
 APPLICATION NOTE

R01AN0718EJ0102 Rev.1.02 Page 1 of 52
Feb 15, 2013

RL78/G13
Flash Self Programming: Execution

Introduction

This application note is intended for users who have a basic understanding of the functions of the Type 01

Flash Self Programming Library for the RL78/G13 microcontrollers and who are to design application systems

using that library.

The purpose of this application note is to have the user gain an understanding of how to use the Type 01

Flash Self Programming Library which is used to program the code flash memory of the RL78 family.

Target Device

RL78/G13 (R5F100LE)

R01AN0718EJ0102
Rev.1.02

Feb 15, 2013

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 2 of 52
Feb 15, 2013

Contents

Introduction ..3

Chapter 1 Overview...5

1.1 Code Flash Memory in the RL78/G13 .. 6
1.2 RL78/G13 Flash Self Programming.. 7
1.3 How to Program the Code Flash Memory .. 8
1.4 Rewriting Programs and Data... 9
1.5 Relink Function ... 12

Chapter 2 Example of Configuring a Program to Rewrite the Code Flash Memory.13

2.1 Operating Environment of the Sample Program... 13
2.2 Flash Programming Operation Flow ... 17
2.3 File Configuration of the Sample Program.. 19
2.4 Resources of the Sample Program... 20
2.5 Configuring Projects (Relink Function Configuration)... 21
2.6 Configuration for Processing from Reset Release to Main Processing.................................. 28
2.7 Details of the Main and Other Functions .. 32
2.8 Precautions to be Taken when Debugging... 42
2.9 How to Evaluate Rewriting of Programs... 44
2.10 How to Evaluate Rewriting of Data ... 45

Appendix A SelfFlashWriter...46

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 3 of 52
Feb 15, 2013

Introduction

Target Readers This application note is intended for users who are to design application systems using the

Type 01 Flash Self Programming Library for RL78/G13 microcontrollers.

Purpose This application note is intended to give users an understanding of how to use the Flash

Self Programming Library for the RL78/G13 to develop programs for rewriting the flash

memory.

Organization This application note includes the following sections.

 Overview

 Flash self programming library

 Example of rewriting programs

 Appendix

This application note introduces examples of programs that apply the Flash Self

Programming Library on the QB-R5F100LE-TB evaluation board. For this reason, you will

need to obtain a QB-R5F100LE-TB if you wish to run the provided sample programs.

Evaluating programs on the QB-R5F100LE-TB also requires other items such as an E1

emulator, UART-RS-232C converter, and external power supply. For how to purchase the

E1 emulator and UART-RS-232C converter or other inquiries, contact your local distributor.

Figure QB-R5F100LE-TB Evaluation Board

Conventions Data significance: Higher-order digits to the left and lower-order digits to the right

 Active low representations: xxx (overscore over pin and signal name)

 Note: Footnote for item marked with Note in the text.

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeral representation: Binary ... xxxx or xxxxB

 Decimal ... xxxx

 Hexadecimal ... xxxxH

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 4 of 52
Feb 15, 2013

Related Documents

IDE/Title Document No.

RL78 Microcontrollers Flash Self Programming Library Type01

User’s ManualNote 1

R01US0050

RL78 Microcontrollers Flash Self Programming Library Type01

V2.20 Release Note
Note1

R20UT0777

CubeSuite+ V1.03.00 Release Note
Note 2

 R20UT2259

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: Start
Note 2

R20UT2133

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: RL78 Design
Note 2

R20UT2136

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: Analysis
Note 2

R20UT2146

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: Message
Note 2

R20UT2147

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: RL78 Debug
Note 2

R20UT2145

CubeSuite+ RL78,78K0R Compiler CA78K0R V V1.50 Release Note
Note2

 R20UT2261

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: RL78, 78K0R Coding
Note 2

R20UT2140

CubeSuite+ V1.03.00 Integrated Development Environment

User’s Manual: RL78, 78K0R Build
Note2

R20UT2143

Notes: 1. This document should be installed together with Ver. 2.20 of the Type 01 Flash Self Programming Library. For

the topics that are not covered in the "Flash Self Programming Library Type01 User’s Manual," refer to "RL78

Microcontrollers Flash Self Programming Library Type01 Ver.2.20 Release Note"

2. This document should be downloaded from the web page entitled "CubeSuite+ Integrated Development

Environment" at the Renesas website.

Caution: The contents of the above-listed documents are subject to change without notice. Be sure to refer to the latest

edition of the relevant documents in the design process etc.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 5 of 52
Feb 15, 2013

Chapter 1 Overview

This application note introduces the procedures for flash self programming of the code flash memory in an RL78/G13

microcontroller using the RL78 Microcontrollers Flash Self Programming Library Type01 V2.20.

For details on “RL78 Microcontrollers Flash Self Programming Library Type01,” refer to the following documents.

 RL78 Microcontrollers Flash Self Programming Library Type01 User’s Manual (Document No.: R01US0050)

 RL78 Microcontrollers Flash Self Programming Library Type01 V2.20 Release Note (Document No.: R20UT0777)

This chapter gives an overview of the RL78/G13's flash self programming functions.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 6 of 52
Feb 15, 2013

1.1 Code Flash Memory in the RL78/G13

The RL78/G13 incorporates code flash memory that allows erasure and programming. The features of the RL78/G13

code flash memory are given below.

Table 1-1 Features of the RL78/G13 Code Flash Memory

Operating power

supply

Erasure and programming are possible on the same power supply.

Minimum erasure unit 1 block (1K = 1024 bytes)

Minimum

programming unit

1 word (4 bytes)

Block erase protection, write protection, boot area write protection

Initial values at shipment are all enabled.

The flash shield window (FSW) allows the erasure and programming of all the areas except the

specified window area to be disabled only during flash self programming.

Security

Settings can be changed via the Flash Self Programming Library.

Remark: The write-protection of the boot area and the security settings except the FSW settings are disabled during flash

self programming.

The code flash memory can be programmed while the RL78/G13 is installed on the board. The programming of the

code flash memory can be accomplished either by a dedicated flash memory programmer or by the flash self

programming technique which makes use of a program written in the code flash memory (hereafter referred to as the write

program).

Figure 1-1 Means of Programming the Code Flash Memory

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 7 of 52
Feb 15, 2013

1.2 RL78/G13 Flash Self Programming

The RL78/G13 is provided with a library for flash self programming. Flash self programming is accomplished by the

write program calling functions of the Flash Self Programming Library.

The RL78/G13's flash memory is assigned block numbers in block (1024 bytes) units starting at address 00000H.

Erasure of the flash memory is carried out in block units.

The control of RL78/G13 flash self programming is exercised using a sequencer. The code flash memory cannot be

referenced while the sequencer is controlling the flash self programming. To run a user program while the control by the

sequencer is in progress, it is necessary to relocate some segments of the flash self programming library and the write

program to RAM when performing the erasure and programming of the code flash memory and setting of security flags.

When it is unnecessary to run any user program while the control by the sequencer is in progress, it is possible to place

the flash self programming library and write program in ROM (code flash memory) for execution.

This application note gives examples of placing the flash self programming library and write program in ROM (code

flash memory).

Figure 1-2 Outline of Code Flash Memory Programming

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 8 of 52
Feb 15, 2013

1.3 How to Program the Code Flash Memory

It is possible to rewrite the programs and data in the code flash memory using the flash self programming function.

Figure 1-3 shows examples of rewriting the entire section of a program, rewriting data, and rewriting parts of a program

that is split and reallocated into two or more parts according to the process to be performed.

When programming the code flash memory using the flash self programming function, it is necessary to allocate the

program for flash self programming and the other functional programs to separate blocks.

Figure 1-3 Examples of Code Flash Memory Programming

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 9 of 52
Feb 15, 2013

1.4 Rewriting Programs and Data

The RL78/G13 provides a boot swap function which serves for safely programming flash memory. The flash area from

0000H to 0FFFH is assigned to boot cluster 0 and the flash area from 1000H to 1FFFH to boot cluster 1. These two areas

can be swapped using the boot swap function. The boot swap function allows programs to be swapped safely.

The RL78/G13 comes with library functions for boot swapping. This application note explains how to boot-swap

programs using the FSL_InvertBootFlag function and to rewrite programs.

The flash self programming function can also be used to rewrite data to be used by user programs. By allocating a table

of rewriting data to fixed addresses, it is possible to rewrite data safely with no modification made to the user program.

This application explains how to allocate data tables to fixed addresses for rewriting.

The program that is explained in chapter 2, Example of Configuring and Rewriting a Program, does not rewrite the

blocks to which the program for flash self programming is allocated. For details on the sample program, see chapter 2.

Figure 1-4 Rewriting a Program

 (Methods of programming in RAM and swapping program areas using the boot swap function)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 10 of 52
Feb 15, 2013

 (1) What is a boot swap?

Boot swap is a process of swapping between boot cluster 0 and boot cluster 1. By swapping the clusters, the

area that was allocated to boot cluster 0 (0000H-0FFFH) is allocated to boot cluster 1 (1000H-1FFFH) and the

area that was allocated to boot cluster 1 (1000H-1FFFH) to boot cluster 0 (0000H-0FFFH).

To perform a boot swap, make required settings for the registers in the code flash memory. There are two

modes of boot swapping; the mode in which control is switched to the new program immediately when necessary

settings are made and the mode in which only the boot flag is rewritten and the programs are swapped after a

reset. This application note explains the latter mode; i.e., the programs are swapped after a reset.

Figure 1-5 Boot Swapping Modes

 (2) Program that is to be written into boot cluster 1

Boot cluster 1 is reassigned to boot cluster 0 after the boot swap and its addresses are reset to 0000H-0FFFH.

Consequently, the new program to be prewritten in boot cluster 1 must have the same start address and

configuration as the program that is written in boot cluster 0.

Figure 1-6 Program to be Written to Boot Cluster 1

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 11 of 52
Feb 15, 2013

 (3) What is Flash Shield Window (FSW)?

The Flash Shield Window is one of the security facilities that are to be used during flash self programming. It

disables all the areas except the one that is defined by a specified window to be written or erased during flash

self programming.

The areas other than the one that is specified as a flash shield window can be written or erased during on- or

off-board programming.

A flash shield window can be set up using the FSL_SetFlashShieldWindow function. The window range can be

defined by specifying the start and end blocks.

Figure 1-7 Example of Flash Shield Window Setup

 (Target device: R5F100LE, Start Block: 08H, End Block: 0FH)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 12 of 52
Feb 15, 2013

1.5 Relink Function

Some systems use areas that can be programmed or swapped (e.g., flash memory and external ROM) in addition to the

areas that cannot be programmed or swapped (e.g., boot area).

CubeSuite+ offers a function, called the relink function that allows such a system to execute the function calls between

the boot area and flash areas normally without reconfiguring the program in the boot area when only the program in a

flash area is to be altered.

Using this relink function on the RL78/G13, it is possible to rewrite only part of the program that is allocated to the code

flash memory using the flash self programming function. The code flash memory is split into two areas, i.e., the boot area

that lies below the area storing the start addresses for the flash area and the flash area that lies above the area storing the

start addresses for the flash area. The flash area can be programmed safely from the boot area side by allocating the

program for flash self programming to the boot area and the other programs in the flash area that are subjected to

programming.

The sample program covered in this application note makes use of this function to carry out its programming tasks. See

chapter 2, Example of Configuring and Rewriting a Program, for instructions to create programs.

Figure 1-8 Outline of the Boot Area and Flash Area Configuration

 Branch table

To perform the processing that is relocated from the boot area to the flash area, it is necessary for the boot side to be

aware of the allocation information about the processing to be used on the flash side. CubeSuite+ creates a table that

stores a record of allocation information about the processing on the flash side in a specific area. Using the information

stored in that table, the CubeSuite+ enables the processing on the boot side to carry out the processing on the flash side.

This table is called the branch table.

The branch table contains the start addresses of the programs and interrupt vectors in the flash area that are

subjected to programming. The branch table is updated as programs are written. This ensures that the program in the

boot area can make function calls normally even when the start address of the functions in the programs in the flash area

is altered.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 13 of 52
Feb 15, 2013

Chapter 2 Example of Configuring a Program to Rewrite the Code
Flash Memory

This chapter explains how to configure a program for rewriting flash memory using the flash self programming library

RL78/G13 (R5F100LE) and gives an example.

2.1 Operating Environment of the Sample Program

The sample program covered in this application note consists of three components, i.e., the boot program that performs

boot-time processing, the write program that rewrites programs and data using the flash self programming function, and a

user program (for flashing LEDs).

The boot program performs basic initialization processing on the RL78/G13 (R5F100LE) at the time of booting up and

checks the state of the switch on the QB-R5F100LE-TB to determine whether to start the processing for rewriting

programs and data or to execute the LED flashing processing.

When the power supply for the target device is turned on or a reset is effected without the press of SW1, LED2 turns on

and the processing for rewriting programs and data starts and waits for serial communication. Serial communication is

controlled by SelfFlashWriter (see Appendix A for details) and LED1 flashes while communication is in progress. The

processing program receives program code data through serial communication under control of SelfFlashWriter and

updates the programs with the received data.

When the power supply for the target device is turned on or a reset is effected with SW1 being pressed, the user

program starts and flashes LEDs. When SW1 is pressed after the target device is started, ASCII data is sent to the host

machine through serial communication and a WDT reset is carried out at a reduced LED flashing speed. Pressing the

switch again temporarily clears the WDT and the time up to the reset sequence is elongated.

Table 2-1 summarizes the characteristics of the I/O of the RL78 microcontroller and figure 2-3 shows the program

configuration. Figures 2-1 and 2-2 show the operating environment of the sample program.

Figure 2-1 Outline of the QB-R5F100LE-TB Operating Environment of the Sample Program

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 14 of 52
Feb 15, 2013

Figure 2-2 QB-R5F100LE-TB Pins that are Used by the Sample Program

CN1/CN2: Connected to the microcontroller.
Power LED (LED3): Lit in red when power is turned on.
Evaluation LED1: Lit in yellow when port 62 (P62) is set low.
Evaluation LED2: Lit in yellow when port 63 (P63) is set low.
Evaluation SW1: Connected to INTP0.
14-pin connector: Connected to (optional) E1 and used for on-chip debugging or programming.
GND, VDD pins: Used to supply power to the target board.
RxD0 pin: UART RX pin. Connected to a COM port of the host machine for serial communication

(data reception).*
TxD0 pin: UART TX pin. Connected to a COM port of the host machine for serial communication

(data transmission).*

1

13

CN1

CN2

LED
3

LED2
LED1

P63
P62

40

39
2
1

1
2

39
40

GN
D

VDD

GND

INTP0
SW1

P137

RL78
G13

* A separate level shifter circuit is required to connect to a COM (RS-232C) port of the host machine.

CN2

GND pin

Power LED

Evaluation SW1

VDD pin

CN1

Evaluation LEDs
Upper: LED2
Lower: LED1

14-pin connector

TxD0 pin

RxD0 pin

Table 2-1 List of QB-R5F100LE-TB Pins that are Used by the Sample Program

Location Use I/O

Indicator 1

LED1

Port 62 (P62 pin)

Indicator 2

LED2

<Boot program>

Initializes or turn off LED1 and LED2.

<Write program>

Turns on LED2 and flashes LED1 during communication.

<User program>

 Turns on LED1 and flashes LED2 at constant intervals.

Port 63 (P63 pin)

Switch 1

SW1

<Boot program>

Used to determine whether to run the write program or user program at

boot time.

<User program>

Sends ASCII data to the host machine through serial communication,

decreases the LED1 flashing interval, and performs a WDT reset.

Pressing this switch again temporarily clears the WDT.

Port 137 (P137 pin)

Serial communication

RxD0: P11

(CN2: 13 pin)

TxD0: P12

(CN2: 12 pin)

Performs serial communication with the host machine using the RL78/G13

microcontroller's UART0 port. A separate level shifter circuit is required to

connect to a COM (RS-232C) port of the host machine.

<Communications specifications>

Bits/s: 115200 Data bits: 8

Parity: None Stop bits: 1 Flow control: None

RXD0 (P11 pin)

TXD0 (P12 pin)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 15 of 52
Feb 15, 2013

Figure 2-3 Outline of the Sample Program in the Code Flash Memory

(1) Boot area startup routine

Startup routine for initializing the boot area.

(2) Boot program + write program

 A program that performs initialization program at the time of booting up and a program that rewrites the flash

memory in the boot area using the flash self programming library.

(3) Branch table

 Branch table used to make accesses from the boot area to the flash area.

(4) Flash area startup routine

 Startup routine for initializing the flash area.

(5) User program

 A program in the flash area that turns on LED1 and flashes LED2 at constant intervals.

(6) Data table

Area that is used by the user program and that contains ASCII data to be sent to the host machine.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 16 of 52
Feb 15, 2013

Figure 2-4 Operating Environment (Outline) of the Sample Program (in Programming Mode)

Figure 2-5 Operating Environment (Outline) of the Sample Program (in User Mode)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 17 of 52
Feb 15, 2013

2.2 Flash Programming Operation Flow

The operation flows of rewriting programs and data by the sample program are given in figures 2-4, 2-5, and 2-6.

The write program that performs flash self programming is placed in the boot cluster area (blocks 0 to 3).

Figure 2-6 Rewriting the Entire Program (Outline)

(1) Writing all program data that is received

The RL78/G13 (R5F100LE)'s write program (a program that performs flash self programming) writes the new

boot program and write program that are received from SelfFlashWriter into blocks 4 to 7 (1000H-1FFFH) and

the user program and data table into block 8 (2000H-FFFFH) and later blocks.

(2) Performing a boot swap

SelfFlashWriter, after confirming that the programming of all data is completed, sends out a BOOTSWAP

command. The RL78/G13 (R5F100LE)'s write program makes boot swap settings using the flash self

programming library and effects a reset upon completion. After the reset is effected, a boot swap is carried out

and the new boot program is executed.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 18 of 52
Feb 15, 2013

Figure 2-7 Rewriting Parts of a Program (Flash Area) (Outline)

 Writing all program data that is received

The RL78/G13 (R5F100LE)'s write program (a program that performs flash self programming) writes the new

user program and data table that is received from SelfFlashWriter into block 8 (2000H-FFFFH) and later blocks.

Figure 2-8 Rewriting of Data (Outline)

 Writing received data table and program

The RL78/G13 (R5F100LE)'s write program (a program that performs flash self programming) writes parts of

the new data table and program received from SelfFlashWriter.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 19 of 52
Feb 15, 2013

2.3 File Configuration of the Sample Program

The file configuration of the sample program is given in table 2-2. To load a project into CubeSuite+, start CubeSuite+

and open the file r_fsl_praxis01.mtpj.

The sample project file has been generated in the folder C:\Program Files\Renesas Electronics\Flash Libraries. It

assumes that the Flash Self Programming Library Type01 V2.20 is installed. If the installation folder of the library is

different, change the registered destinations of the library-related files accordingly after starting the project.

Table 2-2 Sample Program File Configuration (Folder Name: R01AN0718_PRAXIS01)

File Name Description

r_fsl_praxis01.mtpj Project file

r_fsl_praxis01_boot.mtsp Boot area sub-project file

root

r_fsl_praxis01_flash.mtsp Flash area sub-project file

r_fsl_praxis01_boot.hex Boot area project HEX format ifle

r_fsl_praxis01_flash.hex Flash area project hex file

 All-area hex file (hex)

r_fsl_praxis01_flash.hxb Flash area project hex file

 Boot area hex file (hxb)

\DefaultBuild

r_fsl_praxis01_flash.hxf Flash area project hex file

 Flash area hex file (hxf)

r_fsl_praxis01_write_test.hex Test HEX format file

 Programming check hex file

(Invert LED1/LED2 display mode)

r_fsl_praxis01_boot_write_test.hxb Test HEX (hxb) format file

 Boot area hex file (hxb)

(Invert LED1/LED2 display mode)

\TestData

r_fsl_praxis01_flash_write_test.hxf Test HEX (hxf) format file

 Flash area hex file (hxf)

(Invert LED1/LED2 display mode)

r_fsl_praxis01_com.h Program common header file

r_fsl_praxis01_BranchTable.h Branch table configuration file

r_fsl_praxis01_BootSection.h Boot area section configuration file

\inc

r_fsl_praxis01_FlashSection.h Flash area section configuration file

r_fsl_praxis01_boot_main.c Boot area main processing \boot

r_fsl_praxis01_boot_write.c Boot area write processing

\src

\flash r_fsl_praxis01_flash_main.c Flash area main processing

r_fsl_praxis01_boot_map.dr Boot area link directive file

\dr

r_fsl_praxis01_flash_map.dr Flash area link directive file

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 20 of 52
Feb 15, 2013

2.4 Resources of the Sample Program

The reference information for resources of the sample program is given in tables 2-3 to 2-5.

These information are reference information, it is different from the actual values.Please check the map file that generated

at compiling about detail information.

Table 2-3 Overall Resources of the Sample Program(Reference information)

Area Name ROM Area Range Occupied ROM Size
Occupied RAM

Size
Remarks

Boot area 0H to FFFＨ 3000 bytes 900 bytes
Including the size of areas for vector bytes,

option bytes, and the library

Flash area 2000H to FBFFH 600 bytes 6 bytes Excluding the size of OCD monitor area

Table 2-4 Resource for the Sample Program's Boot Area(Reference information)

Area Used Item Total Size

Area for interrupt vector and option bytes

Startup routine and run-time library

Standard library (memcpy_f, memset_f)

Flash self programming library

ROM

Boot program, write program, interrupt processing

3000 bytes

Startup routine and run-time library
RAM

Boot program, write program, interrupt processing

750bytes

Boot program, write program

Interrupt processing
Stack

Flash self programming library

150 bytes

Table 2-5 Resource for the Sample Program's Flash Area(Reference information)

Area Used Item Total Size

Branch table (vector addresses, branch-table-registered

functions)

Start-up routine and run-time libraries

User program

ROM

Data table(F800H to FBFFH)

600 bytes

RAM User program 50 bytes

User program

Stack

 Interrupt processing
50 bytes

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 21 of 52
Feb 15, 2013

2.5 Configuring Projects (Relink Function Configuration)

One program can be split into the boot and flash areas during the development stage by specifying certain options of

the RL78's assembler/compiler.

When developing a program under CubeSuite+, use two separate projects. Since the load module file (.lmf) for the

program in the boot area is linked with the load module file for the program in the flash area during the program generation

stage, it is necessary to have the program in the boot area built in advance. Figure 2-9 shows the outline of the relink

function and figures 2-10 to 2-19 illustrate the steps for manipulating CubeSuite+ that are necessary for the relink function

configuration.

Figure 2-9 Example of Project Configuration under CubeSuite+ and Relink Function Configuration

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 22 of 52
Feb 15, 2013

(1) Configuration for the boot area project (boot program and write program)

(a) Setting up a function call from the boot area to the flash area using an extension function (#pragma)

Describe the entry of the function to the branch table in the C source code. The function to be added

to the table is the SW1 interrupt function which is also used by the user program.

This setting enables the program in the boot area to run the programs (functions) in the flash area.

 Figure 2-10 Calling a Function from the Boot Area to the Flash Area (r_fsl_praxis01_BranchTable.h)

(b) Specifying the start addresses of the branch table and flash area

Specify the start addresses of the branch table and flash area with the CA78K0R's compiler option.

Figure 2-11 Specifying the Start Addresses of the Branch Table and Flash Area

.

.

.
/*---*/
/* (#pragma) branch table functions (ext_func) */
/*---*/
#pragma ext_func prSendMsgAsciiData 0
.
.

Add function to branch table.
#pragma ext func func name ID No.

Describe the name of the desired function
allocated to the flash area
* A prototype declaration is separately
required.

Note: Specify "No" for the boot area project.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 23 of 52
Feb 15, 2013

(c) Specifying the startup routine for the boot area project

Specify the startup routine for the boot area project.

Figure 2-12 Specifying the Startup Routine for the Boot Area

(d) Setting the –ZB linker option

Set the linker's –ZB option to specify the start address of the flash area.

Figure 2-13 Specifying the Linker –ZB Option

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 24 of 52
Feb 15, 2013

(e) Setting the name of the load module for the boot area project

Since the flash area project generates the total module using the load modules in the boot area

project, if a specific name is necessary for the load module in the boot area project, specify it so that the

load module can be identified by the flash area project. By default, the name is "<project name>.lmf."

Figure 2-14 Specifying the Name of the Load Module in the Boot Area Project

(f) Confirming the boot area program to be run from the flash area

For the program allocated to the boot area to be run from the flash area, the program that is to be

allocated to the boot area needs to be included in the load module file (*.lmf) for the boot area. If the

target program is not used on the boot area, however, it may not be linked at the time of linkage on the

boot area.

If an attempt is made to run the target program from the flash area under this situation, the building of

the program for the flash area fails leading to a linkage error because the target program is not

included in the load module file (*.lmf) for the boot area.

If there is a boot area program that needs to be run from the flash area and the target program is not

used on the boot area, it is necessary to make the program so that the target program can be included

in the load module file (*.lmf) for the boot area by, for example, creating a dummy function that runs the

target program.

(2) Configuration for the flash area project (user program)

(a) Setting up a function call from the boot area to the flash area using an extension function (#pragma)

Describe the entry of the function to the branch table in the C source code. The function to be added

to the table is the SW1 interrupt function which is also used by the user program. Add the same

description in the program for the flash area.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 25 of 52
Feb 15, 2013

 Figure 2-15 Calling a Function from the Boot Area to the Flash Area (r_fsl_praxis01_flash_main.c)

 r_fsl_praxis01_BranchTable.h：

 r_fsl_praxis01_flash_main.c:

.
/*---*/
/* Include common files */
/*---*/
/* */
#include "r_fsl_praxis01_BranchTable.h"
.
.

. void prSendMsgAsciiData(void)
{
 UH duh_i;
 UB dubSendData[5];

 /* */
 for(duh_i = 0 ; duh_i < sizeof(prFcubSendMsgData) ; duh_i++)
 {
 dubSendData[0] = prFcubSendMsgData[duh_i];
 prUartSendData(&dubSendData[0]);
 }

 /* */
 prDuhSwNum++;
 if(prDuhSwNum > 999)
 {
 prDuhSwNum = 0;
 }

 /* */
 dubSendData[0] = (UB)(prDuhSwNum / 100) | 0x30;
 dubSendData[1] = (UB)((prDuhSwNum % 100) / 10) | 0x30;
 dubSendData[2] = (UB)(prDuhSwNum % 10) | 0x30;
 dubSendData[3] = '\n';
 dubSendData[4] = '\r';

 /* */
 for(duh_i = 0 ; duh_i < 5 ; duh_i++)
 {
 prUartSendData(&dubSendData[duh_i]);
 }

#ifdef PR_USE_OCD_MODE

#else
 /* */
 PR_WD_INT_OFF();

 /* */
 if(prDuwLedTime <= PR_LED_DEFAULT_WAIT)
 {
 prDuwLedTime = PR_LED_DEFAULT_WAIT * PR_LED_WAIT_MAG;
 }
#endif
}

Add function to branch table.
#pragma ext func func name ID

Function body to add

.

.
/*---*/
/* (#pragma) branch table functions (ext_func) */
/*---*/
#pragma ext_func prSendMsgAsciiData 0
.
.

Omitted

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 26 of 52
Feb 15, 2013

(b) Setting up the load module file for the boot area project

Set up the load module file (.lmf) for the boot area project that is to be used in the flash area project.

Figure 2-16 Setting up the Load Module File for the Boot Area Project

(c) Specifying the start addresses of the branch table and flash area

Specify the start addresses of the branch table and flash area to be used in the flash area project.

 Figure 2-17 Specifying the Start Addresses of the Branch Table and Flash Area

Note: Specify "Yes" for the flash area project.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 27 of 52
Feb 15, 2013

(d) Specifying the startup routine for the flash area project

Specify the startup routine for the flash area project.

 Figure 2-18 Specifying the Startup Routine for the Flash Area Project

(e) Setting up a hex file (only when the hex file is to be split on output)

Specify the –ZF option of the object converter. When this option is specified, the program in the boot

area and the program in the flash area are output to separate hex format object module files.

The output file for the boot area program is given a file extension of .hxb and the output file for the

flash area program a file extension of .hxf.

Figure 2-19 Specifying the Object Converter –ZF Option

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 28 of 52
Feb 15, 2013

2.6 Configuration for Processing from Reset Release to Main Processing

Since a program that uses the relink function has its startup routine placed in both the boot and flash areas, its behavior

during the period from immediately after the reset is released up to their main processing differs from that of ordinary

programs. Such a program must be coded so that the startup routine for the boot area and the startup routine for the flash

area are executed without fail as shown in (1) to (3) in figure 2-20.

The main function and subsequent functions ((5) in the figure below) in the flash area must be executed according to

their programming specifications.

Figure 2-20 Sequence of Program Execution

(1) Startup routine for the boot area

The startup routine for the boot area is executed after the reset is released. After the data for the boot

area is initialized, the main function (boot_main() = main function that is started by the startup routine for

the boot area) of the program in the boot area is executed.

(2) Main function (boot_main()) on the boot area

The main function (boot_main()) performs the QB-R5F100LE-TB's basic initialization processing as a

boot program and checks the state of the switches on the QB-R5F100LE-TB to determine whether

rewriting of data is to be executed. When the user program is to be run, the main function ends and

returns control to the startup routine for the boot area, without doing anything.

(3) Jumping into the branch table

When the main function (boot_main()) ends, control is returned to the startup routine for the boot area,

then to the branch table on the flash area. No normal processing can be continued if the branch table

does not exist in the required location.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 29 of 52
Feb 15, 2013

(4) Branch table

Execution branches to the startup routine for the flash area.

(5) Startup routine for the flash area

After initializing the data for the boot area, the startup routine for the flash area causes a jump to the

main function for the flash area (main() = main function that is started by the startup routine for the flash

area).

Subsequently, code the program according to their programming specifications. Figures 2-21 and 2-22 show the

processing of the sample program.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 30 of 52
Feb 15, 2013

Figure 2-21 Program Execution Sequence

void boot_main(void)
{
 if(PR_BOOT_SW != PR_SW_ON)
 {
 UB dubRetCode;

 prBootTargetStart(); /* Target start processing */

 dubRetCode = prBootWriteProgram(); /* Run the write program (flash self programming).
*/

 prBootTargetEnd(dubRetCode); /* Target termination processing */
 }
}

Boot area startup routine (Initializing the area to be used for the boot area)

Flash area startup routine (Initializing the area to be used for the flash area)

void main(void)
{
 UB dubLed2flag;
 UW duw_i;

 prFlashTargetStart();
 dubLed2flag = true;

 /* Main loop */
 while(1)
 {
 /* LED turn-on processing */
 if(dubLed2flag == false)
 {
 dubLed2flag = true;
 PR_LED2_ON();
 }
 else {
 dubLed2flag = false;
 PR_LED2_OFF();
 }

 /* */
 for(duw_i = 0 ; duw_i < prDuwLedTime ; duw_i++)
 {
 prWait10clcok();
 }
 }

 prFlashTargetEnd();
}

Program for the boot area

Program for the flash area

Boot area startup routine (Jump to branch table)

Branch table (Jump to flash area startup routine)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 31 of 52
Feb 15, 2013

Figure 2-22 Example of Using the Branch Table

void prSendMsgAsciiData(void);
.
.・
・
・

.

.

.

.
.
.
void prIntComSwIntp0(void)
{
 if(prDubBootMode == PR_BOOT_MODE_USER)
 {
 prSendMsgAsciiData();
 }
}

Branch table

void prSendMsgAsciiData (void)
{

…
}

Write the name of the desired function
placed in the flash area.

Program for the boot area

This function call executes, from the
branch table, the function that is placed
in the flash area.

Program for the flash area

At the end of processing, control returns
to the program for the boot area.

Header file

/*---*/
/* (#pragma) branch table functions (ext_func) */
/*---*/
#pragma ext_func prSendMsgAsciiData 0

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 32 of 52
Feb 15, 2013

2.7 Details of the Main and Other Functions

A program listing of the sample program is given below. (Mainly, the program code that is related to flash self

programming is given. For the other processing, refer to the sample program code itself.)

Some programs such as the one for switch testing can be altered through the header file (r_fsl_praxis01_com.h). By

using programs of different specifications, you can see if flash self programming has successfully completed rewriting of

the original program (for the procedure, see section 2.9, How to Evaluate Rewriting of Programs).

Listing 2-1 Header File (r_fsl_praxis01_com.h)

.

.

.

/**********************/

/* Definitions common to all sample programs */

/**********************/

/* Area definitions */

#define PR_MAX_BLOCK_NUM 64 /* Maximum number of blocks */

#define PR_BLOCK_SIZE 0x400 /* Block size */

#define PR_WORD_SIZE 4 /* Word size */

/* SW test definitions */

#define PR_SW_ON 0 /* Switch polarity */

/* operating mode */

#define PR_BOOT_MODE_UNKNOWN 0 /* Boot unknown */

#define PR_BOOT_MODE_WRITE 1 /* Programming mode */

#define PR_BOOT_MODE_USER 2 /* User mode */

.

.

.

Change the switch polarity when it is to
be changed at the time of booting up.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 33 of 52
Feb 15, 2013

According to the settings defined in the link directive file, the write program that performs flash self programming is

placed in blocks 0 to 3 (boot cluster 0) and the user program is placed in block 8 and subsequent blocks.

When performing flash self programming, it is necessary to configure the link directive file so that these programs be

placed in areas other than the RAM areas whose use is restricted by the flash self programming library. For the RAM

areas that are to be used with the flash self programming library, refer to the flash self programming library user's manual.

Listing 2-2 Boot Area Link Directive File (r_fsl_praxis01_boot_map.dr)

;***
; Redefined ROM area
;***
; --
; Redefined default data segment ROM
; --
MEMORY ROM : (000000H, 001000H)

; --
; Define new memory entry for OCD Monitor area
; --
MEMORY OCD_ROM : (00FC00H, 000400H)

;***
; Redefined RAM area
;***
; --
; Define new memory entry for self-RAM
; --
MEMORY SELFRAM : (0FEF00H, 000400H)

; --
; Redefined default data segment RAM
; --
MEMORY RAM : (0FF300H, 000B20H)

; --
; Define new memory entry for saddr area
; --
MEMORY RAM_SADDR : (0FFE20H, 0001E0H)

Listing 2-3 Flash Area Link Directive File (r_fsl_praxis01_flash_map.dr)

;***
; Redefined ROM area
;***
; --
; Redefined default data segment ROM
; --
MEMORY ROM : (000000H, 00F800H)

; --
; Define new memory entry for OCD Monitor area
; --
MEMORY ROM_DATA : (00F800H, 000400H)

; --
; Define new memory entry for OCD Monitor area
; --
MEMORY OCD_ROM : (00FC00H, 000400H)

;***
; flash segment
;***
; --
; Merge FLAS_CNF segment
; --
MERGE FLAS_CNF := ROM_DATA

Boot area definition

OCD monitor area definition

Standard RAM area redefinition

SADDR (short addressing register) area

→Separate the self restricted area from the standard RAM area.

Self RAM area

→ Separate the self restricted area from the standard RAM area.

Flash area definition (need to be defined so that it overlaps with

the boot area.)

Data table area definition

OCD monitor area definition (also need to be defined for the flash

area.)

Data table placement setting

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 34 of 52
Feb 15, 2013

The main function of the boot program starts either the write program or user program according to the state of the switch

SW1.

Listing 2-4 Main Function (r_fsl_praxis01_boot_main.c)

/**

* Outline : boot_main

* Include : none

* Declaration : void boot_main(void)

* Function Name : boot_main

* Description : none

* Argument : none

* Return Value : none

* Calling Functions : start-up routine(boot project)

**/

void boot_main(void)

{

 if(PR_BOOT_SW != PR_SW_ON)

 {

 UB dubRetCode;

 prBootTargetStart(); /* Target start processing */

 dubRetCode = prBootWriteProgram(); /* Run the write program (flash self programming). */

 prBootTargetEnd(dubRetCode); /* Target termination processing */

 }

}

Transits to user program (LED lighting program).

Write program (flash self programming program)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 35 of 52
Feb 15, 2013

Since the write program presumes the use of the flash self programming library, at initiation it initializes the flash self

programming library and transits to the state in which programming is enabled.

When the initialization of the flash self programming library terminates normally, the program sets up the timer and

communications ports and transits to the state in which it waits for a command.

Listing 2-5 Write Program Main Function (r_fsl_praxis01_boot_write.c)

UB prBootWriteProgram(void)
{

 dtyWriteBuff.fsl_data_buffer_p_u08 = prDubWriteBuffer;
 dtyWriteBuff.fsl_word_count_u08 = PR_WRITE_SIZE;

 /* */
 dubSelfResult = prFslStart();

 if(dubSelfResult == FSL_OK)
 {
 /*-- Initialize UART1 ports for communication, 115200bps --*/
 prUartinit();

 /* When using memset on the RL78 assuming that flash area is located below 2000H, */
 /* it must be specified as a far standard function. Consequently, */
 /* memset_f needs to be used instead of memset. */
 memset_f(prDubWriteBuffer, 0x00, PR_MSG_PACKET_SIZE);

 /* Communication loop */
 while(duhSelfLoop == true)
 {
 /*-- Receive from SelfFlashWriter --*/
 do
 { /* Receive Uart command message */
 dubMsgResult = prUartRcvMsg(&prDubMsgBuffer[0], &dubCommnad);

 if(dubMsgResult != PR_MSG_RET_NORM_END)
 { /* Send error to SelfFlashWriter if an error is found in the command. */
 prUartSendMsg(dubCommnad, dubMsgResult);
 }
 }
 while(dubMsgResult != PR_MSG_RET_NORM_END);

 /*-- Process according to the type of the command. --*/
 switch(dubCommnad)
 {

 ・
 ・
 /* Discard any irrelevant command. */

 default:

 /* */

 dubMsgResult = PR_MSG_RET_PRM_ERR;

 prUartSendMsg(dubCommnad, dubMsgResult);

 break;

 }

 }

 }

 else {

 dubReturn = false;

 }

 /* Terminate flash self programming. */

 prFslEnd();

 return dubReturn;

}

Cause a branch according to the command received from

SelfFlashWriter. Command processing to be executed is

listed on the next and subsequent pages.

Omitted

Omitted

Because this program is intended for writing, perform

initialization processing so that flash self programming is

enabled at the beginning. If the initialization fails, terminate

without performing any communication.

memset_f must be executed instead of memset if the mirror

area is not contained in the boot area.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 36 of 52
Feb 15, 2013

When a command is received from SelfFlashWriter, the main function takes necessary actions as directed by the

command. The supported commands are WRITE, DATA, IVERIFY, BOOTSWAP, and RESET. The main function returns

an error for the other commands.

The processing described below is performed when a WRITE command is received.

 Transfers the block, address, and size information that is received from the receive buffer to memory.

 Checks the parameters for the received data and, if no problem is found, checks the specified blocks for blank

blocks and, if necessary, performs erase processing, then sends the execution result to SelfFlashWriter.

<Write command from SelfFlashWriter>

Sends the block to be programmed, its address and size.

WRITE command format

Start Code Data

Length

Command Data Checksum

0x01 0x0008 0x05 Block Address Size 1 byte

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 37 of 52
Feb 15, 2013

Listing 2-6 Write Program's WRITE Command Processing (r_fsl_praxis01_boot_write.c)

/*-- WRITE command --*/

 case PR_MSG_COMM_WRITE:
 {
 UB dub_i;
 UB dubStartEraseBlock;
 UW duwStartWriteAddress;
 UB dubBlockLength;

 /*-- Store received data (Block to program, address, size) from buffer. --*/
 dubStartEraseBlock = prDubMsgBuffer[PR_MSG_BLOCK_NUM];
 duwStartWriteAddress = ((UW)(prDubMsgBuffer[PR_MSG_ADDR_HI])) << 16;
 duwStartWriteAddress |= ((UW)(prDubMsgBuffer[PR_MSG_ADDR_MID])) << 8;
 duwStartWriteAddress |= ((UW)(prDubMsgBuffer[PR_MSG_ADDR_LOW]));
 duwWriteSize = ((UW)(prDubMsgBuffer[PR_MSG_SIZE_HI])) << 8;
 duwWriteSize |= ((UW)(prDubMsgBuffer[PR_MSG_SIZE_LOW]));
 duwEndWriteAddress = duwStartWriteAddress + duwWriteSize - 1;
 dubBlockLength = (UB)((duwWriteSize - 1) / PR_BLOCK_SIZE) + 1;

 /* Parameter check (blocks 0-3 protection, inhibit 0 size writing, etc.) */
 if((dubStartEraseBlock >= 4) && /* */
 (dubStartEraseBlock < PR_MAX_BLOCK_NUM) && /* */
 (duwWriteSize != 0)) /* */
 {
 /* Check state of blocks subject to programming and erase processing */
 for(dub_i = 0 ; dub_i < dubBlockLength ; dub_i++)
 {
#ifdef PR_USE_OCD_MODE /* Do nothing on monitor area in OCD mode. */
 if((dubStartEraseBlock + dub_i) != PR_OCD_MONITOR_BLOCK)
 {
#endif
 DI();
 dubSelfResult = FSL_BlankCheck(dubStartEraseBlock + dub_i);

 /* If the target block is nonblank. */
 if(dubSelfResult == FSL_ERR_BLANKCHECK)
 {

 dubSelfResult = FSL_Erase(dubStartEraseBlock + dub_i);
 }

 EI();

#ifdef PR_USE_OCD_MODE /* Do nothing on monitor area in OCD mode. */
 }
 else {
 dubSelfResult = FSL_OK;
 }
#endif
 }

 /* Set address to write. */
 duwWriteAdressIndex = duwStartWriteAddress;

 /* Convert flash self programming result to a transmit parameter. */
 dubMsgResult = prFslErrorCheck(dubSelfResult);
 }
 else {
 dubMsgResult = PR_MSG_RET_PRM_ERR;
 }

 /* Send result. */
 prUartSendMsg(dubCommnad, dubMsgResult);
 break;
 }

Send the status.

Check blocks to program and erase.

Library function calls

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 38 of 52
Feb 15, 2013

The main function receives a DATA command after it received the WRITE command. It receives 256 bytes of data with

a single DATA command; it receives a total of 1,024 bytes (1 block) of data with four DATA commands.

The write data received with the DATA command is written into the target block that is specified by the WRITE

command.

 Writes 256 bytes of data into the block specified by the WRITE command.

 Increments the start address by 256 bytes for the next write operation.

 Sends the execution result to SelfFlashWriter.

<DATA command from SelfFlashWriter>

Sends write data.

DATA command format

Start Code
Data

Length
Command Data Checksum

0x01 0x0102 0x06 256 bytes 1 bytes

Listing 2-7 Write Program's DATA Command Processing (r_fsl_praxis01_boot_write.c)

 /*-- DATA command --*/
 /*-- DATA command --*/
 case PR_MSG_COMM_DATA:

 /* Check whether the target write address is smaller than the end address */
 if(duwWriteAdressIndex <= duwEndWriteAddress)
 {
#ifdef PR_USE_OCD_MODE /* Do nothing on monitor area in OCD mode. */
 if(duwWriteAdressIndex < PR_OCD_MONITOR_ADDR)
 {
#endif
 /* Copy write data into data buffer. */
 memcpy_f(&prDubWriteBuffer[0], &prDubMsgBuffer[0], PR_MSG_PACKET_SIZE);

 dtyWriteBuff.fsl_destination_address_u32 = duwWriteAdressIndex;

 DI();
 dubSelfResult = FSL_Write(&dtyWriteBuff);
 EI();

#ifdef PR_USE_OCD_MODE /* Do nothing on monitor area in OCD mode. */
 }
 else {
 dubSelfResult = FSL_OK;
 }
#endif

 /* Convert flash self programming result to a transmit parameter. */
 dubMsgResult = prFslErrorCheck(dubSelfResult);

 /* Increment target write address by write size */
 duwWriteAdressIndex += PR_MSG_PACKET_SIZE;
 }
 else {
 dubMsgResult = PR_MSG_RET_ERR_END;
 }

 /* Send result. */
 prUartSendMsg(dubCommnad, dubMsgResult);
 break;

Library function call

memset_f must be executed instead of memset

if the mirror area is not contained in the boot

area.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 39 of 52
Feb 15, 2013

 When the programming of one block is finished, SelfFlashWriter sends an IVERIFY command for the target block.

Upon receipt of the IVERIFY command, the main function performs IVERIFY processing on the target block.

 Performs IVERIFY processing on the block that is specified by the WRITE command.

 Sends the execution result to SelfFlashWriter.

<IVERIFY command from SelfFlashWriter>

Sends the number of block to be subjected to IVERIFY processing.

IVERIFY command format

Start Code Data

Length

Command Data Checksum

0x01 0x0003 0x0B Block 1 byte

Listing 2-8 Write Program's IVERIFY Command Processing (r_fsl_praxis01_boot_write.c)

 /*-- IVERIFY command --*/
 case PR_MSG_COMM_IVERIFY:

 /* Verify processing */
 DI();
 dubSelfResult = FSL_IVerify(prDubMsgBuffer[PR_MSG_IVERIFY_BLOCK]);
 EI();

 /* Convert flash self programming result to a transmit parameter and send result. */
 dubMsgResult = prFslErrorCheck(dubSelfResult);
 prUartSendMsg(dubCommnad, dubMsgResult);
 break;

Library function call

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 40 of 52
Feb 15, 2013

SelfFlashWriter sends the whole write data when programming is done in Chip Mode. When the transmission of the

whole write data is carried out and its completion is confirmed, SelfFlashWriter sends out a BOOTSWAP command.

The processing described below is performed when a BOOTSWAP command is received.

 Rewrites the boot flag.

 Sends the execution result to SelfFlashWriter.

 Effects a reset.

<BOOTSWAP command from SelfFlashWriter>

Sends a BOOTSWAP command.

BOOTSWAP command format

Start Code Data

Length

Command Data Checksum

0x01 0x0002 0x08 None 1 byte

Listing 2-9 Write Program's BOOTSWAP Command Processing (r_fsl_praxis01_boot_write.c)

 /*-- BOOTSWAP command --*/

 case PR_MSG_COMM_BOOTSWAP:

 /* Disabled in OCD mode. */

#ifdef PR_USE_OCD_MODE

 /* Do nothing and end normally in OCD mode. */

 prUartSendMsg(dubCommnad, PR_MSG_RET_NORM_END);

#else

 /* Perform processing if not in OCD mode. */

 /* Boot flag rewrite processing */

 DI();

 dubSelfResult = FSL_InvertBootFlag();

 EI();

 /* Convert flash self programming result to a transmit parameter and send result. */

 dubMsgResult = prFslErrorCheck(dubSelfResult);

 prUartSendMsg(dubCommnad, dubMsgResult);

 /* Upon completion, perform forced reset processing. */

 if(dubMsgResult == PR_MSG_RET_NORM_END)

 {

 /* UART communication termination processing */

 prUartEnd();

 /* Forced reset processing */

 FSL_ForceReset();

 }

#endif

 break;

Library function calls

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 41 of 52
Feb 15, 2013

In addition, the press of the Reset button on SelfFlashWriter causes a RESET command to be sent.

The processing described below is performed when a RESET command is received.

 Sends the execution result to SelfFlashWriter.

 Effects a reset.

<RESET command SelfFlashWriter>

Sends a RESET command.

RESET command format

Start Code Data

Length

Command Data Checksum

0x01 0x0002 0x07 None 1 byte

Listing 2-10 Write Program's RESET Command Processing (r_fsl_praxis01_boot_write.c)

 /*-- RESET command --*/

 case PR_MSG_COMM_RESET:

 /* Disabled in OCD mode. */

#ifdef PR_USE_OCD_MODE

 /* Do nothing and end normally in OCD mode. */

 prUartSendMsg(dubCommnad, PR_MSG_RET_NORM_END);

#else

 /* Perform processing if not in OCD mode. */

 /* Send result of reception. */

 dubMsgResult = PR_MSG_RET_NORM_END;

 prUartSendMsg(dubCommnad, dubMsgResult);

 /* UART communication termination processing */

 prUartEnd();

 /* Formced reset processing */

 FSL_ForceReset();

#endif

 break;

Library function call

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 42 of 52
Feb 15, 2013

2.8 Precautions to be Taken when Debugging

The precautions described in paragraphs (1), (2), (3), and (4) below should be taken when evaluating the sample

program.

 (1) Boot swapping during on-chip debugging

Since the addresses of the programs that are placed in boot clusters 0 and 1 are changed after a swap, their

execution cannot be monitored under the debugger unless the programs that are held in boot clusters 0 and 1

are the same.

If the programs can no longer run normally, temporarily terminate the debugger and turn off the power to the

target device, then reconnect the target device.

 (2) Checking of the reset state and operation of the write program during on-chip debugging

When a reset is to be effected not by the debugger but by the program during on-chip debugging, no software

reset can be accomplished using the FSL_ForceReset() function or by executing an invalid instruction.

When using on-chip debugging, it is necessary to place the monitor program in part of the code flash memory

area. If that area is programmed, the on-chip debugger will not be able to run normally.

Since the sample program is implemented on the assumption that it is to run on ROM, if an on-chip debugger

is used to check rewriting of the entire area of the sample program, the sample program may not run normally

depending on the debugger that is used, for the above-mentioned reason.

To check the sample program using an on-chip debugger, enable "#define PR_USE_OCD_MODE" in the

header file (r_fsl_praxis01_com.h).

If this setting is used, however, the reset processing specified within the program and the programming of the

monitor program area which is reserved for on-chip debugging are not performed.

Listing 2-11 Write Program's RESET Command Processing (r_fsl_praxis01_com.h)

/**/

/* */

/**/

/* QB-R5F100LE-TB */

#if 1

#define __QB_R5F100LE_TB__ /* */

/*#define PR_USE_OCD_MODE*/ /* */

/* */

#else

#define __NON_TARGET__

#endif

/* */

#ifdef PR_USE_OCD_MODE

 #define PR_OCD_MONITOR_BLOCK 0x3F

 #define PR_OCD_MONITOR_ADDR 0xFC00

#endif

Uncomment this line.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 43 of 52
Feb 15, 2013

 (3) Option byte and on-chip debug settings

The communication processing of the sample program runs normally when the high-speed on-chip oscillator

(high-speed OCO) is set to 32 MHz. In the attached project files, the option byte for the boot area project is set to

"FFFFE8," the high-speed on-chip oscillator is set to 32 MHz, and the WDT is set up. For newly created projects,

however, these items are not set by default. If the sample program needs to be loaded into a user-supplied

project, set the option byte for the boot area to "FFFFE8."

Before on-chip debugging, set the on-chip debugging setting for the boot area to "Yes."

Figure 2-23 Option Byte Setting

 (4) E1 emulator and power supply settings

To use the E1 emulator during debugging, change the value of the debugging tool setting in the project file

from the default simulator to the E1 emulator. When power is to be supplied from the E1 emulator, set "Power

target from the emulator (MAX 200mA)" to "Yes."

Figure 2-24 E1 Emulator Settings

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 44 of 52
Feb 15, 2013

2.9 How to Evaluate Rewriting of Programs
By using programs of different specifications, you can see if flash self programming has successfully completed

rewriting of the original program. Follow the procedures described in paragraphs (1) and (2) below when evaluating a

program.

 (1) Writing the hex file for the whole area program into the QB-R5F100LE-TB

Write the file r_fsl_praxis01_flash.hex in the <project folder for the flash area programs>\DefaultBuild folder

into the RL78/G13 using a flash memory programmer. (This file is a hex file that contains the programs in both

the boot and flash areas.)

Reset the QB-R5F100LE-TB while holding down the SW1 on the QB-R5F100LE-TB, and the user program will

start and turn on LED1 and flash LED2. Press SW1 in this state, and ASCII data will be sent to the host machine.

Check the data that is displayed on the host machine with terminal software or similar tool. Subsequently, a reset

is automatically effected by the WDT and the QB-R5F100LE-TB waits for communication with SelfFlashWriter,

LED2 stays on, and LED1 turns off.

 (2) Writing the program with SelfFlashWriter

Perform programming with the program that has been written in step (1).

Specify the write program "r_fsl_praxis01_write_test.hex" from SelfFlashWriter as shown in figure 2-25. When

programming the flash area, check "Block" under "Operation Mode" and set the "Start" block number to 008 and

the "Stop" block number to 063 (specify the entire flash area).

Click the EPV button, and communication will start and the only the program in the flash area be rewritten.

After programming ends, reset the QB-R5F100LE-TB while holding down the SW1 on the QB-R5F100LE-TB

to confirm that only the mode of displaying LED1 and LED2 by the user program has been changed. Note that

the mode of displaying LED1 and LED2 by the write program is not changed.

When programming the entire area, check "Chip" under "Operation Mode" and click the EPV button to start

programming. After programming ends, reset is automatically effected. After the programming, make sure that

the LED display modes of the user program and write program are reversed.

Note: Click on the, "EXIT" button after running "EPV", please terminate once the SelfFlashWrite.

Figure 2-25 Programming from SelfFlashWriter

Set the file type to the required file extension

(*.HXB,*.HXF,*.HEX,All(*.*)).

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 45 of 52
Feb 15, 2013

2.10 How to Evaluate Rewriting of Data

Use the flash self programming function to update the data table and verify that the data being used in the program for

the flash area (user program) is altered. Follow the procedures described in paragraphs (1) and (2) below when evaluating

rewriting of data.

 (1) Writing the hex file for the whole area program into the QB-R5F100LE-TB

Write the file r_fsl_praxis01_flash.hex in the <project folder for the flash area programs>\DefaultBuild folder into

the RL78/G13 using a flash memory programmer. (This file is a hex file that contains the programs in both the

boot and flash areas.)

Reset the QB-R5F100LE-TB while holding down the SW1 on the QB-R5F100LE-TB, and the user program will

start and turn on LED1 and flash LED2. Press SW1 in this state, and ASCII data will be sent to the host machine.

Check the data that is displayed on the host machine with terminal software or similar tool. Subsequently, a reset

is automatically effected by the WDT and the QB-R5F100LE-TB waits for communication with SelfFlashWriter,

LED2 stays on, and LED1 turns off.

 (2) Updating the data table in the flash area with SelfFlashWriter

Perform rewriting with the program that has been written in step (1). Specify the flash area program

"r_fsl_praxis01_write_test.hex" from SelfFlashWriter as shown in figure 2-26. Change the "Operation Mode"

setting to the block programming mode, set both the "Start" block and "End" block to 62, and click the EPV button,

and communication will start. The data table for the programs is rewritten by the flash self programming program.

After programming ends, reset the QB-R5F100LE-TB while holding down the SW1 on the QB-R5F100LE-TB

to confirm that the user program is started and that only the ASCII data to be sent to the host machine by

pressing the SW1 is changed.

Note: Click on the, "EXIT" button after running "EPV", please terminate once the SelfFlashWrite.

Figure 2-26 Programming by SelfFlashWriter

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 46 of 52
Feb 15, 2013

Appendix A SelfFlashWriter

SelfFlashWriter is a GUI for splitting machine-language files (*.hex) specified by the host machine into minimum flash

memory erasure units or blocks (1 block = 1024 bytes) and sending them through serial communication. It can serve as a

virtual tool for evaluating flash self programming.

Figure A-1 Outline of the Connection between SelfFlashWriter and QB-R5F100LE-TB

 (1) Operating environment

SelfFlashWriter must be used in the environment described in the table below.

Table A-1 SelfFlashWriter's Operating Environment

CPU Pentium
®

 III 500 MHz or faster

Supported OS Windows
®

 2000/ Windows XP
®

/ Windows Vista
®

/ Windows
®

7

Memory size 512 Mbytes or more

HDD capacity Approx. 7 Mbytes

 (2) Communication specifications

SelfFlashWriter communicates with the RL78/G13 (R5F100LE) according to the following serial

communication specifications:

Table A-2 SelfFlashWriter's Communication Specifications

Bits/second 115200

Data bit length 8

Parity None

Stop bits 1

Flow control None

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 47 of 52
Feb 15, 2013

 (3) Functions

Figure A-2 SelfFlashWriter Functions

(a) Selecting the COM port

Select a communication port No. 1 to 16 from the pull-down menu.

(b) Setting the flash memory size

Specify the size of flash memory for the RL78/G13 (64 Kbytes or less).

(c) LOAD button

Specify the machine-language file (*.hex) to be written to the RL78/G13 (R5F100LE).

(d) Checking the Operation Mode

Chip: Select this option when programming the entire chip. Pressing the EPV button with this

mode checked causes SelfFlashWriter to send the write data. When programming is

finished, SelfFlashWriter sends a BOOTSWAP command.

 NOTE: Check "Block” and set "Start" block number to 004 and "Stop" block number

to 063 (the last block number).

Block: Select this option when programming in block units. Select the range of blocks to be

subjected to programming through the START and END pull-down menus. SelfFlashWriter

programs the range of addresses specified in START and END regardless of the start and

end addresses specified in the machine-language file (*.hex). Any extra range of addresses

that does not exist in the machine-language file is erased (i.e. programmed with FFh).

Blocks 0 to 3 are not subjected to programming.

Programming status

(a)

(b)

(c)

(g)

(f)

Status sent from the target
microcontroller

Selected file information

(e)

(d)

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 48 of 52
Feb 15, 2013

(e) MPU Reset button

Press this button to send a RESET command to the RL78/G13 (R5F100LE) so that the RL78/G13

(R5F100LE) will be reset.

(f) EPV (Erase-Program-Verify) button

Press this button to send a command to the RL78/G13 (R5F100LE). The RL78/G13 (R5F100LE)

erases the flash memory, writes data, and performs internal verification.

Note: Click on the, "EXIT" button after running "EPV", please terminate once the SelfFlashWrite.

(g) Exit button

Press this button to quit SelfFlashWriter.

 (4) Communication commands

The function and format of the communication commands are given below.

(a) Commands that SelfFlashWriter sends

＜WRITE command>

Sends information on the block, address, and size of data to be written.

Start Code Data

Length

Command Data Checksum

0x01 0x0008 0x05 Block Address Size 1 byte

＜DATA command>

Sends 256 bytes of write data.

Start Code Data

Length

Command Data Checksum

0x01 0x0102 0x06 256 bytes 1 byte

＜IVERIFY command>

Sends an IVERIFY command.

Start Code Data

Length

Command Data Checksum

0x01 0x0003 0x0B Block 1 byte

＜RESET command>

Sends a RESET command.

Start Code Data

Length

Command Data Checksum

0x01 0x0002 0x07 None 1 byte

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 49 of 52
Feb 15, 2013

＜BOOTSWAP command>

Sends a BOOTSWAP command. This command is used when "Chip" is selected as the Operation

Mode.

Start Code Data

Length

Command Data Checksum

0x01 0x0002 0x08 None 1 byte

(b) Command that the RL78/G13 (R5F100LE) sends

The command given below is returned by RL78/G13 (R5F100LE) in response to the commands sent

from SelfFlashWriter. Code you program so that it returns the command in the format given below.

＜DATA_REV command>

This is an ACK (response) command to be sent in response to a programming-related command

(WRITE or DATA command) from SelfFlashWriter.

Start Code Data

Length

Command Data Checksum

0x01 0x0003 Response

command

Status
Note

 1 byte

Note: Status indicates the result of executing the command sent from SelfFlashWriter. See table A-3,

List of Status, for details.

Table A-3 List of Status

Status Name Value Description

Normal end 0x00 Normal end

Abnormal end 0x01 Abnormal end

Parameter error 0x05 Parameter error in communication format

Protect error 0x10 The specified block falls within the boot area and the boot area is

protected against programming.

Erasure error 0x1A Erasure error

Programming error 0x1C Could not program data properly.

Verify error 0x1D Verify error found after programming

Checksum error 0xFF Checksum error in communication format

 (5) Exchange of communication commands

Exchange of communication commands between SelfFlashWriter and RL78/G13 (R5F100LE) proceeds as

described in (a) and (b).

Code your program so that the RL78/G13 (R5F100LE) sends its commands as exactly specified in (a) and (b).

(a) EPV execution flow to be followed when "Block" is selected as the Operation Mode

Write the machine-language file specified through SelfFlashWriter. The machine-language file is split

into blocks (1024 bytes) and one block of data is written with a single WRITE command. On

transmission, one block is further split into four 256-byte sub-blocks and sent in four transmission

operations. After SelfFlashWriter sends each command, it waits for a DATA_REV response from the

RL78/G13 (R5F100LE). It signals a timeout error if no response is received.

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 50 of 52
Feb 15, 2013

(b) EPV execution flow to be followed when "Chip" is selected as the Operation Mode

In this mode, the RL78/G13 (R5F100LE) programs the entire program area using the boot swap

function. After the programming of the entire area is finished, SelfFlashWriter sends a BOOTSWAP

command. After SelfFlashWriter sends each command, it waits for a DATA_REV response from the

RL78/G13 (R5F100LE). It signals a timeout error if no response is received.

Figure A-3 EPV Execution Flow

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 51 of 52
Feb 15, 2013

Note

RL78/G13 Flash Self Programming: Execution

R01AN0718EJ0102 Rev.1.02 Page 52 of 52
Feb 15, 2013

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

http://www.renesas.com/�
http://www.renesas.com/inquiry�

Revision Record

Description Rev. Date

Page Summary

1.00 Sep. 30, 2011 - First edition issued

1.01 Dec. 28, 2012 All page Change format of document.

1.02 Feb. 15,2013 All page the flash self-programming library Type01

Ver.2.10 -> V2.20

Development environment

CubeSuite+ V1.00 -> V1.03

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

© 2013 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 2.2

 下端のコピーライトは REL と RSO の列記になっていますので、必要

に応じて変更ください。

	Contents
	Introduction
	Chapter 1 Overview
	1.1 Code Flash Memory in the RL78/G13
	1.2 RL78/G13 Flash Self Programming
	1.3 How to Program the Code Flash Memory
	1.4 Rewriting Programs and Data
	1.5 Relink Function

	Chapter 2 Example of Configuring a Program to Rewrite the Code Flash Memory
	2.1 Operating Environment of the Sample Program
	2.2 Flash Programming Operation Flow
	2.3 File Configuration of the Sample Program
	2.4 Resources of the Sample Program
	2.5 Configuring Projects (Relink Function Configuration)
	2.6 Configuration for Processing from Reset Release to Main Processing
	2.7 Details of the Main and Other Functions
	2.8 Precautions to be Taken when Debugging
	2.9 How to Evaluate Rewriting of Programs
	2.10 How to Evaluate Rewriting of Data

	Appendix A SelfFlashWriter
	Revison Record

