE to 0 and clears the IICA related registers.*
1

 If this function is called while communication is in progress, it forcibly stops that

communication.

 The following must be set up to use this function.

The ChNo member of the r_iic_drv_info_t structure; The channel number used

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I
2
C communication information structure

Return Value R_IIC_NO_INIT

An internal reset was performed and the IICA goes to the uninitialized state. The
channel state flag and device state flag are set to R_IIC_NO_INIT.

 Perform the following operations to restart communication.

(1) Call the initialization function

(2) Call master transmission with pattern 4

(3) Terminate communication by calling the advance function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

Remarks To restart communication, it is also necessary to call the I
2
C driver initialization

function.

 If the IICA is forcibly stopped during communication, the results of that communication

are not guaranteed.

 To avoid effects of other interrupts while setting the channel state flag, this function

disables all interrupts other than the non-maskable interrupts.

Note: 1. The items that are reset are the IICA status register (IICA), the STCF and

IICBSY bits in the IICA flag register (IICF), and the CLD and DAD bits in IICA

control register 1 (IICCTL1).

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 77 of 87

Mar 31, 2016

R_IIC_NO_INIT

R_IIC_Drv_Reset

Channel state flag setting:

R_IIC_NO_INIT

I
2
C internal reset

Communication stop

processing after error

Disable interrupts

Enable interrupts

Sets the ports to input mode.

Disables I
2
C interrupts.

Initializes internal information management.

Interrupts other than the nonmaskable interrupts are disabled to avoid

being influenced by other interrupts while setting the channel state flags.

Cancels the disablement of interrupts.

Figure 6-37 I
2
C Driver Reset Function Overview Flowchart

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 78 of 87

Mar 31, 2016

7. Application Example

7.1 r_iic_drv_api.h

This section presents and examples of settings for actual use.

The section in each file that need to be set are marked with the comment "/**SET**".

(1) Selecting the IICA Channel Used

Specify the I
2
C channel used. The amount of ROM used can be minimized by commenting out the unused channels.

In the example below, channels 0 and 1 are used.

/*--*/

/* Select channels to enable. */

/*--*/

#define IICA0_ENABLE

#define IICA1_ENABLE

(2) Defining the Maximum Number of Channels Used

Set this item to the largest channel number used plus one.

In the example below, channels 0 and 1 are used. Since the largest channel number used here is 1, this item is set to 2.

/*--*/

/* Define channel No.(max) + 1. */

/*--*/

#define MAX_IIC_CH_NUM (uint8_t)(2)

(3) Defining the Transfer Clock

Define the setting values for IICA low-level width register x (IICWLx) and IICA high-level width register x (IICWHx)

(where x is the channel number). These values must be set for each channel used. See the RL78 Family microcontroller

User’s Manual: Hardware for details on this setting.

Transfer rates up to a maximum of 400 kHz can be set. However, if standard mode devices and fast mode devices are

used together, the standard mode maximum rate of 100 kHz must be set. Also note that the SDA and SCL signal rise

time (tR) and fall time (tF) will differ depending on the pull-up resistors used and the line capacitances, and that may

require revising these values.

The example shown below applies for the following conditions.

 System clock: 32 kHz

 Transfer clock: 400 kHz

 SDA and SCA signal rise time (tR) and fall time (tF): 300 ns

/*--*/

/* Define frequency as iic channel. (Please add a channel as needed.) */

/*--*/

/* Freq = 400KHz at main system clock = 32MHz */

#define R_IIC_CH0_LCLK (uint8_t)(20) /* Channel 0 IICWL0 register setting */

#define R_IIC_CH0_HCLK (uint8_t)(18) /* Channel 0 IICWH0 register setting */

#define R_IIC_CH1_LCLK (uint8_t)(20) /* Channel 1 IICWL1 register setting */

#define R_IIC_CH1_HCLK (uint8_t)(18) /* Channel 1 IICWL1 register setting */

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 79 of 87

Mar 31, 2016

(4) Counter Definitions

These are the counter values for various software loops. As such, the loop times will change with the system clock used.

These setting values should be reviewed as necessary.

/*--*/

/* Define counter. */

/*--*/

#define REPLY_CNT (uint32_t)(100000) /* Counter of non-reply errors */

#define START_COND_WAIT (uint16_t)(100)

 /* Counter of waiting start condition generation */

#define STOP_COND_WAIT (uint16_t)(100)

 /* Counter of waiting stop condition generation */

#define BUSCHK_CNT (uint16_t)(100) /* Counter of checking bus busy */

#define SDACHK_CNT (uint16_t)(100) /* Counter of checking SDA level */

#define SCLCHK_CNT (uint16_t)(100) /* Counter of checking SCL level */

#define SCL_L_WAIT (uint16_t)(100)

 /* Counter of waiting SCL Low clock setting */

#define SCL_H_WAIT (uint16_t)(100)

 /* Counter of waiting SCL High clock setting */

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 80 of 87

Mar 31, 2016

7.2 r_iic_drv_sfr.h

A file with a filename of the form r_iic_drv_sfr.hXXX has been created for each microcontroller. One of these must be

renamed to r_iic_drv_sfr.h and used. If there is no such file for the microcontroller used, the user must refer to these

files and create an appropriate r_iic_drv_sfr.h file.

This section presents and examples of settings for actual use.

The section in each file that need to be set are marked with the comment "/**SET**/".

(1) Defining the Pins Used

The user must define the port numbers for the pins used. These settings are required for each channel used.

The example below applies when channel 0 is used.

/*--*/

/* Define channel register. */

/*--*/

#ifdef IICA0_ENABLE

/* Define port */

#define R_IIC_PM_SCL0 PM6.0 /* SCL0 Port mode registers */

#define R_IIC_PM_SDA0 PM6.1 /* SDA0 Port mode registers */

#define R_IIC_P_SCL0 P6.0 /* SCL0 Port registers */

#define R_IIC_P_SDA0 P6.1 /* SDA0 Port registers */

(2) Defining the Input Clock Supply Control Bit (IICAxEN)

The user must define the clock supply control bit (IICAxEN) for the IICA serial interface.

The example below applies when channel 0 is used.

/* Define peripheral enable register */

#define R_IIC_IICA0EN IICA0EN /* IICA0 peripheral enable register */

(3) Defining IICA Control Register x1 (IICCTLx1)

Change this setting according to the maximum transfer rate used. The set value differs depending on whether the

maximum transfer rate is 100 or 400 kHz.

The example below applies when the maximum transfer rate used will be 400 kHz.

/*--*/

/* Define register setting. */

/*--*/

#define R_IIC_IICCTL1_INIT (uint8_t)(0x0D) /* SMC=1(400KHz),DFC=1,PRS=1 */

The example below applies when the maximum transfer rate used will be 100 kHz.

/*--*/

/* Define register setting. */

/*--*/

#define R_IIC_IICCTL1_INIT (uint8_t)(0x01) /* SMC=0(100KHz),DFC=0,PRS=1 */

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 81 of 87

Mar 31, 2016

(4) Defining the IICA Interrupt Priorities

The user must define the interrupt priorities for the channels used.

The example below applies for the use of channel 0 with interrupt priority level 2.

* Interrupt register setting */

#ifdef IICA0_ENABLE /* Channel 0 */

#define R_IIC_CH0_PR0_INIT (uint8_t)(0x00) /* Priority level 2 */

#define R_IIC_CH0_PR1_INIT (uint8_t)(0x01) /* Priority level 2 */

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 82 of 87

Mar 31, 2016

7.3 r_iic_drv_int.c

This section presents examples of settings for actual use.

The location of the settings in each file is indicated by the comment line “/**SET**/”.

7.3.1 Integrated Development Environment CS+ for CA,CX (formerly CubeSuite+)

(1) Defining the Interrupt Function #pragma interrupt

Define the interrupt function #pragma interrupt for the I
2
C channels to be used. Comment out the unused channels. Note

that a compile error will result if a definition corresponds to a channel that is not implemented on the microcontroller.

The example below applies when channel 0 is used and channel 1 is unused.

#pragma interrupt INTIICA0 r_iic_drv_intiica0_isr

 /* Uses RL78 channel 0 interrupt IICA. */

/* #pragma interrupt INTIICA1 r_iic_drv_intiica1_isr */

 /* Uses RL78 channel 1 interrupt IICA. */

7.3.2 Integrated Development Environment CS+ for CC

(1) Defining the Interrupt Function #pragma interrupt

Define the interrupt function #pragma interrupt for the I
2
C channels to be used. Comment out the unused channels. Note

that a compile error will result if a definition corresponds to a channel that is not implemented on the microcontroller.

The example below applies when channel 0 is used and channel 1 is unused.

#pragma interrupt r_iic_drv_intiica0_isr(vect=INTIICA0)

 /* Uses RL78 channel 0 interrupt IICA. */ /** SET **/

/* #pragma interrupt r_iic_drv_intiica1_isr(vect=INTIICA1) */

 /* Uses RL78 channel 1 interrupt IICA. */ /** SET **/

7.3.3 Integrated Development Environment IAR Embedded Workbench

(1) Define Setting for SFR Area

When using the IAR integrated development environment with the RL78 microcontroller, a header file in which SFR is

defined for the microcontroller is required.

Also refer to the version of the clock-synchronous signal master control software for the specific microcontroller.

This setting is used for the SPI slave device select control signal.

Table 7-1 Define Setting for Microcontroller and SFR Area

Integrated

development

environment

MCU SFR setting

required?

Setting Method

CubeSuite+

CS+

RL78 Not required Not required

IAR

Embedded

Workbench

RL78 Required #ifdef __ICCRL78__

 #include <ior5f104pj.h> Modify to match microcontroller.

 #include <ior5f104pj_ext.h> Modify to match microcontroller.

#endif

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 83 of 87

Mar 31, 2016

The example below applies to the 100-pin version of the RL78/G14.

#ifdef __ICCRL78__ /* IAR RL78 Compiler */

 #include <ior5f104pj.h> /* for RL78/G14 100pin (R5F104PJ) */

 #include <ior5f104pj_ext.h> /* for RL78/G14 100pin (R5F104PJ) */

#endif /* __ICCRL78__ */

(2) Defining the Interrupt Function #pragma interrupt

Define the interrupt function #pragma interrupt for the I
2
C channels to be used. Comment out the unused channels. Note

that a compile error will result if a definition corresponds to a channel that is not implemented on the microcontroller.

The example below applies when channel 0 is used and channel 1 is unused.

/* #pragma vector=INTIICA1_vect */ /** SET **/

__interrupt __root void r_iic_drv_intiica1_isr(void)

7.4 r_iic_drv_sfr.c

This section presents examples of settings for actual use.

The location of the settings in each file is indicated by the comment line “/**SET**/”.

(1) Define Setting for SFR Area

When using the IAR integrated development environment with the RL78 microcontroller, a header file in which SFR is

defined for the microcontroller is required.

Also refer to the version of the clock-synchronous signal master control software for the specific microcontroller.

This setting is used for the SPI slave device select control signal.

Table 7-2 Define Setting for Microcontroller and SFR Area

Integrated

development

environment

MCU SFR setting

required?

Setting Method

CubeSuite+

CS+

RL78 Not required Not required

IAR

Embedded

Workbench

RL78 Required #ifdef __ICCRL78__

 #include <ior5f104pj.h> Modify to match microcontroller.

 #include <ior5f104pj_ext.h> Modify to match microcontroller.

#endif

The example below applies to the 100-pin version of the RL78/G14.

#ifdef __ICCRL78__ /* IAR RL78 Compiler */

 #include <ior5f104pj.h> /* for RL78/G14 100pin (R5F104PJ) */

 #include <ior5f104pj_ext.h> /* for RL78/G14 100pin (R5F104PJ) */

#endif /* __ICCRL78__ */

7.5 r_iic_drv_os.c

Do not include because of not evaluating.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 84 of 87

Mar 31, 2016

7.6 Recovery Processing Example

The recovery processing to restore communication is explained when SDA or SCL are in the low-hold state.

Execute the following operation. Figure 7-1 illustrates the recovery processing using SCL pseudo clock generation.

The device transitions to the idle state when processing finishes. It is possible to start communication by calling start

function.

SCLn

SDAn

Low

High

ST SP

Start Stop

 Pseudo clock

(1) I
2
C driver

reset function

(2) SCL pseudo

clock generation

function
(3) I

2
C driver

initialization function

(4) Master transmit

start function

(5) Advance function

(6) Recovery

finished

(1) Performs an I
2
C internal reset.

(2) Generates a pseudo clock and sends it to SCL, releasing the slave device from the low-hold state.

(3) Initialization is performed for master transmit (pattern 4).

(4) Starts master transmit (pattern 4). A start condition is generated, then a stop condition is generated.

(5) Ends communication by using the advance function.

(6) The device enters the idle state. After this, communication is possible by calling a start function.

Figure 7-1 Recovery Process Using SCL Pseudo Clock Generation

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 85 of 87

Mar 31, 2016

8. Usage Notes

8.1 Notes on Embedding

Include the following header files when embedding this sample code in an application.

 r_iic_drv_api.h

 r_iic_drv_sub.h

 r_iic_drv_sfr.h

 r_iic_drv_int.h

 r_iic_drv_os.h.

8.2 Notes on Initialization

When initializing a target channel for the first time, set the channel state flag g_iic_ChStatus[] and the device state flag

*(pRIic_Info.pDevStatus) to R_IIC_NO_INIT. After that, since these flags are managed by this sample code, they may

not be set by user code.

8.3 Notes on the Channel State Flag and Device State Flag

This sample code maintains the consistency of the communication state using the channel state flag and device state

flag. Communication operation is not guaranteed if these flags are modified after first initialization.

8.4 Control Methods for Multiple Slave Devices on the Same Channel

Use the following procedure to control multiple slave devices on the same channel.

The processing in the item (1) below can prevent communication from being performed with devices in the not

communicating state.

(1) Verify that the device state flag in the I
2
C communication information structure for the slave device that is the object

of the advance function call is “R_IIC_COMMUNICATION”.

(2) Call the advance function.

(3) Repeat steps (1) and (2) until communication completes.

(4) Communication has completed. After this, communication is possible by calling a start function.

8.5 Performing Advance Function Processing from Within an Interrupt Under OS
Control

We have not looked into performing advance function processing from within an interrupt when and OS*
1
 is used. To

use this approach, thorough evaluation and testing will be required.

Note: 1. This sample code assumes µITRON 4.0 will be the OS.

8.6 Transfer Rate Setting

The transfer rate must be set for each channel. Transfer rates up to a maximum of 400 kHz can be set.

Note, however, that if standard mode devices and fast mode devices are used together, the standard mode maximum rate

of 100 kHz must be set. Set the transfer rate using R_IIC_CHx_LCLK and R_IIC_CHx_LCLK (where x is the channel

number) defined in Table 6-13.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 86 of 87

Mar 31, 2016

8.7 Notes On Setting The #define Definitions of IICAx_ENABLE and
MAX_IIC_CH_NUM

This section described the settings for the case where only channel 2 will be used.

Enable only the definition of IICA2_ENABLE for the IICAx_ENABLE #define definitions. This masks out the source

code for channel 0 and channel 1.

/*--*/

/* Select channels to enable. */

/*--*/

/* #define IICA0_ENABLE */

/* #define IICA1_ENABLE */

#define IICA2_ENABLE

Set the #define definition of MAX_IIC_CH_NUM to 3. Note that although the number of channels used is 1, the value

set here must be the largest channel number used plus one.

/*--*/

/* Define channel No.(max) + 1. */

/*--*/

#define MAX_IIC_CH_NUM (uint8_t)(3)

8.8 Defining the Interrupt Function #pragma interrupt

Define the interrupt function #pragma interrupt for the I
2
C channels to be used. Comment out the unused channels. Note

that a compile error will result if a definition corresponds to a channel that is not implemented on the microcontroller.

8.9 Notes on User API Calls

Only call the user APIs described in this application note from the main processing routine. A malfunction may result if

they are called from an interrupt handler.

8.10 About Warnings of Duplicate of Type Declaration

This driver has declared the intN_t and uintN_t that are declared in the "stdint.h". There is a possibility that the warning

occurs when including the "stdint.h". If the type of declaration is unnecessary, delete the declaration of this driver.

8.11 Considerations at Compile-time

Case compiled with the CC-RL compiler, Output the warning "W0520111: Statement is unreachable."

This is a warning message that does not run the break statement. It does not affect behavior. Ignore and no problem.

RL78/G14, RL78/G1C, RL76/L12, RL78/L13, RL78/L1C Group I²C Bus Single Master Control Software Using IICA Serial Interface

R01AN1074EJ0104 Rev.1.04 Page 87 of 87

Mar 31, 2016

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date

Description

Page Summary

1.03 Oct. 30, 2014 — First edition issued

1.04 Mar. 31, 2016 6 Changed the following title to section 2.

(1) RL78/G14 IICA Integrated Development Environment CS+

for CA,CX (Compiler: CA78K0R)

Added the following title to section 2.

(2) RL78/G14 IICA Integrated Development Environment CS+

for CC (Compiler: CC-RL)

 33 Changed the following title to section 6.10

(1) RL78/G14 IICA Integrated Development Environment CS+

for CA,CX (Compiler: CA78K0R)

Added the following title to section 6.10

(2) RL78/G14 IICA Integrated Development Environment CS+

for CC (Compiler: CC-RL)

 36 Section 6.11 File Structure

Changed Application Note Number.

Changed Folder names.

 38, 79 Added #define SCLCHK_CNT.

 82-83 Changed section 7.3 r_iic_drv_int.c.

Added section 7.3.1, 7.3.2, and 7.3.3.

 86 Added section 8.10 and 8.11.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,

and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a

product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Specifications
	2. Operation Confirmation Conditions
	(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)
	(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)
	(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench
	(4) RL78/G1C IICA Integrated Development Environment CubeSuite+
	(5) RL78/G1C IICA Integrated Development Environment IAR Embedded Workbench
	(6) RL78/L12 IICA Integrated Development Environment CubeSuite+
	(7) RL78/L12 IICA Integrated Development Environment IAR Embedded Workbench
	(8) RL78/L13 IICA Integrated Development Environment CubeSuite+
	(9) RL78/L12 IICA Integrated Development Environment IAR Embedded Workbench
	(10) RL78/L1C IICA Integrated Development Environment CubeSuite+
	(11) RL78/L1C IICA Integrated Development Environment IAR Embedded Workbench

	3. Reference Application Note
	4. Peripheral Functions
	5. Hardware
	5.1 Pins Used
	5.2 Reference Circuit
	5.3 Controlling Multiple Slave Devices
	5.4 Maximum Transfer Speed

	6. Software
	6.1 Software Structure
	6.2 Operation Overview
	6.2.1 Master Transmission
	(1) Pattern 1
	(2) Pattern 2
	(3) Pattern 3
	(4) Pattern 4

	6.2.2 Master Reception
	6.2.3 Master Composite

	6.3 Software Operation
	(1) Normal Control (No OS)
	(2) Normal Control (OS present)

	6.4 Software Operating Sequence
	(1) Normal Operation (No OS/OS present)

	6.5 Implementation of Slave Device Control
	(1) Slave Device Management
	(2) Channel Status Management
	(3) Device State Management

	6.6 Communication Implementation
	6.6.1 States During Control
	6.6.2 Events During Control
	6.6.3 Protocol State Transitions
	6.6.4 Protocol State Transition Table
	6.6.5 Protocol State Transition Registered Functions
	6.6.6 Processing at Protocol State Transitions

	6.7 Interrupt Generation Timing
	6.7.1 Master Transmission
	(1) Pattern 1
	(2) Pattern 2
	(3) Pattern 3
	(4) Pattern 4

	6.7.2 Master Reception
	6.7.3 Master Composite

	6.8 Callback Function
	6.9 Relationship of Data Buffers and Transmit/Receive Data
	6.10 Required Memory Sizes
	(1) RL78/G14 IICA Integrated Development Environment CS+ for CA,CX (Compiler: CA78K0R)
	(2) RL78/G14 IICA Integrated Development Environment CS+ for CC (Compiler: CC-RL)
	(3) RL78/G14 IICA Integrated Development Environment IAR Embedded Workbench
	(4) RL78/L13 IICA Integrated Development Environment CubeSuite+
	(5) RL78/L13 IICA Integrated Development Environment IAR Embedded Workbench

	6.11 File Structure
	6.12 Constants
	6.12.1 Definitions

	6.13 Structures and Unions
	6.13.1 I2C Communication Information Structure
	(1) Structure Members
	(2) Settings
	(3) Callback Function
	(4) Notes On Settings

	6.13.2 Internal Information Management Structure
	(1) Structure Members

	6.14 Enumerated Types
	6.15 Variables
	6.16 Functions
	6.17 State Transition Diagram
	6.17.1 Error State Definitions
	(1) Parameter Error
	(2) Arbitration Lost
	(3) No Response Error
	(4) SDA Held Low (Recovery not possible)
	(5) Other Errors

	6.17.2 Flag States at State Transitions

	6.18 Function Specifications
	6.18.1 Common Processing for These Functions
	6.18.2 I²C Driver Initialization Function
	6.18.3 Master Transmission Start Function
	6.18.4 Master Reception Start Function
	6.18.5 Master Composite Start Function
	6.18.6 Advance Function
	6.18.7 SCL Pseudo Clock Generation Function
	6.18.8 I2C Driver Reset Function

	7. Application Example
	7.1 r_iic_drv_api.h
	(1) Selecting the IICA Channel Used
	(2) Defining the Maximum Number of Channels Used
	(3) Defining the Transfer Clock
	(4) Counter Definitions

	7.2 r_iic_drv_sfr.h
	(1) Defining the Pins Used
	(2) Defining the Input Clock Supply Control Bit (IICAxEN)
	(3) Defining IICA Control Register x1 (IICCTLx1)
	(4) Defining the IICA Interrupt Priorities

	7.3 r_iic_drv_int.c
	7.3.1 Integrated Development Environment CS+ for CA,CX (formerly CubeSuite+)
	(1) Defining the Interrupt Function #pragma interrupt

	7.3.2 Integrated Development Environment CS+ for CC
	(1) Defining the Interrupt Function #pragma interrupt

	7.3.3 Integrated Development Environment IAR Embedded Workbench
	(1) Define Setting for SFR Area
	(2) Defining the Interrupt Function #pragma interrupt

	7.4 r_iic_drv_sfr.c
	(1) Define Setting for SFR Area

	7.5 r_iic_drv_os.c
	7.6 Recovery Processing Example

	8. Usage Notes
	8.1 Notes on Embedding
	8.2 Notes on Initialization
	8.3 Notes on the Channel State Flag and Device State Flag
	8.4 Control Methods for Multiple Slave Devices on the Same Channel
	8.5 Performing Advance Function Processing from Within an Interrupt Under OS Control
	8.6 Transfer Rate Setting
	8.7 Notes On Setting The #define Definitions of IICAx_ENABLE and MAX_IIC_CH_NUM
	8.8 Defining the Interrupt Function #pragma interrupt
	8.9 Notes on User API Calls
	8.10 About Warnings of Duplicate of Type Declaration
	8.11 Considerations at Compile-time

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

